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Abstract
Monitoring location updates from mobile users has important applications in many areas,
ranging from public health (e.g., COVID-19 contact tracing) and national security to social
networks and advertising. However, sensitive information can be derived from movement
patterns, thus protecting the privacy of mobile users is a major concern. Users may only be
willing to disclose their locations when some condition is met, for instance in proximity of
a disaster area or an event of interest. Currently, such functionality can be achieved using
searchable encryption. Such cryptographic primitives provide provable guarantees for pri-
vacy, and allow decryption only when the location satisfies some predicate. Nevertheless,
they rely on expensive pairing-based cryptography (PBC), of which direct application to
the domain of location updates leads to impractical solutions. We propose secure and effi-
cient techniques for private processing of location updates that complement the use of PBC
and lead to significant gains in performance by reducing the amount of required pairing
operations. We implement two optimizations that further improve performance: materializa-
tion of results to expensive mathematical operations, and parallelization. We also propose
an heuristic that brings down the computational overhead through enlarging an alert zone
by a small factor (given as system parameter), therefore trading off a small and controlled
amount of privacy for significant performance gains. Extensive experimental results show
that the proposed techniques significantly improve performance compared to the baseline,
and reduce the searchable encryption overhead to a level that is practical in a computing
environment with reasonable resources, such as the cloud.
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1 Introduction

Modern mobile devices with positioning capabilities (e.g., GPS) allow users to be informed
about events that occur in their proximity. Many classes of applications benefit from the
large-scale availability of location data, ranging from public health (e.g., COVID-19 contact
tracing) and national security to social networks and advertising. One particular scenario of
interest is that of location-based alert systems, where mobile users wish to be immediately
notified when their current location satisfies some conditions, expressed as a spatial search
predicate. For instance, in a public safety scenario, users want to be notified when they are
getting close to a dangerous accident area. Alternatively, in the commercial domain, a user
may want to be alerted when a nearby sale event is underway.

The typical architecture of such a system uses a server that collects location updates from
the users and checks whether the alert condition is met. Such a service is often provided by
a commercial entity that is not fully trusted. The collection of user trajectories at a com-
mercial site introduces serious privacy concerns, as sensitive personal information may be
derived from a person’s whereabouts [16, 20]. Therefore, protecting the privacy of users is a
necessary feature of such a system, and the users must not report their exact locations to the
server. Ideally, the only information that the server should be able to derive from the user
updates is whether the conditions that the users subscribe to are satisfied or not. Syntactic
privacy models [15, 17, 20, 34] that perform generalization of locations before sharing have
been proven vulnerable, especially in the presence of background knowledge [16]. Further-
more, semantic privacy models such as differential privacy [9, 11, 12] are only suitable for
releasing statistics, but not for processing privately individual updates.

Recently, several advanced encryption functions that allow evaluation of predicates on
ciphertexts have been proposed [2, 6, 30]. These functions are broadly referred to as search-
able encryption (SE) functions, since they allow the evaluation of certain types of queries
without requiring decryption. Some of these encryption systems are asymmetric, i.e., they
employ a secret key SK and a public key PK pair.

Figure 1 shows the envisioned system architecture, with three types of entities: (i) users
who send encrypted location updates using the PK of a trusted authority; (ii) a trusted
authority (TA) who generates tokens for spatial search predicates using secret key SK; and
(iii) the server (S) that collects location updates from users and evaluates the predicates on

Fig. 1 Location-based Alert System
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the ciphertexts using the tokens. In practice, the TA may represent the public emergency
department of a city, which is responsible for the safety of the citizens. The TA is trusted,
but it does not have the necessary infrastructure to support a large-scale alert system, hence
it outsources this service to S.

However, S is a commercial entity that cannot be trusted with user locations, so the TA
sets up a SK/PK pair, and distributes PK to the users. When an emergency occurs in a
region, the TA creates a search token which is sent to S to be matched against the ciphertexts
received from users. The properties of SE guarantee that S is able to evaluate the predicate
on the ciphertext (e.g., whether the user location is enclosed in the region encoded by the
search token) and learns only if the ciphertext matches or not, but no other information
about user location.

To understand search on encrypted data, it helps to consider each ciphertext as being
composed of two parts: an encrypted index I and encrypted message M . M is the payload
of the ciphertext, just the same as in the case of conventional encryption. The novel part
about searchable encryption is the presence of the index I , which is used for search, and can
be seen as a parameter of the encryption function EPK(I,M). When a user ui constructs
its update, she uses her current coordinates (Xi, Yi) as index, and performs encryption as
EPK((Xi, Yi),Mi). If the index satisfies the predicate specified by a token, then the server
is able to recover the message Mi from the user. However, this does not imply that S can
find the exact user location, as Mi may contain information that is of other nature (e.g., an
emergency contact number).

One prominent approach to searchable encryption called Hidden Vector Encryption
(HVE) was proposed in [6]. HVE can evaluate exact match, range and subset queries on
ciphertexts. HVE uses bilinear maps on groups of composite order [19] as mathematical
foundation and makes extensive use of expensive operations such as bilinear map pairings.

As a result, HVE is very expensive and scales poorly. Later in Section 6, we show that in
order to process the update from a single user only, it may take up to 100 seconds. Clearly,
direct application of HVE for alert systems is not suitable.

In this paper, we propose secure and efficient techniques to support private location-
based alert systems using searchable encryption. To the best of our knowledge, this is the
first study of applying asymmetric searchable encryption to the domain of private search
with spatial predicates. Our specific contributions are:1

i We devise specific constructions that allow application of HVE to the problem of
location-based alert systems with a reduced number of bilinear pairing operations, thus
lowering the computational overhead of HVE.

ii We develop optimizations based on reuse of expensive mathematical operation results
and parallelization, which further reduce the HVE performance overhead.

iii We introduce a novel heuristic algorithm that provides effective means to tune the
privacy-performance trade-off of the system, by allowing enlargement of alert zones by
a small factor. By carefully enlarging the alert zone, one can obtain search tokens that
require significantly smaller computation time to process.

iv We perform an extensive experimental evaluation which shows that the proposed
approach brings the overhead of searchable encryption to acceptable levels in a
computing environment such as the cloud.

1This submission is an extended version of [18]. Additional contributions consist of the technique for
relaxation of alert zones presented in Section 5, and its evaluation in Section 6.4.
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Section 2 overviews the proposed system and HVE. Section 3 presents the encoding
techniques for efficient application of HVE, whereas Section 4 outlines the optimizations
to reduce execution time.

In Section 5, we introduce the heuristic for privacy-performance trade-off tuning through
alert zone enlargement.

Section 6 contains the experimental evaluation results, followed by a survey of related
research in Section 7. Finally, Section 8 concludes the paper and highlights directions for
future work.

2 Background

2.1 System and privacy model

Figure 2 illustrates the location-based alert system model, where n users {u1, . . . , un} move
within a two-dimensional domain. Users continuously report their coordinates and wish to
be notified when their location falls within any of m alert zones {z1, . . . , zm}. Alert zones
(or simply zones) are defined by a trusted authority, as detailed later in this section. For
simplicity, we assume that the space is partitioned by a regular grid of size d × d , and each
alert zone covers a number of grid cells. To facilitate presentation, we assume a square data
domain, but our techniques can be immediately extended to a rectangular one, by adjusting
the grid cell shape. The functional requirement of the system follows the spatial range query
semantics, i.e., a user u must receive an alert corresponding to zone z if its location is
enclosed by zone z.

The system (represented in Fig. 1) consists of three types of entities:

i Mobile Users subscribe to the alert system and periodically submit encrypted location
updates.

ii The Trusted Authority (TA) is a trusted entity that decides which are the alert zones,
and creates for each zone a search token that allows to check privately if a user location
falls within the alert zone or not.

iii The Server (S) is the provider of the alert system. It receives encrypted updates from
users and search tokens from TA, and performs the predicate evaluation Match to
decide whether encrypted location Ci(1 ≤ i ≤ n) falls within alert zone j represented

Fig. 2 System Model (n = 2, m = 2, d = 8)
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by token T Kj (1 ≤ j ≤ m). If the predicate holds, Match returns message Mi

encrypted by the user, otherwise it returns a void message (⊥).

The privacy requirement dictates that the server must not learn any information about
the user locations, other than what can be derived from the match outcome, i.e., whether the
user is in a particular alert zone or not. In case of a successful match, the server S learns that
user u is enclosed by zone z. In case of a non-match, the server S learns only that the user is
outside the zone z, but no additional location information. Note that, this model is applicable
to many real-life scenarios, such as our motivating example in Section 1. For instance, users
wish to keep their location private most of the time, but they want to be immediately notified
if they enter a zone where their personal safety may be threatened. Furthermore, the extent
of alert zones is typically small compared to the entire data domain, so the fact that S learns
that u is not within the set of alert zones does not disclose significant information about u’s
location.

In practice, the TA role is played by an organization such as a city’s public emergency
department. Such an actor is trusted not to disclose SK and compromise user privacy, but
at the same time does not have the technological infrastructure to monitor a large user pop-
ulation. Hence, the alert service is outsourced to a commercial entity, e.g., a cloud provider
that plays the role of the server. The TA will issue alert zones to signal that certain areas of
the city are affected by an emergency.

A private location-based alert system is also useful in social networks. A social network
user u can create a SK/PK pair and distribute PK to its buddies. Next, u creates a token
that represents his/her current location, e.g., a downtown restaurant. The network provider
(e.g., Facebook), plays the role of the server: it privately monitors users, and sends the
identifiers of buddies in the downtown area back to u. No information is gained by the
server about locations of non-matching users.

2.2 Searchable encryption with HVE

Hidden Vector Encryption (HVE) [6] is a searchable encryption system that supports pred-
icates in the form of conjunctive equality, range and subset queries. Compared to earlier
solutions [3, 5], HVE yields ciphertexts with considerably smaller length. Search on cipher-
texts can be performed with respect to a number of index attributes. HVE represents an
attribute as a bit vector (each element has value 0 or 1), and the search predicate as a pat-
tern vector where each element can be 0, 1 or ’*’ that signifies a wildcard (or “don’t care”)
value. Let l denote the HVE width, which is the bit length of the attribute, and conse-
quently that of the search predicate. A predicate evaluates to T rue for a ciphertext C if
the attribute vector I used to encrypt C has the same values as the pattern vector of the

Fig. 3 Predicate evaluation on ciphertexts with HVE
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predicate in all positions that are not ’*’ in the latter. Figure 3 illustrates the two cases of
Match and Non-Match for HVE, whereas Algorithm 1 provides the matching pseudocode.
We provide additional mathematical background on HVE encryption and its operations
in Appendix A.

3 Proposed spatial HVE approaches

In Section 3.1 we outline a naive baseline technique which applies HVE in a straightforward
manner to determine privately which users fall within one or more alert zones. The baseline
leads to prohibitive costs, as shown by experiments in Section 6. To bring down the overhead
of HVE, we propose in Section 3.2 a hierarchical encoding technique, which reduces the
amount of cryptographic primitives (specifically, bilinear pairings) required during search.
Next, in Section 3.3 we further refine hierarchical encoding and devise the Gray encoding,
which achieves superior computation savings.

3.1 Baseline Encoding

Recall that the data space is partitioned by a two-dimensional d × d regular grid. When a
user reports its position, it sends to the server an encryption of the grid cell it is enclosed by.
Similarly, the TA defines the alert zones as a set of grid cells. Each grid cell can be uniquely
identified by a cell identifier, with values between 1 and d2. Thus, the straightforward way
to support secure location-based alerts is to use an HVE index with width l = d2. The data
and query encoding are performed as follows:

– When user u enclosed by grid cell i reports its location, it uses a bitmap index I of
width d2 where all the bits are set to ’0’ except bit i which is set to ’1’.

– The T A creates a single token for search, which captures all the alert zones. The token
is a bitmap with d2 bits where all bits corresponding to cell identifiers that are included
in an alert zone are set to ’*’. All other bits are set to ’0’.

– At the server (i.e., at query time), according to the rules for HVE query evaluation
from Section 2.2, a user will be determined as a Match if and only if the ’1’ bit in the
encrypted location will correspond to a ’*’ entry in the token.

Consider the example in Fig. 4, where d = 3. We have nine grid cells, so the width of
the HVE is l = 9. There are two alert zones: z1 which consists of a single grid cell (3),
and z2 which spans two grid cells (8 and 9). Two users report their locations: u1 enclosed
by cell 1, and u2 enclosed by cell 8. The index vectors of the two users are shown in the
diagram. A single token is used to represent both alert zones, and a ’*’ is placed in the posi-
tions corresponding to the cells enclosed by the zones, namely 3, 8 and 9. The predicate
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Fig. 4 Naive Baseline Encoding

evaluation for u2 will return Match, as the position marked by ’1’ in the index of u2 cor-
responds to a ’*’ in the token. Conversely, a Non-Match is returned for u1, as the bit ’1’
in position 1 corresponds to a ’0’ in the token. Algorithm 2 provides the baseline encoding
pseudocode.

As discussed in Appendix A, Eq. 1 from the query step executes two pairing operations
and multiplies their results for every element in J , i.e., for every position that is not ’*’ in
the token. Having a token with one position for each grid cell leads to high cost, so the naive
encoding where the HVE width is equal to the number of cells is not practical. Furthermore,
the sum of areas of all alert zones is relatively small compared to the entire dataspace, hence
the number of ’*’ entries will be small, and the cardinality of set J will be large, increasing
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Fig. 5 Hierarchical partitioning on three levels

cost. Next, we propose two effective forms of encoding HVEs such that execution cost is
reduced.

3.2 Hierarchical encoding

The main problem of the baseline encoding is that the HVE width grows linearly with the
grid cell count. We propose a technique that reduces the HVE width from d2 to 2 log d , by
using the binary representation of cell identifiers. However, the representation of the search
predicates (and thus, that of the tokens) becomes more complicated, since the advantage
of the “bitmap-like” representation of the baseline is lost. We investigate how to aggregate
representations of adjacent cells belonging to the same alert zone, in order to reduce the
amount of tokens required. Aggregation is performed according to a hierarchical spatial
structure, hence the name of hierarchical encoding.

We consider a logical organization of the grid cells into a quadtree-like structure2 [35].
Figure 5 illustrates the space partitioning into four cells of equal size by using mediators
on the Ox and Oy axes. Each of these four cells will have a 2-bit id: 00 for top left, 01 for
bottom left, 10 for top right and 11 for bottom right. Next, each of these cells is partitioned
recursively into four new cells, and the newly obtained 2-bit identifiers are concatenated as
a suffix to the previous step identifiers. For simplicity, in this example we consider that the
grid cell count is a power of 4, but any grid size can be accommodated in this model by
using padding.

The diagram also shows how aggregation of cells from level j is performed into a larger
cell at level j + 1 (i.e., in reverse direction of scoping). Note that, with the binary represen-
tation of identifiers, cell aggregation corresponds to binary minimization of a logical ’OR’
expression composed of the terms that represent cell identifiers. As a result, instead of using
a distinct token (i.e., HVE pattern) for each cell, we can use token aggregation and reduce
the number of predicates that need to be tested. If two cells are in the same alert zone and

2Note that this is a logical structure, no physical index is required.
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their identifiers differ in just one bit, then a ’*’ can be used instead of that bit, similar to a
wildcard in binary minimization. The newly obtained token is faster to generate and evalu-
ate, because according to the operations described in Appendix A, only the positions in the
pattern vector where the value is not ’*’ need to be considered (i.e., those in set J ). If all
of the four partitions belonging to the same quadtree node are in the same alert zone, then
they can all be aggregated to the identifier of their parent. In our implementation, in order to
generate HVE pattern vectors with aggregation, we use the binary expression minimization
tool Espresso [32].

Consider for instance the example from Fig. 6, where the alert zone is composed of
seven cells. All four cells whose identifiers have prefix 10 are in the zone, hence they can
all be aggregated to T K1 = 10 ∗ ∗. Also, cells on the last vertical line can be aggregated
to T K2 = 1 ∗ 1∗. Finally, cells 0010 and 1010 can be aggregated to T K3 = ∗010. Note
that, although these tokens overlap, this does not introduce a correctness problem at query
(i.e., matching) time at the server. Furthermore, the monitoring server can evaluate them
in order from the most general (highest number of ’*’s) to the most specific one (lowest
number of ’*’s). If one token evaluates to a Match on a particular ciphertext, there is no
need to evaluate the rest of the tokens, since it is clear that the user is in the alert zone. In
addition, creating overlapping tokens helps if these tokens have more ’*’ symbols in their
HVEs, because the cardinality of set J (Eq. 1 in Appendix A) decreases, hence query and
token generation times decrease as well.

In summary, the hierarchical scheme works as follows:

Encryption. Users determine the binary identifier of the grid cell they are in, and create
an HVE index I with that representation, having width 2 log d , where d × d is the grid

Fig. 6 Hierarchical encoding and token aggregation
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size. The encryption is performed with respect to I . Since the grid parameters are public,
the user can easily determine its enclosing cell and construct I .

Token Generation. For each alert zone z, the TA creates the set of binary codes of
cells within the zone. Next, it computes the minimized binary expression equivalent
to the logical ’OR’ of all codes in the set. For each resulting term in the mini-
mized expression, the TA creates a token, and the token will have a ’*’ symbol in
each position that was reduced during the minimization. All tokens are sent to the
server.

Query. For every user and alert zone, the server S performs matching as follows: S

evaluates the encrypted user location against every token that represents the zone, in
decreasing order of the number of ’*’ symbols in the token. In other words, tokens
with a higher number of ’*’s are considered first. If a Match is obtained, then the
remaining tokens for the zone are no longer considered. If a Non-Match is obtained
for all tokens in the zone, then the server concludes that the user is not inside the
zone.

Even though the number of tokens increases compared to the baseline, the width of each
token is considerably smaller. In addition, the proportion of ’*’ symbols in a token is much
higher for the hierarchical scheme, due to aggregation. Finally, considering tokens with a
smaller J set first increases the chances of deciding on a Match without having to consider
all tokens of a zone. All these factors make the hierarchical encoding perform much faster
than the baseline, as we show in Section 6. Algorithm 3 provides the hierarchical encoding
pseudocode.

3.3 Gray encoding

The performance gain of the hierarchical technique comes from the ability to combine adja-
cent cells into a single search token with many ’*’ positions. In other words, the performance
improves when the binary minimization of the logical ’OR’ of cell identifiers is more effec-
tive. However, in some cases, no aggregation can be performed between two neighboring
cells, as the Hamming distance between their identifiers is more than 1. As alert zones are
composed of groups of neighboring cells, it is desirable to have small Hamming distance
between adjacent cell identifiers. To improve the effectiveness of the binary minimization
step, hence to increase the number of ’*’ values in search tokens, we represent cell identi-
fiers using Gray codes [1]. This way, cell identifier values are assigned in such a manner that
the Hamming distance between two adjacent cells is always 1, hence binary minimization
is facilitated.
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A one-dimensional Gray code vector is determined using the following recursive algo-
rithm, where | represents the concatenation operator, and Gk is the vector of a Gray code
instance at step k).

G1 = (0, 1)

Gk = (g1, g2, ...g2k )

Gk+1 = (0|g1, 0|g2, ..., 0|g2k , 1|g2k , ..., 1|g2, 1|g1)
For k = 3, the following Gray code vectors are obtained:

G1 = (0, 1)

G2 = (00, 01, 11, 10)

G3 = (000, 001, 011, 010, 110, 111, 101, 100)

Given a d × d grid, the length of the required Gray code necessary to represent all cells
is 2�log2d�. We employ a Gray code instance independently for each of the two dimensions
of the space, thus the identifier of a cell consist of the concatenation between the Gray code
value for the y axis and the x axis values. Similar to hierarchical encoding, the scheme
assumes a total number of cells that is a power of 4, but other cases can be handled by
padding.

Figure 7 illustrates the advantage of using Gray encoding instead of hierarchical encod-
ing for a 16-cell 4×4 grid. The alert zone consists of four cells. The two digits leading each
row in the Gray encoding diagram (Fig. 7a) mark the two-bit prefix shared by all the cell
identifiers in that row. Conversely, the two digits on top of each column mark the two-bit
suffix of all the cell identifiers in that column. Using binary minimization, the two tokens
shown in the diagram are obtained, each of them having one ’*’ symbol. Figure 7b shows
how the hierarchical encoding behaves for the same input. Due to the fact that moving from
cell 1001 to 1100, or from 0011 to 1001 corresponds to a Hamming distance larger than
1, no aggregation is possible between these cell pairs. As a result, three tokens are neces-
sary to represent this zone. Furthermore, two of these tokens have no ’*’ symbol, leading
to more expensive evaluation. As we will show in Section 6, Gray encoding achieves more
effective aggregation, especially in the case of skewed data (e.g., Gaussian distribution of
alert zones).

Fig. 7 Token Aggregation: Gray vs hierarchical encoding
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The phases of encryption and query for the Gray encoding method are similar to their
counterparts for the hierarchical encoding method of Section 3.2. The main difference is in
the token generation phase, where the binary minimization is performed according to the
Gray code cell identifier binary representation. As we show in the experimental evaluation
(Section 6), using the Gray code representation can improve performance by achieving more
effective binary minimization. This in turn results in either fewer tokens, or tokens with a
larger proportion of ’*’ symbols.

4 Performance optimizations

4.1 Preprocessingmathematical operations

As discussed in Appendix A, the HVE mechanism involves a large number of exponenti-
ations with very large integers which incur a significant computational cost. Fortunately,
many of these exponentiations are performed on a common base. For example, if we take
into consideration the encryption phase, in order to compute C′ and C0, A and V must be
raised to the power of s. Even if s is chosen randomly for each run of this step, A and V

depend on the public key, which remains unchanged for long periods of time (in commer-
cial systems, re-keying can be done with frequency of once per year, or even less often).
Furthermore, when computing Ci,1, because the index attributes consist of a vector of 0 and
1 values, the base of the power s can have only two values: Hi or Ui × Hi . Because both
depend only on the public key, these two exponentiations will always have a constant base.
The same logic can be also applied to the exponentiations for token generation. By employ-
ing preprocessing on each of these fixed bases, the exponentiations become a lot faster. The
preprocessing can be done offline, and the results used during online operation, leading to
significant execution time savings.

When matching a token against an encrypted message, several pairing computations are
performed. For a particular token, the values of K0, Ki,1 and Ki,2 remain constant. When
applying a pairing, Miller’s algorithm is used [33]. Typically, for each such operation, it is
required to compute several line equations. In [31] it is shown that effective preprocessing
can be used as long as the first parameter is constant because the equations of the lines can
be calculated and stored ahead of time. At runtime, the coordinates of a given point are sub-
stituted into these precomputed expressions. Since HVE requires symmetric elliptic curves,
preprocessing can be also done for the second parameter. Preprocessed information is stored
with each token and used by the server to improve the time of each pairing. Preprocessing
each token must be done only when the tokens are generated at the trusted authority.

4.2 Parallelization

The server is monitoring a large number of users, and may receive a large number of alert
zones. This creates a considerable load on the server. However, we emphasize that the pro-
cessing of a message from a user can be done independently from messages originating
at other users. Furthermore, even for the same user, the matching for different alert zones
are completely independent operations. This presents a great potential for parallelization. In
fact, the problem is embarrassingly parallel, and significant execution time improvements
can be obtained by using several CPUs for matching. Nowadays, even off-the-shelf desk-
top computers have multiple cores. Commercial cloud services typically have hundreds or
thousands of CPUs available for computation. Due to the parallel nature of the problem, the
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speedup is expected to be close to linear, and the resulting system scales very well as the
number of CPUs involved grows.

We consider a message-passing parallel computing paradigm, which is favored by the
fact that only a small amount of data needs to be shared among distinct CPUs.

One master process coordinates all other slave processes. The master process distributes
to the slaves the search tokens. Then, as encrypted updates from users arrive, the master
receives the requests and dispatches them to slaves. Load balancing can be easily imple-
mented at the master level, which keeps track of the status of all slave processes. No
communication is required between slave processes, and the master-slave communication
is required only at the start and end of each task. Furthermore, distinct messages originat-
ing from the same user can be processed on different CPUs without any loss in correctness
or performance (i.e., no state maintenance is required). After processing is done, if the
token evaluated successfully, a response action can be taken by the processing CPU, or the
event can be sent to a central server responsible only with handling what to do in case of a
successful match.

5 Privacy-performance trade-off through alert zone expansion

So far, we considered that alert zones are a fixed input to the system, and we provided
data encodings and optimizations to reduce computational overhead under this constraint.
Since alert zones were not modified, we maintained the amount of location disclosure to a
minimum, i.e., an adversary could only learn whether a specific ciphertext corresponded to
a location inside the alert zone or not. In this section, we consider a relaxation of the alert
zone extent in order to improve performance. Specifically, given an input alert zone, we
investigate whether it is possible to slightly enlarge it such that the resulting set of tokens
needed to implement secure notification requires fewer bilinear pairings to evaluate.

To maintain the level of additional disclosure low, we allow only a relatively small
enlargement factor, expressed as a ratio of the alert zone area, and quantified by a bound
parameter α. Given an enlargement factor α, our proposed alert zone expansion heuris-
tic determines an enlarged area with significantly lower processing overhead. In effect,
this proposed optimization trades a small amount of additional location disclosure for a
significant boost in matching performance. As a salient feature of this optimization, the
privacy-performance trade-off can be tuned using a single parameter (α).

The optimization is deployed at the TA, which is in charge of generating search tokens.
In an actual deployment, since the TA is trusted, it can perform additional steps to check
whether the enlarged zone is acceptable from a security standpoint, for instance by compar-
ing it against a set of pre-defined policies. In this paper, we only focus on the performance
aspect, and derive effective algorithms that quickly generate enlarged search tokens (the
policy aspect is outside our scope). Similar to optimizations from prior sections, the zone
expansion is guided by the objective of deriving tokens with fewer non-wildcard elements,
which results in less computation. The expansion technique assumes the same hierarchi-
cal data domain representation considered so far, and works in conjunction with either
hierarchical or Gray encodings.

We denote by base cell a cell in the leaf level of the hierarchical domain representation
(recall that, the domain is split into d × d base cells, where d is a power of two). The
hierarchy has a number of 1+ log d levels. At level k, an aggregate cell consists of 2k × 2k

base cells. Specifically, at the leaf level, numbered as k = 0, each cell is a base cell, whereas
at the top of the hierarchy (level log d) there is a single cell with size d × d (expressed in
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terms of base cells). We identify a cell at level k by its coordinates within that level: (x, y)k .
The binary identifier of a cell consists of a binary string, which can be immediately derived
from its coordinates.

Algorithm 4 captures the main steps of the proposed heuristic alert zone expansion tech-
nique. The input consists of expansion factor α and initial alert zone A. The heuristic is
given a maximum budget W = �α|A|	 base cells that it can add to the initial zone, where
|A| is the area of the initial zone expressed in terms of base grid cells. The output of Algo-
rithm 4 is an expanded zone Â such that |Â| ≤ |A| +W and the number of bilinear pairings
required to evaluate Â is lower than that of A.

The ExpandZone routine (Algorithm 4) works by considering each level of the data
domain hierarchy.

An essential step of ExpandQuery is the SelectPatchesSingleLevel routine
(detailed in Algorithm 9) which finds patches to add to the current set of zone cells (line 4).
A patch (formally defined in Section 5.1) is a set of cells added to the zone in a single
iteration. If the new set of zone cells, denoted as CrtZone, does not require more pairings
than the current set of cells, an expansion is made with the cells in the patch and we continue
to the next level.

In order to prepare for the next level (lines [9-18]), parameters and indices are adjusted.
Budget W is reduced by a factor of 4, since in the next level the size of one cell is equal
to 4 cells in the current level. Similarly, indices of zone cells are divided by two. The intu-
ition behind dividing the indices by two is that all 2 × 2 areas containing zone cells in
this level must be fully covered by the expansion, which means all cells in those areas are
in CrtZone.
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Fig. 8 Example of expanding alert zone (in grey) at level k = 0 (a) and k = 1 (b). At level 0, a total of 6 cells
(illustrated with stripes) are added to obtain 3 fully-covered areas R0

[4,5]×[0,1], R0
[6,7]×[2,3], and R0

[4,5]×[4,5].
At level 1, four additional cells are added to the area R1[2,3]×[0,1]. The final expanded alert zone contains all

cells in R0
[4,7]×[0,3] and R0

[4,5]×[4,5] (both grey and diagonally-striped cells in (b))

Algorithm 4 stops when one of the following conditions is met: (i) the new set of zone
cells increases the number of pairings; (ii) budget W is exhausted; or (iii) the zone expands
to the entire root level.

To illustrate the zone expansion algorithm, consider the example in Fig. 8. Zone cells are
shown in grey color, and budget is set to W = 10. An area with x ∈ [x1, x2], y ∈ [y1, y2]
at level k is denoted as Rk[x1,x2]×[y1,y2]. Starting at level k = 0 (Fig. 8a), the 2 × 2 areas

R0
[4,5]×[0,1], R0

[6,7]×[2,3], and R0
[4,5]×[4,5] are considered for expansion. All six cells with

diagonal stripes are added to the current set of zone cells to fill those three areas. To prepare
for expansion at the next level, the coordinate ids of zone cells must be adjusted for each
2 × 2 area. For example, for k = 1, area R0

[4,5]×[0,1] becomes cell (2, 0)1, area R0
[6,7]×[2,3]

becomes cell (3, 1)1 and so on. The budgetW is reduced to � 10−6
4 	 = 1. Next, at level k = 1

(Fig. 8b), the areas R1[2,3]×[0,1] and R1[2,3]×[2,3] are considered for expansion. The cells with
diagonal stripes in range R1[3,3]×[0,0] (which equals R0

[6,7]×[0,1] in the base grid) are added
to the zone.

5.1 Patch assembly

Next, we focus on the process of assembling patches at each level k of the data domain
hierarchy.

A patch is a set of cells that can be combined with existing zone cells to reduce the
number of non-wildcard elements in a search token.

We denote the cells belonging to a patch as attached cells, and the zone cells adjacent
to the patch as attaching cells. A patch is associated with a local cost and gain: the cost
measures the increase in alert zone area, whereas the gain quantifies the resulting reduction
in bilinear pairing operations when the patch is added to the zone.

We consider as patch candidate each 2 × 2 cell3 Rk
[x,x+1]×[y,y+1] that satisfies the fol-

lowing conditions: (i) has even x and y coordinates, (ii) contains at least one zone cell, and

3We emphasize that, as patch candidates are considered at each level of the hierarchy, a patch cell may
include many base grid cells.
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(iii) has at least one non-zone cell. Revisiting the example in Fig. 8a, the area R0
[4,5]×[0,1]

composed of 2×2 base cells is a patch candidate. Note that, not all 2×2 cell areas are valid
candidates for patches. For instance, R0

[5,6]×[0,1] has an odd x; R0
[6,7]×[0,1] does not contain

any zone cell; and R0
[4,5]×[2,3] does not contain any non-zone cell.

For each valid patch candidate Rk
[x,x+1]×[y,y+1], cells are indexed in a spiral order, as

shown in Fig. 9a. We use this indexing order because it simplifies the process of patch
assembly, as will be described later in Section 5.2. In order to keep track of zone and non-
zone cells, a boolean array marked is maintained, such that marked[i] = True if ith cell
within Rk

[x,x+1]×[y,y+1] is a zone cell, and marked[i] = False, otherwise. Figure 9b shows a
marked array for the area in Fig. 9a. The marked array is constructed by checking for each
cell within the area whether or not it belongs to the alert zone. The marking procedure is
summarized in Algorithm 5.

Using the marked array, patch candidates are constructed such that one or more non-
zone cells can be attached to zone cells to reduce the number of pairings. Figure 10 shows
several examples of patches for an area with 2 × 2 cells containing one, two, or three zone
cells. In each example, the non-zone cell (striped fill) is attached to the zone cell (grey
fill) to form a patch. Note that in Fig. 10c, a striped cell can be attached to either grey
cell.

However, when the area contains only one zone cell, although there are three potential
patches, only one of these is selected (Fig. 10a). The reason is that if two patches, each
having a single zone cell, are selected, the number of pairings is not reduced; on the other
hand, if the patch with three zone cells is selected, there is no need to select other patches
with a single zone cell. Therefore, for each area, we construct patch groups that include all
potential patches such that no more than one patch can be selected from that group. For

Fig. 9 a Cell indices within a 2 × 2 patch; b Array marked for a 2 × 2 patch
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example, in Fig. 10a, there is only one patch group containing all three patches; in Fig. 10b
and d, there is only one patch group containing one patch; in Fig. 10c, there are two patch
groups, each containing one patch.

The GetPatchGroupsInsideArea routine (Algorithm 6) shows the details of con-
structing patches and patch groups. The algorithm handles separately each case based on
the number of zone cells in the area. For a single zone cell (line 3), similar to the example in
Fig. 10a, one patch group is constructed which includes two patches: one with one non-zone
cell and another with all three non-zone cells. If there are two zone cells (line 7), the algo-
rithm further considers if those two zone cells are adjacent or opposite (similar to Fig. 10b
and c, respectively) and either one or two patch groups are created, corresponding to the
two situations. Finally, when there are three zone cells (line 17), a single patch group is
created.

At the end of Algorithm 6, each patch has its cells numbered from set {0, 1, 2, 3}. In
order to recover the original cell ids (i.e., the coordinates in current level k of hierarchy),
we use Algorithm 7, which takes as inputs a cell id i ∈ [0, 3] and the x, y values of the area
Rk

[x,x+1]×[y,y+1], and utilizes the spiral index to recover the original values.
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Fig. 10 Example of candidate patches for an area of size 2 × 2 a Three candidate patches for an area with
one zone cell; b One candidate patch for an area with two zone cells; c Two candidate patches for an area
with two zone cells; d One candidate patch for an area with three zone cells

Next, we need to evaluate which patches are more desirable to use in the enlarged zone,
by computing the local cost and gain for each patch. Algorithm 8 takes as inputs a candidate
patch and the grid dimension dk at current level k. It outputs as cost the number of attached
cells (i.e., non-zone cells) of the patch (line 3). Effectively, the cost measures the amount
of enlargement of the expanded alert zone caused by this patch. The gain measures the
amount of saved computation: specifically, the number of search token non-wildcards that
are eliminated when we combine the attached cells with the attaching cells for the current

Table 1 Example of candidate patch groups for expanding the alert zone at level k = 0

Patch group Patch cost gain attached cells attaching cells

G1 p1 1 6 (5, 0) (4, 0), (4, 1), (5, 1)

G2 p2 1 1 (6, 2) (6, 3)

p3 1 1 (7, 3) (6, 3)

p4 3 2 (7, 2), (7, 3), (6, 2) (6, 3)

G3 p5 2 1 (4, 5), (5, 5) (4, 4), (5, 4)

Patch groups G1,G3 contain one patch, while patch group G2 contains 3 patches. No more than one patch
is selected per patch group
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patch. There are two cases to consider when determining the gain of the patch: (i)when only
one cell is attached to form a 1× 2 patch (line 4), we can remove one non-wildcard element
(line 5); (ii) when the entire 2 × 2 area is filled (line 6), the number of zone cells inside the
area (i.e., n1) is further considered to determine the gain. Specifically, when n1 = 3, the
gain is larger (2 × k) since we can remove a token in its entirety.

In the previous example from Fig. 8a, there are three patch groups corresponding to three
areas: G1 for area R0

[4,5]×[0,1], G2 for area R0
[6,7]×[2,3], and G3 for area R0

[4,5]×[4,5]. The
patches in each patch group along with their cost, gain, attaching cells, and attached cells
are shown in Table 1. For instance, to express area R0

[4,5]×[0,1] one can look at patches p1 of
G1, and use two tokens “00*110” and “00111*”, with a total of 10 non-wildcard elements.
By adding one cell, only a single token “00*11*” is needed to represent the area. Thus, the
number of non-wildcard elements is reduced from 10 to 4, or an improvement of 6. The high
gain when applying patch p1 results not only from the number of non-wildcards reduced in
one token, but also from the reduction in the number of tokens (as one of the initial tokens
is completely eliminated).

5.2 Patch selection

Once we have the set of patches and patch groups, as well as their respective costs and gains,
we need a method to select the actual patches to expand the current alert zone. Algorithm 9
outlines the patch selection process, which takes as inputs budget W , the grid dimension at
current level dk = d

2k , and current alert zone Ak . It outputs a set of patches PSet that has
total cost at most W and maximizes the gain compared to other candidate patches.

The selection algorithm works within an expanding search boundary determined by the
call to routine FindExpandingBoundary in line 1 (FindExpandingBoundary is
summarized in Algorithm 10: the boundaries consist of the maximum and minimum coor-
dinate values of zone cells, and they always have even values). Then, for each 2 × 2 area
starting with even values (lines [3–6] in Algorithm 9), if the current 2×2 area is a valid area
to expand (line 8), the patches and patch groups within this area are constructed (according
to the procedure detailed in Section 5.1). First, the cells that already belong to the current
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zone are marked by calling Algorithm 5 (line 9). Then, using the marking information, the
set Ginside of patch groups within that area is constructed by calling Algorithm 6 (line 10).
Next, for each patch in the patch groups of Ginside, the original coordinate ids of cells in
the attaching and attached set of that patch are recovered by calling Algorithm 7 (line 13),
and the local cost and gain are calculated by calling Algorithm 8 (line 14). Finally, a set of
patches PSet is selected for expansion by calling Algorithm 11 (line 16).

The patches are selected such that the total cost is no more than W , the total gain is
maximized, and there is no more than one patch selected per group. This can be modeled
as a variant of a multiple-choice knapsack problem (MCKP) where a class in MCKP is
represented by a patch group, and we may choose a single item from a class, instead of
being required to choose at least one item. The reduction is as follows: Given an instance of
MCKP with capacity W , m classes, and each item j in class j having cost ci,j and gain gi,j ,
for each class i, a new item j ′ (or patch in our setting) is added with cost ci,j ′ = 0 and gain
gi,j ′ = 0. However, our patch selection problem is not NP-hard, because W is restricted to
a fraction of the alert zone, which in turn is restricted to a fraction of the entire grid.
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In our setting, each patch group contain either one or two patches. As a result, a dynamic
programming approach for traditional binary knapsack problem can be used. Algorithm 11
shows the dynamic programming solution that returns the selected patches for expansion. In
the example summarized in Fig. 8 and Table 1, patches p1, p4, p5 are selected for expansion
at level k = 0.

5.3 Complexity analysis

The complexity of the alert zone expansion (Algorithm 4) depends on the complexity of the
binary minimization step (line 7) in which the algorithm decides whether or not to continue
expansion. In the worst case, Algorithm 4 needs to expand through all log d levels of the
hierarchy, and in each level its invokes Algorithm 9 and the binary minimization procedure
(in our implementation, we use the Espresso tool [32]).

Since Algorithm 9 finds the patch groups within the boundary of the query, and the size
of the alert zone is often much smaller than the size of the data domain, we formulate the
complexity of Algorithm 9 based on the alert zone size. Let Pk = |Ak| be the number
of cells of the alert zone at level k. After finding patch groups, Algorithm 9 invokes the
dynamic programming solution in Algorithm 11 to select patches. In the worst case, the
number of patch groups Ng at level k equals the number of cells Pk of the alert zone. In
our setting, there are only one or two patches in each patch group. Hence, the complexity
of Algorithm 11 becomes O(NgW) = O(αP 2

k ) since W = αPk . Thus, the complexity of
Algorithm 9 is O(Pk + αP 2

k ).
However, since the value of Pk is divided by a factor of 4 each time k increases, the

complexity of the alert zone expansion (Algorithm 4) becomes O(P0 + αP 2
0 + TEs((1 +
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Fig. 11 Baseline encoding results

α)P0) log d) where P0 is the size of the zone at the base level (i.e., original grid) and TEs(t)

is the time to run the binary minimization procedure for t inputs.

6 Experimental evaluation

We implemented a Python prototype of the proposed HVE-based location-based alert sys-
tem and performance optimizations. We have used as dataset the city of Oldenburg, and
generated user movements using Brinkhoff’s IAPG Network-based Generator of Moving
Objects4 [7]. We generated alert zones within the boundaries of the dataset domain accord-
ing to two distributions: uniform and Gaussian. We vary the percentage of space covered
by alert zones compared to the entire dataspace extent from 1% to 10%, and we denote this
parameter as coverage. We consider a regular grid partitioning the two-dimensional space
with size ranging from 16 to 1024. The HVE cryptographic functions were implemented
using the Gnu MP v6.1.2 library and the Pairing-Based Cryptography v0.5.14 library.5 We
use key lengths of 768, 1024 (default value), 1280 and 1536 bits.

The experimental testbed consisted of a Intel(R) Core(TM) i9-9980XE CPU (3.00GHz)
with 18 cores and 128GB of RAM, running Ubuntu 18.04 LTS. All code was written in
Python 3.6.9.

6.1 Baseline evaluation

Figure 11 shows the execution time results obtained for token generation, encryption and
query. The times presented are for a single operation, and present the average value obtained
for a particular grid size and percentage of the area covered by alert zones (each percentage
value has a different line in the graphs). First, we note that the coverage does not have
a significant effect on the execution time, because the width of the HVE obtained is so
large that the associated overhead overshadows the influence of the additional ’*’ symbols
obtained as the area of alert zones grows. Second, it can be observed that the values obtained
are very large, and clearly not acceptable in practice.

Token generation can take up to 35 seconds. Although expensive, it can be argued that
the TA does not execute this phase very often (only when a new alert zone occurs), hence
its performance is not critical. However, encryption is very frequent, and it is executed at
the resource-constrained mobile users.

4http://iapg.jade-hs.de/personen/brinkhoff/generator/
5Available online at http://gmplib.org/ and http://crypto.stanford.edu/pbc/
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It can take up to 8 seconds to generate a single encrypted update on a high-end CPU (in
practice, this would be executed on a mobile phone). Furthermore, the time required at the
server to process a single user update (i.e., perform matching against all alert zones) can
reach 40 seconds.

6.2 Hierarchical and gray encoding

Figures 12 and 13 show the comparison results for uniform and Gaussian alert zone dis-
tributions, respectively. Hierarchical encoding clearly outperforms the baseline, especially
in terms of encryption time. The maximum time required for encryption is less than 0.2
seconds, in contrast with 8 seconds for the baseline (Fig. 11b). Recall that alert zones do
not influence encryption, so the hierarchical encoding lines present in Fig. 12b overlap.
Encryption is also independent of alert zone distribution, so we do not show encryption in
Fig. 13.

In terms of token generation and query time, the gain in performance is higher for the
Gaussian distribution, since there is more potential for token aggregation. The reason is
that minimization of binary expressions of cell identifiers is more effective when zones are
clustered, which is likely to be the case in practice.

As expected, execution time is higher for finer-grained grids. However, as opposed to the
baseline, in the case of hierarchical encoding the coverage has a significant effect on token
generation and query performance, as more alert zone cells translate into a larger number
of tokens. Still, the variation with coverage is sublinear, due to the good effectiveness of
the aggregation strategy employed (note how when coverage doubles from 2% to 4% for
uniform data and largest grid size, the query time increases only by 25%). Although the
absolute execution times are still high, hierarchical encoding significantly outperforms the
baseline. Later in Section 6.3 we show how optimizations can be used to further cut down
the performance overhead. For the rest of the experimental evaluation, we will omit the
baseline results.

Next, we evaluate the effect of using Gray encoding on performance. Recall from
Section 3.3 that using Gray codes provides better potential for aggregation, thus reducing
the number of required tokens and/or increasing the proportion of ’*’ symbols in a token.
For uniform data (graph omitted due to space considerations), both encodings perform simi-
larly, without a clear winner, due to the fact that the aggregation potential is equal in the two
cases. On the other hand, for Gaussian data (Fig. 14) where alert zones are clustered, Gray
encoding favors aggregation of cells. For clarity, to keep the number of lines in the graph
low, we present the ratio between the execution time of Gray divided by that of hierarchi-
cal encoding. Lower values of the ratio correspond to higher gains for the Gray encoding.

Fig. 12 Hierarchical encoding results on uniform data
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Fig. 13 Hierarchical encoding results on Gaussian data

In practice, as alert zones are likely to be clustered, Gray can bring significant performance
benefits, of up to 60%.

6.3 Optimization effect

We evaluate the performance of the proposed techniques when incorporating the perfor-
mance optimizations discussed in Section 4.

First, we show the effect of incorporating preprocessing to pre-compute and re-use some
of the results to expensive mathematical operations, such as exponentiations with large
numbers.

Figure 15 present the absolute token generation and query times for both proposed encod-
ing techniques on uniform data and two values of the alert zone coverage, namely 2%
and 4% (Gaussian data results show similar trends, so we omit them for brevity). Token
generation computation requirements are improved by roughly 25 − 30%.

As the coverage increases, more tokens are required to represent a zone, so the genera-
tion time increases. We believe that such times are reaso nable in practice, especially since

Fig. 14 Gray vs. hierarchical encoding on Gaussian data
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Fig. 15 Effect of preprocessing on uniform data

creation of alert zones is not a frequent event in the system operation. In terms of query-
ing, the execution times are approximately cut in half compared to the non-optimized case
(Figs. 12 and 13).

Figure 16 presents the behavior of hierarchical encoding with preprocessing when
varying encryption key length. We show results for two different grid granularities
and coverage values, with Gaussian zone distribution. As expected, the performance
decreases when key length increases. However, the 1024-bit setting, which accord-
ing to industry standards is sufficient for securing individuals’ information, does not
incur a steep increase in performance overhead. Gray encoding results exhibit similar
behavior.

Figures 17 and 18 present the results when employing the parallel processing opti-
mization. We used 2, 4 and 8 CPUs for computation. We considered both variable grid
size for a fixed coverage of 6%, as well as variable coverage of alert zones for a fixed
grid size of 256. The results show that a close-to-linear speedup can be obtained. For
8 CPUs for instance, the speedup is 7.2. This is a very encouraging outcome, and the
query time is this way reduced to less than one second in the worst case. For median-
scale settings of the grid size and coverage, we obtain absolute execution times of under
0.1 seconds per query. We emphasize that, although we only had available 8 CPUs
for testing, the problem studied is embarrassingly parallel in nature, so the availabil-
ity of a larger number of CPUs is likely to lead to close-to-linear speedup values as
well.

Fig. 16 Hierarchical encoding results for Variable Key Length, Gaussian data
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Fig. 17 Parralel results on uniform data

6.4 Alert zone expansion evaluation

In this section, we evaluate the performance gain obtained by the alert zone expansion
heuristic introduced in Section 5. We use the same settings as in the previous experiments,
except that we allow a finer-grained partitioning of the space, to better evaluate the impact
of the expansion heuristic. Specifically, we consider grids of granularity d × d , where
d ∈ {64, 128, 256}, resulting to a total number of grid cells of 4096, 16384 and 65536,
respectively. We keep the same alert zone size ranging from 1% to 10% of data space
size, but we consider three distinct shapes: square, rectangular (with a skew ratio of 2.5),
and circular. The latter case is used to capture scenarios where there is an event epicen-
ter, and individuals are notified if they are situated within a certain Euclidean distance of
it. The resulting circular zone is mapped to the grid. This is representative for cases when
mobile users are alerted to stay away from a dangerous location (e.g., a toxic gas spill). The
alert zone expansion ratio α is varied within set {0.02, 0.04, 0.06, 0.08, 0.10} (recall that a
larger value results in a more significant privacy leakage, but is also likely to yield a higher
performance gain).

Fig. 18 Parralel results on Gaussian data
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Figure 19 shows the performance gain of expansion when varying the size of the initial
alert zone. For ease of presentation, the gain is expressed as improvement factor (×), i.e., the
ratio between the matching time when there is no enlargement over the matching time when
enlargement is used (a higher value represents a better performance gain). Each line in the
graph corresponds to a different grid granularity d . First, we note that enlargement always
results in improvement (the value is always greater than 1). Second, the improvement factor
shows a general increasing trend with alert zone size (except for some random outcomes).
This is explained by the fact that the enlargement factor α is expressed as a percent of initial
alert zone size. When the initial alert zone is larger, the heuristic can select patches from
more candidate cells. Finally, the improvement factor is larger for finer granularity cases
(i.e., larger d). This is also due to the fact that the heuristic has more candidate patches to
choose from. A finer granularity also allows the search boundary to advance slightly more.
When cells are larger, including an extra cell may cause the α threshold to be exceeded,
so the heuristic will not consider that cell for enlargement. We also note that the shape of
the zone impacts significantly the gain. Specifically, a circular zone is better for expansion,
since the heuristic does not favor any particular expansion direction. When the initial zone
is circular (or to be precise, a circle aligned to the grid), the heuristic can bring into the
zone cells from all directions, and therefore the amount of possible choices is increased.
The zone is also likely to grow uniformly in all directions, leading to more compact tokens
due to the binary representations of cells. Conversely, the rectangular case, which leads to
the most skewed zones in terms of shape, performs the worst.

Figure 20 shows the improvement factor when varying the enlargement factor α. As
expected, there is a clear increasing trend in execution time improvement. Since more cells
are available as patch candidates, the heuristic is able to either completely eliminate some
tokens, or significantly increase the number of wildcards in the remaining tokens through
binary minimization. As in the previous experiment, we note that an increase in granularity
d results in a higher improvement factor. Also, when the initial alert zone is circular, the
highest improvement is obtained, with values of up to 9 times. The gain is less pronounced
for rectangular alert zones, but the heuristic is still providing significant gains, with an
improvement factor of up to 3 times.

In our final experiment, we measure the execution time of the zone enlargement heuristic.
Figures 21 and 22 show the time required to compute the enlarged zone when vary-
ing initial alert zone size and enlargement factor α, respectively. An interesting trade-off
emerges: as the granularity of the grid increases (i.e., finer grained grids), the improve-
ment in token matching time increases (as seen in previous experiments), but at the same
time the computation time for the enlarged zone grows. Furthermore, we emphasize that
the token matching computational overhead can be parallelized, whereas zone enlargement

Fig. 19 Zone expansion improvement vs alert zone coverage
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Fig. 20 Zone expansion improvement vs expansion factor α

computation is sequential in nature. The main reason why the zone enlargement computa-
tion is high for finer granularities is the quadratic increase in patch candidates, coupled with
the relatively slow binary expression minimization step. Among different zone shapes, the
circular shape takes the longest, due to the fact that it considers the most patch candidates
within the given enlargement threshold α.

Nevertheless, we note that for coarser and moderate granularities (d = 64 and d =
128), the enlargement process is fast (less than half a second). Coupled with the significant
improvement factors (ranging from 2 to 4 for granularities coarser than d = 256, as can be
observed from Figs. 19 and 20), the heuristic can lead to very good overall execution time
improvements. Furthermore, the enlargement cost is done once per zone, and remains the
same regardless of the number of mobile users (i.e., ciphertexts to match against). Hence, as
the user population grows, the performance gain of the heuristic (which is always a factor of
the original zone evaluation time) will lead to linear gains in the number of users, whereas
the enlargement computation overhead stays constant. We conclude that, overall, the zone
enlargement heuristic is effective in reducing the matching overhead, even for small values
of enlargement (i.e., only a small amount of privacy needs to be traded off for significant
performance gains).

7 Related work

Location Privacy.

A significant amount of research focused on the problem of private location-based
queries, where users send their coordinates to obtain nearby points of interest. Early work

Fig. 21 Zone expansion time vs alert zone coverage
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Fig. 22 Zone expansion time vs expansion factor α

attempted to protect locations of real users by generating fake locations. For instance, in
[27] the querying user sends to the server k − 1 fake locations to reduce the likelihood of
identifying the actual user position.

However, fake locations can be detected using filtering techniques, which leaves the real
users vulnerable.

A new direction of research started by [20] and continued by [14, 25, 34] relies on the
concept of Cloaking Regions (CRs). CR-based solutions implement the spatial k-anonymity
(SKA) [25] paradigm. For each query, a trusted anonymizer service generates CRs that
contain at least k real user locations.

If the resulting CRs are reciprocal [25], SKA guarantees privacy for snapshots of user
locations. However, supporting continuous queries [8] requires generating large-sized CRs.
In [10, 21], the objective is to prevent the association between users and sensitive locations.
Users define privacy profiles [10] that specify their sensitivity with respect to certain feature
types (e.g., hospitals, bars, etc.), and every CRs must cover a diverse set of sensitive and
non-sensitive features.

In [26], the set of POI is first encoded according to a secret transformation by a trusted
entity. A Hilbert-curve mapping (with secret parameters) transforms 2-D points to 1-D.
Users (who know the transformation key) map their queries to 1D, and the processing is
performed in the 1-D space. However, the mapping can decrease result accuracy, and the
transformation may be vulnerable to reverse-engineering.

The problem with CR-based methods is that the underlying k-anonymity paradigm is
vulnerable to background knowledge attacks. This is particularly a problem in the case
of moving users, since trajectory information can be used to derive the identities behind
reported locations. More recently, differential privacy [12], a provably secure model for
semantic privacy, has been used for spatial data in [9]. However, differential privacy is only
suitable for aggregate releases of data, and cannot handle processing of individual updates,
as required by an alert system.

Closer to our work, a Private Information Retrieval (PIR) protocol is proposed in [16]
for nearest-neighbor queries. The protocol is provably secure, and also uses cryptography.
However, it considers a ’pull-based’ approach, and assumes that the user already knows the
location s/he wants to retrieve points of interest from. In contrast, our focus is on a ’push-
based’ notification service, where the PIR solution cannot be applied since the user is not
aware of where the alert zones are.

Since the publication of [18], several works addressed processing on encrypted location
data. In [37] and [22], two solutions are proposed for search on encrypted location data
hosted at a cloud server. Both approaches rely on symmetric searchable encryption (SSE),
where the client has access to the secret key of the transformation. The FastGeo system [38]
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builds upon the concepts introduced in [37] and supports faster search under the same trust
assumptions. However, the SSE setting is not appropriate in our problem setting, where
large populations of mobile users subscribe to location-based alerts. If a single user colludes
with the service provider, the security of the entire set of locations is compromised. This is
a strong trust assumption, suitable for cases where there are relatively few clients, who can
be throughly vetted. Our solution relies on asymmetric encryption, and mobile users only
have access to the public key, which is used for encryption. No user is able to compromise
the privacy of other participants.

Furthermore, all the above solutions build an index on encrypted data to speed up search
performance. As shown in [39], the index structure can leak a lot of sensitive details about
the data, even when fully encrypted (e.g., data distribution, or relative distance order among
users). A similar approach that builds an R-tree on location data protected using homo-
morphic encryption is proposed in [28], with emphasis on IoT data, and on parallelizing
computation in big data environments. The work in [29] is a position paper that looks at how
some concepts similar to search on encrypted locations can be used for biomedical data,
and also identifies other interesting type of queries that may be of interest, such as skyline
queries.

A significant body of research focused on nearest-neighbor (NN) queries on encrypted
data [13, 23, 24], culminating with the work in [39] which showed that the most secure and
efficient way to answer NN queries on encrypted data is through materialization of results
and encryption of the resulting structure. All these works consider the symmetric encryption
setting, hence they rely on trust assumptions that are too strong for our proposed location
alert system.

Searchable Encryption. One of the earliest works that coined the concept of search-
able encryption was [36], which proposed provably secure cryptographic techniques
for keyword search. Only exact matches of keywords were supported. Later in [5], the
set of search predicates supported was extended to comparison queries. However, the
resulting solution could not be easily extended to conjunctions of conditions, without
a considerable increase in ciphertext and token size. The work in [6] further extended
the set of supported predicates to subset queries, as well as conjunctions of equality,
comparison and subset queries with small ciphertext and token size. The authors of [6]
also introduced HVE, which we employ as a building block in our solutions for pri-
vate location-based alert systems. HVE protects the privacy of the encrypted messages
received from users, but assumes that the token information (e.g., alert zones) is pub-
lic. The more recent work in [2] extends HVE to also protect the tokens. However, the
solution is more expensive.

8 Conclusion

We proposed a system for secure location-based alerts which utilizes searchable encryption.
We introduced two alternate data encodings that allow efficient application of crypto-
graphic primitives for search on encrypted data (namely HVE). Furthermore, we devised
performance optimizations that reduce the overhead of searchable encryption, which is
notoriously expensive. We also devised a heuristic that enlarges alert zones by a small factor
in order to reduce matching time, thus achieving a tunable performance-privacy trade-off.
The experimental evaluation results show that searchable encryption can be made practical
with careful system design and optimizations.
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In future work, we plan to investigate more advanced data and query encoding techniques
(beyond regular grids) that will allow us to securely alert users with even lower overhead.
We also plan to study other types of matching semantics beyond range queries (e.g., nearest-
neighbors, top-k).
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Appendix

A Primer on HVE Encryption

HVE is built on top of a symmetrical bilinear map of composite order [4], which is a function
e : G × G → GT such that ∀a, b ∈ G and ∀u, v ∈ Z it holds that e(au, bv) = e(a, b)uv .
G and GT are cyclic multiplicative groups of composite order N = P · Q where P and Q

are large primes of equal bit length. We denote by Gp, Gq the subgroups of G of orders P

and Q, respectively. Let l denote the HVE width, which is the bit length of the attribute, and
consequently that of the search predicate. HVE consists of the following phases:

Setup. The T A generates the public/secret (PK/SK) key pair and shares PK with the
users. SK has the form:

SK = (gq ∈ Gq, a ∈ Zp, ∀i ∈ [1..l] : ui, hi, wi, g, v ∈ Gp)

To generate PK , the T A first chooses at random elements Ru,i, Rh,i , Rw,i ∈ Gq,∀i ∈
[1..l] and Rv ∈ Gq . Next, PK is determined as:

PK = (gq, V = vRv, A = e(g, v)a,

∀i ∈ [1..l] : Ui = uiRu,i , Hi = hiRh,i , Wi = wiRw,i)

Encryption uses PK and takes as parameters index attribute I and message M ∈ GT .
The following random elements are generated: Z,Zi,1, Zi,2 ∈ Gq and s ∈ Zn. Then, the
ciphertext is:

C = (C′ = MAs, C0 = V sZ,

∀i ∈ [1..l] : Ci,1 = (U
Ii

i Hi)
sZi,1, Ci,2 = Ws

i Zi,2)

Token Generation. Using SK , and given a search predicate encoded as pattern vector I∗,
the TA generates a search token T K as follows: let J be the set of all indices i where
I∗[i] 
= ∗. TA randomly generates ri,1 and ri,2 ∈ Zp, ∀i ∈ J . Then

T K = (I∗, K0 = ga
∏

i∈J

(u
I∗[i]
i hi)

ri,1w
ri,2
i ,

∀i ∈ [1..l] : Ki,1 = vri ,1, Ki,2 = vri ,2)

Query is executed at the server, and evaluates if the predicate represented by T K holds
for ciphertext C. The server attempts to determine the value of M as

M = C′/(e(C0,K0)/
∏

i∈J

e(Ci,1, Ki,1)e(Ci,2,Ki,2) (1)
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If the index I based on whichC was computed satisfies T K , then the actual value ofM is
returned, otherwise a special number which is not in the valid message domain (denoted
by ⊥) is obtained.
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