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Abstract Trackers have become popular devices these days. They are exten-
sively used to record sports activities (e.g., hiking, skiing), mainly in terms
of GPS trajectories, which can be shared on social networking platforms with
other users looking for leisure tips. Notably, as the number of available trajec-
tories drastically increased over time, in many cases, it has become challenging,
if not impossible, the extensive evaluation of all possible alternatives and the
manual selection of the most suitable one. Paths are characterized by multiple
features (e.g., dirt, asphalt), and a good representation is needed to satisfy
user needs. Moreover, paths can be composed to generate new routes. This
calls for a recommender system capable to handle both the multi-feature path
representation and the implicit definition of alternatives by composition. This
paper suggests a novel approach that features a richer trajectory represen-
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tation based on a semantic annotation to describe significant path features.
Annotations are then used for automatic recommendation of new paths that
maximize the presence of characteristics matching the user preferences. Finally,
a class of algorithm variants is evaluated using an off-line validation process
and compared with a baseline solution to test the underlying assumptions.

Keywords recommender systems - multi-feature paths - path composition -
gps trajectories

1 Introduction

The widespread of low-cost tracking devices (smartphones and smartwatches
are equipped with an onboard GPS sensor) has led to the large availability of
user-generated geospatial content, among which GPS trajectory is undoubt-
edly a class that plays a pivotal role. Outdoor enthusiasts have begun to form
large and ever-expanding online communities such as Wikilmﬂ and GpsX-
Change,comEl, whose aim is to foster sharing of suggestions and experiences.
For this reason, the number of GPS trajectories freely available is very high
(more than 8 million trajectories are available on Wikiloc only) and grows at a
staggering pace. In this sea of information, however, it has become difficult to
find one’s way around as users can usually search, filter and select trajectories
based on distance and geolocation only. Incidentally, it is a daunting task to
create a recommendation system centered in the interests of the single user
when paths often have no semantic connotations whatsoever. Additionally,
available trajectories are often no more than collections of geolocated points
that cannot be used to infer new paths.

In order to clarify the dynamics and the criticalities that a path composi-
tion and recommendation system has to cope with, we rely on the following
motivating scenario: Chiara is an amateur hiker interested in nature photogra-
phy. Because of her inexperience, she prefers walking on entry-level difficulty
paths, such as dirt (or gravel) roads. She decides to start a new activity in
a place that she has not explored before looking for a path tailored to her
interests: she is looking for a path that is mostly on a dirt road, that crosses
a woodland and avoids technical sections like rock surfaces. Thus, Chiara’s
problem is to find a path that reflects her interests and that starts in the sur-
rounding area, with possible constraints about the destination and the path
length.

Traditional route planning services are incapable of addressing such a prob-
lem, due to some limitations: (i) they are designed for searching paths between
two points (start and arrival points); (ii) they do not consider users’ interests;
(iii) these systems rely on pre-modeled route graphs, which represent cities
roads with meta-data (e.g., road type, max allowed speed, one-way or two-way
road) that do not apply in case of open-air paths (e.g., trails, park footpaths,

1 https://www.wikiloc.com/
2 http://www.gpsxchange.com/
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off-road paths, off-piste ski). Differently, some recommender systems might
suggest points of interest along the path [28[T54], such as woodlands, still
they ignore the paths that connect those points charging the user with the
task of identifying the best route. Nevertheless, some recommender systems
that suggest trajectories exist [I3L21], but they only consider trajectories as a
whole. As a result, a path can be recommended only if someone has already
walked it, without checking if the same path is derivable by composing sev-
eral other (sub)-trajectories. Alternatively, Chiara can search for pre-packaged
trendy itineraries (which are, for example, suggested by specialized magazines)
or she can resort to asking an expert about itineraries that best fit her needs.
These solutions (especially the latter) are not always viable or affordable.

From the above analysis, it should be evident that an automatic system
for scouting interesting trajectories and recommending them to the right user
is desirable. Moreover, such a solution should also be able to suggest routes
considering the compositional nature of trajectories, which are, in fact, mod-
ular items that can be composed and disaggregated in new paths where the
intersection points between trajectories play a relevant role.

While entrenched models to represent roadmaps are available, this is not
the case for the open-space domain, where the path underlying the trajectories
has to be identified and refined, although recent studies have investigated mod-
els for constructing map representations starting from GPS trajectories [T1L10,
0L1LT41[7]. Besides, a dedicated line of research exploited methods for semanti-
cally enriching trajectories in order to produce better recommendations. Some
methods analyze the trajectory itself and produce a set of labels that better
describe the content of a trajectory from a semantic point of view (e.g., by
identifying stop and mowve points) [28l[25]; other approaches prefer to involve
users in the annotation task when some labels are not directly deducible from
trajectories points [24)23]. Finally, recent works aimed at enriching trajecto-
ries by fetching information from external data sources in order to reduce the
human effort required in the annotation process [26120].

In this paper, a comprehensive approach is proposed to i) automatically
compose novel routes and ii) recommend them to users. Our solution takes a
collection of raw trajectories as input, which are labeled with semantic tags
(e.g., rock, dirt); trajectories are combined in a unified graph that is explored
to provide users with paths that best satisfy their needs. More in details, an
end-to-end paths recommender system has been designed to investigate new
models to maximize the user’s degree of satisfaction with the recommended
routes. The system integrates the multiple steps required to support the pro-
cess from raw data to recommendation into a single pipeline. Specifically, five
principal activities are featured: (i) collection of raw trajectories, either di-
rectly from sensors or from data sources represented in standard formatEk (ii)
annotation of trajectories with semantic labels, which are collected from users;
(iii) generation of a graph, starting from the annotated paths set, to represent
the map underlying the raw trajectories, in such a way as to preserve users an-

3 In this work the well-known GPS eXchange Format (GPX) has been adopted.
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notations; (iv) exploration of the graph to retrieve the set of candidate paths,
given a geographical starting point (i.e., a latitude-longitude pair). Since in the
considered scenarios the arrival point is not always required as the user might
be interested in the overall path length rather than its destination, a heuristic
approach to estimate the best suitable path length is proposed; (v) estimation
of the user rating for each candidate path, based on the user profile, in order
to provide the list of the fittest paths. Different models have been studied to
compute the estimated user’s appreciation for a path; such models analyze the
order in which features appear along the path, including the assumption that
interesting features at the end of a path are more or less desirable than the
same features at the beginning of the path.

Since no gold standards are available in literature due to relative newness
of the field, the proposed approach has been evaluated through an experimen-
tal setup involving a reference group of 38 real users active in online social
network communities, who have been profiled to identify their specific inter-
ests and asked to rate the outcome of 7 variations of our approach and a
baseline applied over a consolidated map covering an area of 20 km radius
in a mountainous region of northern Italy. To assess the quality of the rec-
ommendations concerning the users’ preferences, the Normalized Discounted
Cumulative Gain (nDCG) [12] metric has been exploited, considering the top-5
and top-10 suggested paths. The results demonstrate the soundness of the pro-
posed approach, validating the underlying hypotheses of this study. Notably,
results show that a multi-feature representations for paths can be profitably
used in recommendation settings; in all the cases examined, in fact, the users
show to favour the personalized paths over the baseline, preferring, in addition,
a recommendation model that favours the maximization of the global (path-
wise) similarity over that of the individual segments. Finally, the experimental
analysis also shows, as was to be expected, that more experienced users tend to
evaluate the recommended routes more positively than the average, justifying
the need for personalized recommendations.

The paper is organized as follows: Section [2| describes the state-of-the-
art models of the field. In Section [3| preliminary definitions that will be used
throughout the paper are presented. Section [] introduces the approach, dis-
cussing, in particular, the path representation and the path recommendation.
In Section |5 the main results of the off-line experiment conducted with real
users are presented and discussed. The conclusions along with some possible
future work directions are reported in Section [6]

2 Related Work

In this section, pertinent literature is analyzed in an attempt to highlight simi-
larities and differences with our research. Since the proposed model is a unified
and complete approach for map inference and path recommendation, the pre-
sented literature is classified according to three principal topics. Noticeably,
the analysis of the literature relating to traditional route planning solutions
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has deliberately omitted, as those only cope with quantitative features (e.g.,
distance, time), without considering the user’s preferences and thus are not
suitable for personalized path recommendation.

Path recommendation. Recommending personalized paths is a still fresh re-
search area. Most of all works are related to the tourism domain, where the
objective is to recommend a list of interesting attractions and places to visit.
In [28] the objective is to mine the top-n locations of interest and the top-m
classical travel sequences between locations from a set of GPS trajectories; this
information is exploited for recommending itineraries to tourists. In [4], the
GPS trajectories are used together with the user’s current position to suggest
touristic spots. A different approach focuses on the user’s visit duration at
sightseeing locations, assuming that if a tourist is interested in a location, the
visit duration may be longer [15]. Other researches propose models to mine
pattern underlying users’ travels. A study about the extraction of semantic
trajectories from a sequence of geotagged photos is discussed in [5], where the
authors propose a Collaborative Filtering (CF) based recommender system. A
similar approach is introduced in [9], where the trajectories are analyzed for
estimating users’ travel behavior frequencies, which are then used to suggest
routes via a Bayes model. Other works in literature also consider means of
transportation, suggesting multi-modal routes based on users’ preferences [13]
21]. Tt is important to notice that most of all works mentioned above aim at
suggesting a list of points of interest, while the objective of this work is to
recommend paths featuring interesting traits for the users.

Semantic trajectories enrichment. The scarcity of features for paths charac-
terization has prompted research activities towards investigating alternative
representations of trajectory. Many studies proposed a semantic label-based
representation of trajectories, i.e., to annotate a trajectory with a set of labels
that provides aspatial semantic information. The labeling process is performed
automatically in some cases [2825], by analyzing the trajectories points and
mining aspatial features (e.g., a set of points in a trajectory can be labeled
as stop if the recorded object stayed in the same area for a while, or as mean
of transportation if the speed of the moving object exceeds a specified thresh-
old). Other works are focused on features that are not directly identifiable with
raw trajectory analysis (e.g., environmental features). For this reason, these
approaches require human users input in order to annotate trajectories prop-
erly [24123]. In the last few years, many works started enriching trajectories by
retrieving information from external data sources, such as environmental fea-
tures to suggest healthy paths [21], visual information extracted from images
available in Google Street View to improve the diversity of the path [26], or
entities described in a Knowledge Base (KB) to enrich the Points of Interest
found along the trajectory [20].

Map inference and trajectory clustering. As large collections of GPS trajecto-
ries become available, building and updating maps out of such sources grew
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in popularity within the academia. While some approaches are focused on
detecting common sub-paths [I6L3L[I7], other works addressed the problem
of reconstructing the map underlying the trajectories. This task is addressed
mainly following three different approaches: point-clustering [TTL[I0], incremen-
tal track insertion [6l[I] and insertion linking [I4]. A recent study presented a
supervised learning framework to create up-to-date maps with rich knowledge
from large GPS trajectory collections, which efficiently constructs high-quality
maps at a city scale [7].

To conclude the section, some considerations regarding the total lack of
scientific approaches to the problem using Deep Learning (DL) models are
discussed. Interestingly, even if such approaches could also be used in this
context, to the best of our knowledge, none of the existing path recommender
systems exploit them. The main reason is that DL approaches would suffer
from some limitations, briefly summarized in the following. DL models often
require large amounts of data to make inferences, while approaches like ours do
not require a training phase and can be easily integrated into recommendation
contexts. Also, DL approaches have difficulties in dealing with a user changing
opinions (i.e., in our system if a user decides that she prefers dirt with respect
to other elements, after weeks of using the systems, she can update her profile,
and no further training is needed). One last minor consideration on DL models
is related to the explainability of the suggestions: the output of DL models
comes from different matrix operations and explaining outputs is still an open
research problem for the DL community. Our model deals with an explicit
representation of route states and user preferences, and thus its suggestions
are more explainable.

3 Definitions and assumptions

Most of all tracking devices record itineraries as (raw) trajectories, which can
be formally defined as follows:

Definition 1 A trajectory T = (p1,pa2,...,pn) is an ordered list of points
p; = (x4, yi,t;), where x;,y; represent the latitude and the longitude of the ith
point, and ¢; is its acquisition timestamp.

Since sometimes users record more than one activity as one long session,
i.e., the tracker is paused when the user is stationary (this can happen when
the user stops near to a point of interest, like a shop or a restaurant), the
raw trajectory requires preprocessing to identify the real path behind the data
points. Thus, starting from a trajectory and given a time window &;, a parti-
tion of sub-trajectories (named paths) can be identified, each of which can be
defined as follows:

Definition 2 A path Ps, = (p1,p2,...,pn), where p; € T, is a subsequence
of a trajectory T', where the following condition holds: Vp;,p;+1 € T, pit1.t —
pi.t < &;, where p;.t represents the timestamp associated with point p;.
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Also, a path can be divided again into sub-paths (named segments), based
on some arbitrary conditions.

Definition 3 A segment S = (p1,ps, ..., pn) is a subsequence of consecutive
points in a path P.

Definition 4 Given a distance function dist(p;,p;) and a threshold d,, an
ordered list of segments X = (51, 5,,...,S,) represents a valid path if the
following conditions hold:

VSi, Si+1 S X, diSt(Si.pn, Sz’+1-p1) < 63 (1)
VSi, Si+1 e X, S; N Si+1 =0 (2)

where S;.p,, represents the last point of segment S; and S;;1.p; is the first
point of segment S; 1.

Let us assume that the user is provided with the tools to select an arbitrary
segment of the trajectory and annotate it with one or more labels, referring
to a specific path trait, in order to reveal features not directly measurable by
the device (e.g., the user could label a segment using the dirt and sun tags
to describe that segment as a dirt path that is also sun exposed). Given a
predefined set of labels £, a labeled segment can be defined as follows:

Definition 5 A labeled segment LS is a pair LS = (S, L), where S is a
segment and L = {ly,ls,...,1,,} C L is the set of labels for all points p; € S.

Starting from the previous definition, the concept of the labeled path can
be defined accordingly.

Definition 6 A labeled path LP = (LS;,LSs,...,LS,) is an ordered list
of labeled segments where conditions [ and [2 hold, VLS;.S, LS;11.S € LP.

It is important to remark that the labels set of an annotated segment L C L
can be seen as a binary vector of size |£| featuring 1 in the 7** position if the
segment LS has been annotated with the label [;, 0 otherwise. Against this
background, the concept of annotated segment is extended as follows:

Definition 7 An extended labeled segment FLS is defined as a pair
ELS = (S,v), where S is a segment and v C [0, 1]‘[:'.

Similarly, it is possible to extend the concept of labeled path into Ex-
tended labeled path.

The core of the approach proposed in this paper is a recommendation model
capable of accommodating the user’s preferences in order to suggest the most
suitable paths. In order to do this, a compact and unambiguous representation
of both user requirements and route characteristics is needed. Below is the
definition of a vector representation of an extended labeled path. The definition
proposes a normalized function that includes both the lengths of the individual
segments and their specific properties. The resulting representation enables a
fast comparison between different paths, using similarity metrics (such as the
cosine similarity).
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Definition 8 Given an extended labeled path P consisting of n segments P =
((Si,vi)]i = {1,...,n}), the vector representation of path P is formally
defined as:

rp = ﬁ Zlen(Si) SV (3)

where len(P) is the length of the path P and len(S;) is the length of the
it" segment of P.

As for the user interests, they are also represented as a vector u in a
|£|-dimensional space where each dimension i represents the level of interest
shown by the user for the i*" feature of set £. As a consequence, both the path
representative vector and the user profile vector are in the same space. From
a different perspective, the user’s profile vector can be seen as representative
of the ideal path for that user (more details can be found in Section .

4 A tale of two (labeled) cities

The ultimate goal of this section is to present the building blocks of our ap-
proach for the composition and recommendation of multi-feature paths, that is
a comprehensive methodology that, we believe, covers all the essential aspects
of this topic. Some of them have been addressed using techniques widely ac-
knowledged in the literature, and others are original. Given the limited space
available, the innovative aspects are primarily addressed, still briefly touching
on the others.

Figure [I] exhibits the architecture and workflow of the prototype built
to validate the approach. Two information flows are visible, along with the
components that manage them: on the one hand, the prototype processes the
routes labeled by the user by filtering and splitting them, finally generating a
consolidated graph; on the other hand, the same information is used to update
the user’s profile and recommend the paths that come closest to her needs.
The following subsections discuss the two processes in depth.

4.1 Path Processing

In the first phase of the path processing flow, the system acquires user labeled
paths. Since trajectories recorded by GPS devices can be noisy and inaccu-
rate (due to instruments precision), it is crucial to apply suitable filtering
techniques: in our approach, the well-known SPT [I8] algorithm is used.

The phase following the collection of labeled paths is their analysis and the
generation of a consolidated graph. Such a graph (also referred to as map) is a
unified view featuring all the possible paths uploaded in the system. A series
of preprocessing operations are required to obtain the graph:
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Fig. 1 General architecture of the prototype
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Fig. 2 Segment splitting and label regrouping based on user annotations

1. As user-loaded paths may contain partly overlapping labeled segments, it
is necessary to split them into smaller but adjoining segments and regroup
the labels (Figure [2 depicts this process).

2. An additional segmentation strategy (named turning points) is applied, as
described in [27]; it generates a new segment whenever a turn angle (above
a certain threshold) is detected.
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Fig. 3 Reduction of the consolidated graph

3. Finally, different paths can have shared sections, and these must be identi-
fied and merged. One of the main requirements of this approach is the abil-
ity to evolve, so it is of paramount importance that the consolidated graph
is easy to update. For this reason, the solution proposed by [I] has been
implemented. Indeed, being based on Fréchet’s distance, and independent
of the sampling frequency and the speed of movement of the objects, it al-
lows to incrementally include new trajectories to the system, also recorded
by different tracker devices.

The resulting consolidated graph contains a considerable number of edges
and is likely to cause performance issues in the recommendation algorithm. For
this reason, it undergoes a simplification process presented here for the first
time that is performed in the form of a batch process (off-line). The outcome
is a more compact graph, featuring only those nodes that in the consolidated
graph are either junctions between different segments or source and destination
points; moreover, if an edge between two nodes exists in the reduced graph,
this implies the existence of a path between the same two points in the original
graph that never forks.

The simplification procedure illustrated in Figure |3 is based on the iden-
tification of junctions, i.e., nodes with a degree higher than 2, and source
and destination nodes (degree equal to 1). The graph is then simplified by
identifying existing paths between pairs of nodes (either junction, source, and
destination), passing through only degree-2 nodes, and replacing them with a
single edge that connects the pair of nodes considered.

It is also essential to note that to provide the user with complete infor-
mation, it is not possible to afford to lose such valuable information as the
geometry and geolocation of the various segments. For this reason, the ge-
ometry of each original path is preserved, stored as a property of the new
edge.

Similarly, the consolidated graph assembling process may result in a mis-
match between the original trajectory segments, which are labeled, and the
new segments appearing in the reduced graph (see Figure , yet this informa-
tion content is essential for the recommendation and therefore it is essential
to preserve it. Therefore, the following strategy capable of associating each
label with a percentage of presence (presence degree) within a graph segment
is proposed:

1. For each labeled segment, an area delimited by a symmetrical sifting of the
segment upwards and downwards is identified (referred to as buffer area),
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Original trajectory ® Segments delimiters

———— Inferred segment
User annotation

Fig. 4 Original path vs. inferred segments

Original trajectory ® Segments delimiters
———— Inferred segment Buffer
User annotation

Fig. 5 Buffer of a labeled segment

Original trajectory
———— Inferred segment
Buffer

segmentl = 0.50 segment2 = 0.95 segment3 = 0.00

Fig. 6 Extended labeling process

see Figure 5} Note that the buffer width is a parameter that has been set
based on the results of preliminary experiments;

2. Given an edge a of the reduced graph featuring a labeled segment LS =
(S, L) (Definition , the presence degree of LS on a is calculated as the
ratio between the length of the part of a contained in the buffer, ay, sy and
the length of S, len(S), that is d(a) = laeb;(g) (Figure @

This procedure enables to define for each edge of the reduced graph, an
|£|—dimensional vector v, where the i*" dimension is the presence degree of
the i*" label within the segment, which leads to having an extended labeled
segment (Definition [7)) for each edge. This information is used to compute a
vector representation for each path in the consolidated graph (Definition .

The remainder of this section presents a short discussion on the complex-
ity of the path processing to investigate the efficiency and the scalability of
the approach on massive datasets. Notice that this phase has no strict time
requirements and can be performed offline, as a batch process. Furthermore,
the algorithm for the map inference implements an incremental track inser-
tion procedure that, given a new trajectory, features a time complexity of
O(ew(x®)?log(x + 1)), where x and 1 are, respectively, the dimension of the
graph before the update, and of the path, and e, is the number of edges up-
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dated [1]. Such complexity guarantees an acceptable level of scalability both
in the case of creating the map from scratclﬁ and in the case of updating an
existing map. Lastly, the consolidated graph assembling process, instead, can
be efficiently implemented by exploiting overlay functions available within the
GIS system (state-of-the-art algorithms can compute overlays in O(w + y)-
time, where w is the number of edges of the polygon and y the number of
existing intersections [2]) whereas the simplification procedure is performed
processing once all the nodes of the map, O(v), where v is the number of
nodes in the graph.

4.2 Path Composition and Recommendation

The objective of a path recommender system is to return a list of the top-k
interesting paths for a user. It is therefore essential to know the user’s prefer-
ences and keep them up to date. For this reason, upon subscribing, the system
requires the user to answer a few questions to understand her preferences and
initialize the profile vector. After that, the user profile vector is implicitly
updated using the Rocchio’s Algorithm [22], which classifies interesting and
non-interesting items for a user, and uses these sets for updating the user
profile incrementally.

Furthermore, unlike other recommendation problems, when it comes to rec-
ommending routes, it is necessary to develop an algorithm that considers both
the user’s profile and her specific and momentary needs as the starting point,
the arrival point, and the length of the path. More specifically, given a user
and a geographical position (starting point), the result of the recommendation
phase must be a list of paths beginning in an area surrounding the starting
point (areasiqrt). In addition, three possible usage scenarios are considered:
in the first one the user indicates the desired length of the path, in the second
one she indicates the point near which the path should end (arrival point),
in the third, neither the length nor the arrival point is provided. In the latter
scenario, a heuristic approach, based on recent activities of the target user and
exploiting at the same time the recent activities of other users with similar
profiles, is used to predict the suitable length for the paths to recommend.

More specifically, the heuristic first calculates the following two measures:

istay " 18Uy | - w-median(SU,)

g:today v |SU‘]|
g Uy - median(U,
lenU _ gftodaygfj/naxl !]| ( l]) (5)
g=today v |Ug|

where SU, is a multi-set containing the length of all the paths recorded
on day g by other users starting within the areasiqrt, whereas U, contains

4 The algorithm’s performance, in the original paper, was tested against a dataset contain-
ing 3237 vehicle trajectories, for a total of 57109 position samples, generating the underlying
map within 11 minutes on a commodity machine.
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the length of all the paths recorded on g by the target user. A forgetting
mechanism is implemented by setting an oblivion point in the past, the day
Gmagz- Moreover, while median(U,) is the daily median of the lengths in Uy,
w-median(SU,) is the daily median of the lengths in SU,, weighted on the
similarity between the target user’s vector profile and the one of the user u;
that uploaded the considered path.

Thus, Equations [4 and [f] compute the mean of the daily length medians,
weighted by the following factors:

— The decay factor -y, which decreases the daily median when the considered
date is less recent. This factor gives more importance to recent information;

— The number of paths [SUy|, as the median is more reliable when computed
on a larger number of paths.

Linearly combining Equations [4] and [f] leads to:
lenyey = (1 —X) -lengy + A - leny (6)
Finally, the system considers only paths of length len(P) € lenpound, where:
lenpound = [(1 —¢) - lenyef, lenrer] ,0 < ¢ <1 (7)

By means of the heuristics described above, the third scenario is reduced
to the first one, whereas the second already represents a particular case of the
latter. When an arrival point is given, the system will consider all the paths
that end in an area surrounding the arrival point (aredaenq).

The following is a description of the composition and recommendation
algorithm for multi-feature paths, whose execution assumes as input a starting
position and the length of the path (entered directly by the user or calculated
by the heuristic). A thorough discussion of the first scenario is held, which
also covers the third one, while details are provided only for those steps that
require extensions in order to cover also the second scenario.

The algorithm is constituted by two separate phases: the path composition
and the recommendation phases. In the former, given the reduced graph, the
starting point and the length of the path, the algorithm identifies (if any) all
the possible paths that verify the user’s requests by following the graph and
constructing the paths, progressively adding segments until the desired length
is reached and avoiding generating cycles. When the arrival point is given
instead of the length (second scenario), the system identifies all the possible
paths between the starting and arrival points. In the latter, the representative
vector rp is computed for each generated path and compared with the user’s
profile. The representation given in Equation [3] has been extended in order to
investigate how the model is affected by the following aspects: (i) the similarity
simy(v,u) of each segment v with respect to the user profile u (named local
stmilarity); (ii) the order of each segment in the path, assuming that it is
preferable to have interesting features at the beginning of the path; (iii) the
similarity sim;(u,rp) of the computed vector rp and the user profile u (named
global similarity); (iv) the length of the computed path, with respect to the
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reference value len,.; in the second scenario, the distance between the arrival
point selected by the user, and the arrival point of the path is considered.
In order to investigate aspects (i) and (ii) Equation [3]is extended as follows:

rp

Zlen i - simy(ua,vy) - B (8)

len
where sim;(u, v) is a similarity measure, u and v are the user profile vector

and the segment vector, respectively, and [; is a decay factor. We set §; =
e~ 1 as decay factor, where:

f(@)

len Z len(S

so the farther the segment is from the origin, the lower turns out to be its
weight. Thus, Equation (8 becomes:

B Z] 1 len(S;)
Z len(S;) - vi - simy(u,vi) - e len(P) (9)

rp

len

As aresult, the algorithm can estimate the user score for a path by applying
a global similarity measure, eventually weighted by considering aspect (iv):

len(P)
lengey

score(u, P) = - simg(u,rp) (10a)
Within the second scenario, Equation is adjusted by considering the dis-
tance between the arrival point p.,q selected by the user, and the arrival point
P.p,, of the path, as follow:

simg(u,rp)
dZSt(pendv Ppn)

Since Equations[I0a]and [I0b]are interchangeable in the algorithm workflow,
in the next we only refer to Equation

The Algorithm [I] shows in the form of pseudo-code the implemented rec-
ommendation approach (leaving aside the creation of the consolidated graph)
aiming at clarifying the role played by Equations [9] and

Two distinct blocks are clearly recognizable in the code. In the first block
(lines 4 to 8), all paths that meet the user’s requirements (i.e., having the start-
ing point in the surrounding area and a length value in the range set lenpound)
are identified and collected. The findAllPathsFromSegment(G,s,lenRef)
function traverses the consolidate graph in order to combine all the possi-
ble paths that start from the selected segment s and which length is less than
lenRef, avoiding cycles (i.e., each segment appears at most once in each path).
The generated set is then filtered by removing paths that are shorter than the
minL parameter.

score(u, P) = (10b)
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Algorithm 1: Path recommendation

Data:

G': unified graph (map)
Input:

U: user vector profile
minL: path min length
lenRef: reference length
p: starting point

t: threshold

Output:

L: ordered list of path

/* init variables */

1 L[]

/* find all paths starting in the sorrounding area */
nearSegments < getNearSegments(G, p, t);
P+ 0;
foreach s in nearSegments do
subPaths < findAllPathsFromSegment(G, s,lenRef);
foreach p in subPaths do
if len(p) > minL then
L | L+ Lu{p}h

o N O ok N

/* rank paths */
9 foreach p in L do

10 V < pathVector(p)// Equation 9;

11 sim < cosine(V,U);

sim - length(p) .

12 score <~ ——— — // Equation 10a;

lenRef

13 | append(L, (p, score));

14 return sortedList(L)

In the following block of code (lines 9 to 13), the representative vector
for each path is computed alongside its overall score, based on the given user
profile vector. Finally, the path list is sorted according to this score. Since
Equations [9] and are central to our approach, and it is worth noting that
as sim; and simg are generic similarity functions, the same two equations
define a broad class of possible recommendation algorithms. The next section
presents and assesses some of them.

To conclude, it is worth noticing that the path composition procedure
mainly consists of a per-user graph traversal on the consolidated graph, which
can be implemented efficiently (time complexity of O(v + ¢), where v and e
are the number of nodes and the edges of the graph, respectively) and even
parallelized to be executed on demand [19]. The recommendation algorithm,
on the other hand, computes and sorts representative vectors of the paths,
which can be performed in O(ny|L|nmas), where n, is the number of paths,
|£] the number of features, and 7,4, the maximum number of segments in
the paths, and O(n,logn,), respectively.
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5 Experimental Validation

Some initial assessments of the quality of the presented approach and the
validity of the underpinning hypotheses are presented in this Section. Experi-
menting with path-based recommender systems can be a cumbersome task as
it often requires tracking real users activity and this is particularly problematic
unless you can provide a system with a suitable Technology Readiness Level.
Since this is still a fresh field in literature and no gold standards are available
to the best of our knowledge, different researcher groups resorted to prove the
soundness of their models involving users via surveys [I3]. This paper follows
this modus operandi creating a control group and requiring its components to
express their preference for different multi-feature paths.

The rest of this section is structured as follows: in subsection 5.1 the ex-
perimental setup is described in detail, the models compared are described in
subsection [5.3] and the results are presented and discussed in subsection

5.1 Design of the experiment

This section outlines the most significant details of the experiment carried
out. Firstly, the prototype system has been fed with 16 real hiking trajectories
(retrieved from Wikiloc) recorded in a small area in the north of Italy, featuring
lengths spread from a minimum of 3.83km to a maximum of 18.59km (the
average length is 9.25km). The outcome of this process is the consolidated
graph underlying the trajectories, which contains 124 unique segments. Four
possible annotations have been then considered (namely, rock, dirt, woodland,
asphalt, plus an extra annotation that represents the void annotation) and
assigned to the different segments of the graph using a stochastic procedure.
As a result, 11% of segments are annotated as rock, 30% as dirt, 26% as
woodland, 3% as asphalt and 45% as none (void annotation). 16% of segments
are annotated with two labels.

Then the consolidated graph has been explored to generate a list of paths
via composition. Such a list contains all the routes that start in the area of
7850m? surrounding an arbitrary point, and with a length of between 3500
and 4000 meters; the full list contains 26 real paths that combine a total of 36
segments, the average number of segments per path is 8.65, while the minimum
and maximum numbers of segments per path are 5 and 12, respectively. Notice
that the selected paths share some segments with an average reuse ratio of 0.33
(this value has been achieved by omitting the first segment, which is shared
among every path). We can confidently state that the selected paths represent
a good sample since the annotations of their segments have a distribution
resembling that of the full dataset (17% rock, 30% dirt, 25% woodland, 2%
asphalt, 47% none, 19% with two labels).

Subsequently, a set of users active in online social network communities
have been engaged in taking part in a survey. At the end of the data gathering
phase, 38 questionnaires have been collected. The users have been asked for
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Table 1 Experimental setup

areastart 7850m? [ Users 38
lenpound [3500m, 4000m] | Paths 26
simy, simg cosine similarity | |£| 4

their age, occupation, interests for outdoor activities, and frequency of those
activities in the previous month. Their preferences with respect to the path
characteristics have been also recorded to allow the system to build a profile
vector for each user. Such a vector representation features 4 components, whose
values are normalized so that the sum is equal to 1.

Additionally, users have been asked to express a preference score (from 0 to
5) to each path of the list. It may seem that the number of considered paths,
i.e., 26, is somewhat limited, yet it is worth considering that the evaluation
process requires substantial effort, and long evaluation tasks can introduce fa-
tigue biases in the experiments [§]. At the end of the process, 38 preference
rankings have been collected, which represent our ground truth. Finally, notice
that the inter-rater agreement among all users has been quantified using the
Kendall’s W, achieving a value of 0.112, which is evidence of a low degree of
agreement and justifies the need for a personalized per-user list of paths. Ta-
ble|l| shows a summary of the experimental settings. The source code, models
and datasets used for the experiments are available on GitHuHﬂ

5.2 Evaluation Metric

To assess the quality of the recommendations spawn with respect to the user’s
preferences, the nDCG [12] metric has been employed. This measure is useful to
evaluate rankings: given a ranked list and a reference list, the nDCG estimates
its quality by giving more importance to items in a higher position of the
ranked list with respect to their rankings in the reference list. The nDCG can
be computed by considering lists of different length: in the following nDCG@Qk
denotes the nDCG computed on the top-k elements, which is useful to compare
algorithms in different scenarios by changing the value of k. It also has a
realistic interpretation: a user generally does not want to explore hundreds of
item, but she would like to find the paths in the top returned items (generally
5 or 10). For the sake of completeness, the procedure to compute the nDCG
is reported below. The DCG must be computed first:

oG, =3 2L (1)
P “— loga(i+1)

where rel; is the score given by a user with respect to a given path. The nDCG
is thus computed as:
DCGYy,

NDCGy = Thea,

(12)

5 https://github.com/vcutrona/paths-rs
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where the IDCGYy, is the ideal DCG. By considering all the scores given by
the user to the paths, the IDCG is achieved by computing the DCG on the
list of paths ordered in decreasing order with respect to the score. Clearly, this
results in the best possible ranking to the user and in that case the nDCG
would be equal to 1.

5.3 Tested Recommendation Models

Different variations of the core model have been implemented to assess the
soundness of the proposed approach and validate or reject the underpinning
assumptions. Firstly, three main algorithms have been implemented, which
combine global and local similarities in different ways:

1. The first approach (named Local) relies only on the local similarity (sim;)
of each segment with respect to the user’s profile, without computing the
global similarity. In this way, it can be observed whether the average user
favors the assessment of individual (local view) segments over consider-
ing the entire route (global view). This algorithm has been obtained by
modifying Equation [] as follows:

i) len(S))

1 n _
P len(P) ;len(&-) Csim(u,vy) e len(P)
and Equation [T0] as:
len(P
score(u, P) = en(P) rp
lenyey

2. The second algorithm has been created with the intention of validating
the alternative assumption, that is to test if users are more focused on the
overall path, ignoring the relative importance of each segment. Indeed, this
variation (named Global) considers only the global similarity (simg) of the
path representative vector with respect to the user’s profile, neglecting the
local similarity. This model alters Equation [9] as follows:

> len(S;)

L Ny en(sy e len(P)
rP_len(P) ;v, len(S;) - e

while the path score is still computed via Equation

3. As the third variation, the aforementioned assumptions have been com-
bined into a new model (named G-Local) that considers both the local
and the global similarity measures. The hypothesis underlying this model
is that users appreciate the global result of the compositional task, but
are also interested in the relative importance of each segment. rp and
score(u, P) can be computed as described in Equations |§| and respec-
tively.
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Secondly, in order to validate the study hypotheses that (i) it is meaning-
ful to consider the relative length of each segment with respect to the total
path length, and (ii) the user’s satisfaction also hinges on the order in which
segments appear along the path, three relaxed models have been conceived
that do not implement those assumptions (named Local Relaxed, Global
Relaxed, G-Local Relaxed), which are derived directly from the previous
three models by imposing len(P) = 1 and len(S;) = 6; = 1 Vi € {1,...,n}.
Lastly, a random algorithm (named Random) that does not exploit path
semantics has been established as a baseline for the experiment.

5.4 Results analysis

Each recommendation model has been applied to the profiles in the control
group thus generating 38 separate rankings for the 26 paths considered in
the experiment. The resulting rankings have then been compared against the
related user’s ideal path list, and the nDCG indicator has been computed. The
nDCG value has been than averaged over the components of the group. As for
the Random baseline, however, it was necessary to proceed differently, as its
outcome is non-deterministic, it was necessary to repeat the generation of the
list of recommendations a sufficient number of times to stabilize the value of
the nDCG indicator average.

In order to gain the most in-depth insight out of the experiment, both the
nDCG@5 and the nDCG@10 have been computed, which consider the top-
5 and top-10 path recommendations, respectively. Behind this choice is the
desire to ascertain whether the effectiveness of the various models varies as
the number of routes to be recommended increases. Furthermore, in addition
to the control group in its entirety, the users have been further categorized
based on the interests expressed in the survey; two additional categories have
been identified: (i) the interested users, people interested in outdoor activities,
and (ii) the expert users, interested users that also practice outdoor activities
frequently (> 4 times in a month). The interested users are 22, while the
experts are 7.

Table [2| shows the results of our recommendation models for 7 algorithms,
2 indicators, and 3 categories of users. It is apparent that all algorithms based
on the presented approach outperform the baseline, and this seems to confirm
that users need a customized path recommendation, tailored to their interests.
Moreover, even if the number of considered users decreases, one can observe
that in general, the models achieve better results for interested and expert
users categories, when compared with the all users category. Finally, it is
interesting that the algorithm based on the Global model outperforms the
others, leading us to suppose that users tend to evaluate a path in its entirety
rather than the individual segments that make it up.
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Table 2 nDCG for the different approaches

Interested Users Expert Users All Users
nDCG@5 nDCG@10 nDCG@5 nDCGQ@10 nDCG@5 nDCGQ@10

G-Local Relaxed 0.7817 0.7965  0.7992 0.7958 0.7715 0.7964

Local Relaxed 0.8068 0.8083 0.7887 0.7818  0.8036 0.8066
Global Relaxed 0.8004 0.8124 0.7918 0.7919 0.7762 0.7982
Random 0.7189 0.7454 0.6939 0.7195 0.7421 0.7682
G-Local 0.7547 0.7706 0.7723 0.7583 0.7473 0.7732
Local 0.7981 0.8190 0.7909 0.8009 0.7786 0.8069
Global 0.8167 0.8298  0.7992 0.8103 0.7979 0.8194

6 Conclusions and Future Work

In this work, an original approach for path composition and recommenda-
tion has been presented and discussed. It exploits both the compositional
nature of trajectories and semantic annotations to generate a path consoli-
dated graph, which allows the system to infer new paths and semantic-based
recommendations. A prototype implementation of the proposed approach has
been presented and the workflow discussed in details. In particular, the de-
fined approach is able to process raw trajectories to create a compact, unified
representation that, in turn, is exploited to scout and compose new routes to
be recommended to the final users. The underlying recommendation models
have also been presented, discussed and evaluated by means of an experiment
involving real users.

Future work includes the extension of the presented approach in several
directions, among which the extension of the core recommendation model with
new variables such as the altitude with the aim of providing a more accurate
recommendation. Another interesting direction of study concerns the definition
of models and methodologies to provide adaptive recommendations suggesting
path variations in real time as new information becomes available (e.g., the
weather changes while a user is skiing).
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