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Abstract

We study five existing map construction algorithms, designed and tested with urban vehicle
data in mind, and apply them to hiking trajectories with different terrain characteristics. Our
main goal is to better understand the existing strategies and their limitations, in order to shed
new light into the current challenges for map construction algorithms.

We carefully analyze the results obtained by each algorithm focusing on the local details of the
generated maps. Our analysis includes the characterization of 10 types of common artifacts, which
occur in the results of more than one algorithm, and 7 algorithmic-specific artifacts, which are
consequences of different algorithmic strategies. This allows us to extract systematic conclusions
about the main challenges to fully automatize the construction of maps from trajectory data, to
detect the strengths and weaknesses of the potential different strategies, and to suggest possible
ways to design higher-quality map construction methods.

We consider that this analysis will be of help for designing new and better methods that
perform well in wider and more realistic contexts, not only for road map or hiking reconstruction,
but also for other types of trajectory data.

1 Introduction

The massive amount of GPS traces being generated every day, due to the ubiquity of GPS receivers,
are giving rise to many geographic data analysis challenges. One of them is map construction: the au-
tomatic generation of maps from GPS traces. In the last few years, volunteered geographic information
platforms, such as OpenStreetMap or Wikimapia,1 have shown that the potential of user-generated
geographic content is enormous, but also require automated tools to handle the vast amounts of data
involved, especially in order to produce high-quality results. For this reason, it is not surprising that
map construction algorithms have received a lot of attention during the last few years. A recent book
on the subject [4] lists over 20 papers on map construction, almost all of them published during the
last decade.

In the general formulation of the map construction problem, the input is a set of GPS traces, each
consisting of a finite sequence of time-stamped positions (trajectories). The output is a representation
of the underlying map, usually as an embedded graph. Up to now, most previous work on map
construction has focused on urban vehicle data. That is, the trajectories used were generated by
motor vehicles on urban street networks, and the goal was to generate a street map. Furthermore, in
many cases the data used were generated by fleets of identical vehicles equipped with the same GPS
devices. However, it is clear that the map construction problem is interesting for a broader kind of
data, since people equipped with all sorts of GPS devices move around the world in many other ways,
such as by foot, bicycle, or boat, just to name a few.

The goal of this paper is to better understand the existing map construction algorithms at the local
level, their limitations—and what causes them—, in order to come up with new map reconstruction
strategies that apply in a wider context. Existing evaluations of map construction methods always
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{vera.sacristan,rodrigo.silveira}@upc.edu. Partially supported by projects MTM2015-63791-R (MINECO/FEDER),
Gen. Cat. 2017SGR1640. R.I. S. was also supported by MINECO through the Ramón y Cajal program.

1See http://openstreetmap.org and http://wikimapia.org, respectively.

1



focus on global quality measures. However, the details of generated maps are also important, and
should be correctly represented in any high-quality map. For that reason, our focus is on understanding
how existing map construction methods perform at a local level.

It is for this reason that in this work we consider hiking data. Hiking data have also been generated
in vast amounts during recent years, and we believe that they have several particular features that
make them interesting to understand the current challenges in map construction, regardless of whether
the trajectories come from cars, people, or boats. One reason comes from the fact that hiking often
takes place in natural environments with varied terrain characteristics (possibly with dense vegetation
and rough topography). In some cases, terrain and vegetation give rise to higher GPS error. On
hilly terrains, paths can be extremely narrow, have sharp turns, be quite winding, and can cross
at all sorts of angles, while on flat agricultural terrains paths behave somehow similarly to urban
streets, roads and even highways. Another important characteristic is that trajectories are generated
by pedestrians. Thus, while street networks can be considered “hard-constraints”, hiking networks
are of a softer nature—a car cannot easily leave the street network and drive off-track, but that is
much easier and frequent with hikers. In addition, it is not so infrequent to have parts of hiking
trails that go through areas in which no proper path exists, such as open or boulder fields. Finally,
hiking trajectories have particular characteristics in terms of speed, bidirectionality, and are extremely
heterogeneous. Many of these factors affect the hiking trajectories, producing more noise due to higher
GPS error, and posing special challenges to map construction algorithms. It should be stressed that
many of these challenges also appear when dealing with urban vehicle data, but it may be harder to
spot them there. In short, the data we have used extends the one previously considered to evaluate
map construction algorithms in several aspect, as they are richer and allow for a better study of the
map construction strategies and their limitations.

Related work In the last years there has been dozens of different map construction methods pro-
posed, which take as input a set of trajectories and output a map, often represented as a graph
embedded in the Euclidean plane. Ahmed et al. [3, 4] have proposed a classification of map construc-
tion methods that distinguishes four different major strategies that existing algorithms follow. The
most basic approach is that based on point clustering (e.g., [15, 18, 31]), which consists of methods that
interpret trajectories as sets of points, and produce maps by clustering those points to obtain streets
and their corresponding intersections. In density-based algorithms (e.g., [1, 8, 11, 12, 20, 25, 26]) the
main idea is to compute a density function over the set of input points (often obtained by sampling
the input trajectories). From the density function one can then extract roads (by identifying ridges)
and their structure. For instance, a recent algorithm by Wang et al. [28] applies discrete Morse theory
to produce a map in this way. Still, density-based methods are based on points, and thus do not treat
the input trajectories as continuous objects. Intersection linking algorithms (e.g., [16, 19]) follow a
two-step approach, by first finding intersection nodes, and then connecting the nodes using the infor-
mation given by the input trajectories. For instance, Karagiorgou and Pfoser’s algorithm [19] identifies
intersection nodes by detecting changes in movement and clustering the resulting locations, and then
uses portions of trajectories between the identified nodes to form the edges of the map. Following a
very different approach we have incremental track insertion algorithms (e.g., [5, 10, 22, 24]), which,
starting from an empty map, insert the trajectories one by one. How to select the next trajectory
to add, and how to decide if it is already represented in the map are important challenges in such
methods, for which often map-matching ideas are used [5, 24].

We note that there are plenty of map construction algorithms that do not fit into these four general
categories, and many that combine ideas from more than one. For instance, the method proposed
in CrowdAtlas [30] combines map matching techniques, clustering and intersection linking ideas.
CellNet [21] is essentially an intersection linking algorithm, but it uses a rather elaborate density-based
method to detect the splits that will form the intersections in the map. A recent method proposed by
authors of this paper is based on subtrajectory clustering [9], following an approach inverse to that of
intersection linking methods: first edges are detected by bundling trajectories together, and then the
intersections between them are computed. Methods based on topology tools such as Morse theory,
have also been proposed [29, 13]. For a more complete treatment of map constructions methods (albeit
up to 2015), we refer to the book by Ahmed et al. [4].

Despite the large number of map construction methods proposed, few comparisons between the
different methods have been carried out. There are several reasons that explain this: the code of
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most algorithms is not publicly available, there is no standard benchmark data to use (each new
algorithm is usually evaluated on its own data), and there is no consensus on what aspects of a
map should be evaluated to determine its quality. An important exception in this regard is the
work by Ahmed et al. [3], which presented the first cross-comparison of seven map construction
algorithms [5, 8, 10, 12, 15, 17, 19], evaluated for four different urban data sets. The accuracy
of each generated map was compared to that of a ground-truth map, using four different distance
measures: Directed Hausdorff distance [6], path-based distance [2], a distance measure based on
shortest paths [19], and a graph-sampling-based map comparison measure [8]. It is important to note
that all the distance measures considered by Ahmed et al. [3] are global measure, since they assign a
single score to each generated map. All the data used for the study, including re-implementations of
several of the algorithms, was made publicly available [23]. From their experiments, Ahmed et al. [3]
observed certain general behavior of the different algorithms that is worth summarizing here. Density-
based methods like [8, 12] produce maps with fewer vertices and edges, missing streets that don’t have
enough trajectories through them. Incremental algorithms [5, 10] have issues clustering tracks and
often have multiple paths that represent the same road. In terms of accuracy, measured by the path-
based and Directed Hausdorff distances, the methods obtaining the best results were [8, 12, 19]. At
the same time, it is observed that higher accuracy is often associated with worse coverage: methods
like that of Davies et al. [12] include more accurate paths, but at the same time miss many others.
The authors observe that the method by Karagiorgou and Pfoser [19] often achieves a good balance
of both aspects. An insightful conclusion of Ahmed et al. [3] is that no algorithm seems to be good
at both accuracy and coverage.

In this paper, we build on top of [3], in order to evaluate different map construction algorithms but
from a local point of view, through the use of hiking trajectory data. The artifacts that we identify
reflect issues of the different methods in both accuracy and coverage, but at the local level.

Goals of this work

• Analyze locally the result of map construction methods. Existing analysis and comparisons
are based on global quality measures. However, global measurements do not explain how the
resulting maps look at the local level, in detail. We aim at understanding how well the produced
maps represent the ground truth at the local level, something that has a major impact in the
perceived quality of the resulting map.

• Understand causes of poor maps. Global measures help indicate that a resulting map is poor,
but not the reasons for that. As part of our local analysis, we want to understand not only
where algorithms go wrong, but why: whether this is caused by erroneous assumptions on the
data, algorithmic decisions or both.

• Identify challenges for high-quality map construction. In order to obtain methods that produce
better maps at all levels, we need to pinpoint the main challenges that make current methods
perform poorly. This will be useful to help devise new strategies that can overcome these
difficulties.

Contributions We designed an experimental study of five existing map construction algorithms,
which are a subset of the seven algorithms evaluated by Ahmed et al. [3].2 We chose four different
terrain areas of varied geographic characteristics, ranging from mostly flat rural areas (similar to many
urban landscapes) to mountainous areas with dense forest. For each terrain we considered a set of
user-generated hiking GPS trajectories downloaded from trajectory-sharing website Wikiloc,3 each
with a total number of nodes between 38,000 and 288,000. An important consequence of the nature
of our data set is that it is extremely heterogeneous in aspects like length, speed, sampling rate or
GPS error.

Before running the existing algorithms on our hiking data, we had to understand and set the
(often many) parameters used by each algorithm. This task, which required more effort than expected,
implied analyzing each algorithm in detail, to understand the meaning and relevance of each parameter,

2Unfortunately, we were not able to include two of the seven algorithms analyzed in [3]. This was due to not having
the code available in one case [17], and to technical issues when attempting to run the algorithm in the other case [8].

3http://www.wikiloc.com
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and to adjust it to obtain the best possible results for each data set. A side result of this work is a
systematic and detailed analysis of all the parameters that influence each algorithm, their meaning,
and how they interact and behave, and the issues arising in their adjustment to specific data sets.
Given that many other algorithms use similar parameters, our analysis can be useful for other methods
as well.

We present an analysis of the generated maps produced by each algorithm on each data set,
including a thorough discussion on the most important artifacts detected, in order to pinpoint the
major issues found by the different methods. In contrast to the comparisons performed by Ahmed et
al. [3], which were quantitative and global, our study is both qualitative and quantitative, and local,
focusing on the details of the generated maps. Our analysis includes the characterization of 10 types
of common artifacts, which have been observed in at least two of the algorithms, and 7 algorithmic-
specific artifacts. Based on that, we identify different challenges that affect several of the algorithms,
often caused by (combinations of) algorithm design decisions, characteristics of the terrain or the
trajectory data. Many of the artifacts identified are not exclusive to hiking data, and can also appear
in other setting such as urban vehicle data.

We consider that our analysis sheds new light on the current challenges for map construction
algorithms, and will be of help for designing new and better methods that perform well in wider and
more realistic contexts. It is important to stress that our goal is not to determine which algorithm
performs best, but to identify the weak points of each algorithm, their causes, and possible solutions.
For this reason we finish with a summary of what we consider the main lessons learned from this
analysis, and a series of suggestions that we consider that new algorithms for map construction should
take into account.

We note that in a shorter and preliminary version of this work [14], we described the experiments
that gave rise to this study. While the preliminary version mostly focused on the description of the
experimental setup and a set of 26 artifacts identified, but without any analysis of their cause or
nature. In contrast, in this work we have classified and grouped the artifacts into 10+7 artifacts, and
carried out a refined analysis of them. For each of the ten common artifacts we propose an objective
way to measure the extent to which the artifacts is present for the different generated maps, together
with a deeper analysis of their causes, related challenges, and possible ways to tackle them in future
map construction methods.

2 Terrains, paths, and data

In order to run our experiments, we have used four sets of trajectory data from four different geographic
areas. Each trajectory consists of a GPS track generated by a pedestrian carrying a GPS receiver
when hiking in the corresponding area.

2.1 Terrains and paths

Four different geographic areas in Catalonia have been chosen, which are popular for hiking: Delta del
Llobregat (Delta), Aiguamolls del Baix Empordà (Aiguamolls), Garraf (Garraf), and Turó de l’Home
(Montseny). They are illustrated in Figure 1.

The four areas cover a diversity of characteristics that can be found in hiking terrains. Delta and
Aiguamolls are rather flat, while the Garraf and Montseny areas are part of mountain ranges that
have highest points at 593 m and 1712 m, respectively. As for the vegetation, Garraf vegetation
consists mostly of dense shrubland, typically of about one meter in height, while a large part of the
area in Montseny is covered by dense woods. Delta and Aiguamolls are mostly agricultural lands and
have little vegetation close to the walking paths.

Comparison with urban streets, roads and highways. In flat zones, paths have some topo-
graphic similarities with urban streets, roads and highways: paths are wide and straight, and intersect
at right angles, especially in agricultural areas. Notice, though, that free walking areas such as open
fields or beaches are very different in this sense: paths disappear and pedestrians can walk anywhere
in these portions of the terrains. On the other hand, the relief of mountainous areas makes them
very different from (flat) urban areas: paths and trails are narrow and winding, and they can be
connected to each other forming very small angles. In some cases, hilly terrains can also have portions
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(a) Cropland in Delta. (b) Aiguamolls: cropland, river and beach.

(c) Characteristic small bushes in Garraf. (d) Montseny, view of the Santa Fe reservoir.

Figure 1: Views of the terrains chosen. Source: Wikimedia Commons.

where pedestrians do not follow paths, either because there is no path to follow, as in open or boulder
fields, or paths are obstructed by obstacles such as puddles, fallen trees, or rocks, forcing hikers to go
off-track. In addition, when the ground is flat, paths are only distinguishable through their latitude
and longitude (like streets, roads and highways) while in a hilly context two paths can be very similar
in latitude and longitude and substantially different in elevation. Detailed information on the main
characteristics of the different contexts is given in Table 1.

Location Area (km2)
Min. path
sep. (m)

Path width (m)

Min Max

Urban
Athens large 12× 14 35 5 25
Athens small 2.6× 6 60 5 16
Berlin 6× 6 55 6 22
Chicago 7× 4.5 54 6 20

Flat
Delta 5× 2.8 8 2 5
Aiguamolls 9.6× 5.9 13 2 6

Hilly
Garraf 6.7× 4.5 15 1 5
Montseny 8.2× 4.7 10 1 5

Table 1: Area covered and main characteristics of each data set. Area is expressed in terms of east-
west and north-south distances. Minimum path separation and path width have been empirically
estimated using Google Earth satellite imagery.
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In the following we describe in detail the precise areas studied in this work, see also Table 2.

Latitude Longitude North East
Flat

Delta min (SW) 41.286377 2.082439 4570954 m 423166 m
max (NE) 41.311783 2.141361 4573724 m 428128 m

Aiguamolls min (SW) 41.988487 3.085601 4648501 m 507090 m
max (NE) 42.041505 3.202024 4654404 m 516720 m

Hilly
Montseny min (SW) 41.752525 2.418508 4622463 m 451656 m

max (NE) 41.795680 2.516904 4627203 m 459863 m

Garraf min (SW) 41.243725 1.861402 4566438 m 404594 m
max (NE) 41.285209 1.940710 4570959 m 411296 m

Table 2: Rectangular windows for the terrains considered, both in the WGS 84 cordinate system and
UTM projection (zone 31T).

Delta The region covered is defined by a rectangular window of 5 km by 2.8 km. The terrain is at
sea level and does not have any relevant slope. In this area we can find the mouth of the Llobregat
river. As a consequence, there are several irrigation canals and crops, which give rise to straight paths
that intersect perpendicularly most of the times. It is worth mentioning that in this area there are
also parallel paths at very short distance from each other (15–20 m).

Aiguamolls. The area studied is defined by a rectangular window of 9.6 km by 5.9 km. This region
is quite similar to Delta due to the presence of the mouth of river Ter. Again, fields are abundant,
paths tend to be straight and to intersect perpendicularly. The terrain is at sea level and does not
have important elevation changes. Nevertheless, this area does not have parallel paths at a short
distance. Finally, it is important to notice that this area includes part of a sand beach: a strip of
about 50–70 m of width along the sea.

Garraf. The area considered is defined by a rectangular window of 6.7 km by 4.5 km. Garraf is
a massif located in the Catalan coastal mountain range. Its heights reach almost 600 m, and hills
have calcareous soil, with caves and shafts. Vegetation is scarce, mostly formed by herbs and small
shrubs. Like in Montseny, winding paths intersect in acute angles. The area hosts a few coastal urban
developments. Most of the trails start at one of them, which has a train station.

Montseny. The area studied is defined by a rectangular window of 8.2 km by 4.7 km located in the
natural park Montseny. The topography of this zone is typical of mountain hiking areas in which no
climbing is required to reach the summit. As such, footpaths can be quite narrow, trails often have
acute turns and acute intersection angles to help gain altitude. Except at the highest parts of the
massif, hillsides are covered by dense vegetation, mainly beeches and fir trees, among other typical
trees of Central European forests. The area considered includes the highest peak (1712 m) and its
surroundings.

2.2 Data

In order to run our experiments, we have obtained four different sets of hiking trajectories, one for
each of the selected areas. Trajectories have been obtained from the website Wikiloc4, which currently
offers over 10 million trajectories from outdoor activities, shared by over 4 million users worldwide.
Trajectories are uploaded by users, who individually obtain them while hiking, biking, and the like.
Consequently, Wikiloc data is very heterogeneous. In order to reduce their heterogeneity, we have
only used trajectories classified by the users as “hiking” or “walking”. Figure 2 shows the trajectories
used for each of the four hiking areas. Each trajectory consists of one GPX file [27]: an XML file

4http://www.wikiloc.com
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(a) Delta (b) Aiguamolls

(c) Garraf (d) Montseny

Figure 2: General view of the four trajectory sets.

containing a sequence of tracked points. Each point entry consists of latitude and longitude (WGS84),
elevation (in meters), and a timestamp.

Comparison with previously used trajectories. For the purpose of map construction, certain
aspects of the input trajectories that are particularly relevant are the data set complexity, sampling
rates, and GPS error. In the following we discuss the main differences on these aspects for the different
trajectory sets, summarized in Table 3.

Area Traj. Nodes Length Speed Sampling rate GPS Error
# # [km] [km/h] [sec.] [m]

Urban
Athens large 120 72 439 11 214 20.27 (66.74%) 30.00 (0.00%) 12
Athens small 129 2 840 389 18.92 (59.43%) 30.00 (0.00%) 12
Berlin 27 189 192 223 36 036 24.13 (37.40%) 40.41 (38.70%) 15
Chicago 889 118 360 2 563 33.46 (29.68%) 2.88 (42.45%) 16

Flat
Delta 161 38 029 364 4.71 (40.09%) 10.15 (55.25%) 8
Aiguamolls 101 46 116 363 4.89 (26.32%) 7.29 (79.06%) 5
Hilly
Garraf 630 288 472 2 348 4.32 (39.16%) 8.63 (63.97%) 15
Montseny 101 128 181 776 3.24 (48.65%) 8.56 (77.33%) 22

Table 3: Trajectory data used. Values between parentheses indicate relative standard deviation. GPS
errors were estimated empirically using Google Earth satellite imagery.

To put our data sets into perspective, in this section we also compare our hiking trajectory data
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to the urban vehicle trajectories used in [3], consisting of four data sets: Athens (data from school
buses, in two sizes: small and large), Berlin (data from taxi rides), and Chicago (data from university
shuttle buses).

In terms of complexity, our hiking data is comparable to that of previous work on urban vehicle
data: the total numbers of nodes in each set have very similar ranges, and the number of trajectories
is also comparable. The only exception in this respect is the Berlin data set, where the number of
trajectories is substantially larger (although trajectories have substantially fewer nodes). As expected,
the overall distances traveled are much larger in all vehicle data sets, as also is mean speed, when
compared to hiking data.

An important aspect for many algorithms is the angular differences at each trajectory point. We
expected hiking data to contain a larger number of sharp turns than urban data sets, but, contrary to
our intuition, that was not the case. As seen in Figure 3, the third quantile on our hiking data is lower
than Athens and Berlin urban data. The data in Chicago had been already heavily preprocessed,
hence showing an anomalous low angular difference. However, Figure 4 shows that in all data sets
there is a negative correlation between the angular difference and the distance between consecutive
points. Figure 4 also shows that the distance between consecutive points moves within 0 m and 25 m

Athens L. Athens S. Chicago Berlin Delta Ll.    Aiguamolls    Garraf Montseny

0
50

10
0

15
0

Figure 3: Angular differences in trajectory points. 0◦ means completely straight whereas 180◦ is a
complete turn-back.

on the hiking data sets, whereas in the urban data sets they reach 460 m in Athens. This is due to
the difference between speeds, and it will have its consequences on the algorithms results as trajectory
points are more densely distributed. Finally, from the figure it is evident that the data from Chicago
and Berlin have been preprocessed to remove small inter-point distances.

Regarding sampling rates, the Athens and Berlin data sets have an average of one sample every 30
and 40.41 seconds, respectively, while the remaining trajectory sets have higher sampling rates, with
averages between 2.88 and 10.15 seconds. It is also worth mentioning that standard deviation is equal
to zero in Athens, is about 40% for Berlin and Chicago, and increases to 55–79% in the hiking data
we have worked with. Map reconstruction must objectively be more difficult within this context.

Finally, and partially related to the previous observation about standard deviation in sampling
rates, it is important to notice that GPS errors in Garraf and Montseny trajectories tend to be larger
than in the urban data sets, since GPS signal can be blocked or distorted by the mountains, as well
as by the forests in the case of Montseny [32].

3 Methodology

We selected five existing algorithms (we will refer to them by the initials of their authors: AW, CK,
DBH, ES, KP), described in detail in Section 4, and used the implementations publicly available
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Figure 4: Angular differences in trajectory points and their distance to the following point within
the trajectory. Regression lines appear in red. The horizontal axis indicates distances (percentiles
0% − 95%). The vertical axis the angular difference (0◦ − 180◦). Angular difference of 0◦ means
completely straight whereas 180◦ is a complete turn-back. To avoid outliers, only the first 95% of
distances are considered.

at [23]. It is important to note that two of the implementations (CK and DBH) were not the original
ones by the authors of the algorithms, but re-implementations by the authors of [3].

The trajectories for each data set were preprocessed to guarantee a minimum spatial and temporal
consistency, as described below.

The parameters of each algorithm were set for each of the four data sets, based on the terrain and
trajectory characteristics of each. This is described in detail in Section 4.1.

Each algorithm was executed for each of the four data set, obtaining a total of 20 maps. Each
map was inspected visually in an overlay with two other layers: the input trajectories, and the
Google Earth satellite and aerial images. During this inspection we identified a large number of areas
where the generated map was visually erroneous, in relation to the trajectories, aerial images, and
official cartographic maps. We grouped and classified these areas into 17 groups, based on the visual
appearance of the phenomenon (e.g., shortcut in a zig-zagging path), that we call visual artifacts.
That wide variety and representativeness of the artifacts identified allowed us to perform a thorough
analysis of the behavior of algorithms. For each visual artifact, we proposed a measure and analyzed its
possible causes in terms of four factors: terrain features, path characteristics, aspects of trajectories,
and strategy of the algorithm. The results of this analysis are presented in Section 5.

3.1 Preprocessing of trajectory data

Before using the trajectories as input to the algorithms under comparison, we have preprocessed the
data in order to guarantee their consistency. The preprocessing addressed three aspects.

1. Time consistency. Points that are consecutive in a trajectory should have consecutive increas-
ing time stamps. However, this was not always the case: approximately 10% of the trajectories
had significant backtracks in time, ranging from days to years, probably due to malfunctioning of
the GPS receiver. Figure 5 shows three examples. Since these deviations didn’t follow any clear
pattern, we decided to discard these trajectories. Another anomaly detected in time stamps was
consecutive points with identical time stamps; trajectories with this anomaly were kept.

2. Format consistency. Wikiloc uses the default GPX format [27] of GPS trajectories. We have
projected them into UTM (zone 31T), ignoring the elevation, since the considered algorithms
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Figure 5: Examples of time stamps error examples. The horizontal axis follows the order of the
sequence of points in the trajectory, the vertical axis shows the time tamps, translated to zero.

only use x, y-coordinates.

3. Geometric extent. Trajectories have been segmented as to eliminate the portions external to
the rectangular windows described in Section 2.1.

3.2 Local versus global evaluations

Our method of evaluation is qualitative at the phase of defining and detecting each artifact, and
quantitative when it comes to evaluating to what extent a certain artifact is present in the output of
each algorithm. The goal of our experiments was to detect the most important deficiencies of current
algorithms, at a local level, in reconstructing maps from data, and to investigate their causes. In order
to do that, we carefully analyzed the resulting maps in search of their limitations. Arguably, a weak
point of this methodology is that the definition and detection of artifacts is qualitative and somewhat
subjective.

In theory, a better way to do so would have been to measure the quality of the maps with respect to
their corresponding ground-truth using some quantitative measure. As mentioned in the introduction,
several of these measures have been proposed and used. For instance, four measures are used in [3].
The directed Hausdorff distance [6] measures the maximum distance between a point on the ground
truth and one on the constructed map. The path-based distance [2] measures the maximum Fréchet
distance between one path in the ground truth and one on the constructed map. In the shortest-
path based distance [19], the comparison between maps is restricted to a selection of shortest paths
connecting vertices identified on both maps, using discrete Fréchet and average vertical distance to
compare each pair of paths. More different is the graph-sampling based distance [7], which measures
random samples of the same location on each map, and compares the number of matched points on
each side. This has the goal of estimating the similarity between the geometry and topology of the
maps at the chosen locations.

However, we have not followed this quantitative approach for several reasons.
Firstly, quality measures are numeric indicators that, though useful for comparing different meth-

ods, do not give information on the concrete problems encountered by the algorithm in reproducing
the exact map, which is what we are interested in in this work. Moreover, measures like the ones
mentioned above focus on particular aspects of the final map (e.g., proximity between the points
forming the map, or preservation of shortest paths), which are not the main focus for us.

Secondly, and most important, quality measures are global indicators, while our goal is to locally
understand the behavior of the algorithms.

Finally, all proposed quantitative measures require reliable ground truth data sets [3], which not
always exist for hiking data sets, as a large number of paths are missing in the available maps. See
Figure 6 for an example.

For all these reasons, our analysis starts necessarily by a qualitative identification of visual artifacts.
Once the different common artifacts are identified, for each artifact we have defined a local ad-hoc
measure quantifying to what extent a generated map presents that artifact. The measures are local in
the sense that they are taken over a local window of the map. They are ad-hoc in the sense that their
definition depends upon the artifact under study although, except for one of them, they essentially
reduce to (windowed) length or area ratios between the generated map and the corresponding ground
truth. This allows to objectively compare the output of each algorithm for the region where the
artifact is illustrated.
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Figure 6: Example showing the lack of a reliable ground truth in Montseny. Left: the large amount
of trajectories departing from the center of the image towards the right suggests that there must be
a path from there. However, this is not apparent in the aerial image (center), and neither is present
in the largest-scale available topographic map (right).

4 Algorithms

In this section we present in more detail the algorithms that have been compared. The selection
consists of five out of the seven algorithms compared by Ahmed at al. [3].5 After some general
remarks about the types of parameters used in map construction algorithms, we focus on the details
of each of the algorithms evaluated. For each of them we provide an outline of the method, mention
the original parameters used, and discuss how these parameters were adjusted for our hiking data sets
in order to obtain the best possible results for each method. For the sake of conciseness, and given its
very technical nature, part of this discussion is deferred to the supplementary material in Appendix A.
However, we should emphasize that understanding the effect of each parameter is crucial to obtain
the best possible results from each method, and thus to provide a fair comparison between them.
In addition, we believe that this information will be valuable for future users of map construction
algorithms that will have to adjust these or similar algorithms to their own data.

4.1 Parameterization

All the compared algorithms require that some parameters are adjusted to each specific data set.
Among the different algorithms we were able to establish several groups of parameters whose reasoning
are similar and, thus, were parameterized in a similar way. In this section we provide a conceptual
overview of the main types of parameters that the algorithms use. A detailed description of all the
parameters that each algorithm uses is presented in Sections 4.2–4.6.

Spatial proximity-related parameters Almost all the analyzed algorithms use to some extent
a distance threshold indicating which (portions of) trajectories are close enough to be considered
samples of the same underlying path. The value of this threshold is usually adjusted according to the
maximum width of the paths (max width), the expected (in a Gaussian distribution) or maximum GPS
error of the trajectories (gps error), and the minimum separation between different paths (min sep).
One notable exception is KP, whose proximity parameter relates to the distance between turns of the
same intersection. Table 4 summarizes which terrain and data features each algorithm uses for its
spatial proximity-related parameters.

Algorithm Parameters max width min sep gps error

AW ε 7 3 3
CK M , σ1, k 3 3 3
DBH σ 3 3 7
ES θ 3 7 3
KP dt 7 7 7

Table 4: Terrain and data features used by the different algorithms’ spatial proximity parameters.

5The reasons not to include two of the algorithms were: implementation not available for one of them, and technical
issues when trying to reproduce previous experiments in the other case.
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Angular parameters The algorithms CK, ES, and KP use the angular difference of the trajectory
points around intersection areas in order to distinguish to which path each trajectory belongs. Algo-
rithm KP further extends this approach by detecting turns according to angular difference. Moreover,
CK also considers the angular difference in order to prevent merging orthogonal trajectories.

Reliability parameters Reliability parameters are thresholds indicating how much sampled a path
must be in order to be included in the final map. They are user-defined in the sense that they try to
capture the concept of reliability of the generated map, something heavily dependent on the purpose
of the final application. The algorithms including a reliability parameter are CK (min vol) and DBH
(threshold).

Segmentation parameters Some algorithms segment trajectories whenever they detect a discon-
tinuity in time or space between samples of the same trajectory, see Table 5. It should be noted that
although not specified in their respective papers, the original code of KP and AW, also includes such
preprocessing.

Although one could see similarities between the reliability and the segmentation parameters, the
latter depend much more on the trajectories rather than on the final application. We have adjusted
each parameter using its original value and the ratio between the mean distance (or elapsed time)
between trajectory points of the original data sets and each of our data sets.

Algorithm temporal discontinuities spatial discontinuities

AW 3 7
CK 3 3
DBH 7 7
ES 7 7
KP 7 3

Table 5: Segmenting criteria used by each algorithm.

Although most of the parameters used by the algorithms lie in one of the aforementioned groups,
some of them are specific to each algorithm and, thus, their value cannot be easily generalized across
different algorithms. Some examples are termination criteria or ad-hoc approaches only used in one
of the algorithms, like the maximum permitted speed in turns used by KP. We discuss these more
specific parameters in the following sections.

4.2 Algorithm AW

The algorithm by Ahmed and Wenk [5] is incremental: starting from an empty graph, it adds the
trajectories one by one, in two steps. In the first step, the portions of the current trajectory that are
present in the current partial map are identified. This partial map-matching is done using a variant
of the Fréchet distance. In the second step, the portions that have not been matched are inserted into
the current map, adding new vertices and edges as needed.6

Parameters A remarkable feature of this algorithm is that it uses only one parameter, ε, plus
a temporal parameter for segmenting erroneous trajectories. The meaning of ε is related to the
minimum separation between different roads, and the minimum distance between two intersections.
This is formalized in [5] with the following assumptions on the ground truth: (i) any road in a map
has a portion that is well-separated from the others, meaning that its distance to all other roads is
at least 3ε; (ii) if two roads become closer than 3ε at some point, then they must share a vertex.
Two assumptions on the input trajectories are also made: (iii) each input trajectory is within Fréchet
distance ε/2 from some road in the ground truth; (iv) all input trajectories sample an acyclic path in
the ground truth.

In practice, the value of ε determines the distance threshold to consider that (portions of) two
trajectories correspond to the same or different roads. The effect of this parameter is illustrated in

6In the original paper [5] a third step is described, where identified portions can be adjusted. However, the imple-
mentation made public ignores this third phase.
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Data set ε [m]

Athens large 180
Athens small 90
Berlin* 82.5, 170
Chicago 80

Data set ε [m]

Delta 15
Aiguamolls 25
Garraf 35
Montseny 40

Table 6: Different ε chosen values for the AW algorithm. The values for city data sets are from [3].
*Value 82.5 was used in [5], while 170 was used in [3], for the same data set.

Appendix A.1 (see Figure 9). However, the assumptions made on ε are not satisfied by any of our
four hiking data sets, so setting this parameter is not straight-forward. The values of ε chosen are
summarized in Table 6. See Appendix A.1 for the justification of these values.

4.3 Algorithm CK

The algorithm by Cao and Krumm [10] is an incremental insertion algorithm that has two previous
phases: a preprocessing phase and a clarification phase.

The preprocessing phase consists in segmenting erroneous trajectories, and reducing over-sampled
straight portions of trajectories while preserving samples that lie on portions with high curvature.

The clarification phase intents to reduce the effects of noise in the input trajectories, by using
a force-directed algorithm that cleans up the initial data. The clarification phase simulates physical
attraction and repelling forces between trajectory nodes and segments, so that points that correspond
to the same route get close together, while those of different routes move further away. More precisely,
each trajectory segment exerts an attraction force towards all other nodes that locally have a similar
heading to the edge. The attraction force is modeled as a inverted Gaussian function, thus the strength
of the force decreases exponentially with distance. In addition, each node exerts a conservative force
that attracts the node to its original position, implemented as a spring force, thus the force strength
increases linearly with distance.

The second phase of the algorithm inserts incrementally each of the clarified trajectories, starting
from an empty map. The incremental insertion is based on inserting trajectory nodes one by one.
If the current node has a local direction similar to that of an existing edge that is close enough, it
is not inserted. Otherwise, it is inserted into the map, adding connections to other existing vertices
depending on some connectivity criteria.

Parameters The CK algorithm uses several parameters for the preprocessing, the clarification pro-
cess, and the incremental algorithm.

In the preprocessing, temporal and spatial gaps within a trajectory that are greater than two
thresholds t and d1 are eliminated. Moreover, consecutive sample points within a trajectory that are
too close to each other are removed, based on two other thresholds: one for all sample points (d2) and
another one (d3) used when the angular difference is smaller than a parameter α.

The two types of forces used in the clarification phase need to be carefully adjusted to produce the
desired effect. This is done by tuning several parameters. The attraction forces are parameterized by
two values: M and σ1, while the spring force depends on one parameter k. Finding values for these
parameters is a delicate task, and requires in turn finding values for three parameters from the data:
average number of trajectories on a path (N), expected GPS error (σ2), and an intermediate value
between the maximum path width and the minimum separation between two different paths in the
terrain (td). Some of these parameters have some more or less direct translation. For instance, σ1 and
σ2 are related to the GPS error and the width of roads, while N has to do with the expected number
of trajectories that go through the same route. According to Cao and Krumm [10], the values should
be chosen so that the force of one edge attracts all vertices with similar direction within a certain
distance, and not those further apart. However, as described in Appendix A.2, for our data sets it
was not possible to find values that fit this description, thus we had to set them empirically after a
careful study of each data set.
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Data set
Data Segm. Redund. Clarification Insertion

N σ2 td d1 t d2 d3 α M σ1 k d4 β v h

Original 20 5.0 25.0 100 10 10 30 10 1.0 5.0 0.005 20 45 3 5

Delta 20 2.7 6.5 159 102 1.9 5.8 10 1.0 2.7 0.05 5 45 3 5
Aiguamolls 5 1.7 9.5 130 73 2.0 6.1 10 1.0 3.0 0.02 6 45 3 5

Garraf 80 5.0 10.0 135 86 1.8 5.4 10 1.0 5.0 0.025 5 45 3 5
Montseny 30 7.3 7.5 100 86 1.3 4.0 10 1.0 7.3 0.025 5 45 3 5

Table 7: Values for each parameter used in CK. Angular values are measured in degrees, distance
values are given in meters.

Finally, the incremental graph generation algorithm is governed by four parameters: (i) a distance
threshold d4 and (ii) an angular threshold β used to decide when a node should be inserted into the
current map; a (iii) minimum volume v: a reliability threshold to exclude from the final map edges
with few trajectory representatives, and a (iv) maximum detour h, which determines the maximum
number of extra hops that are allowed in the map before a direct (existing) connection to a node is
inserted.

The values chosen are summarized in Table 7. See Appendix A.2 for their justification.

4.4 Algorithm DBH

The algorithm by Davies et al. [12] applies image-processing techniques to generate a map in four main
steps. Based on a rectangular grid that covers all the map area, a 2D histogram is built, measuring
the total length of trajectory edges that go through each cell. The value in each cell gives an estimate
of the likelihood of having a road passing through the cell. A Gaussian blur filter is then applied to
the histogram, to remove small gaps due to GPS noise. In a second step, road positions are computed
by binarizing the histogram using a global threshold value. Then, polygon boundaries for the road’s
region are extracted from the binary image, using a contour follower. The third step consists in
producing the road centerlines from the extracted polygons by computing the straight skeleton of
each polygon. Due to noise and other inaccuracies that can create cavities in the road polygons,
the resulting skeletons may have a large number of short edges (hairs). Therefore, a final procedure
is applied to filter all skeleton edges shorter than some shaving threshold. However, it should be
noted that the available implementation performs the shaving in a different way, different from that
proposed by Davies et al. [12], thus so we opted to ignore this step. The fourth step of the algorithm
determines the direction of travel permitted along each road. We omit this part as it is not relevant
to our setting.

Parameters The algorithm uses three parameters. (i) The grid cell size determines the resolution
of the map, and has a high impact in the final result and running time of the algorithm. (ii) The
Gaussian filter used to remove small gaps depends on a parameter σ (kernel size, the Gaussian σ is
automatically computed), and (iii) a mask threshold is used to decide how to binarize the blurred
histogram. (iv) Finally, in the original paper a minimum road length value is used to decide, in the
third step, when skeleton segments are too short, and thus should be removed. However, this was not
part of the implementation provided.

The parameter values chosen are summarized in Table 8. See Appendix A.3 for their justification.

4.5 Algorithm ES

The algorithm by Edelkamp and Schrödl [15] is based on point clustering. A first initial set of
uniformly distributed point samples is taken from trajectory edges (keeping their original heading),
guaranteeing a minimum sample density (namely, such that every trajectory vertex has a point sample
within distance dmax, for dmax a parameter—see below). Next each point in the sample is taken as
an initial cluster of points Each cluster is iteratively refined by considering other trajectories passing
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Data set cell size (m) σ mask threshold

Original 2 17 100

Delta 1 5 35
Aiguamolls 1 7 15

Garraf 0.5 7 15
Montseny 0.5 5 15

Table 8: Chosen values for the parameters of DBH.

close to its center, and by adjusting the position and heading of the center of the cluster based on the
new points. The procedure is very similar to the k-means clustering method.

After refining the clusters of points, the cluster centers become the nodes of the final map. Then,
edges between pairs of map nodes are added if at least one trajectory is associated to both clusters.
This results in a first approximate map where each edge represents the bundle of (portions of) trajec-
tories that consecutively belong to both clusters (map vertices) forming the edge. Notice that these
bundles may contain portions of trajectories that belong to different lanes of the same road. In the
implementation available, this approximate map is the final result. However, in the original paper [15]
a further refinement phase is proposed.

Parameters The algorithm uses three parameters: (i) a distance threshold dmax that sets the
maximum distance between the initial clusters, (ii) a cluster bearing tolerance δ that determines when
two trajectory segments are to be considered parallel, and (iii) an intra-cluster distance tolerance θ
used to decide when a point belongs to an existing cluster (i.e., it is considered part of the cluster
when the distance between the point and the cluster center is less than θ).

The role of parameters δ and θ is particularly important, because they provide the membership
test for a trajectory point to belong to a cluster. Specifically, given a cluster defined by its center
point and its heading, the trajectories that belong to the cluster are those that fulfill the following
three conditions: i) the trajectory intersects the line l that is orthogonal to the heading and passes
through the cluster center; ii) the heading of the trajectory differs from the cluster heading by at most
δ; iii) the intersection point between l and the trajectory is at distance at most θ from the cluster
center.

The parameter values chosen are summarized in Table 9. See Appendix A.4 for their justification.

Data set dmax (m) δ (◦) θ (m)

Original [15] 50 45 20
Urban data sets [3] - 45 50

Delta 20 45 8
Aiguamolls 20 45 8

Garraf 20 45 10
Montseny 20 45 12

Table 9: Values for the parameters used for ES.

4.6 Algorithm KP

The algorithm by Karagiorgou and Pfoser [19] first detects intersection points and then connects them
to each other, based on the input trajectories. The description that follows is approximate and omits
many details, which can be found in [19].

In an initial preprocessing, KP segments trajectories using a spatial criterion.7 Then the main
algorithm proceeds in four steps. First, potential turning points are identified based on changes in

7We note, however, that this is what is done in the implementation, but the criterion described in the original
paper [19] is temporal.
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direction and speed. These turning points are then grouped based on distance and type of turn
(a discretized model with eight types of turns is used). These groups are clustered, based on a
distance parameter, and the centroid of each cluster gives rise to one intersection point. In a second
step, intersection nodes are connected by edges obtained from the input trajectories. This is done
by “compacting” the trajectories that contribute to turns through the clusters associated with the
intersection nodes, and finally producing a polygonal representation of the links between intersection
nodes. The third phase consists in fitting to the generated map the remaining trajectories (those that
do not contribute with turning points), which can generate adjustments in the polygonal representation
of the edges. Finally, the last step eliminates occurrences of triangular intersections, a particular type
of artifact that consists of a sort-of shortcut at certain turns.

Parameters The algorithm uses several parameters. For the input preprocessing, (i) a spatial
threshold to segment the input trajectories. The turn clustering and intersection extraction steps
rely on four parameters: (ii) an angular difference threshold and (iii) a mean “turning speed” to
identify turns, (iv) a distance threshold to group turning points, and (v) another distance threshold
to cluster the grouped turns into intersection nodes. In addition, (vi) a direction threshold is used
for the network extraction phase (steps two and three above). The values chosen are summarized in
Table 10. See Appendix A.5 for the justification of these values.

Parameter Value used

(i) Max inter-node distance 1000 · mean trajectory inter-node distance
mean original trajectory inter-node distance

(ii) Angular difference 30o (Aiguamolls), 50o (Delta), 70o (Garraf, Montseny)
(iii) Mean speed ∞
(iv) Turn clustering threshold 25m (Aiguamolls), 10m (Delta), 30m (Garraf, Montseny)
(v) Intersection clustering threshold 0.5 · value of (iv)

(vi) Direction threshold 45◦

Table 10: Fixed parameter values used for the KP algorithm. The values of parameters (ii) and (iv)
were determined empirically for each data set.

4.7 Main differences between algorithmic strategies

Having presented the key ideas behind each algorithm, it is worth pointing out briefly the main
differences between the methods, in addition to the differences already discussed from the point of
view of their parameters in Section 4.1.

Following the strategy classification in [3, 4], we have that AW and CK use the paradigm of
incremental construction. An important difference between them is that what AW adds at every step
is (part of) an original trajectory, making it a pure incremental algorithm. On the one hand, this
gives a great advantage to the method every time that it chooses to add good trajectories, because it
can allow the method to be more robust in front of high noise or in difficult situations. On the other
hand, choosing to insert a bad trajectory can affect very negatively the whole resulting map, since once
inserted, it will be part of the final map. In contrast, CK adds clarified trajectories. The force-directed
clarification process can be seen as a type of clustering, thus CK falls also into the clustering category
(although it does not cluster points, but trajectories). The idea of inserting clarified trajectories,
which are expected to be more reliable than individual original tracks is very interesting, since—if
the clarification method works well—it should prevent many of the issues that incremental algorithms
suffer due to picking bad trajectories to insert in the map.

ES is mainly a point clustering method, but one should take into account that the initial points
used are sampled from the trajectory edges. Thus, in a way, it is also a density-based method, and
the parameter used to decide the distance between samples will also play an important role.

KP is an intersection linking method, thus the criteria used to decide when a vertex is part of
an intersection (in this case, based on direction and speed changes) is fundamental. KP is also, to a
lesser extent, a point clustering method, since the turns detected are clustered to produce the final
intersection nodes.
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Finally, DBH is a density-based algorithm, and as such the whole success of the method will depend
heavily in choosing an appropriate grid cell size. This method is the most different one from the five
analyzed, since it follows a completely different approach. As such, it can be expected to have issues
in very different situations than the other four methods.

5 Experimental results

The experiments consisted in running each of the five algorithms on each of the four hiking data sets,
with the parameters derived in Section 4. Appendix C includes images of the maps generated by each
algorithm, together with the input trajectories.

5.1 General observations

A first observation is that the generated maps for hiking data are about ten times more complex than
those for urban areas, with respect to number of vertices per km2 covered, see Tables 11 and 12. The
table also includes information on the running time of all the algorithms on the different data sets.8

Generated map Vertices Edges Length Exec. time
# # [km] [min]

Athens L. - AW 7067 7960 1358 -
Athens L. - KP 6584 5280 252 -

Athens S. - AW 344 378 35 -
Athens S. - CK 20 14 3 -
Athens S. - DBH 209 227 2 -
Athens S. - ES 526 1037 197 -
Athens S. - KP 660 637 35 -

Berlin - AW 1322 1567 164 -
Berlin - KP 2542 2262 161 -

Chicago - AW 1195 1286 34 -
Chicago - CK 2092 2948 78 -
Chicago - DBH 1277 1310 14 -
Chicago - ES 828 1247 83 -
Chicago - KP 596 558 26 -

Table 11: Complexity of generated maps. Data for urban setting from [3].

A second general observation is that the different data sets considered produce, as expected,
contrasting results for the different algorithms. Indeed, as Figure 7 shows, trajectories on hilly and
densely covered areas contain more noise than those in flat terrains, and they are more winding and
run closer to each other. This translates into harder instances for the algorithms, as evidenced by
results like the ones shown in the figure.

8The computer used was equipped with an Intel i5-2500K CPU and 8GB DDR3 Synchronous 1600 MHz memory.
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Generated map Vertices Edges Length Exec. time
# # [km] [min]

Delta - AW 2362 2459 395 1.26
Delta - CK 2667 2436 1810 40.55
Delta - DBH 10229 10197 45 3.19
Delta - ES 1028 1756 11029 2.00
Delta - KP 6787 4817 446 73.33

Aiguamolls - AW 13454 13516 2179 7.17
Aiguamolls - CK 10621 5308 2208 11.22
Aiguamolls - DBH 39786 39206 121 61.92
Aiguamolls - ES 4147 4918 40849 1.88
Aiguamolls - KP 21690 21810 1990 45.77

Garraf - AW 7827 7898 2005 24.88
Garraf - CK 13565 8172 4345 950.93
Garraf - DBH 88009 87162 363 245.69
Garraf - ES 5295 9320 30763 51.81
Garraf - KP 36487 36574 2229 1710.83

Montseny - AW 8893 8940 1721 15.42
Montseny - CK 19323 11625 2809 146.30
Montseny - DBH 83025 81783 214 214.81
Montseny - ES 4610 7774 9661 17.91
Montseny - KP 24329 24492 4478 351.62

Table 12: Complexity of generated maps in hiking setting.

(a) AW [5]

(b) KP [19]

Figure 7: Figure showing how noise in trajectory data, typical in mountain areas, affects the quality
of the generated maps. Input trajectories shown blue, generated map in red. The first column is from
Aiguamolls, the second is from Montseny. Images from Google Earth.
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5.2 Detailed description of the artifacts found

We have carefully studied the resulting maps together with the input trajectories, the official local
topographic maps available from the Geological and Cartographic Institute of Catalonia (ICGC), and
the Google Earth imagery. Based on these data sources, we have detected and classified situations
that were visually incorrect, with respect to the available ground truth (topographic maps and aerial
photographs). We present a detailed analysis of the most relevant artifacts identified in our experi-
ments. Some of the artifacts are common to the maps generated by several of the algorithms, while
some others are specific to one single algorithm, because they are the result of some particular design
decision. We present the two groups of artifacts in the following two sections. The color convention
used in all the figures in both sections is as follows:

• Fine blue lines are the input trajectories.

• Thick lines are edges of the generated maps (output of the algorithms). The correspondence
between colors and algorithms is as follows:

– Red: AW

– Yellow: CK

– Green: DBH

– Cyan: ES

– Orange: KP

– Dotted: ground truth

5.2.1 Common artifacts

In this section we present an analysis of the main artifacts identified that are common to more than
one of the output maps of the algorithms. For each of these artifacts, we present a concrete example
for one of our data sets, including:

• A concise description of the artifact.

• A local measure on how much the artifact is present in the current example for each algorithm.
As already mentioned in Section 3.2, each local measure is defined ad-hoc to each artifact, since
none of the global measures used so far in the literature is appropriate for the local analysis we
need to perform.

• Output images for the five algorithms, on top of aerial image.

• Image of input trajectories on top of aerial image.

• Image of ground truth on top of aerial image.

• Measurements for the five algorithms and ground truth (optimal) value.

• A brief explanation of possible causes of the artifact.
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Artifact [C1]: Merged narrow curves

Description: Some algorithms tend to produce a y-shaped map at narrow curves.

Measure: Distance between ground truth’s maximum-curvature turn point and output map bifur-
cation point, divided by distance between ground truth maximum-curvature turn point and the
midpoint of the two “first” locations where all maps found the two portions of the path away
from the curve. The measure value for optimal map reconstruction is 0. The measure tends to
1 as the merged portion of the curve increases. Values above 1 cannot occur.

Algorithm Measure
AW 0.04
CK 0.15
DBH 0.32
ES 0.52
KP 0.74

optimal 0.00
Data set: Garraf

Location: 41◦16’06.53”N 1◦54’43.67”E

Causes: The worst results with respect to this artifact were exhibited by KP, ES and DBH. KP
produces an excessive number of intersections, due to zig-zag combined with noise. ES identifies
a portion of the zig-zag as parallel lanes. For DBH, the problem is caused by the underlying
grid structure and the lack of direction information.
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Artifact [C2]: Shortcuts at intersections

Description: At bifurcations with a small angle, some algorithms produce shortcuts.

Measure: Distance between ground truth bifurcation and found one, divided by distance between
ground truth bifurcation and the midpoint of the two first locations where all output maps found
the two paths. The measure value for optimal map reconstruction is 0. The measure tends to 1
as the found bifurcation point gets further from the real one. Values above 1 cannot occur.

Algorithm Measure
AW 0.77
CK 0.02
DBH 0.06
ES 0.14
KP 0.99

optimal 0.00
Data set: Montseny

Location: 41◦47’02.76”N 2◦26’11.93”E

Causes: Algorithms KP and AW produce the worst results in this case. KP creates an excessive
number of detected intersections that end up producing a distorted position for the bifurca-
tion, due to the zig-zag combined with noise. AW misinterprets small angles, postponing the
bifurcation until both paths become far enough with respect to the parameter ε.
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Artifact [C3]: Artificial bridges

Description: Some algorithms produce nonexistent connections (bridges) between parallel paths.

Measure: Length of bridges divided by total length of upper and lower envelopes of all output edges.
Bridges are defined as the union of all edges in shortest paths between a vertex in the upper
envelope and a vertex in the lower envelope of the output map, excluding all edges belonging to
the envelopes. The measure value for optimal map reconstruction is 0. The measure increases
as the output map includes further and longer bridges.

Algorithm Measure
AW 0.21
CK 0.56
DBH 0.00
ES 0.69
KP 0.00

optimal 0.00
Data set: Delta

Location: 41◦18’25.41”N 2◦07’27.38”E

Causes: Close distance between parallel paths combined with noise makes ES, CK and AW exhibit
the worst behaviors in this case. ES identifies trajectories partially belonging to parallel paths
as belonging to parallel lanes of the same road, merging them. Due to the noise, several of the
bottom trajectories are “attracted” by the top trajectories in CK. The final connecting step of
AW connects pieces of the paths, since they become further than the specified threshold.
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Artifact [C4]: Merged parallel paths

Description: Parallel paths at close distance are partially merged.

Measure: Area enclosed by the upper and lower envelopes of all edges in the output map, divided
by the analogous area in ground truth. The measure value for optimal map reconstruction is 1.
The measure tends to 0 as the merged portions increase.

Algorithm Measure
AW 0.29
CK 1.01
DBH 0.95
ES 0.55
KP 0.05

optimal 1.00
Data set: Delta

Location: 41◦18’38.59”N 2◦07’00.20”E

Causes: The worst results are produced by KP, AW and ES. KP detects too many vertices and ends
up connecting clusters of turns that coincide on both paths. An incremental strategy, combined
with noise, produces the merging in AW. ES identifies parts of parallel trajectories as parallel
lanes of the same path, merging them. Notice that the value above 1 of CK is to be considered
optimal from the viewpoint of this artifact, as it indicates that no merging occurred.
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Artifact [C5]: Duplicated paths

Description: In the presence of several trajectories along one path, some algorithms generate dupli-
cate paths.

Measure: Length of output map, divided by length of ground truth. The measure value for optimal
map reconstruction is 1. The measure increases as the output map includes further copies of
(portions of) the path.

597.49

Algorithm Measure
AW 1.02
CK 2.00
DBH 1.05
ES 5.35
KP 1.02

optimal 1.00
Data set: Delta

Location: 41◦18’14.38”N 2◦06’58.76”E

Causes: The worst outputs in this case are those of ES and CK. ES produces erroneous connections
between the (too many) cluster centers detected. The disparity of sampling rates makes the
clarification phase of CK perform poorly, failing at merging some duplicate paths.
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Artifact [C6]: Duplicated back-and-forth paths

Description: In the presence of back-and-forth trajectories along one single path, some algorithms
duplicate portions of the path.

Measure: Length of output map, divided by length of ground truth. The measure value for optimal
map reconstruction is 1. The measure tends to 2 as the duplicated portions increase.

Algorithm Measure
AW 1.98
CK 1.66
DBH 1.17
ES 2.19
KP 1.46

optimal 1.00
Data set: Garraf

Location: 41◦15’39.82”N 1◦54’36.15”E

Causes: The worst results for this artifact correspond to ES and AW, followed by CK and KP. The
value > 2 for ES indicates that some portions of the path appear more than twice, due to global
parameter incompatibility (i.e., distance between intersections smaller than data inaccuracy).
The incremental nature of AW makes it choose a whole piece of trajectory that duplicates the
path. Most duplication in CK comes from direction issues; the short paths at the end of the
main path are due to using hop distance for the detour parameter (h). The use of angular
differences to detect turns in KP leads to many intersections that are later connected.
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Artifact [C7]: Excessive number of connections in area

Description: Excessive number of vertices and connections in an area with multiple crossing paths.

Measure: Length of output map, divided by length of ground truth. The measure value for optimal
map reconstruction is 1. The measure increases as the output map includes further connections.
Values below 1 indicate incomplete map reconstruction.

Algorithm Measure
AW 1.13
CK 2.16
DBH 0.82
ES 2.74
KP 1.14

optimal 1.00
Data set: Montseny

Location: 41◦46’49.21”N 2◦27’01.84”E

Causes: The worst behaviour is exhibited by ES and CK. For ES this is due to the lack of reliability
measures combined with global parameter incompatibilities. The force-based clarification phase
of CK has issues coping with many outliers. On the other hand, KP and AW do not perform as
poorly as ES and CK, but still leave a lot of room for improvement. For KP, this is the result
of the lack of a reliability measure combined with the fact that the algorithm creates too many
vertices. For AW, it is a combination of the lack of a reliability measures and the incremental
construction approach.
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Artifact [C8]: Excessive number of connections along single path

Description: Excessive number of vertices and connections along one single path.

Measure: Length of output map, divided by length of ground truth. The measure value for optimal
map reconstruction is 1. The measure increases as the added connections between path points
increase in length. Values below 1 indicate disconnection (see Artifact C9).

Algorithm Measure
AW 1.08
CK 4.01
DBH 3.12
ES 3.01
KP 1.06

optimal 1.00
Data set: Montseny

Location: 41◦45’59.12”N 2◦28’40.20”E

Causes: The worst performance is that of CK, caused by a force-based approach that is very sensitive
to outliers. Follows DBH, due to the size of the grid it uses, and ES, that makes erroneous
connections between the detected intersections, due to global parameter incompatibility issues
(i.e., distance between intersections smaller than data inaccuracy).
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Artifact [C9]: Fragmented paths

Description: Pieces of single path missing in generated map.

Measure: Length of output map, divided by length of ground truth. The measure value for optimal
map reconstruction is 1. The measure tends to 0 as the missing portions of the path increase in
length. Values above 1 indicate duplication (see Artifact C5).

Algorithm Measure
AW 0.93
CK 0.72
DBH 0.80
ES 2.99
KP 0.98

optimal 1.00
Data set: Aiguamolls

Location: 42◦00’45.17”N 3◦10’02.70”E

Causes: We start noticing that the measurement has been taken over the S-shaped path, without
taking into account the shorter vertical path emanating from the main one, as only one trajectory
takes it. The worst performances in this case are those of CK (due to the use of a global reliability
threshold that does not work well in this area), DBH (for the same reason) and AW (due to
data heterogeneity and inconsistency between time and space parameters of the algorithm).
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Artifact [C10]: Nonexistent paths created

Description: Relatively long portions of single paths that do not exist in ground truth included in
generated map.

Measure: Binary. “Yes” indicates that the algorithm produces the artifact. “No” indicates that it
does not.

Algorithm Measure
AW Yes
CK No
DBH No
ES Yes
KP Yes

optimal No
Data set: Montseny

Location: 41◦46’39.50”N 2◦26’56.04”E

Causes: In this case, the issues show up in the result by AW, due to its incremental construction
that selects an outlier trajectory, and ES and KP, due to their lack of a reliability measure.
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5.3 Specific artifacts

In this section we present an analysis of the main artifacts that are specific to only one of the output
maps of the algorithms. These are the result of some particular algorithm design decision. For each
of these artifacts, we give a description, illustrate it for a particular location, and briefly explain its
cause.

Artifact [S1]: AW

Description: Missed set of trajectories.

Cause: Lack of direction information asso-
ciates the vertical trajectories to the
horizontal ones. That is: t he algorithm
considers the vertical trajectories close
enough to existing (horizontal) paths in
the map, thus they are ignored.

Data set: Garraf

Location: 41◦15’46.25”N 1◦55’48.80”E

Artifact [S2]: CK

Description: Reduced curvature.

Cause: The clarification step of the algo-
rithm averages sample positions of the
neighborhood, reducing the resulting
curvature.

Data set: Garraf

Location: 41◦16’23.63” N 1◦52’40.33” E

Artifact [S3]: CK

Description: Hair in off-track trajectories.

Cause: Combination of direction issues, use
of hop distances, and attraction forces
with noise.

Data set: Aiguamolls

Location: 42◦01’22.41” N 3◦10’38.17” E
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Artifact [S4]: DBH

Description: Aliased generated map.

Cause: Discretization in a regular grid causes
this artifact at larger scales.

Data set: Delta

Location: 41◦17’37.13” N 2◦06’23.13” E

Artifact [S5]: KP

Description: Too many aligned vertices.

Cause: Heterogeneous data combined with
an algorithm that is based on the de-
tection of vertices and is prone to create
too many of them.

Data set: Delta

Location: 41◦18’16.06” N 2◦07’28.89” E

Artifact [S6]: KP

Description: Winding path simplified.

Cause: Noise and zig-zagging path, causing
an excessive number of intersections de-
tected.

Data set: Garraf

Location: 41◦15’51.30”N 1◦53’29.22”E

Artifact [S7]: KP

Description: Missing trajectories ends.

Cause: The algorithm ignores any portion of
the map not laying between path inter-
sections.

Data set: Garraf

Location: 41◦17’01.72” N 1◦52’12.91” E
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5.4 Analysis of the results

We begin by observing that some of the artifacts shown in Section 5.2 are mostly due to the charac-
teristics of the data.

• Z-shaped and Y-shaped paths are difficult to deal with for all the algorithms. Some end up
merging or shortcutting them: see artifacts [C1] for KP, ES and DBH, and, to a smaller extent,
also CK, [C2] for AW and KP, and [S6] for KP. These issues are often due to the fact that in
sharp turns with high noise, distance thresholds can be misleading, unless they are combined
with angle information.

• Parallel paths combined with noise end up causing trouble to most of the algorithms: see artifacts
[C3] for ES, CK and AW, and [C4] for KP, AW and ES. Again, noise and global distance
thresholds make it very difficult to determine whether two parallel trajectories correspond to
the same or different paths.

• Particularly noisy areas end up producing maps with an excessive number of vertices and con-
nections, especially for ES and CK (see artifact [C7]), and too dense graphs for CK, DBH and
ES (see artifact [C8]).

• The heterogeneity of the data, both in terms of time and distance gaps between consecutive
trajectory points, gives rise to undesired results such as multiple map edges representing the
same path (artifact [C5] for ES and CK), the absence of necessary connections (artifact [C9] for
CK, DBH and AW) or too high complexity of the resulting map (artifact [S5] for KP).

• Finally, when trajectories go back and forth along one single path, which is not infrequent in
our data, several algorithms have trouble in detecting the path as the same, particularly ES and
AW (see artifact [C6]).

Some of the artifacts come as a consequence of design decisions of specific algorithmic strategies.
Particularly:

• Direction issues. Giving a lot of weight to the difference in the direction of trajectories can be
problematic under high noise. These issues are amplified in hiking trajectories, where direction
is not as meaningful as it is for highway lanes or one-way streets. Indeed, pedestrians use the
same path in both directions, no matter how narrow it may be. In contrast, we have seen
situations in which ignoring direction leads to wrong maps. For the analyzed algorithms that
don’t make use of the directions at all, this has caused problems such as excessive simplification
and merging in Z-shaped winding paths, like in DBH (see artifact [C1]), and missing paths, like
in AW (see artifact [S1]). CK uses bidirectional edges, causing artificial dead-ends (artifact [S3])
and, again, excessive simplification and merging in Z-shaped winding paths (artifact [C1]).

• Reliability issues. Some algorithms use a density threshold to decide whether or not to include
an edge in the final map. Artifact [C9] for CK and DBH show that this may lead to multiple
connected components for a single path. The remaining algorithms don’t use such a threshold,
and this ends up producing erroneous paths or portions of paths, as shown in artifacts [C7] for
AW, [C10] for ES and KP.

• Parameter incompatibility issues. In some cases, the parameters used lead to inconsistencies.
In particular, the distance resolution between intersections is sometimes smaller than the GPS
noise or inaccuracy in ES, hence producing a dense graph (artifact [C8]); and the segmentation
threshold is sometimes smaller than the proximity threshold, hence producing disconnections in
the map paths in AW (see artifact [C9]).

• Vertex detection issues. Two of the algorithms apply a strategy consisting in first finding signif-
icant vertices (i.e., intersections) of the map (clusters in ES, turns in KP), and then connecting
them based on the trajectories that go through them. Either due to a bad identification of the
vertices, or to a bad assignment of the trajectories to them, the fact is that this strategy often
produces an excessive number of connections as ES does in artifact [C8], or an excessive number
of vertices as KP does in artifact [S5]. In addition, it must be noticed that any strategy only
based on detecting intersections necessarily misses endpoints that are not intersections, as it
happens to KP in artifact [S7].
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Figure 8: Examples of artifacts detected for the urban data sets (left-to-right): too many connections
(artifact [C8], ES) and aliased map (artifact [S4], DBH) in Chicago; map missed sets of trajectories in
Athens Large (artifact [S1], AW); many aligned vertices (yellow pins) in Chicago (artifact [S5], KP).

• Force results issues. Any strategy only based on attraction forces smoothens the curvature of
the paths, as it happens for CK in artifact [S2].

• Discretization issues. Any strategy only based on discretization using a fixed-size grid—at least
without some type of correction—generates aliased maps, as it happens for DBH in artifact [S4].

Finally, some issues are intrinsic to specific algorithms. Namely:

• DBH In general, maps produced by DBH do not cover as many paths as those of other algo-
rithms. This phenomenon is typical of density-based methods, because the masking threshold
must be high enough to omit outliers. This is much more noticeable at zones with high disparity
of sampling between different paths, as more outliers are in the area with a high number of
trajectories, pushing the threshold high enough to make zones with a low number of trajectories
disappear. As mentioned before, the implementation available of DBH did not implement the
shaving procedure as described in [12], thus we did not include hairs as one of the artifacts
of DBH, since we cannot evaluate exactly how they would look with the original algorithm.
However, given the nature of the algorithm, they are unavoidable, so this artifact will always
appear in the resulting maps.

• ES The issues with excessive number of connections (artifact [C8]) are ubiquitously present for
this algorithm, probably because the algorithm is very sensitive to GPS noise. This makes the
quality of the generated maps unacceptable for most purposes.

• KP In several occasions we detected areas with an unusually high concentration of vertices and
edges, as on the right side of artifact [S6]. In addition, we identified a large number of small
loops. Since we were not able to explain these two phenomena based on the description of the
original algorithm–they may be due to some bug in the available implementation—they have
not been listed as artifacts.

It is worth mentioning that many of the aforementioned artifacts were already present in the
results for urban data sets. However, there were not observed—at least not explicitly—probably
because previous work focused more on the global aspects of the generated maps rather than on the
details. In fact, in order to validate this we evaluated the different algorithms with the four urban
data set used in [2], and analyzed which of the artifacts appear also in the urban data. The parameter
values used for these runs can be found in Appendix B. The artifacts that were not found in any
of the urban data sets analyzed, most notably, artifacts [C9], [C1], [C4], and [S6], are related to
situations such as winding paths and long parallel paths close to each other, which do not occur in
those data sets, and are less frequent in urban environments. Nevertheless, these are situations that
can perfectly happen is urban settings as well. As expected, artifacts that are clearly intrinsic to the
algorithms appear repeatedly in most urban data sets. Examples are artifacts [C8], [S1], [S4], and
[S5], illustrated in Figure 8.

We conclude the section by observing that our experiments confirm that hiking data are appropriate
to carry the desired local analysis of the performance of the algorithms, for they provide a wide variety
of situations. Hiking trajectory data seems to have some specific characteristics that are relevant for
map construction algorithms. The effects of GPS noise seems particularly important, probably due
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to worse reception conditions (such as rough terrain and dense vegetation). The main effects are
the bearings of parallel trajectories that are not well aligned, a high number of outliers, and many
trajectories with noisy parts. Since our data came from very heterogeneous sources, trajectories
varied a lot in sampling rate, something that caused difficulties to many of the algorithms. Finally,
trajectories that go back and forth on the same path occur more often in hiking data, and can cause
problems.

6 Lessons learned for designing new algorithms

6.1 Main challenges

Based on the previous analysis, we summarize here what we consider the main challenges to fully
automatize construction of maps from trajectory data.

• Noise and outliers. How to tell apart the accurate and correct trajectories from those with a
large error, even when the latter are only a minority, is probably the main challenge ahead. A
large number of the issues identified can be traced back to inaccuracies in the trajectories. In
fact, the combination of this with parallel and zig-zagging paths was partially responsible for a
large fraction of the artifacts.

• Minimizing assumptions on the width of roads, paths, and their distances. Any algorithm
meant to work even in only one specific setting should avoid, as much as possible, to make
strong assumptions on these matters. Since this is hard to avoid, a possibility is to try to make
only local assumptions, allowing for different parameters in different parts of the map.

• Minimizing assumptions on the sampling and other characteristics of the trajectories. As the
amount and the variety of available data increases, algorithms need to be able to cope with
rather heterogeneous inputs.

• Minimizing the number of parameters. Algorithm parameters are often related to assumptions
on the input, which should be avoided, or at least stated explicitly. Moreover, parameters pose
a major issue to the user of the algorithms, which may have to figure out over a dozen values
by trial-and-error in order to get an acceptable output.

6.2 Algorithmic strategies to follow

Analyzing globally the different algorithms considered, we observe that certain decisions do not pro-
duce good results in our setting.

• Using turns to detect intersections, and detecting turns, in general, due to the presence of many
small angles.

• Basing any decision on counting hops or time elapsed, due to the very different sampling used
in the trajectories.

• Making decisions based on single vertices of a trajectory, something very sensitive to error (edges
are probably more reliable in this respect).

• Incremental approaches, due to the many outliers and noisy trajectories. However, it should be
pointed out that incremental approaches do avoid several types of artifacts because they stick to
one single trajectory for longer parts of the map. This suggests that a good way to overcome the
issues with current incremental methods may be to use some more robust way to select which
trajectories to use.

• Giving a lot importance to the direction of trajectories, which have little relevance in pedestrian
data, and even in road data when trajectories are very noisy.

• Relying on the detection of significant spots, which are particularly hard to detect in very noisy
data, and can lead to issues close to the terrain boundary and around trajectory endpoints.
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On the other hand, some algorithmic strategies seem appropriate and even necessary:

• Segmenting the input trajectories to make them more homogeneous, and to split them into
meaningful segments.

• Avoiding giving too much weight to any single trajectory.

• Related to the previous, using the number of “similar” trajectories as a parameter to give more
robustness to the results.

Thresholds. Our analysis confirms that the use of thresholds is very problematic. The analyzed
algorithms use several kinds of thresholds:

1. For segmenting the trajectories. We believe that segmenting by distance is necessary. Segmen-
tation by time is not appropriate in a context of heterogeneous data.

2. To filter for significance/relevance. The problem in this case is that any threshold induces some
amount of fragmentation of the paths in the final map. We do not see a solution for this, other
than hoping for a significant amount of data.

3. As a bound for similarity (mainly, proximity). Our experiments indicate that there exist no
global thresholds that are appropriate for even a map of a few km2. This is particularly evident
when dealing with close parallel paths and narrow winding ones.

Thus it seems that fully automated map construction algorithms should rely only on local thresholds.
It is also important to notice that the consistency between the different thresholds used in one single
algorithm is also a key aspect in order to achieve good results.

7 Conclusions

In this paper we have analyzed locally five existing map construction algorithm in the context of
hiking data. Our goal was not to compare the quality of the obtained maps, but to better understand
the consequences of the strategic algorithmic decisions in each method at a local level.

Within this context, using hiking data had a double interest. The first one was to evaluate to
what extent the currently existing algorithms, which were designed to be used in a different context,
were flexible enough to also apply to a different one. The second, and more important, reason is that
hiking data have proven to be a valuable benchmark in order to reveal which characteristics of the
map construction algorithms should be improved or overcome.

To the best of our knowledge, this is the first time that local map construction algorithms issues
are systematically classified and analyzed, searching for their causes and possible solutions. We have
presented a detailed discussion of the artifacts that we believe can be used to understand some of
the current challenges for map construction algorithms, and to design new and better methods. It is
important to highlight that only a few of them apply exclusively to hiking data or to some specific
algorithm. Indeed, many of the issues identified can be traced back to (combinations of) many aspects,
like the fact that trajectories were created by pedestrians, often take place in rough terrain and in
areas with vegetation and other sources of GPS signal degradation, and on the extremely diverse data
sources used. Therefore many of the problems analyzed will show up in other settings in which map
construction algorithms are needed.

An interesting byproduct of our work is a systematic discussion of the different parameter values
that each method requires. For each algorithm it is unrealistic to find a universal set of parameters
independent of the specific characteristics of each data set. Even more, our analysis shows that, even
when restricted to one concrete data set, none of the algorithms gives good results for a single set
of parameters values. In addition, finding the most appropriate parameter values turned out to be a
challenging task, given the many parameters involved, and the lack of an explicit meaning for many of
them. An important conclusion is that algorithms with such complex parameters are far from being
usable, and that construction algorithms must strive to reduce the number of parameters and to make
their meaning clear in terms of the input and output features. Ideally, such parameters should be
locally adaptable to the data (an approach along this line has been very recently proposed [9], with
promising results).
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Finally, we believe that the rapid growth of available trajectory data will unavoidably require map
construction algorithms to be able to cope with highly heterogeneous inputs. In order to succeed in
this task, the best strategies will be those that assume as little as possible about the input, and are
able to adapt to the data at a local level.
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Appendices

A Deduction of parameter values for hiking data sets

In this section, we carefully discuss how the parameters of the algorithms were set in order to apply
them to the hiking data sets in the best possible way.

A.1 AW

(a) ε too small. (b) ε too high. (c) An appropriate value of ε.

Figure 9: Example of the effect of varying the value of ε for the AW algorithm. The image shows an
area with parallel paths on both sides of a canal, in Delta. Input trajectories are shown in blue, the
generated map is shown red. Background image from Google Earth.

Recall that the main parameter for AW is ε, for which four assumptions are made. However, these
assumptions are not satisfied by any of our four hiking data sets. It is clear that condition (iv) is
often not met in hiking trails (or in car trajectories, for that matter), since it is common to have hikes
that repeat certain parts. However, it is relatively simple to preprocess trajectories to break cycles,
as suggested in [5].

A more delicate situation arises with the remaining assumptions. Most notably, conditions (i) and
(iii) can easily contradict each other. For instance, in Delta the presence of parallel paths along both
sides of irrigation canals forces a value of ε < 3m to satisfy (i). At the same time, the presence of some
wider roads in conjunction with condition (iii) require ε > 16m, leading to a contradiction. Similar
situations occur in the other three data sets. An example illustrating the effect of varying ε is shown
in Figure 9.

Given that no single value can satisfy all theoretical conditions on ε, for our experiments we tried
several values for each data set, selected based on the road widths and road separation distances
observed in the Google Earth aerial images for each region. The algorithm was run on each setting
and data set, and the value qualitatively giving the best results with respect to the paths visible from
Google Earth was chosen. These values are shown in Table 6.

A.2 CK

Several parameters need to be adjusted to obtain good results for this algorithm. For the preprocessing,
the thresholds used for segmenting based on the spatial or temporal discontinuities within trajectories
(d1 and t) are obtained by extrapolating the original values using the ratio between the mean distance
(or elapsed time) between trajectory points of the original data sets and each of our data sets. The
step for reducing redundancy uses two spatial thresholds (d2 and d3) and an angular one (α). The
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spatial thresholds were set to the original value multiplied by the ratio of the average speed between
each of our data sets and the data set used in the original work. The angular threshold was kept
unchanged.

The clarification step requires some information from the input data and the terrain. Recall that
the attraction forces are parameterized by two values: M and σ1, while the spring force depends on
one parameter k. According to Cao and Krumm [10], the values should be chosen so that the force of
one edge attracts all vertices with similar direction within a certain distance, and not those further
apart. This implies that there should exist a distance value td at which the attraction force drops
considerably, in favor of the conservative spring force. Such distance value should be between the
maximum width of a one-way road and the minimum distance between two roads. Once the target
distance value is found, Cao and Krumm [10] provide an analysis on how trajectories are affected by
the forces taking into account the average number of trajectories on a path (N) and their dispersion
due to the expected GPS error (σ2). Using as input the values of N and σ2, they derive the values of
the force parameters so that the forces produce the desired change of behavior roughly after the target
distance at which the attraction force must drop. In [10, Figure 8], this target distance seems to be
implicitly set to 25m, and considering in average 20 trajectories per path with an standard deviation
due to GPS error of 5m, the values of the three force parameters are set to σ1 = 5, k = 0.005 and
M = 1, producing the desired effect at 25m.

Therefore once the target distance td, together with the N and σ2 are known, the three parameters
M , σ1 and k can be derived. Table 13 summarizes the values for each parameter as well as the needed
information. Figure 10 presents the graphs of how the different attraction forces behave for the
corresponding values.

Data set
Terrain / Input data information Clarification parameters

N σ2 (m) td (m) M σ1 k

Original 20 5.0 25.0 1.0 5.0 0.005

Delta 20 2.7 6.5 1.0 0.0 0.2
Aiguamolls 5 1.7 9.5 1.0 3.0 0.02

Garraf 80 5.0 10.0 1.0 0.0 0.2
Montseny 30 7.3 7.5 1.0 0.0 0.2

Table 13: Values for each parameter used in the clarification step of CK using the original parame-
terization method. The table also includes the needed information about the terrain and input data,
namely the average number of trajectories on a sampled path (N), the expected GPS error (σ2) and
the target distance (td) set half way between the maximum path width and the minimum separation
between two different paths.

(a) Original (25 m) (b) Delta (6.5 m) (c) Aiguamolls
(9.5 m)

(d) Garraf (10 m) (e) Montseny (7.5 m)

Figure 10: Graphic representation of the resulting attraction forces of algorithm CK, for each data set,
using their parameterization method. The axes represent the distance from a trajectory point to the
center of the path that it possibly samples. The x-axis represents the original distance, whereas the
y-axis represents the final distance after applying the clarification step. Ideally, the function should
behave like a piece-wise function with y = 0 for x ≤ td and y = x otherwise. The value between
parenthesis is the corresponding td for each data set.
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Even though the parameters for the clarification phase have been adjusted using the method
proposed by the authors, there is still an issue to be addressed. The plots for the Garraf and
Montseny data sets (Figure 10d-e) deviate too much from the ideal shape. Even more, the value of
σ1 in all data sets except Aiguamolls is 0 (Table 13), which results into a singularity in the attraction
forces. In such cases, the resulting clarified trajectories no longer follow their original shape and the
resulting map is indistinguishable from random noise.

Such situations occur when the expected GPS error (σ2) is too close to the target distance td. In
the Garraf and Montseny data sets, σ2 was higher than 50% of td. In the Delta data set, it was
higher than 41%. Whereas in the original and Aiguamolls data sets it was 20% and 18%, respectively.
Therefore, whenever the expected error (σ2) is close to the midpoint between the maximum width of
a single path and the minimum distance between two paths, which incidentally is the value of td, the
method proposed to adjust the parameters cannot be applied. Therefore, for the Delta, Garraf and
Montseny data sets, the values have been empirically adjusted. Table 14 summarizes again the final
values used.

Data set M σ1 k

Original 1.0 5.0 0.005

Delta 1.0 2.7 0.05
Aiguamolls 1.0 3.0 0.02

Garraf 1.0 5.0 0.025
Montseny 1.0 7.3 0.025

Table 14: Final parameter values for the clarification phase of the CK algorithm.

Finally, the incremental insertion algorithm has four parameters that need to be adjusted. As the
trajectories have been clarified, adapting the original values is straightforward. The distance threshold
is set to be the maximum path width, as clarified trajectories are much closer to the center of the
paths. The angular threshold, the minimum volume of trajectories and the maximum number of hops
are all set to 45◦, 3 and 5, respectively, as in the original work.

Refer to Table 7 for the summary of all the parameter values.

A.3 DBH

The (i) grid cell size that Davies et al. [12] propose is half the minimum path width. In our data
sets, that is 1m for the flat terrains (Delta, Aiguamolls) and 0.5m for the hilly terrains (Montseny,
Garraf ). (ii) The value of σ was taken as the average between the maximum width of a path and
half the minimum separation between two different paths. This value ensures that holes within a
path will be covered while not interfering in the detection of different paths. Finally, (iii) the mask
threshold was empirically adjusted. The value we present is a compromise between the coverage of
the generated map and the algorithm’s sensitivity to noise. Table 8 summarizes the values used.

A.4 ES

To choose the value of the three parameters for ES we used as a guideline the explanations in the
original work [15], which we reproduce here for completeness. The value of dmax “should be in an
order of magnitude such that we ensure not to miss any intersection”. For δ, “we found that the
algorithm is not very sensitive to variations of δ”. Finally, “as a conservative lower bound, θ should
be at least larger than the maximum lane width, [. . . ], plus a considerable fraction of an estimated
standard deviation of the GPS error”.

For our data sets, a dmax of 20m is sufficient to detect all intersections. We kept δ at the same
value as in the original work (45◦). Finally, to set the value of θ we took into account the maximum
width and the estimated GPS error of each data set. Table 9 summarizes the values taken for each
data set.
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A.5 KP

Finding appropriate values for the six parameters of KP, which do not have a clear meaning, was
a complex task. Indeed, Karagiorgou and Pfoser mention that the values used in their experiments
were obtained “empirically by running a great number of experiments and assessing the quality of the
respective results” [19]. We established relationships between the parameters, based on their work, as
to minimize the actual number of parameters to be empirically tested. As a result, we concluded that
the most critical and independent parameters were (ii)—the angular threshold to determine turns,—
and (iv)—the distance threshold to group turning points. We ignored the speed-related parameter
(iii), as pedestrians do not perform significant speed reductions in turns. Parameter (vi) was fixed
at 45◦, the value used in [19]. The other two parameters were set as specified in Table 10 after
experimental testing.

It remains to explain how to find appropriate values for (ii) angular difference and (iv) the turn
clustering threshold.

The angular difference threshold determines when a change in direction is considered a turn.
Ideally, the value should be set so that all (and only) real intersections have at least one turning point
associated. As expected, in none of our data sets such an ideal value exists (note that it does not
exist in the original Athens data set used in [19] either).

We found that the punctual angular differences on GPS data are not reliable enough to avoid false
turn detections, both in urban and in hiking data sets. In our hiking data sets, the value of the angular
difference threshold seems to be even more critical, since the density of trajectory nodes on the sampled
paths is of one order of magnitude higher than in the urban context. Therefore, the probability that
multiple falsely identified turn samples are considered by the algorithm to be intersections because
they are close enough to each other is also much higher. This problem is specially apparent on Garraf
and Montseny.

The second free parameter, the turn clustering distance threshold, has a less clear effect in the
generated map, but it has a high impact in the final result. Essentially, the turn clustering threshold
is used to decide when two detected turns represent the same turn in the ground truth. However,
its implications extend further, because links between intersections created later on depend on the
positions of the intersections, among other properties influenced by this parameter. Given all these
implications, the final effect of varying this parameter is very hard to predict. Figure 11 shows an
example.

(a) Turn clustering threshold of 5m. (b) Turn clustering threshold of 100m.

Figure 11: Example showing the effect of varying the turn clustering threshold from 5m to 100m.
Input trajectories are shown blue, the generated map in red. Red pinpoints indicate detected turning
points, yellow pinpoints show the location of the intersection nodes. Images from Google Earth in
Aiguamolls.

Based on all these observations, our method to obtain the values for the two parameters consisted
in first finding a suitable value for the angular difference, and with this value fixed, looking for a
suitable value for the turn clustering threshold, also empirically.

The values that gave the best results can be seen in Table 15. Note that the best values of the
angular difference found for the hiking data sets (up to 70◦) are much larger than the 15◦ used in the
urban setting.

The need for such a larger angle bound can be explained by the trajectory sample points density
in our data sets, when compared to the ones used by Karagiorgou and Pfoser. Assuming that the
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Data set (ii) Angular difference [o] (iv) Turn clustering threshold [m]

Urban data setsa 15 50

Delta 50 10
Aiguamolls 30 25

Garraf 70 30
Montseny 70 30

aAll city data sets, Athens, Berlin, and Chicago, used the same parameters.

Table 15: Chosen parameter values for KP. The values for the urban data sets are the ones in [3, 19].

identified turns are uniformly distributed, the Athens data set has an identified turn every 382m along
a trajectory (45.11% of the input trajectories points are identified as turns). Using the same angular
threshold, Garraf has an identified turn every 24m (37.76%). Although the percentages of identified
turns are similar, the distance between two identified turns in Garraf is one order of magnitude
smaller. Identifying turns that are too close makes identifying intersections using spatial clusters an
even more challenging task.

The chosen angular threshold for our data sets have been selected taking into account the visual
apparent density of the identified turns. Figure 12 compares the visual appearance of the identified
turns between the original data set, the Garraf data set using the same angular threshold (15◦) and
Garraf using our chosen threshold (70◦). Assuming that the identified turns are uniformly distributed,
Garraf with a threshold of 70◦ has an identified turn every 316m along the trajectories (2.87% of the
input trajectories points are identified as turns). Therefore, the density of the identified turns is
comparable to the ones in the original data set.

(a) Athens Large data set with
threshold of 15◦.

(b) Garraf data set with threshold
of 15◦.

(c) Garraf data set with threshold
of 70◦.

Figure 12: Example showing how using the same angular threshold as in the original data set (15◦)
produces a saturated map due to the density of trajectory points. Using our chosen angular threshold
(70◦), the results for Garraf are comparable with the original results. The pinpoints in red are the
identified turns, trajectories are in blue. The three images are at a similar scale. Images from Google
Earth.

B Parameters used for the urban data sets

To run the algorithms for the urban data sets we tried to stick to the values mentioned in the cross-
comparison paper by Ahmed et al. [3]. In most cases this was done, except for some few cases in
which the parameters present in the code were different from those in [3], in which case we used those
in the code.

AW: ε=180 (Athens Large), 90 (Athens Small), 170 (Berlin), 80 (Chicago); tgap=120;
CK: d1=100; t=10; d2=10; d3=30; α=10; min seg=4; M=1; σ1=5; k=0.005; d4=20; β=45; v=3;

h=5;
ES: dmax=50; δ=45; θ=20; N=80; dmed=0.01;
DBH: cell size=2; mask threshold=100; σ=17; voronoi sampling interval=10;
KP: angular difference=15; dist=25; max m=1000; mean speed=40;
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C Output generated by the different algorithms

In the next pages we present the maps generated for each data set by each of the five algorithms,
together with the input trajectories in the background.

C.1 Delta

(a) AW. (b) CK.

(c) DBH. (d) ES

(e) KP.

Figure 13: Maps generated (in black) for Delta, with the input trajectories (in gray).
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C.2 Aiguamolls

(a) AW. (b) CK.

(c) DBH. (d) ES.

(e) KP.

Figure 14: Maps generated (in black) for Aiguamolls, with the input trajectories (in gray).

44



C.3 Garraf

(a) AW. (b) CK.

(c) DBH. (d) ES.

(e) KP.

Figure 15: Maps generated (in black) for Garraf, with the input trajectories (in gray).
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C.4 Montseny

(a) AW. (b) CK.

(c) DBH. (d) ES.

(e) KP.

Figure 16: Maps generated (in black) for Montseny, with the input trajectories (in gray).
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