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Abstract Map construction construction methods automatically produce and/or
update street map datasets using vehicle tracking data. Enabled by the ubiquitous
generation of geo-referenced tracking data, there has been a recent surge in map
construction algorithms coming from different computer science domains. A cross-
comparison of the various algorithms is still very rare, since (i) algorithms and
constructed maps are generally not publicly available and (ii) there is no standard
approach to assess the result quality, given the lack of benchmark data and quan-
titative evaluation methods. This work represents a first comprehensive attempt
to benchmark such map construction algorithms. We provide an evaluation and
comparison of seven algorithms using four datasets and four different evaluation
measures. In addition to this comprehensive comparison, we make our datasets,
source code of map construction algorithms and evaluation measures publicly avail-
able on mapconstruction.org. This site has been established as a repository for
map construction data and algorithms and we invite other researchers to con-
tribute by uploading code and benchmark data supporting their contributions to
map construction algorithms.

Mahmuda Ahmed
University of Texas at San Antonio
San Antonio, TX, USA
E-mail: mahmudaahmed@gmail.com

Sophia Karagiorgou
National Technical
University of Athens, Greece
E-mail: sokaragi@mail.ntua.gr

Dieter Pfoser
George Mason University
Fairfax, VA, USA
E-mail: dpfoser@gmu.edu

Carola Wenk
Tulane University
New Orleans, LA, USA
E-mail: cwenk@tulane.edu

ar
X

iv
:1

40
2.

51
38

v2
  [

cs
.C

G
] 

 1
2 

Ju
n 

20
14



2 Mahmuda Ahmed et al.

Keywords tracking data · map construction · quality measures · algorithms ·
performance

1 Introduction

Street maps and transportation networks are of fundamental importance in a
wealth of applications. In the past, the production of street maps required ex-
pensive field surveying and labor-intensive postprocessing. Proprietary data ven-
dors such as Navteq (now Nokia), TeleAtlas (now TomTom) and Google there-
fore dominated the market. Over the last years, Volunteered Geographic Infor-
mation (VGI) (23) efforts such as OpenStreetMap (OSM) (25; 33) have comple-
mented commercial map datasets. They provide map coverage especially in areas
which are of less commercial interest. VGI efforts however still require dedicated
users to author maps using specialized software tools. Lately, on the other hand,
the commoditization of GPS technology and integration in mobile phones cou-
pled with the advent of low-cost fleet management and positioning software has
triggered the generation of vast amounts of tracking data. As a size indicator
one can consider the contribution of tracking data in OpenStreetMap, which is
steadily increasing in size and currently amounts to 2.6 trillion points (32). Be-
sides the use of such data in traffic assessment and forecasting (18), i.e., map-
matching vehicle trajectories to road networks to obtain travel times (9), there
has been a recent surge of actual map construction algorithms that derive not
only travel time attributes but actual road network geometries from tracking data,
e.g., (1; 2; 4; 7; 8; 10; 11; 12; 13; 16; 17; 19; 22; 24; 26; 27; 29; 38; 39; 40; 42; 44).
Among those only a few algorithms give theoretical quality guarantees (1; 4; 13).
An example of a constructed map is given in Figure 1, which shows (a) the vehicle
trajectories collected for Berlin in grey color and (b) the respective constructed
map, shown in black color, using the algorithm of (27) with an OpenStreetMap
background map, shown in grey color.

(a) Vehicle tracking data - Berlin. (b) Constructed map using (27)(in black)
overlayed on ground-truth (in grey).

Fig. 1: Vehicle tracking data vs constructed map overlayed on ground-truth.

A major challenge in the research community is to compare the performance
and to evaluate the quality of the various map construction algorithms. Visual
inspection remains the most common evaluation approach throughout the liter-
ature and only a few recent papers incorporate quantitative distance measures
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(3; 7; 8; 27; 29). However, the cross-comparison of different algorithms remains
rare, since algorithms and constructed maps are generally not publicly available.
Also, there is a lack of benchmark data, and the quantitative evaluation with suit-
able distance measures is in its infancy. A cultural shift has recently been triggered
by Biagioni and Eriksson (7): In addition to providing an extensive survey of eleven
map construction algorithms, they have performed a quantitative evaluation of
three representative map construction algorithms. And they have made their im-
plementations of these algorithms, as well as their dataset, publicly available. The
present work complements and significantly expands these benchmarking efforts to
provide an evaluation and comparison of more map construction algorithms on
more diverse datasets using various quality measures suitable for different appli-
cations. Such an effort can only be sustained in a culture of sharing that makes
data, methods and source code publicly available.

In this work, we evaluate and compare seven map construction algorithms
using four benchmark tracking datasets and four different distance measures. The
algorithms we compare represent the state-of-the-art over the past several years
and constitute representatives of different map construction algorithm classes. The
algorithms we evaluate include the recent algorithms by Ahmed and Wenk (4), by
Ge et al. (22), and by Karagiorgou and Pfoser (27), in addition to the algorithms
by Cao and Krumm (11), Davies et al. (16), Edelkamp and Schrödl (17), and
Biagioni and Eriksson (8). Among those, the algorithms by (11), (16) and (17) were
previously compared by Biagioni and Eriksson (7). We have used their publicly
available implementations of the algorithms by (11), (16; 17) and by (8), and
the authors of (22) ran their algorithm for us. Our own implementations of the
algorithms by (4; 27) we have also made publicly available, see below.

The four distance measures used to assess the constructed map quality com-
prise two novel distance measures that have not been used for comparative eval-
uations of map construction before and that work with unmodified and unbiased
ground-truth maps: the Directed Hausdorff distance (6) and the path-based dis-
tance measure presented by Ahmed et al. (3). We also use a distance measure
based on shortest paths by Karagiorgou and Pfoser (27) and the graph-sampling-
based distance measure by Biagioni and Eriksson (8). The implementation of the
latter distance measure (8) has been made available to us by the authors.

The tracking datasets include the Chicago dataset provided by Biagioni and
Eriksson (7; 8), and three additional tracking datasets: two from Athens, Greece
and one from Berlin, Germany (see detail in Section 4). They are available to-
gether with unmodified ground-truth maps obtained from OpenStreetMap. We
use different datasets because they cover diverse roads (i.e. highways, secondary
roads), different sampling rates and different scale.

In addition to providing the largest comprehensive comparison of map con-
struction algorithms, we make our three new benchmark datasets, the map con-
struction algorithms and outputs by Ahmed and Wenk (4) and by Karagiorgou and
Pfoser (27), as well as the metric code for computing the three distance measures:
the Directed Hausdorff distance (6), the path-based distance (3) and shortest path
based measure (27) publicly available on the internet at mapconstruction.org. We
have established this web site as a repository for map construction data and al-
gorithms, and we invite other researchers to contribute by uploading code and
benchmark data supporting their map construction algorithms. We expect that
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such a central repository will encourage a culture of sharing and will enable the
development of improved map construction algorithms.

Our main goal with this work is to provide a common platform to do com-
parative analysis of map construction algorithms. As different distance measures
capture different features of a constructed map, it is hard to combine them into a
single score and rank the algorithms based on that. Also, which algorithm is the
best highly depends on the quality of the input data and for what purpose the
map will be used. For example, for the Chicago dataset the KDE-based algorithm
by Davies et al. (16) generates a very good-quality map in terms of spatial dis-
tance to the ground-truth map (captured using path-based and Directed Hausdorff
distance), but if the user is interested in maps with good coverage (captured by
shortest path based and graph-sampling based distance measure) this algorithm
will not be the best choice as it ignores tracks in sparse areas as outliers/noise. So,
we leave it to the user to pick the distance measure that suits his/her needs best.

The outline of the paper is as follows. Section 2 surveys map construction al-
gorithms by introducing categories for types of algorithms and gives more details
on the algorithms that we will use in our evaluation. Section 3 discusses quality
measures that will allow us to assess the quality of the constructed maps. The
tracking datasets that we provide for evaluation purposes are briefly discussed in
Section 4. The datasets are available for download and also include the respective
ground-truth map data. A comprehensive performance study comparing the var-
ious algorithms across datasets is given in Section 5. Finally, Section 6 provides
conclusions and directions for future work.

2 Map Construction Algorithms

We assume that the input is given as a set of tracks, where each track is a se-
quence of measurements. Each measurement consists of a point (latitude/longi-
tude or (x, y)-coordinates after suitable projection), a time stamp, and optionally
additional information such as vehicle heading or speed. The desired output is to
construct a street map. There are many possible models for street maps, mostly
depending on the desired application and granularity. For example, an intersection
can be modeled as a single vertex embedded as a point in the plane, or it could
be a set of vertices, possibly annotated with turn restrictions, or it could be a
region. An edge can be modeled as an abstract connection between vertices, as
a curve embedded in the plane, as a set of curves to model multiple lanes, and
an edge might be directed to model one-way streets. We will focus on the most
basic model of a street map as an undirected geometric graph, where each ver-
tex is embedded as a point in the plane and each edge is a polygonal curve that
connects two vertices. All map construction algorithms in the literature follow
this basic model, i.e. (x, y)-coordinates, time stamp. In addition, some algorithms
enhance this basic model by deriving some additional information (such as mean
speed, directions, turn restrictions, number of lanes), which often is computed in
an additional post-processing step, e.g. (8; 11; 16; 17; 38).
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2.1 Related Work

There exist several different approaches in the literature for constructing street
maps from tracking data. These can be organized into the following categories:
Point clustering (this includes k-means algorithms and Kernel Density Estimation
(KDE) as described in Biagioni and Eriksson (8)), incremental track insertion, and
intersection linking.

2.1.1 Point Clustering

Algorithms in this general category assume the input consists of a set of points
which are then clustered in various different ways to obtain street segments which
finally connect to a street map. The input point set either comprises the set of all
raw input measurements, or a dense sample of all input tracks. Here, the input
tracks are assumed to be continuous curves obtained from interpolating (usually
piecewise-linearly) between measurements.

One type of approach, speerheaded by Edelkamp and Schrödl (17), employs
the k-means algorithm to cluster the input point set, using distance measures (e.g.,
Euclidean distance) and possibly also vehicle heading of the measurement, as a
condition to introduce seeds at fixed distances along a path. Their map construc-
tion algorithm incorporates new algorithms for road segmentation, map-matching,
and lane clustering. In (38) this approach was used to refine an existing map
rather than building it entirely from scratch. In their short paper (24), Guo et
al. make use of statistical analysis of GPS tracks, assuming that the GPS data
follows a symmetric 2D Gaussian distribution. This assumption may become un-
realistic, especially in error-prone environments. Worrall et al. (42) compute point
clusters based on location and heading, and in a second step link these clusters
together using non-linear least-squares fitting. They emphasize compression of the
input tracks to infer a digitized road map and present their results only for small
datasets. They are mostly concerned with topological elements and not with con-
nected way points. Agamennoni et al. (2) presented a machine-learning method
to consistently build a representation of the map mostly in dynamic environments
such as open-pit mines. They focus on estimating a set of principal curves from
the input traces to represent the constructed map. Liu et al. (29) first cluster line
segments based on proximity and direction, and then use the resulting point clus-
ters and fit polylines to them, to extract road segments. In our comparisons, we
use the algorithm by Edelkamp and Schrödl (17).

Another approach employs KDE methods to first transform the input point set
to a density-based discretized image. Most of the KDE algorithms function well
either when the data is frequently sampled (i.e., once per second) (12), or when
there is a lot of data redundancy (8; 40; 39; 16). A similar approach to (8) is pre-
sented in Liu et al. (29). Generally, KDE algorithms have a hard time overcoming
the problem of noisy samples when they accumulate in an area. Recently, Wang
et al. (41) addressed the problem of map updates by applying their approach to
OpenStreetMap data using a KDE-based approach. In our comparisons, we use
the algorithms by Davies et al. (16) and by Biagioni and Eriksson (8), which are
both KDE-based but use very different approaches to extract the map from the
kernel density estimate.
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In the computational geometry community, map construction algorithms have
been proposed that cluster the input points using local neighborhood properties
by employing Voronoi diagrams, Delaunay triangulations (13; 22), or other neigh-
borhood complexes such as the Vietoris-Rips complex (1). All these algorithms
assume a densely sampled input point set, and provide theoretical quality guaran-
tees for the constructed output map, under certain assumptions on the underlying
street map and the input tracks. Aanjaneya et al. (1) view street maps as metric
graphs, and they focus on computing the combinatorial structure by computing
an almost isometric space with lower complexity, but they do not compute an ex-
plicit embedding of vertices and edges. Chen et al. (13) focus on detecting “good”
street portions in the map and connect them subsequently. The theoretical quality
guarantees, however, assume dense point sample coverage and error bounds, and
make assumptions on the road geometry. In our comparisons, we use the algorithm
by Ge and Wang (22).

2.1.2 Incremental Track Insertion

Algorithms in this category construct a street map by incrementally inserting
tracks into an initially empty map (31), often making use of map-matching ideas
(35). Distance measures and vehicle headings are also used to perform additions
and deletions during the incremental construction of the map. One of the first
algorithms in this category (37) clusters the tracks merely to refine an existing
map and not to compute it from scratch. Cao and Krumm (11) first introduce
a clarification step in which they modify the input tracks by applying physical
attraction to group similar input tracks together. Then they incrementally insert
each track by using local criteria such as distance and direction. Bruntrup et
al. (10) propose a spatial-clustering based algorithm that requires high quality
tracking data (sampling rate and positional accuracy). The work in (44) discusses
a map update algorithm based on spatial similarity. It uses a method similar to
GPS trace merging to continuously refine existing road maps. Ahmed and Wenk
(4) present an incremental method that employs the Fréchet distance to partially
match the tracks to the map. In our comparisons, we use the algorithms by Cao
and Krumm (11) and by Ahmed and Wenk (4) which use very different approaches
for incremental track insertion.

2.1.3 Intersection Linking

While related to point clustering, the intersection linking approach is to first de-
tect the intersection vertices of the street map, and in a second step link those
intersections together by identifying suitable street segments. Fathi and Krumm
(19) provide an approach that detects intersections by using a prototypical detec-
tor trained on ground truth data from an existing map. While a map is finally
derived, their approach works best for well aligned maps and it uses frequently
sampled data of 1s or 5s. The method by Karagiorgou and Pfoser (27) relies on
detecting changes in the direction of movement to infer intersection nodes, and
then “bundling” the trajectories around them to create the map edges. In our
comparisons, we use the algorithm by Karagiorgou and Pfoser (27).
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2.2 Compared Algorithms

Here we give some more details on the map construction algorithms that we com-
pare in Section 5. The algorithms categories are also provided in Table 1.

Point Incremental Track Intersection
Algorithm Clustering Insertion Linking

Ahmed and Wenk (4)

Biagioni and Eriksson (8)

Cao and Krumm (11)

Davies et al. (16)

Edelkamp and Schrödl (17)

Ge et al. (22)

Karagiorgou and Pfoser (27)

Table 1: Algorithms categories.

2.2.1 Ahmed and Wenk (4)

The algorithm by Ahmed and Wenk (4) is a simple and practical incremental track
insertion algorithm. The insertion of one track proceeds in three steps. The first
step performs a partial map-matching of the track to the partially constructed
map in order to identify matched portions and unmatched portions. Figure 2a
gives an example of a track with its matched portions shown in dark green and
its unmatched portions shown in red. This partial map-matching is based on a
variant of the Fréchet distance. In the second step, the unmatched portions of the
track are then inserted into the partially constructed map, which requires creating
new vertices and creating and splitting edges. In a third step, the already exist-
ing edges in the map that are covered by the matched portions of the trajectory,
are updated using a minimum-link algorithm to compute a new representative
edge (cf. Figure 2b). This last step is only needed to provide a guaranteed bound
on the complexity of the output map; in the implementation of this algorithm
that we use in Section 5, this last step has been omitted. Ahmed and Wenk also
give theoretical quality guarantees for the output map computed by their algo-
rithm, which include a one-to-one correspondence between well-separated “good”
portions of the underlying map and the output map, with a guaranteed Fréchet
distance between those portions.

2.2.2 Biagioni and Eriksson (8)

Biagioni and Eriksson (8) describe a point clustering-based algorithm that uses
KDE methods. Their algorithm proceeds in using KDE with various thresholds to
compute successive versions of a skeleton map. They annotate the map by per-
forming a map-matching pass of the input tracks with the skeleton map. Figure 3
gives three example stages of the skeleton construction process using high to low
KDE thresholds.
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(a) Existing graph and tra-
jectory to be added
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(b) Merged graph

Fig. 2: Incremental track insertion algorithm (images from presentation of(4))

(a) High threshold (b) Medium threshold (c) Low threshold

Fig. 3: KDE-based map construction using threshold ranges (images from presen-
tation of (8))

2.2.3 Cao and Krumm (11)

This incremental track insertion approach proceeds in two stages. In the first
stage, simulation of physical attraction is used to modify the input tracks to group
portions of the tracks that are similar together. This results in a cleaner data set in
which track clusters are more pronounced and different lanes are more separated.
Then, this much cleaner data is used as the input for a fairly simple incremental
track insertion algorithm. This algorithm makes local decisions based on distance
and direction to insert an edge or vertex and either merge the vertex into an
existing edge, or add a new edge and vertex.

Figure 4 gives a respective map construction example. The three trajectories
of Figure 4a are used to incrementally build the graph in Figure 4b by (i) either
merging nodes to existing nodes if the distances are small and the directions of the
traces match (nodes in boxes), or (ii) by creating new nodes and edges otherwise
(nodes in circles).

2.2.4 Davies et al. (16)

This is a classical KDE-based map construction algorithm. It first computes for
each grid cell the density of tracks that pass through it (cf. the example of Fig-
ure 5a). Then it computes the contour of the resulting bit map (Figure 5b), and
then it uses the Voronoi diagram of the contour to compute a center line repre-
sentation, followed by additional cleanup (Figure 5c).
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Trajectory 1 
Trajectory 2 
Trajectory 3 
 

(a) Three input trajectories (b) Merged graph

Fig. 4: The incremental track insertion algorithm - adapted from (11)

(a) Blurred trajectory his-
togram

(b) Contours (c) Centerlines, graph

Fig. 5: Clustering-based map construction algorithm (images from (16))

2.2.5 Edelkamp and Schrödl (17)

Edelkamp and Schrödl (17) were the first to propose a map construction approach
based on the k-means method. Their point clustering algorithm creates road seg-
ments based on tracking data, represents the center line of the road using a fitted
spline and performs lane finding. The lanes are found by clustering tracks based
on their distance from the road center line.

< dmax 

(a) Input trajectories, clusters, and seg-
ments

(b) Centerlines, refined graph

Fig. 6: Clustering-based map construction algorithm - adapted from (17)
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2.2.6 Ge et al. (22)

This algorithm is a point clustering approach that applies topological tools to
extract the underlying graph structure. The main idea of this algorithm is to
decompose the input data set into sets each corresponding to a single branch in
the underlying graph. The authors assume that the input point set is densely
sampled, and their algorithm only needs a distance matrix or proximity graph
of the point set as input. Then they define a function on the proximity graph,
which assigns to every point in the graph its geodesic distance to an arbitrary
base point. They employ the Reeb graph to model the connected components of
the level set of the inverse of this function. Finally, there is a canonical way to
measure importance of features in the Reeb graph, which allows them to easily
simplify the resulting graph. They provide runtime guarantees as well as partial
quality guarantees for correspondences of cycles. An embedding for the edges is
then obtained by using a principal curve algorithm (28) that fits a curve to the
points contributing to the edge. Figure 7 gives an example of a constructed graph
based on a point cloud shown as light (yellow) dots.

(a) Input points and initial
graph

(b) Graph after smoothing

Fig. 7: Reeb graph based map construction (images from (22))

2.2.7 Karagiorgou and Pfoser (27)

This intersection-linking map construction algorithm is a heuristic approach that
“bundles” trajectories around intersection nodes. The main contribution of this
TraceBundle algorithm is its methodology to derive intersection nodes. The basic
heuristic relies on detecting changes in movement and then clustering “similar”
nodes. A change in direction and speed is considered a turn indicator. Clustering
these turns based on (i) spatial proximity and (ii) turn type results in turn clus-
ters. The centroid location of each of these turn clusters represents an intersection
node. Links, and consequently the entire geometry of the map, are generated by
connecting the intersection nodes with trajectories, and compacting the trajecto-
ries. Figure 8 presents the steps of this algorithm. Figure 8a shows the constructed
intersection nodes as gray stars from turn clusters (x and o markers) and Figure 8b
shows as black lines the created links after compacting the trajectories.
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(a) Intersection nodes (b) Compacting links

Fig. 8: The TraceBundle algorithm (27)

3 Quality Measures for Map Comparison

There are two key ingredients for evaluating the quality of a constructed map: (1)
the availability of an adequate ground-truth map G as part of the benchmark data,
and (2) a quality measure used to evaluate the similarity between the constructed
map C and the ground-truth map G.

There are essentially two cases of what can be considered as a ground-truth
map G. Ideally, G is the underlying map consisting of all streets, and only those
streets, that have been traversed by the entities that generated the set of input
tracks. If such a G was available, then a suitable quality measure would compare
C to all of G and the ideal would be for C to equal G. However, in practice, it
is hard to obtain an unbiased ground-truth map that exactly corresponds to the
coverage of the tracking data. This non-trivial task has been addressed in the past
by pruning the ground-truth either manually, by proximity to the tracking data,
or by map-matching the tracking data to the map (7; 8; 27; 29). By using graph
topologies resulting from human judgment or from the cropping behaviors of the
different pruning algorithms, clearly all these approaches introduce an undesired
bias.

Actually, it is much easier to obtain a ground-truth map that covers a superset
of all the streets covered by the input tracks, e.g., street maps taken by proprietary
vendors or OpenStreetMap. Therefore, if G is a superset, then the quality measure
attempts to partially match C to G. Of course, another possible scenario is that
C contains additional streets that are not present in either variation of G.

3.1 Related Work

In the graph theory literature, there are various distance measures for compar-
ing two abstract graphs, that do not necessarily have a geometric embedding
(15; 21; 36). Most closely related to street map comparison are the subgraph
isomorphism problem and the maximum common isomorphic subgraph problem,
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both of which are NP-complete. These, however, rely on one-to-one mappings of
graphs or subgraphs, and they do not take any geometric embedding into account.
Graph edit distance (20; 43) is a way to allow noise by seeking a sequence of edit
operations to transform one graph into the other, however it is NP-hard as well.
Cheong et al. (14) consider a graph edit distance for geometric graphs (embedded
in two different coordinate systems, however), and also show that it is NP-hard to
compute.

For comparing street maps, distance measures based on point sets and distance
measures based on sets of paths have been proposed. Point set-based distance
measures treat each graph as the set of points in the plane that is covered by all
its vertices and edges. The idea is then to compute a distance between the two
point sets. A straightforward distance measure for point sets are the directed and
undirected Hausdorff distances (6). The main drawback of such an approach is
that it does not use the topological structure of the graph. Biagioni and Eriksson
(7; 29), use two distance measures that essentially both use a variant of a partial
one-to-one bottleneck matching that is based on sampling both graphs densely.
The two distance measures compare the total number of matched sample points
to the total number of sample points in the graph, thus providing a measure of
how much of the graph has been matched. They do require though to have as
input a ground-truth graph that closely resembles the underlying map and not a
superset.

For path-based distance measures on the other hand, the underlying idea is to
represent the graphs by sets of paths, and then define a distance measure based
on distances between the paths. This captures some of the topological information
in the graphs, and paths are of importance for street maps in particular since
the latter are often used for routing applications for which similar connectivity is
desirable. Mondzech and Sester (30) use shortest paths to compare the suitability
of two road networks for pedestrian navigation by considering basic properties such
as respective path length. Karagiorgou and Pfoser (27) also use shortest paths, but
to actually assess the similarity of road network graphs. Computing random sets
of start and end nodes, the computed paths are compared using Discrete Fréchet
distance and the Average Vertical distance. Using those sets of distances, a global
network similarity measure is derived. In another effort, Ahmed and Wenk (3)
cover the networks to be compared with paths of k link-length and map-match
the paths to the other graph using the Fréchet distance. They are the first to
introduce the concept local signature to identify how and where two graphs differ.

3.2 Quality Measures used for Comparison

Here we give some more details on the quality measures that we use in Section 5
to compare the different road network construction algorithms. Note that in our
experiments the ground-truth G is an unmodified street map from OpenStreetMap
and thus expected to be a superset of the underlying graph. We use the Directed
Hausdorff distance (6), the path-based distance measure presented by Ahmed et
al. (3), the distance measure based on shortest paths by Karagiorgou and Pfoser
(27) and graph-sampling based distance measure by Biagioni and Eriksson (7).
The first two measures have not been used for comparative evaluations of road
network constructions before.
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3.2.1 Directed Hausdorff Distance (6)

The directed Hausdorff distance of two sets of points A,B is defined as
−→
d (A,B) =

maxa∈A minb∈B d(a, b). Here, d(a, b) is usually the Euclidean distance between two
points a and b. Intuitively, the directed Hausdorff distance assigns to every point
in a its nearest neighbor b ∈ B and takes the maximum of all distances between
assigned points. In order to compare two graphs, we identify each graph as the
set of points that is covered by all its vertices and edges. If the directed Hausdorff
distance from graph C to graph G is at most ε, this means that for every point on
any edge or vertex of C there is a point on G at distance at most ε. Or equivalently,
every point of C is contained in the Minkowski sum of G with a disk of radius ε;
the Minkowski sum intuitively “fattens” G by “drawing” each of its edges with
a thick circular pen. This distance measure gives a notion about spatial distance
for graphs. If C is the constructed graph and G is the ground-truth, the lower the
distance from C to G, the closer the graph C to G.

3.2.2 Path-Based Distance (3)

The path-based map distance considers graphs as sets of paths. The distance be-
tween two sets of paths is then computed in the Hausdorff setting, while the Fréchet
distance which is a natural distance measure for curves that takes monotonicity
and continuity into account, is used to compute the distance between two paths.

For curves f, g, the Fréchet distance is defined as

δF (f, g) = inf
α,β:[0,1]→[0,1]

max
t∈[0,1]

d(f(α(t)), g(β(t))), (1)

where α, β range over continuous, surjective and non decreasing reparametrizations.

A common intuition is to explain it as the minimum leash length required
such that a man and dog can walk on the two curves from beginning to end in a
monotonic way.

Under this scope, let C and G be two planar geometric graphs, and let πC be
a set of paths generated from C, and πG be a set of paths generated from G. The
path-based distance is defined as:

−→
dC,G(πC , πG) = max

pC∈πC

min
pG∈πG

δF (pC , pG) (2)

Ideally, πC and πG should be the set of all paths in C and G, which however

has exponential size. In (3) they showed that
−→
dC,G(ΠC , ΠG) can be approximated

using
−→
dC,G(Π3

C , ΠG) in polynomial time using the map-matching algorithm of (5),
under some assumptions on C. Here, ΠC is the set of all paths and Π3

C is the set of
all link-3 paths of C. A link-k path consists of k “edges”, where vertices of degree
two in the graph are not counted as vertices. Using this asymmetric distance

measure
−→
dC,G(Πk

C , ΠG), which can be computed in polynomial time for constant
k, the following properties have been shown in (3), under some assumptions on C:

1. k = 1: For each edge in C, there is a path in G which is within Fréchet distance−→
dC,G(Π1

C , ΠG).
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2. k = 2: For each vertex v in C there is a vertex in G within bounded distance−→
dC,G(Π2

C , ΠG))/ sin θ
2 , where θ is the minimum incident angle at v between

its adjacent edges.

3. k = 3:
−→
dC,G(Π3

C , ΠG) approximates
−→
dC,G(ΠC , ΠG) within a factor of 1/ sin θ

2

if the vertices of C are reasonably well separated and have degree 6= 3. 1

Similar to Directed Hausdorff distance, the lower the value of
−→
dC,G(ΠC , ΠG)

the more closely the constructed map C resembles the ground-truth map G.

The local signature of a vertex v ∈ C is defined as ∆v =
−→
dC,G(ΠCv, ΠG) where

ΠCv is a set of paths that contains v. In a similar way, the local signature of an

edge e ∈ C is defined as ∆e =
−→
dC,G(ΠCe, ΠG) where ΠCe is a set of paths that

contains e. Based on the value of these signatures one can identify which vertices
or edges are very similar and which are not.

3.2.3 Shortest Path Based Distance (27)

Karagiorgou et al. (27) propose a measure that essentially samples each graph
using random sets of shortest paths. Given the constructed and ground-truth net-
works C and G respectively, a common set of node pairs (origin, destination) is
selected in both, using the nearest neighbor search if necessary. For all node pairs,
shortest paths are computed in both networks. The geometric difference/similarity
between the respective shortest paths is used to assess the similarity between C
and G and consequently as a means to assess the quality of the constructed net-
work. The Discrete Fréchet distance and the Average Vertical distance are used to
compare the shortest paths. The rationale for using this approach is that measur-
ing the similarity for sets of paths instead of individual links allows one to better
reason about the connectivity of the generated network. The more “similar” the
shortest paths in the constructed network are to the ground-truth network, the
higher also the quality of the network. The results of this shortest path based
distance measure can be assessed by plotting the distance of all paths against each
other, or by comparing average values for the entire set of paths. We employ both
approaches in our experiments below.

3.2.4 Graph-Sampling Based Distance (7)

Biagioni and Eriksson (7) introduce a graph-sampling based distance measure
in order to evaluate geometry and topology of the constructed road networks
represented by graphs. The main idea is as follows: starting from a random street
location, explore the topology of the graphs by placing point samples on each
graph outward within a maximum radius. This produces two sets of locations,
which are essentially spatial samples of a local graph neighborhood. These two
point sets are compared using one-to-one bottleneck matching and counting the
unmatched points in each set. The sampling process is repeated for several seed
locations.

1 The degree assumption is only a technical requirement for the theoretical quality guaran-
tees, and the authors have shown (3) that similar approximation guarantees appear to hold in
practice as well.
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Fig. 9: Graph G (dotted edges) overlayed on H (gray). G and H differs in the
shaded squared region. The distance measure in (8) fails to capture the broken
connection in G, as there is always detour available to reach every edge and sample
it.

For the bottleneck matching, the sample points on one graph can be con-
sidered as “marbles” and on the other graph as “holes”. Intuitively, if a mar-
ble lands close to a hole it falls in, marbles that are too far from a hole remain
where they land, and holes with no marbles nearby remain empty. If one of the
graphs is the ground truth, this difference represents the accuracy of the other
graph. Counting the number of unmatched marbles and empty holes quantifies
the accuracy of the generated road network with respect to the ground truth ac-
cording to two metrics. The first metric is the proportion of spurious marbles,
spurious = spurious marbles/ (spurious marbles+matched marbles) and the
second is the proportion of missing locations (empty holes), where missing =
empty holes/ (empty holes+matched holes).

To produce a combined performance measure from these two values, the well-
known F-score is used, which is computed as follows:

F -score = 2 ∗ precision ∗ recall
precision+ recall

(3)

where, precision = 1− spurious and recall = 1−missing.
The higher the F-score, the closer the match. Sampling the graphs locally is

an important aspect of this approach as it provides the ability to capture the con-
nectivity of the graphs at a very detailed level, allowing the topological similarity
to be measured. Repeated local sampling at randomly chosen locations yields an
accurate view of local geometry and topology throughout the graph.

A modified version is used in (8) where the method ignores parts of the road
network where no correspondence could be found between generated and ground-
truth networks, for our experiments we used this modified version.

3.3 Comparison of Distance Measures

All the distance measures described in Subsection 3.2 capture different properties
of graphs. Based on the desired kind of similarity, different distance measures could
be employed. For example, if one is interested in ensuring similar shortest paths
in the two graphs, requiring that independent queries produce similar routes, then
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the shortest path based measure would be the prefect choice (30; 27) among all.
If, however, one wants to know the spatial displacement between the two graphs
without necessarily considering any kind of topology or path similarity, then the
directed Hausdorff distance (6) would be the distance measure to choose.

On the other hand, the two distance measures described in (8) and (3) maxi-
mize the use of topology in comparing graphs. Using the concept of local signature
described in (3) one can visualize the exact differences in graphs using any of
these two measures. Figure 9 shows an example where the graph sampling based
distance (8) fails to identify local differences (the dotted graph has a broken con-
nection in the gray square region). As it samples small sub-graphs starting from
a root location, it cannot capture this kind of broken connection when another
connecting detour between the two parts is available in that small sub-graph. As
the path-based distance (3) exploits every adjacency transition around a vertex,
it verifies all connectivities.

Among these four measures only the graph sampling based distance (8) ensures
one-to-one correspondence. So, if one of the graphs has missing streets or extra
edges, that is reflected in the overall score as well as in the local signatures.

4 Datasets

A basic means for assessing map construction algorithms is the underlying dataset
comprising vehicle trajectories and ground-truth map datasets. The datasets are
in a projected coordinate system (UTM, GGRS87). All the visualizations of the
datasets are also available on the mapconstruction.org web site. The statistics of
the datasets are provided in Table 2.

Our experiments use several tracking datasets from different cities (Figure 10).
While other publicly available GPS-based vehicle tracking datasets exist, e.g.,
GeoLife (45) and OpenStreetMap GPX track data (34), the selected range covers
the various types of existing datasets produced by different types of vehicles, at
varying sampling rates and representing different network sizes.

The Athens large dataset consists of 511 trajectories with a total length of
6,781km (average: 13.27km and standard deviation: 10.79km) obtained from school
buses covering an area of 12km × 14km; the tracks range from 32 to 80 position
samples, with a sampling rate of 20s to 30s (average: 30.14s and standard de-
viation: 24.77s) and an average speed of 20.16km/h. The Athens small dataset
consists 129 tracks with a total length of 443km (average: 3.82km and standard
deviation: 1.45km) obtained from school buses covering an area of 2.6km × 6km;
the tracks range from 13 to 47 position samples, with a sampling rate of 20s
to 30s (average: 34.07s and standard deviation: 31.92s) and an average speed of
19.55km/h. The Berlin dataset consists of 26,831 tracks with a total length of
41,116km (average: 1.53km and standard deviation: 634.51m) obtained from a
taxi fleet covering an area of 6km × 6km; the tracks comprise from 22 up to 58
position samples, with a sampling rate of 15s to 127s (average: 41.98s and stan-
dard deviation: 38.70s) and an average speed of 35.23km/h. The Chicago dataset
(7; 8) consists of 889 tracks with a total length of 2,869km (average: 3.22km and
standard deviation: 894.28m) obtained from university shuttle buses covering an
area of 7km × 4.5km; the tracks range from 100 to 363 position samples, with a
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(a) Athens large (b) Athens small

(c) Berlin (d) Chicago

Fig. 10: Tracking data.

sampling rate of 1s to 29s (average: 3.61s and standard deviation: 3.67s) and an
average speed of 33.14km/h.

For all cases, we consider as ground-truth map data the corresponding Open-
StreetMap excerpt.

5 Experiments

What follows is a description of the map construction experiments that were con-
ducted for the range of algorithms, datasets and evaluation measures, with the
scope to assess the quality of the constructed maps. The seven algorithms used
in this experimentation are implemented in C, Java, Python and Matlab. The
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Tracking Trajec- Sampling Trajectory Speed
Data tories rate (s) length (km) (km/h)

Athens large 120 30.14 6,781 20.16
Athens small 129 34.07 443 19.55

Berlin 26,831 41.98 41,116 35.23
Chicago 889 3.61 2869 33.14

OSM Network Vertices Edges Length (km) Area (km2)

Athens large 32,212 39,699 2,000 12 × 14
Athens small 2,694 3,436 193 2.6 × 6

Berlin 5,894 6,839 360 6 × 6
Chicago 9,429 11,801 61 7 × 4.5

Table 2: Statistics for datasets used.

experiments for six algorithms have been performed by the authors and the im-
plementations have been made available at the mapconstruction.org web site.
The authors of (22) performed the experiments themselves, since we did not have
access to their implementation. Given the implementations, (i) their difference in
code base, (ii) their scope, i.e., to construct small-scale maps from GPS trajecto-
ries, and (iii) their quality, i.e., all are academic prototypes, we did not assess the
characteristics of the algorithms themselves by means of, e.g., a performance study
or theoretical analysis. However, to at least give an impression of their running
times, for the Chicago dataset the running times of the algorithms range from
10min to 20h. For the larger Berlin dataset, the running times range from 2h to
4days. Given the quality of the implementations, another problem we encountered
was that some algorithms could not cope with the size of the input dataset (trajec-
tories) resulting in runtime crashes. Hence, not all algorithms could be tested on
the large datasets and results for all algorithms are only available for the smaller
datasets, i.e., Athens small and Chicago.

5.1 Constructed Maps

What follows is an initial overview of the experimentation in terms of constructed
maps and the respective result quality. Figure 11 illustrates the ground-truth map
(light gray) and the generated maps (black) for the small Chicago dataset. On
larger datasets, i.e., Athens large and Berlin, we ran the algorithms described in
Subsections 2.2.1, 2.2.6 and 2.2.7. Figure 12 illustrates the ground-truth map (light
gray) and the generated maps (black) for the case of the larger Berlin dataset.

Each of the algorithms uses different parameter settings. For Ahmed and Wenk
(4) the values of ε to cluster subtrajectories are: 180, 90, 170 and 80 meters for
Athens large, Athens small, Berlin and Chicago, respectively. The respective pa-
rameters of proximity and bearing for the other algorithms are Biagioni 50m (8),
Cao 20m and 45◦ (11), Davies 16m (16) and Edelkamp 50m and 45◦ (17). For
Karagiorgou and Pfoser (27) the values of direction, speed and proximity to ex-
tract intersection nodes and to merge trajectories into links are 15◦, 40km/h and
25m accordingly. We evaluated all constructed maps using the distance measures
described in Subsection 3.2.

A summary of the complexities of the constructed maps is shown in Table 3.
Here, the number of vertices includes vertices of degree two (which may lie on a
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(a) Ahmed - Chicago (b) Biagioni - Chicago

(c) Cao - Chicago (d) Davies - Chicago

(e) Edelkamp - Chicago (f) Ge - Chicago

(g) Karagiorgou - Chicago

Fig. 11: Constructed maps (in black) overlayed on ground-truth map (in gray)
(small dataset).
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(a) Ahmed - Berlin (b) Ge - Berlin

(c) Karagiorgou - Berlin

Fig. 12: Constructed maps (in black) overlayed on ground-truth map (in gray)
(large dataset).

Generated
Map # Vertices # Edges Length (km)

Athens large
Ahmed 7067 7960 1358

Ge 20774 21626 9740
Karagiorgou 6584 5280 252
Athens small

Ahmed 344 378 35
Biagioni 391 398 22

Cao 20 14 3
Davies 209 227 2

Edelkamp 526 1037 197
Ge 1936 1993 23

Karagiorgou 660 637 35
Berlin
Ahmed 1322 1567 164

Ge 15450 16136 183
Karagiorgou 2542 2262 161

Chicago
Ahmed 1195 1286 34
Biagioni 303 322 24

Cao 2092 2948 78
Davies 1277 1310 14

Edelkamp 828 1247 83
Ge 5893 6672 37

Karagiorgou 596 558 26

Table 3: Complexities of the generated maps.
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polygonal curve describing a single edge), the number of edges refers to the number
of undirected line segments between these vertices, and the total length refers to
the total length of all undirected line segments. It appears that the point clustering
algorithms based on kernel density estimation such as Biagioni et al. (7; 8) and
Davies et al. (16) produce maps with lower complexity (fewer number of vertices
and edges) but often fail to reconstruct streets that are not traversed frequently
enough by the input tracks. In particular, the maps reconstructed by Davies et
al.’s algorithm are very small. On the other hand, the algorithm by Ge et al. (22)
subsample all tracks to create a much denser output set, hence the complexity of
their constructed maps is always higher.

Map construction algorithms based on incremental track insertion, such as
Ahmed et al. (4) and Cao et al. (11) fail to cluster tracks together when the
variability and error associated with the input tracks is large. As a result, the
constructed street maps contain multiple edges for a single street, which implies
larger values in the total edge length column in Table 3.

Several examples of generated maps are shown in Figure 11 and Figure 12.
Since not all algorithms produced results for all maps, we showcase examples of
the smaller Chicago map in Figure 11. It can be clearly seen that the coverage
and quality of the constructed map varies considerably. Three examples for the
Berlin map are also given in Figure 12. More examples can be found on the
mapconstruction.org web site.

5.2 Path-Based and Hausdorff Distance

For the path-based distance measure we generated all paths of link-length 3 for each
generated map. For each path, we computed the Fréchet distance between the path
and the ground-truth map. We then computed the minimum, maximum, median,
average of all the obtained distances. We also computed the d%-distance, as the
maximum of the distances after removing the d% largest distances (“outliers”).
For the Directed Hausdorff distance, we computed all link-length 1 paths and
computed the Directed Hausdorff distance of the union of all edges to the ground-
truth map. Our results are summarized in Table 4. In the case of Athens small, the
Cao algorithm produced a very small map and thus it was not possible to perform
a quantitative evaluation.

The maps reconstructed using the algorithms by Karagiorgou et al. (27) and by
Biagioni et al. (7; 8) generally have a better path-based distance than the others.
Note that Davies et al.’s (16) map is unusually small for the Athens small dataset.
Their idea of averaging trajectories, or computing skeletons, however, seems to
help to improve the quality of the edges of the produced map.

For further analysis of the results, we selected the Chicago dataset as all map
construction algorithms produced results for it. From Table 4 one can see that
the path-based distance and the Directed Hausdorff distance are smaller for the
generated maps by Biagioni, Davies and Karagiorgou (shaded gray) compared to
map generated using other algorithms. A visual inspection of the maps in Figure
11 justifies the result. Note that Davies et al.’s (16) map is comparatively smaller
than the other, see Table 3. Although the algorithms by Ahmed et al. and by Ge et
al. produce maps with good coverage, their path-based distances are larger since
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Generated
Map Path based distance (m) Directed Hausdorff distance (m)

Athens large min max median avg 2% 5% 10% 15% min max median avg 2% 5% 10% 15%
Ahmed 7 849 70 85 250 164 132 114 1 269 30 33 84 67 56 50

Ge 7 956 76 90 237 188 150 116 1 295 35 37 95 74 59 52
Karagiorgou 2 175 25 32 109 80 63 53 1 200 10 13 46 35 26 22
Athens small min max median avg 2% 5% 10% 15% min max median avg 2% 5% 10% 15%

Ahmed 9 224 45 52 101 101 81 72 1 82 25 26 82 54 46 40
Biagioni 5 73 35 36 67 66 61 57 3 74 19 20 47 43 31 31

Cao 5 25 13 13 25 25 25 22
Davies 4 38 11 11 38 18 14 14 2 13 7 6 13 13 13 11

Edelkamp 2 229 36 39 89 72 68 61 1 86 18 21 63 50 42 37
Ge 19 251 52 59 142 113 89 76 3 81 21 23 80 59 39 35

Karagiorgou 7 229 32 38 113 68 59 57 2 84 14 17 54 40 33 30
Berlin min max median avg 2% 5% 10% 15% min max median avg 2% 5% 10% 15%
Ahmed 9 540 66 74 207 147 120 107 1 219 30 33 95 70 60 53

Ge 13 808 65 75 214 157 117 103 4 562 36 37 73 62 55 51
Karagiorgou 4 306 28 37 120 85 65 52 1 232 14 18 59 42 34 30

Chicago min max median avg 2% 5% 10% 15% min max median avg 2% 5% 10% 15%
Ahmed 7 201 35 42 127 100 85 76 1 81 14 19 72 59 43 35
Biagioni 3 71 15 18 71 38 27 26 2 53 9 11 29 25 23 17

Cao 1 126 24 27 79 61 49 42 1 78 9 12 44 35 28 25
Davies 2 92 12 14 57 24 22 21 2 20 8 7 20 14 13 12

Edelkamp 1 205 29 37 99 84 72 66 1 93 8 13 57 48 35 25
Ge 18 346 50 56 158 126 95 75 7 72 26 28 64 61 53 46

Karagiorgou 3 89 15 23 72 72 65 51 1 48 7 8 41 23 15 13

Table 4: Path-Based and Directed Hausdorff distance measure evaluation.

they employ less aggressive averaging techniques that would help cope with noise
in the input tracks.

To illustrate the appropriateness of the path-based distance, consider the path
in Figure 13 from the map generated by Biagioni et al. This is an example where the
Fréchet-based distance measure is more effective than any point-based measure. As
Fréchet distance ensures continuous mapping, the whole path needs to be matched
with the bottom horizontal edge of the ground-truth map. The Fréchet distance
for this path is 71m. For the same path, the Hausdorff distance is 53m, as this
only requires for each point on the path to have a point on the graph close-by.
So, to evaluate the connectivity of a map, the Fréchet distance is a more suitable
distance measure than any point-based measure.

4.464 4.4645 4.465 4.4655 4.466 4.4665 4.467 4.4675 4.468
x 105

4.6367

4.6368

4.6368

4.6368

4.6369

4.6369

x 106

Fig. 13: A path with Fréchet distance greater than Hausdorff distance.

In addition, if desired one can discard outliers by computing the d%-distance.
Figure 14 shows the distribution of both the path-based measure and the Directed
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Fig. 14: Distributions of individual path distances (Biagioni alg. - Chicago).

Hausdorff distance for Biagioni et al. In both cases, a very small number of paths
have the maximum distance, and the distances for most of the paths are distributed
within a small range. Removing only 5% of the outliers (largest) brings the path-
based distance from 71m (max) to 38m and the Directed Hausdorff distance from
53m (max) to 25m. Figure 15 shows edges of maps with smaller distances in lighter
shades and larger distances in darker shades. Such visual representation helps to
identify areas in the map that have higher distance to the ground-truth map.

5.3 Shortest Path Based Measure

Another means to compare the constructed maps is the shortest path based dis-
tance. For each city, we computed a set of 500 random shortest paths with origin
and destination nodes uniformly distributed over the maps and compared the
paths using the Discrete Fréchet and Average Vertical distance measure.

A first impression on how different constructed maps affect such paths is given
in Figure 16. Given a specific origin and destination for the Chicago map, the
shortest path has length 3.66km in the ground-truth map (black dotted line). The
computed shortest path for the map generated by each algorithm is shown in red
line. In the map generated by Ahmed et al.’s algorithm the shortest path has
length 4.67km (a Discrete Fréchet distance with respect to the ground-truth map
of 65m, and an Average Vertical distance of 21m). The respective results for the
other algorithms are Biagioni 3.71km (36m, 5m), Cao 3.76km (24m, 6m), Davies
3.39km (35m, 4m), Edelkamp 3.64km, (26m, 8m), Ge 7.33km, (174m, 98m), and
Karagiorgou 3.73km (21m, 5m). For most algorithms the resulting paths have
small distance to the shortest path in the ground-truth map. However, in the
case of Ahmed (Figure 16a) and Ge (Figure 16f), due to significant differences
in the generated map, different shortest paths have been computed that have a
larger distance to the shortest path in the ground-truth map. This result is in
line with the path-based measure of Section 5.2, where also Biagioni, Davies and
Karagiorgou produced the best constructed maps.
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(a) Biagioni et al. Edges in lighter shades indicate smaller
distances (3m being the smallest) and darker shades in-
dicate larger distances(71m being the largest).
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(b) Ahmed et al. Edges in lighter shades indicate smaller
distances (7m being the smallest) and darker shades in-
dicate larger distances(201m being the largest).

Fig. 15: Reconstructed graph overlayed on ground-truth map (light gray). Based
on link-length 3 paths, edges in lighter shades has smaller distance and darker
shades has larger distance.

Figures 17a and 17b show the Discrete Fréchet and the Average Vertical dis-
tance measures for each of the 500 paths per algorithm for the Athens large map.
The paths are ordered by increasing distance of the shortest path length with re-
spect to the ground-truth map. Some paths could not be computed for some maps
due to connectivity problems (missing links). Some other paths experience greater
distance measures due to spatial accuracy problems. The graph shows that some
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(a) Ahmed

(b) Biagioni (c) Cao

(d) Davies (e) Edelkamp

(f) Ge (g) Karagiorgou

Fig. 16: Examples of shortest paths for the Chicago dataset.

algorithms produce maps which resemble the actual map more closely, as assessed
by this shortest path sampling approach.

Finally, the shortest path based evaluation is summarized in Table 5. The first
column shows the percentage (%) of shortest paths that in each case could be
computed, i.e., an algorithm might find an accurate, but small map. The second
and the third column show the two different distance measures used to compare
the resulting paths. The fourth column gives some statistics with respect to the
computed shortest paths. Considering the example of Berlin and here the Ahmed
algorithm result (shaded light gray) in Table 5, this algorithm produces a map
that in turn generates paths that have a min, max, and avg. Discrete Fréchet
distance of 21m, 469m, and 192m, respectively. An aspect not captured by these
distances are missing paths due to limited map coverage. Consider the case of
Davies for Chicago and Cao for Athens small (shaded light gray in Table 5). In
both cases, the distance measures suggest good map quality. However, in both
cases the constructed map has a small coverage, as only 92.6% and 7.0% of the
500 total paths were computed. In this evaluation, Karagiorgou produces maps
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(a) Discrete Fréchet distance - Athens large

(b) Average Vertical distance - Athens large

Fig. 17: Map comparison.

that have both good coverage and high path similarity (cf. dark-shaded entry
for Berlin - good coverage and small distance measure indicating similar paths
between constructed and ground-truth map).

Overall, shortest path sampling provides an effective means for assessing the
quality of constructed maps as it not only considers similarity, but also the coverage
of the map.

5.4 Graph-Sampling Based Distance

For this measure we use the source code obtained from the authors of (7). We
modified the code to use Euclidean distance as our data uses projected coordinate
system. The method that computes this measure has four parameters: 1. sampling
density, how densely the map should be sampled (marbles for generated map and
holes for ground-truth map), we use 5 meters. 2. matched distance, the maximum
distance between a matched marble-hole pair, we vary this distance from 10 to
120m. 3. maximum distance from root, the maximum distance from randomly
selected start location one will explore, we use 300m. 4. number of runs, number
of start locations to consider, we use 1000. To make our comparison of all generated
maps consistent, we generated a sequence of random locations for each dataset and
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Generated
Map Found (%) Discrete Fréchet dist. (m) Average Vertical dist. (m) Shortest path dist. (km)

Athens large min max avg stddev min max avg stddev min max avg stddev
Ahmed 92.6 23 445 137 103 12 230 106 62 1.12 11.84 6.93 2.92

Ge 92.8 25 497 149 112 14 241 120 65 1.47 11.91 7.13 3.18
Karagiorgou 94.2 19 432 125 96 9 225 98 58 1.01 11.62 6.84 2.86
Athens small min max avg stddev min max avg stddev min max avg stddev

Ahmed 97.6 13 234 96 62 6 91 38 24 1.28 5.72 3.11 1.84
Biagioni 94.2 7 214 84 50 4 80 28 21 0.79 5.23 2.97 1.41

Cao 7.0 7 26 10 11 4 13 6 5 0.17 0.31 0.22 0.21
Davies 22.6 9 258 102 69 5 81 31 22 0.85 5.25 2.99 1.47

Edelkamp 97.2 15 228 97 64 6 93 40 26 0.93 5.29 3.02 1.51
Ge 93.4 21 290 123 75 11 127 63 33 1.43 5.93 3.41 1.92

Karagiorgou 96.8 7 212 81 48 3 81 27 20 0.78 5.21 2.95 1.39
Berlin min max avg stddev min max avg stddev min max avg stddev
Ahmed 93.2 21 469 191 123 12 231 121 63 1.56 5.88 3.49 1.96

Ge 92.4 25 475 194 128 15 236 127 64 1.85 5.93 3.84 2.03
Karagiorgou 93.8 18 428 183 112 8 209 106 58 1.32 5.67 3.27 1.84

Chicago min max avg stddev min max avg stddev min max avg stddev
Ahmed 99.8 13 208 97 56 6 92 43 19 1.21 6.95 4.45 2.04
Biagioni 98.6 4 98 40 27 2 49 20 13 0.89 6.03 3.76 1.57

Cao 99.2 7 131 67 34 4 76 41 17 1.02 6.87 3.94 1.84
Davies 92.6 5 97 41 27 3 51 23 15 0.93 6.08 3.88 1.66

Edelkamp 99.0 12 211 98 58 5 89 41 18 1.19 6.88 4.32 1.97
Ge 99.8 19 241 127 63 8 94 49 22 1.58 6.98 4.69 2.25

Karagiorgou 99.2 4 103 41 28 2 50 21 14 0.90 6.05 3.82 1.59

Table 5: Shortest path measure evaluation summary.

used the first 1, 000 locations from the same sequence for each algorithm for which
both maps (ground-truth and generated) had correspondences within matched
distance. When two maps are very similar, they should have very few unmatched
marbles and holes, which implies the precision, recall and F-score values should
be very close to 1. In our case, as we used a superset of the ground-truth map,
there should be a large number of unmatched holes, which implies lower recall
and F-score values than in (7), but still the relative comparison of F-score values
should provide an idea of whether an algorithm performs better than another.
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Fig. 18: Comparison of F-scores - Chicago.
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Generated Precision Value
Map (for matched distance 10, 40, 70, 100)

Athens large 10 40 70 100
Ahmed 0.216 0.407 0.497 0.591

Ge 0.149 0.368 0.507 0.635
Karagiorgou 0.394 0.559 0.630 0.711
Athens small 10 40 70 100

Ahmed 0.265 0.442 0.503 0.579
Biagioni 0.450 0.586 0.662 0.727

Cao 0.415 .691 0.722 0.810
Davies 0.439 0.574 0.617 0.670

Edelkamp 0.106 0.156 0.197 0.232
Ge 0.409 0.527 0.624 0.708

Karagiorgou 0.343 0.489 0.561 0.647
Berlin 10 40 70 100
Ahmed 0.123 0.326 0.422 0.485

Ge 0.142 0.457 0.534 0.584
Karagiorgou 0.294 0.590 0.633 0.649

Chicago 10 40 70 100
Ahmed 0.312 0.563 0.658 0.738
Biagioni 0.491 0.699 0.730 0.775

Cao 0.209 0.321 0.376 0.456
Davies 0.488 0.650 0.690 0.739

Edelkamp 0.334 0.431 0.473 0.541
Ge 0.306 0.487 0.565 0.645

Karagiorgou 0.602 0.740 0.751 0.801

Table 6: Precisions for varying matched distance.

Figure 18 shows F-score values for the Chicago dataset for different generated
maps. As our ground-truth is essentially a superset of the actual ground-truth
represented by the tracking dataset, a larger matching distance creates unexpected
results for algorithms that generate extra edges and vertices. For example, Cao
and Edelkamp for Chicago, the precision is low as there will be lots of unmatched
marbles (cf. entry for Cao and Edelkamp for Chicago in Table 6). However, a larger
matching distance decreases the number of unmatched marbles by matching these
with available holes that probably are not part of the actual ground-truth. A higher
recall value yields a higher F-score, which does not necessarily reflect better-quality
maps (cf. Figure 11 and Figure 12).

In Figure 18 we also see the performance based on F-score declines for Bia-
gioni, Davies and Karagiorgou as the matching distance threshold increases. After
investigating the reason of this unexpected behaviour we found, although precision
increases with matching distances the recall declines for these three algorithms;
and smaller recall indicates larger number of unmatched sample points on ground-
truth (empty holes). Figure 11 and Table 3 show these three algorithms reconstruct
less streets than others, which means they produce smaller number of marbles to
match with larger number of holes.

Hence, in Table 6 we are ignoring F-score and recall values and showcase only
precision values. According to precision values, the algorithms by Biagioni, Davies
and Karagiorgou perform best for dataset Chicago, which is consistent with our
findings using the other three distance measures.
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5.5 Summary

The best way to characterize the constructed maps is in terms of coverage and
accuracy. Here, it appears that KDE-based point clustering algorithms such as Bi-
agioni and Davies produce maps with lower complexity (fewer number of vertices
and edges) and often fail to reconstruct streets that are not traversed frequently
enough by the input tracks. On the other hand, the algorithm by Ge subsample
all tracks to create a much denser output set, hence the complexity of their con-
structed maps is always higher. A similar observation can be made for algorithms
based on incremental track insertion, such as the Ahmed and Cao algorithms.
They fail to cluster tracks together when the variability and error associated with
the input tracks is large. As a result, the constructed street maps contain multiple
edges for a single street, which implies a larger constructed, but not necessarily
more accurate road network.

In terms of map quality and accuracy, the maps reconstructed using the algo-
rithms by Karagiorgou, Davis, and Biagioni generally have smallest path-based and
Directed Hausdorff distances and their constructed maps can be considered more
accurate. Although the algorithms by Ahmed and Ge produce maps with good
coverage and provide quality guarantees, their path-based distances are larger,
since they employ less aggressive averaging techniques that would help cope with
noise in the input tracks. In an effort to assess both, accuracy and coverage, the
shortest path based measure shows for the cases of Davies and Chicago and Cao
and Athens small good map quality, but at the same only limited coverage. In this
evaluation, Karagiorgou produces maps that have both good coverage and high
path similarity.

An overall observation to be made based on our experimentation is that map
construction algorithms tend to produce either accurate maps, or maps with good
coverage, but not both. The algorithm of Karagiorgou however seems to be a good
compromise, in that it produces maps of good coverage and accuracy at the same
time.

6 Conclusions

This survey has considered the active field of road network construction and has
considered a variety of such construction algorithms. In the past, the lack of bench-
mark data and quantitative evaluation methods has hindered a cross-comparison
between algorithms. In this paper, the contribution of benchmark data sets and
code for road network construction algorithms and evaluation measures for the first
time enables a standardized assessment and comparison of road network construc-
tion algorithms. All data, road network construction, and evaluation algorithms
are available with detailed execution instructions on the mapconstruction.org

web site. Directions for future work include the expansion of the web site towards
the inclusion of more algorithms and source code. The final goal will be to provide
an easy-to-use benchmark suite and automated quality measurements for gener-
ated maps.
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28. Kégl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE
Trans. Pattern Anal. Mach. Intell. 22(3), 281–297 (2000)

29. Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-scale,
sparse GPS traces for map inference: comparison of approaches. In: Proc. 18th ACM
SIGKDD, pp. 669–677 (2012)

30. Mondzech, J., Sester, M.: Quality analysis of openstreetmap data based on application
needs. Cartographica 46, 115–125 (2011)

31. Niehofer, B., Burda, R., Wietfeld, C., Bauer, F., Lueert, O.: GPS community map gener-
ation for enhanced routing methods based on trace-collection by mobile phones. In: Proc.
1st Int. Conf. on Advances in Satellite and Space Comm., pp. 156–161 (2009)

32. OpenStreetMap Foundation: Bulk gpx track data (2013). URL http://blog.
osmfoundation.org/2013/04/12/bulk-gpx-track-data/

33. OpenStreetMap Foundation: Openstreetmap: User-generated street maps (2013). URL
http://www.openstreetmap.org

34. OpenStreetMap Foundation: (2014). URL https://blog.openstreetmap.org/2013/04/
12/bulk-gpx-track-data/

35. Quddus, M., Ochieng, W., Noland, R.: Current map-matching algorithms for transport
applications: State-of-the art and future research directions. Transportation Research Part
C: Emerging Technologies pp. 312–328 (2007)

36. Read, R.C., Corneil, D.G.: The graph isomorphism disease. Journal of Graph Theory 1(4),
339–363 (1977)

37. Rogers, S., Langley, P., Wilson, C.: Mining GPS data to augment road models. In: Proc.
5th ACM SIGKDD, pp. 104–113 (1999)

38. Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., Wilson, C.: Mining GPS traces for map
refinement. Data Min. Knowl. Discov. 9, 59–87 (2004)

39. Shi, W., Shen, S., Liu, Y.: Automatic generation of road network map from massive
GPS vehicle trajectories. In: Proc. 12th International IEEE Conference on Intelligent
Transportation Systems, pp. 48–53 (2009)

40. Steiner, A., Leonhardt, A.: Map generation algorithm using low frequency vehicle position
data. In: Proc. 90th Ann. Meeting of the Transportation Research Board, pp. 1–17 (2011)

41. Wang, Y., Liu, X., Wei, H., Forman, G., Chen, C., Zhu, Y.: Crowdatlas: Self updating
maps for cloud and personal use. In: Proc. 11th Int. Conf. Mobile Systems, Applications
and Services (2013)

42. Worrall, S., Nebot, E.: Automated process for generating digitised maps through GPS
data compression. In: Proc. Australasian Conf. on Robotics and Automation (2007)

43. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating
graph edit distance. In: Proc. 35th VLDB conf., pp. 25–36 (2009)

44. Zhang, L., Thiemann, F., Sester, M.: Integration of GPS traces with road map. In: Proc.
3rd ACM SIGSPATIAL International Workshop on Computational Transportation Sci-
ence, pp. 17–22 (2010)

45. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

http://blog.osmfoundation.org/2013/04/12/bulk-gpx-track-data/
http://blog.osmfoundation.org/2013/04/12/bulk-gpx-track-data/
http://www.openstreetmap.org
https://blog.openstreetmap.org/2013/04/12/bulk-gpx-track-data/
https://blog.openstreetmap.org/2013/04/12/bulk-gpx-track-data/

	1 Introduction
	2 Map Construction Algorithms
	3 Quality Measures for Map Comparison
	4 Datasets
	5 Experiments
	6 Conclusions

