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Abstract

The massive and increasing availability of mobility data enables the study and the predic-
tion of human mobility behavior and activities at various levels. In this paper, we tackle the
problem of predicting the crash risk of a car driver in the long term. This is a very chal-
lenging task, requiring a deep knowledge of both the driver and their surroundings, yet it
has several useful applications to public safety (e.g. by coaching high-risk drivers) and the
insurance market (e.g. by adapting pricing to risk). We model each user with a data-driven
approach based on a network representation of users’ mobility. In addition, we represent
the areas in which users moves through the definition of a wide set of city indicators that
capture different aspects of the city. These indicators are based on human mobility and
are automatically computed from a set of different data sources, including mobility traces
and road networks. Through these city indicators we develop a geographical transfer learn-
ing approach for the crash risk task such that we can build effective predictive models for
another area where labeled data is not available. Empirical results over real datasets show
the superiority of our solution.
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1 Introduction

Collecting and processing mobility data is a fundamental task of car telematics and (mod-
ern) car insurance companies. Their main objective in doing that is typically to provide
to end-users services like pay-as-you-drive contracts, anti-theft control, and prompt
emergency rescue in case of accidents [1]. One of their foremost priorities, however, is
to adapt policy pricing to customers in the best way, which mainly consists in finding a
trade-off between profit and competitiveness. In this context, risk assessment is probably
the most critical problem addressed. The risk from the company perspective can involve
several aspects, yet the most impactful one is the customer’s risk of having accidents in the
future [2] since high-risk ones are likely to cause the company a loss (paying the costs of
her accidents), while low-risk ones are more likely to provide a plain profit. In this context,
since the car insurance markets are quickly expanding also towards new (for the market)
geographical areas', there is the need to establish services in areas where very little or no
prior knowledge at all is available, making the risk assessment task even more challenging.

Along the lines mentioned above, our research pursues two distinct objectives.

First, develop a methodology for predicting the customer’s risk score: given a car
insurance customer, provide a risk score relative to the long-term future, e.g., the next
month or the next year. Since this estimate is expected to depend both on how the cus-
tomer drives and on the conditions of the surrounding environment [3-5], we adopt an
approach based on the computation of individual driving features, describing how much
the user drives and how much dynamically, also related to the general characteristics of
mobility in the places that the user visits. Since the raw mobility data collected by car
telematics and car insurance companies is typically limited to positions and events of the
vehicle [1], with no vision of what happens around it, our approach elaborates the data
to infer higher-level knowledge, such as driving behaviors (frequent accelerations, average
speed, etc.), individual mobility demand (detecting frequent trips, travel times during the
day, etc.), habit changes, etc. [6]. That is achieved, in particular, by exploiting Individual
Mobility Networks (IMNs) [6-8], a network-based representation that integrates important
locations, movements, and their temporal dimension in a succinct way. Therefore, the pro-
posed approach takes into account several different aspects: individual components of the
driving behavior including those that can be derived from IMNSs, elements considering the
collective mobility of other users, and static contextual information such as road categories
and the presence of points of interest.

The second objective, which is also the main focus of this paper, is to enable the geo-
graphical transfer of crash prediction models, i.e. to make the customer’s risk score pre-
diction system usable and effective also on areas where historical data about crashes is
unavailable or too limited. Given an area where we want to asses the customers’ risk scores
and yet there is not a local training dataset to learn from, we derive a prediction model
through techniques for geographical transfer learning which exploit the models and data
available in other areas, in particular those similar to the one analyzed [9]. We define an
array of geographical transfer learning strategies based on the data and the models available
in certain areas that can be applied to target areas individually or as an ensemble. In par-
ticular, we rely on a set of city indicators [9] that can be retrieved for every area to evaluate
the similarity between two or more areas. The measures considered cover a wide spectrum
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of features, thus providing a multi-perspective description of area area. They include a set
of spatial concentration indexes of human activities; network features of intra-city traffic
flows; mobility characteristics of the individual mobility, obtained from networks that rep-
resent the places and movement of single users; last, characteristics of road networks and
how traffic is distributed in them. The city indicators allow to compare the different areas,
using this similarity measure as a way to properly weight the contribution that each source
area (i.e. areas where data are available and local models could be built) should give to the
construction of a predictive model for the target area (i.e. the one where no data for train-
ing a model is available). The paper proposes several different strategies that exploit such
weights in different ways, and provides an empirical comparison to find out the best one in
terms of prediction performances. When comparing models, performances are an impor-
tant aspect to consider, but not the only one. Indeed, two models might have a similar accu-
racy, and yet implement completely different logics, for instance considering completely
disjoint subsets of features. In the experimental section of this work we aim to understand
in depth in what aspects the different models actually differ, and we realize that through the
adoption of explainable Al approaches. That allows us to provide some hints about the rea-
sons why the transfer of the models trained on certain areas and applied to a certain target
area works better than in other cases.

We evaluate the proposed methodology on three datasets of real cars moving in three
different areas, namely two cities (Rome and London), and one region (Tuscany, Italy). In
particular, a deep study on the models’ transferability is performed on the Tuscany data-
set working at the province level, which provided a good variability of city contexts yet
involving areas of comparable complexity. The results show that the individual mobility-
based and context-aware modeling of the users that we propose improves the performance
over the baselines that adopt state-of-art features. These results support the importance of
the heavy feature engineering proposed in the paper to adequately solve the crash predic-
tion problem. Finally, we observe that the best results in geographical transfer learning are
obtained by the solutions based on the city indicators for training the most adequate classi-
fier in a certain area. The explanation of these transferred models with SHAP reveals that
the most important aspects for the crash prediction on the transfers are related to events
that happens while driving towards regularly visited locations such as harsh accelerations
or harsh cornerings.

To summarize, the novel contributions of the paper are the following:

e we expand the work in [6] on crash prediction, by studying how much the prediction
span impacts on the performances and whether the feature engineering implemented in
our approach can be replaced by a deep learning model over time series of basic mobil-
ity features (the answer being no);

e as follow up of the work in [9], we define the geographical transfer learning problem
for a challenging task, namely individual, long-term crash prediction;

e we propose three multi-source geographical transfer learning strategies based on the
city indicators introduced in [9], which are used to quantify the similarity of two geo-
graphical areas;

e we empirically evaluate our solutions against baselines and competing methods on a
large real dataset of private vehicles. The evaluation includes a study of the features that
characterize the different models, through explainable Al methods.

The rest of the paper is organized as follows. Section 2 summarizes the related works
on crash prediction, transfer learning and city indicators. In Section 3 we formalize the
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problem definition and we recall concepts involved in the models designed in Section 4.
Section 5 presents experiments in the form of a case study. Finally, Section 6 concludes the
paper and discusses next challenges.

2 Related work

In this section we report an overview of the most relevant works related to the three
research areas involved in this paper: crash prediction, transfer learning and city indicators.

Crash prediction The literature on crash prediction is relatively large, studying car acci-
dents from various perspectives, such as the risk of roads, the failure of safety devices or
drivers’ lack of attention. Yet, at the time of writing there are no works trying to exploit
mobility data analysis and user modeling for crash prediction and risk assessment, with
the only exception of [6]. A large part of the works focuses on real-time prediction of
individual crashes, i.e., try to identify the events that lead to a crash in the next few sec-
onds, thus providing feedbacks to the user as she drives [10]. Similarly, [11] developed a
model for real-time collision detection at road intersections by mining collision patterns,
while [4], using different data, tries to relate crashes to both behavioral characteristics and
physiological parameters. Other approaches (e.g., [3, 12, 13]) work on identifying areas
that show characteristics usually associated with accidents, such as increased traffic den-
sity, adverse weather conditions, etc. Besides features describing areas, the work in [14]
also used individual vehicular data of cars (speed and time headway) passing through pre-
defined detector stations for improving the performance of a probabilistic model. In [15]
it is presented a review of the key issues associated with crash-frequency data as well as
strengths and weaknesses of similar methodological approaches. While extremely use-
ful, such approaches result in being not applicable to fields like car insurance, where the
focus is in creating a general risk profile of the user, thus implicitly involving the prediction
of her crash risk in the long run, such as few months in the future. Only a few, prelimi-
nary works are available in this direction. The most significant one is [2], which applies
machine learning methods to predict the users’ driving behaviors, based on movement sta-
tistics. In particular, the authors extend the standard approaches, which consisted in global
aggregates of speed and mileage information, by separating daytime and nighttime driv-
ing statistics, and computing minimum, maximum and average aggregates. This increased
detail of aggregation was shown to improve performances over simpler statistics. The work
in [6], which provides the starting point of the present paper, further develops the general
idea, and designs a data-driven model for predicting car drivers’ risk of experiencing a
crash based on the Individual Mobility Network model of the user and on statistical fea-
tures which describe her driving characteristics. Here we extend the work and results of [6]
with additional experimental studies and by boosting the crash prediction model with geo-
graphical transfer learning.

Geographical transfer learning Individual mobility models and crash predictors, which
are the basis of our proposed approach, are expected to strongly dependent on the spe-
cific geographical area under study. For instance, it has been empirically verified that the
trip purpose classifiers in [7] work very well in the geographical area where they were
extracted, but their performances dramatically degrade if applied to areas with different
characteristics. Since some geographical areas could be insufficiently covered by data, due
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to the non-homogeneous penetration of tracking devices, it would be very difficult to build
different models for different areas from scratch. A possible approach to the problem, then,
is given by methodologies that make it possible to adapt models built in data-rich areas to
less rich ones, which is basically a geographical instance of the general transfer learning
problem [16, 17]. The transfer learning research area aims to transfer the knowledge availa-
ble in one domain, called the source domain, to another one, called the farget domain [18].
We refer to the particular case where the different domains are actually different geographi-
cal areas as geographical transfer learning. This specific topic is studied only sparsely in
the literature, usually with objectives rather different from ours. The most common prob-
lem considered is image recognition, typically satellite image labeling, as in [19] and [20].
Both papers deal with deep learning classifiers that are requested to work on data-poor
areas, and therefore the models learned in data-rich areas (usually CNN-based models) are
adapted to the new domain. The authors of [21] focus on crime prediction and, again, try
to exploit the knowledge available in some areas to make reliable predictions on a differ-
ent one having too little data to build a model. Finally, [22] builds shared bike demand
prediction models over some cities (especially large ones, where more data is generally
available) and then adapt them to other (usually smaller) ones. The work in [23] shares
some ideas with ours since it tackles the problem of labeling road networks and shows how
assessing the similarity of street networks improves the transfer of a model from one city
to another one. Our work tackles a more complex prediction problem, and compares areas
through a multi-dimensional view, yet our results confirm the general message of the cited
paper. The methods we propose start from the paper [9], which exploited a set of descrip-
tive features of cities to assess their similarities, studying whether the transfer of models
across cities works better among similar ones. Both the prediction problems tackled and
the model transfer method adopted were very simple. In this work, we expand those results
considerably, considering a complex crash prediction problem and developing several more
sophisticated model transfer strategies, yet still, exploit city similarities.

City indicators We conclude this section by briefly reporting the most important papers
describing methods for characterizing urban spaces and defining city indicators, which will
be used in our work to compare geographical areas. In this area, Geographical Information
Science introduced several innovations that helped to automatize and extend an approach
usually driven by a domain expert, including statistical methods for geography [24] and
computational tools for managing large databases of information, like repositories of spa-
tial and thematic features of census units, road network geometries, geo-referenced time-
series data, etc. City indicators have an important application in defining the sustainability
characteristics of urban areas. Various attempts have been made to design indicators for
monitoring sustainability at various levels, such as national [25] and city level [26]. As
described in the review paper [27], the literature covers a wide range of aspects, includ-
ing mobility-related ones (e.g., mobility space usage and functional diversity). However,
very few attempts were made to systematically exploit big data sources to estimate them.
One example was the Air Quality Now EU project [28], which used vehicular and public
transport data to infer some measures. Yet, that is limited to direct and simple ones, such
as traffic, speeds, and exposure to pollution. The literature also considers mobility indica-
tors and road network properties as potential measures to adopt, which is aligned with our
approach [29]. Finally, exploiting big mobility data to understand the properties of geo-
graphical spaces is a very active area [30, 31]. However, to the best of our knowledge,
[9] is the only proposal where a wide set of complex indicators are collected in a system-
atic and reproducible way, directly aimed to make cities comparable in a computational
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way. Therefore, in our proposal, we aim at exploiting the approach and the city indicators
defined in [9].

3 Setting the stage

We introduce here the definitions of trajectory [32] and individual mobility network [7, 8],
useful for understanding the rest of the paper and adapted to the approach proposed. After
that, we formalize the car crash prediction problem in general and in the transfer learning
setting.

Definition 1 (Trajectory) A trajectory is a sequence t= (p,,...,p,) of spatio-tem-
poral points, each being a tuple p; = (x;,¥;,z;) that contains latitude x;, longitude y; and
timestamp z; of the point. The points of a trajectory are chronologically ordered, i.e.,
Vi<i<n:z <z

As additional notation, we refer to the i-th point of a trajectory ¢ (namely, p;) as #[i],
and to its number of points with t.n. Also, we indicate the longitude, latitude and times-
tamp components of point #[i] respectively with the notation #[i].x, #[i].y, and f[i].z. We
name individual history the set of trajectories that a user followed in a time period. More
formally:

Definition 2 (Individual History) Given a user u, we define the individual his-
tory of u as the set of trajectories H, = (f|,....t,) traveled by u. Also, we denote
with H!*l the subset of trajectories of H, that occur in time interval [a, b], ie.
H“P' = {1 e H, | [1[1].2,1[t.n].2] C [a,b]}.

3.1 Individual mobility network

Given a user u, their associated history H, can be processed to extract their individual
mobility network (IMN) G,. An IMN describes the individual mobility of a user through a
graph representation of her locations and movements, grasping the relevant properties and
removing unnecessary details.

Definition 3 (Individual Mobility Network) Given a user u, we indicate with G, = (L,, M,))
her individual mobility network, where L, is the set of nodes and M, is the set of edges.
Given an aggregation operator agg, for each node [ € L, we define the following functions:

@(l) = number of trips in H, reaching location /;
6(D) = agg({ duratlonsAaAaoanAastopsAaAalnAal b;
p(D) = agg({arrival times of trips reaching /});
7,(l) = agg({durations of trips reaching /});

7w () = agg({lengths of trips reaching /});

Operator agg can return either a single value (e.g. median) or a n-ple (e.g. average and
standard deviation, or quartiles). The same functions are also defined on edges (move-
ments) m = (;, ;) € M, in a similar way, this time considering only trips that start from /,
and reach /.
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Nodes in L, are locations that represent a group of stop points, and edges in M,
are movements that represent groups of similar trips between two locations. Given the
individual history H,, the IMN G, is obtained by retrieving the locations L, through

a spatial clustering-based aggregation of stop points [33], and the movements M, by
grouping the trips between any pair of locations [8].

3.2 Problem Formulation

We define the crash prediction problem as the association of a user’s probability of

having an accident in the next time period with their recent historical mobility. The
duration of the user’s history to consider and of the next time period for which we
make predictions are two fixed parameters. Reasonable durations for the context at
hand will have the scale of one or more months.

Definition 4 (Crash Prediction and Risk Assessment) Given the prediction time z,, history
depth 7, and prediction span t,, we define the two time intervals 7, = [rp - T, rp], named
predictors interval, and Z, = (Tp, 7, + 7,], named target interval. Then, the crash prediction
problem consists in evaluating if user u will have a car crash during period Z, and what is
the crash probability, based on the analysis of the user’s mobility during period Z,. More
formally, we want to estimate:

P = P<u has crash in z,

‘)

The period Z, is the knowledge we have about the user at the moment of assessing
her risk, while Z, is where/the period when the crash to predict will or will not happen.

In a geographical transfer learning context, crash prediction has the same overall
objective, yet the available information for estimating p,,,,, mainly comes from areas
that are different from that of the user.

Definition 5 (Geographically Transferred Crash Prediction) Given a set A = {A,,...,A,}
of n geographical areas, each associated to a set U; of users, to a function 7 that esti-
mates p,.,,, within A; (1 < i < n), and to the training set H”*" of each user used to infer 7
(u € U;, 1 <i < n); the predictors and target intervals 2, and Z;; and an area A* & A, associ-
ated to a set U™ of users; the geographically transferred crash prediction problem consists
in computing the function 7* estimating the crash risk probability for each user u € U™

" _ A 2, i) train
x*(u) = P(u has crash in 7, | H;, {x }151‘91’ {H" }VGU,,ISISn)

The definition emphasizes the fact that the crash prediction function can use both
the training data and the locally inferred models of the geographical areas in A, while
for the area A* we do not have access to a training dataset, the only information avail-
able being the data of the user in the predictors interval Hf,” (u € U*). Also, while it is
in general possible that a user u belongs to two or more different areas, in the rest of
the paper we will assume for simplicity that Vi.U* N U, = @, i.e. the users in the target
area are completely disjoint from those in the source ones.
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3.3 Features importance-based explanations

Given a machine learning classifier  trained on a dataset X, a feature importance-based
explanation method takes as input b, X, an instance x for which we want to explain the
decision b(x) taken by b on x, and returns for each feature an importance value which rep-
resents how much that particular feature was important for the prediction of that instance.
For understanding the contribution of each feature, the sign and the magnitude of each
value are considered. A positive value means that a feature contributes negatively for the
outcome; otherwise, the feature contributes positively. The magnitude, instead, represents
how great the contribution of the feature is to the final prediction. SHAP, SHapley Addi-
tive exPlanations [34], is a local-agnostic explanation method that calculates feature impor-
tance based on the Shapley values?, a concept from cooperative game theory. In particular,
the explanation returned SHAP are additive feature attributions and guarantee the fact that
the sum of all the contributions corresponds with the deviation of the prediction of a cer-
tain outcome with the baseline prediction, i.e., the average prediction among the instances
in the training set.

4 Methodology

In this section we first show how it is possible to characterize a geographical area with
mobility data driven indicators, following the work in [9]. Then, we present the methodol-
ogy proposed in [6] for long-term crash risk prediction based on IMNs. Finally, we design
a set of novel strategies for the geographical transfer of crash prediction models across dif-
ferent areas.

4.1 Defining city indicators

The transfer learning approaches proposed in this work revolve around the idea that highly
similar geographical areas can share data and models more easily. Therefore, it is critical to
define an effective way to compute similarity scores between pairs of areas. We do that by
defining a set of descriptive features, called city indicators, for each area, and then compute
similarities through standard metrics, such as the normalized Euclidean distance.

In this section, we briefly describe the families of city indicators we computed and
adopted for our purposes. In this setting, we use the word “city” as a simplification, to
generally refer to a geographical area (or geographical unit) which is not only the urban
area of a city, but can also be a much larger one, like having the size of a municipality, a
province or even a whole region. The city indicators are meant to provide a multilayered
description of geographical units through quantitative measures, which have been selected
among indexes adopted not only in traditional urban studies, but also mobility analytics
and network science. Hence, they can provide a multifaceted view of the areas under study.
As discussed in Section 2, such numerical descriptions of geographical units can have a
wide spectrum of applications. In the following, we give to the reader an overview of the
city indicators adopted. For the details of the complete list and a formalization we refer the
reader to [9].

2 We refer the interested reader to: https://christophm.github.io/interpretable-ml-book/shapley.html
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4.1.1 City indicators

Given a geographical unit (or city) A, we define its associated set of city indicators
CI(A) as CI(A) =< Sc(A),No(A),1-(A),R-(A) >, where each element represents a set
of features computed over the user mobility data and the street network of A, briefly
defined below:

e Spatial concentration indexes of human activities (S.). They answer the question
“how does the density of people and activities vary across the area”? Examples
of this indicators are spatial entropy [35], Moran’s measure [36], and the average
nearest neighbor distance. The extraction process exploits mobility data to infer
stay locations, which are then used to approximate activity places and their distri-
bution. These indexes help distinguishing areas where activities are concentrated in
a small space against those where activities are well distributed over the territory.

e Network features of intra-city traffic flows (N). Each area is partitioned into a reg-
ular grid and then modeled as a network whose nodes are the grid cells, and edges
connect cells whenever some users moved from one to the other. Nodes and edges
are weighted according to the number of matching trips. By representing the geo-
graphical unit as a network it is possible to describe all the activities through net-
work measures such as node degrees [37], Louvain modularity [38], and interaction
models like gravitation [39] and radiation [40, 41].

e Characteristics of the individual mobility (I.). Consider the mobility at the level of
individual users. Then geographical units can be described by aggregated values of
their inhabitants’ mobility such as average distance and duration per trip, average
driving distance and duration per day, average amount of trips per day. Also, an
aggregation of the features of IMN can be used in this setting. For instance we can
consider the average size of the network, the average individual radius of gyration,
the average individual modularity, etc.

e Characteristics of road networks and how traffic is distributed in them (R.). Con-
sider the mobility at the level of roads. Modeling a geographical unit as a network
where nodes represent road intersections and edges road segments, we have indica-
tors like amount of edges and nodes, amount of intersections, average node degree;
as well as a set of measures typical of complex network analysis such as road net-
work’s closeness centrality [42]. Moreover, through a combined analysis of mobil-
ity data and road structure, the traffic concentration is characterized by indicators of
distribution skewness and concentration. The latter, for instance, allow to highlight
areas where the traffic is concentrated in a small portion of the road network.

4.2 IMN-based crash risk prediction

Our objective is to estimate the probability p,,,.,(#) in the crash prediction problem
definition. In this section we do that through approximation, along two steps: (i) first,
the knowledge contained in Hf,” is represented through a set of meaningful yet (neces-
sarily) lossy features, that will be discussed in details in the next sections; then, (ii) the
probability function is learned through machine learning predictors.
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4.2.1 Predictive features

Each user u is represented by a vector of m features computed over her predictors interval,
namely: X = (fy,fos .. .f,,). We denote with X% = (xi”,x;”, ..., x,) the matrix of n vec-
tors describing the behavior of n users. We indicate with y* the vector saying if a user has
experienced a crash in the target interval Z, i.e., y,, = 1if user u had a car crash in period

Z,, yi = 0 otherwise.
4.2.2 Machine learning models

The matrix of features X% and the vector of target values y* are used to train a machine
learning classifier, which yields as, output a car crash predictor function p,,,(-). The crash
predictor takes as input a vector x;’ describing user u#’s mobility in a given predictors inter-
val z_;, and returns the probability she will have a crash in the corresponding target period
z}, based on the training performed on X% and y%. As machine learning classifiers [43] we
considered several possible options, including K-Nearest-Neighbors, Decision Trees, Sup-
port Vector Machines, Deep Neural Networks, Random Forests, LightGBM, etc. Indeed,
any prediction model working on standard tabular data could be in principle applied, since
the specificities of the data domain are already captured by the user’s features x!. Through
preliminary experiments, we decided to mainly focus on Random Forest (RF), Deep Neu-
ral Network (DNN), and LightGBM (LGBM), since they yielded the best and most stable
results. The case studies in Section 5 are based on these models.

A secondary (yet very relevant) objective of our work is to find the possible factors that
lead to a crash, whatever the nature of each factor, either causal or simply correlated. In
order to achieve that, we adopt three ways to infer the role played by each feature in the
classification. The first one comes as a built-in feature of RFs, namely the feature impor-
tance score, which says how much important is overall a feature, though not describing if
that is a positive or negative factor. The second way exploits recent results in the explain-
able Al domain, in particular, the SHAP method [34], which assigns the positive/negative
impact of each feature on every single prediction allowing to make both single-user and
collective considerations. The third approach consists in aggregating the absolute SHAP
values of different predictive models, in order to compare them and get a glimpse of their
differences in terms of logics followed, in addition to performances.

4.2.3 Predictive features

A key component of the proposed approach consists in translating the raw mobility infor-
mation contained in H,” into a set of features {f;, ... ,f,,) able to capture its significant ele-
ments, and in particular, those useful for crash prediction. The following were computed:

e Trajectory-based features. These features include position-based features, containing
classic indicators of trajectories, i.e., number of trajectories, length, duration, speed.
Each indicator is aggregated through four operators: counts, sums, means, and stand-
ard deviations. Moreover, aggregates are computed over several time periods: morn-
ing (6am - 12am of all days), afternoon (12am - 6pm), evening (6pm - 10pm), night
(10pm - 6am). The same applies for event-based features, measuring characteristics of
the acceleration- and direction-related events contained in the data.
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e IMN-based Mobility features. These features adopt IMNSs (introduced in Section 3) as
higher level of aggregation of the user’s mobility, to extract three different types of
information: (i) the network properties of the IMN, (ii) mobility aggregates focused on
high-frequency locations and movements, and (iii) temporal stability measures of the
IMN. A not exhaustive list includes the number of locations, i.e., nodes in the IMN, the
number of movements, i.e., edges, the average degree, the IMN density, etc. In addi-
tion, for every feature is reported the variation between consecutive time periods in
which the IMN is calculated.

e Mobility Context features. These features estimate contextual indicators by extracting
collective aggregates from the history of all users in the dataset. Information like the
number of events, average speed, and acceleration statistics are computed on geographi-
cal sections (a partitioning of space obtained through a quadtree structure derived from
the distribution of Points-of-Interest on the territory, ref. [6], Section IV-E), and they
are associated to the single user based on which sections they stopped in at least once,
compute an average of each characteristic of the sections. A not exhaustive list includes
indicators of other users with respect to the areas visited buy the user described in
terms of number of starting and stopping trajectories, average speed, average accelera-
tions, number of different events, etc.

Details for each family of features are available in [6]. The features considered can be
inferred from the basic information that any car telematics service is expected to provide,
and in that sense provides a minimal solution that can be very easily adapted to work in
different geographical areas. Where available, this set can be extended with other useful
measures about details of accidents, physical features of roads (pavement quality, size, vis-
ibility, etc.), weather, and so on. Real applications that need to be fine-tuned over a specific
geographical area could indeed benefit from other information layers that can be easily
integrated into our solution as additional features. Considering such extra layers and study-
ing their impact, however, goes beyond the scope of this paper, and is left as interesting
future work. Finally, we highlight that typically, state-of-art car crash approaches used in
the insurance practice, are only based on trajectories and do not account for all the mobility
aspects considered by our proposal.

4.3 Geographical transfer of crash prediction models

The basic idea of transfer learning is that the phenomena we want to capture (and that
determine the value of the target variable to predict) are inherently present in other data-
sets, although in different proportions and maybe in different shapes. Therefore, the prob-
lem is to understand which parts of the data (in our case, which geographical areas) are
more likely to contain cues and information useful to capture relevant phenomena, and
thus exploit them for predictions. Hence, our objective for geographical transfer learning in
crash prediction, is to explore ways for exploiting all the knowledge available on areas dif-
ferent from the target one, i.e., the one where we need a predictive model. With respect to
the categorization presented in Section 2, we design a geographical transfer learning which
is homogeneous (the data and the prediction tasks in the source and target domains are of
the same type), multi-source (in general, we have several geographical areas with data we
can exploit in the transfer) and transductive (we assume that labeled data is available in
meaningful quantities only in the source domains).
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The solutions proposed in this work try to overcome some of the main issues highlighted
in [6] (and further confirmed in our experiments in Section 5). First, blindly applying a model
from one region to another does not consider at any level the differences that the two areas
might have. In our context, for instance, the road conditions in one area might require a dif-
ferent driving style than another one (reflected in the accelerations and contextual features), or
the city size and traffic might impact the routine behaviors of users. Second, adopting standard
weighting schemata based on feature distribution is possible only if rather significant data is
available for the target domain, although unlabeled, which can be difficult in practical applica-
tions. In particular, in our reference insurance case study, the data is always associated with
labels (crash or no-crash), the problem being instead to reach in a geographical region a suf-
ficient mass of historical data. Also, since in our experiments we study the transfer between
areas in the same region (Tuscany), it resulted that the differences between the features distri-
butions are in most cases not significant. Third, the empirical studies in [6] focused on rather
large areas. This leads to building models that are more generic, and therefore might not be
able to capture local behaviors of smaller locations.

In the following, we introduce a few solutions based on the following principles:

e agood prediction model for an area can profit from the information (data or models) com-
ing from other areas, the main open question being how to account for the differences;

e while each area might have its own local factors and patterns, driving and crash risk are
expected to follow a common (potentially large and diversified) set of rules, although
each area might adopt them in different proportions — total absence being mainly an
exception;

e the factors behind the events to predict, i.e., crashes, are strongly linked with the mobil-
ity context where the users move, therefore the city indicators described in Section 4.1
should provide a good basis for understanding how much two areas share the same type
of context.

Based on these principles, we propose three approaches of varying complexity that fol-
low them at different extents. Each solution is described in detail below, while a schematic
summary is provided in Fig. 1.

4.3.1 Approach 1: best city transfer

This is a direct application of the lessons learned in [6], namely that the model built on a
city (or geographical unit) can be sometimes usable as is in another one, and that compli-
ance is generally more likely to happen between cities that have similar spatial and mobil-
ity characteristics. Following this idea, Approach 1 selects among the source domains, i.e.,
the source cities where a model can be trained, the one that best matches the destination
city in terms of city indicators, and applies its corresponding predictive model to the desti-
nation. With reference to Fig. 1, the process starts from the individual city data, represent-
ing all possible source domains, over which we build individual city models. Finally, based
on city indicators, we identify the source city that is most similar to the destination, and
select its model. More formally:

best

Doy ) = pi(u) with k = arg max sim (d, i) (1

where p;(u) is the crash probability of user u estimated by the individual model of source
city i, and sim (d, i) is the similarity between cities d (the destination) and i (the sources).
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Fig.1 Schema of the three geographical transfer learning approaches explored. The input city data is used
either to extract individual city models (downward) or create a resampled dataset (upward). In the first case,
Approach 1 selects the best model, while Approach 2 creates an ensemble. In the second case, a new model
is built on the resampled data

More precisely, sim (d,i) is computed from the Euclidean distance between the corre-
sponding (normalized) city indicators of d and i, i.e.:

sim (d, i) = EuclidDist (z — score(CI(A,)), (z — score(CI(Ai)))_l 2)

where z — score computes the attribute-by-attribute normalization of the city indicators.
We name the model individual best city model (bottom line of Fig. 1).

4.3.2 Approach 2: weighted ensemble model

It extends the ideas used in Approach 1, considering that each individual city dataset brings
not only information that is specific for that location, but also information of more general
validity, that might apply to all cities or at least to a subset. That means that each individual
city model might, in principle, highlight a pattern or rule of general validity that, for sta-
tistical reasons or noise in data, could not be spotted in other cities. The idea is, therefore,
to combine together the knowledge brought by all the individual models in an ensemble
fashion, i.e., a meta-model is built by combination of the single ones, and predictions are
performed by a voting schema where every single model provides a prediction, and the col-
lection of results are combined. Since more similar cities are more likely to share common
rules, the models in the ensemble can be associated with a weight corresponding to the city
indicators-based similarity. Also, since our models provide a crash probability, the single
predictions are combined through a weighted average. Formally:

sim (d, i)

> sim (d, k) ®)

N
PSS () = 3w, py ) with w; =
i=1
As before, sim(d, i) is the similarity between the destination city d and sources 7, and p;(u)
is the crash probability of u estimated by the local model of source city i. In Fig. 1 this
corresponds to the central arrow, which yields the weighted ensemble model (or simply
ensemble model, if clear from the context) that is then applied to the destination city data.
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4.3.3 Approach 3: weighted sampling

The ideas of the ensemble approach are applied here from a slightly different perspective. The
ensemble model assumes that if the overall dataset contains a pattern or rule that is relevant
for the destination city, then at least a subset of the individual models should be able to iden-
tify it, allowing the voting schema to bring it to the destination. However, this is expected to
hold only for relatively strong rules, which can emerge from individual datasets, while that
might not work for smaller patterns that leave many weak traces in the various datasets. Basi-
cally, the ensemble approach filters at the source weaker patterns, some of which might actu-
ally result to be significant overall. As possible counter-measure for this effect, Approach 3
creates an ensemble of datasets rather than models, i.e., it builds a representative dataset by a
weighted sampling of all individual datasets. This combined dataset, then, is used to build a
predictive model. Since, again, we expect to find more useful information in source cities that
are similar to the destination, the sampling weights are proportional to the city similarities.
More formally:

resample .- % rain
P () = P(u has crash in z, | H,, { H" }V€D> 4)

where D is the data sample built for destination d from sources A, and is defined as:

D= D, with D, C U;st. ID,| =N -w,
A;€A

(&)

where U, represents the set of users described in source city 7, and N is the requested size of
the sampled dataset, i.e., N = |D|. Weights w; are computed as for Approach 2. The more
complex form of (4) highlights the fact that this approach requires learning a model from
scratch rather than simply combining or selecting existing local ones.

In relation to existing generic transfer learning solutions, the first two approaches pre-
sented above provide a form of relational-based transfer learning, since the models built in
one domain are used (possibly adapted) in the other; the last approach, instead, works through
an instance weighting strategy, which belongs to the category of instance-based transfer learn-
ing [18]. In particular, the latter is close in principle to Domain Weighting [44], yet it relies
on a higher-level notion of city similarity, rather than a comparison of features distribution
— which might be difficult to implement if only little (unlabeled) data is available in the target
domain, as it is expected to happen in our application scenario. Also, as already mentioned,
depending on the spatial granularity, in some cases the attribute distributions might not vary
significantly across geographical units, thus making it a weak criterion. Indeed, preliminary
tests on the datasets adopted in our experiments (see Section 5.1) showed that the feature dis-
tributions over the provinces were rather similar, being statistically not clearly distinguish-
able at the level of single features (around 58% of province-vs-province comparisons over all
features did not pass the Kolmogorov-Smirnov rejection test [45] with threshold 0.05), and
obtaining PCA projections over the two largest principal components having visually almost
identical distributions.
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Fig.2 Geographical areas of experiments. Dataset 1 includes London in UK (left), Tuscany and Rome in
Italy (center). Dataset 2 is a zoom on the Tuscany area (highlighted in the center) by also considering its 10
provinces, shown on the right

5 Experiments

In this section, we present a case study on two datasets of private cars in which we employ
the proposed methodology>. We first introduce the datasets, and then summarize the results
obtained on the crash prediction problem with and without geographical transfer learning,
with a comparison between our solution and some baselines. We also extract explanations
of the predictions returned by the various models, and try to infer useful general hints for
improving personal driving behaviors.

5.1 Dataset description

The two datasets considered in our experiments consist of GPS traces of private vehicles
tracked by an international car telematics company and made accessible to us within the
Track & Know project*. The first dataset, named Dataset 1, includes London in UK (Fig. 2
left), Tuscany and Rome in Italy (Fig. 2 center), each area having about 5,000 drivers’.
The second dataset, named Dataset 2, includes about 26,000 drivers and it is a zoom on
the Tuscany area (highlighted in Fig. 2 in the center) by also considering its administra-
tive division into 10 provinces (Fig. 2 right). We consider the partitioning of the Tuscany
region in subareas in order use them as source and destination domains for transfer learn-
ing experiments. Each subarea is populated with the data of users whose most frequent
location is contained in that subarea. We decided to report results with respect to prov-
inces because they provide a good trade-off between granularity and data availability on
each partition. While testing model transfer across very different areas as Rome and Lon-
don would be interesting, the different scale and complexity of these cities would require
a more extensive dataset covering many other international cities, which was not possible

3 The source code is available at: https:/github.com/riccotti/CrashPrediction. The city indicators used in
this paper can be obtained from the Track & Know project website (see next footnote), while the mobility
datasets are proprietary, and cannot be publicly shared.

4 https://trackandknowproject.eu/

5 The drivers were sampled among those that had consistent data throughout the 12 months, and also
ensuring to keep all those that had at least one crash in the year. This latter step was not possible on Dataset
2, a side effect being that Dataset 1 has a higher percentage of crash events.
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in the scope of this work. In the rest of this section we will use the terms city, geographical
unit, and province interchangeably, when there is no risk of confusion.

For both datasets, the raw mobility data consists of anonymized traces of vehicles of car
insurance customers, containing the following information: (i) a list of GPS timestamped
positions (latitude and longitude); (ii) a list of events in the form of timestamped position
data enriched with labels describing events such as harsh acceleration, harsh braking and
(possibly multiple) harsh cornering, with additional accelerometer metrics related to each
event position. These data are collected whenever the accelerometer detects an acceleration
exceeding predefined parameters; (iii) a list of crashes in form of timestamped position
data related to crash events. Such events were originally detected through onboard acceler-
ometers and filtering algorithms, and later checked by human operators with customers to
remove false positives. The dataset is collected at an average rate of one position every 1.5
minutes, though there are some exceptions.

5.2 Experimental settings

We organize the experimentation as follows. We use Dataset 1 to analyze the performance
of the models for the basic car crash prediction problem, focusing the attention on the
effect of the various features described in Section 4.2 and on the temporal dimension. On
the other hand, we rely on the greater data availability of Dataset 2 to address the geo-
graphically transferred crash prediction problem with the city indicators described in Sec-
tion 4.1 through the transfer learning methodologies illustrated in Section 4.3.

Local crash prediction In the experimental setting for Dataset 1 (DI), we consider dif-
ferent time periods, corresponding to prediction times 7! = end of March, ... ,TI? = end
of November. The corresponding experiment periods Z; are obtained by fixing the history
depth 7, to 3 months (used to compute features) and prediction span to 1 month (the period
where crashes are checked). We run the experiments in three different experimental set-
tings, depending on how we consider the temporal and geographical components. In the
first setting (D1.1) we keep separated each experiment period Z; and each spatial region r
(r € {London, Rome, Tuscany}) from all the others. In particular, for each given pair (Z;, r)
we train a classifier over the corresponding data of all the users in r, namely X%» and yr,
and then use the model to make predictions one month later, i.e., it is applied over X%+i»
and the results are compared against the ground truth in y“+». Notice that we must have
i+ 1 <9, therefore we obtain a total of | {T;}l X |{r}| = 24 sets of experimental results. In
the second setting (D1.2), we still keep regions separated, while all experiment periods are
considered together. Users are split into a training set and a test set, following a hold-out
division®, all the 9 experiment periods of a user in the training set are used (as 9 separate
records) in the model training and, similarly, all the 9 experiment periods of a user in the
test set are used for the model testing. The main difference between the two settings is that
in (D1.1) we check if we can predict the crash of observed users in the future using a lim-
ited amount of data, while in (D1.2) we try to predict the crash of unobserved users using a
consistent amount of data but without a temporal reference. Finally, the third setting (D1.3)
amplifies the effects obtained by (D1.2) by putting the users of different areas in a unique
training dataset.

® Cross-validation was also tested, yet results do not change in any significant way.
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Table 1 Datasets summary as average values of some features

#users % crash  #traj #traj/day  #evnt #evnt/day #mov #loc degree

DI  London 5k 1.08 280.54 3.39 2967  34.81 66.84 31.23 431
Rome Sk 2.82 307.48 3.13 2655  25.74 82.80 41.10 4.02
Tuscany 5k 3.12 327.11  3.28 3041 29.13 81.48 41.19 4.07

D2 Tuscany 26.7k  0.84 37541 3.92 1088  11.59 77.64 3481 4.53

Geographical transfer learning The experimental setting for Dataset 2 (D2) is organized
similarly to (D1.2), i.e., geographical areas are kept separated, yet putting together all time
periods. The main distinction is that now we have 10 areas corresponding to the provinces
of Tuscany. In turn, each province will be selected as target domain, while all the others are
used as source domains, the task being to make predictions on the former using the models
or data from the latter. The data related to each province is partitioned into a training and
a test set, which are used to extract a local predictive model for each province, and then to
test it on the other ones. The transfer learning approaches proposed will either select or
combine such local models or build a training set by resampling the local training data, and
then test the resulting model over the test partition of the province under analysis.

5.2.1 Datasets preparation

In both experimental settings, before training the classifiers, we face two problems with
the datasets analyzed. The first one is a class imbalance issue. Indeed there is a very low
number of crashes compared to the number of no crashes (see Table 1). The minority class
is over-sampled by taking minority class samples and introducing synthetic examples
along the line joining the kg, 7p minority class nearest neighbors. Depending upon the
amount of over-sampling required, neighbors from the kg, nearest neighbors are ran-
domly chosen. We adopt kg, = 5 by default as suggested in [46]. The effect of adopting
SMOTE is to improve class balance and to reinforce the presence of the minority class in
the decision regions where it appears. We highlight that we re-balance only the training
datasets and not the test ones making the evaluation harder but more realistic. The second
problem is the high dimensionality of the datasets analyzed. Indeed, the rich data engi-
neering described in the previous sections leads to the construction of more than 400 fea-
tures, some of them being highly correlated and redundant. This high dimensionality can
cause difficulties in the learning of classification models. Thus, we adopt a dimensionality
reduction technique based on correlation analysis. We calculated the Pearson correlation
coefficient [47] between every pair of features for the various settings. Then, we removed
one attribute for each couple having a correlation higher than 0.85. This operation reduced
the dimensionality of the datasets to 162 features, with a balanced presence of trajectory-
based, event-based, IMN-based, and contextual features. Table 1 reports the per-user aver-
age values of a small sample of features.

5.2.2 Machine learning models

Our crash prediction approach and our geographical transfer learning strategies can be in
principle applied using any existing machine learning algorithm as an underlying predictive
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model. In this work, we consider three modern and powerful types of classifiers: Random
Forests (RF, basically an ensemble of several small decision trees), LightGBM (LGBM, a
decision tree algorithm based on gradient boosting, with an emphasis on scalability) and
Neural Networks (NN, here used in the simple form of a multi-layer perceptron).

Configuration details For LGBM we used the lightgbm library’, while for NN we experi-
mented with both the Keras® and Scikit-Learn’ libraries. Since the latter two libraries are
applied to the same algorithm type (NN), and the models obtained with Keras yielded
worse performances than Scikit-Learn, in the next sections we show only results for the
latter. For all models we used the Randomized Search Cross Validation'” to select the best
combination of parameters. The parameters of the estimator used to apply these methods
are optimized by cross-validated search over parameter settings. For RF, we use the Ran-
domForestClassifier that is a meta estimator that fits a number of decision tree classifiers
on various sub-samples of the dataset and uses averaging to improve the predictive accu-
racy and control over-fitting. The sub-sample size is controlled with the “max samples”
parameter if “bootstrap=True” (default), otherwise the whole dataset is used to build each
tree. We try different settings to decide the number of trees in the forest (‘n estimators’:
[8, 16, 32, 64, 128, 256, 512, 1024]),the minimum number of samples required to split
an internal node and the minimum number of samples required to be at a leaf node (‘min
samples split’:[2, 0.002, 0.01, 0.05, 0.1, 0.2], ‘min samples leaf’: [1, 0.001, 0.01, 0.05, 0.1,
0.2]). Final setting we adopted is the following:

e ‘number of estimators’: 128,
e ‘min samples split’: 0.05,
e ‘min samples leaf’: 0.05,

For NN we use the MLPClassifier, a Multi-layer Perceptron classifier that optimizes the
log-loss function using stochastic gradient descent. Also in this case we tried different
settings in order to find the optimal hidden layer size and the learning rate. We tried the
‘relw’, ‘tanh’ and ‘logistic’ functions as activation ones and we made experiments to try all
configurations: ‘hidden layer sizes’: [(64, 128), (128, 256), (512, 1024), (512, 1024, 256),
(1025, 512, 256)]. After testing, the final setting we adopted is the following:

e ‘hidden layer sizes’: (128, 256),
e ‘activation function’: ‘relu’,
e ‘learning rate’: ‘constant’,

LightGBM is a gradient boosting framework that uses tree based learning algorithms.
It has a high training speed and low memory usage. LightGBM uses the leaf-wise tree
growth algorithm to get good results, and requires to select a few important parameters.
The number of leaves (num leaves) is the main parameter to control the complexity of the
tree model. Theoretically, we can set num leaves = 2" to obtain the same number of
leaves as a depth-wise tree. However, this simple conversion is not good in practice. We

7 https://lightgbm.readthedocs.io/en/latest/index.html

8 https://scikit-learn.org/stable/

% https://keras.io/

10 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
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tried to use num leaves = (10,31, 50) with a MAX 4oy = (—1,2,5,10). The best parameters
setting found is the following:

e ‘number of leaves’: 31,
e ‘max depth’: 5,
e ‘boosting type’: ‘gbdt’,

About the Keras experiments, we use the same configurations of MLPC Classifier with the
only addition of the dropout parameter that is used to regularize the neurons activation and
selection during the training phase. For our experiments we set ‘dropout rate’=0.1.

5.2.3 Evaluation measures

Given the application context around this work, our objective is to highlight future risky
and potentially harmful events, also with the aim of raising an alarm that might help to
prevent them. From this perspective, false positives are less critical than false negatives.
To this aim we use as main evaluation guidelines [47] the recall of the positive class (rec)),
i.e., aiming to find as many risky drivers as possible, the fl1-measure, i.e., the harmonic
mean of precision and recall of the positive class weighted with respect to the number of
crashes (f1,), and the area under the roc curve (auc) of the positive class that is the area
under the curve comparing the false positive rate (FPR) and true positive rate (TPR). All
measures range from O to 1, the optimum being 1.

5.3 Crash prediction evaluation

In this section, we evaluate the results for the experimental settings in D/. Among the vari-
ous classifiers, we found out that Random forests (RF) overcome those of the other algo-
rithms. Thus, in the following, we report the results obtained using RF classifiers'!. We
show the effectiveness of RF using the sophisticated IMN-based and contextual features
described in Section 4.1 by comparing against three alternatives. The first two are base-
lines: a constant classifier (CST) always returning the positive class (crash); a random clas-
sifier (RND), predicting uniformly randomly crash or no-crash. Their purpose is to provide
reference performance values that can help interpreting the results of the other methods.
The third one (RFP), instead, implements the approach in [2] by adopting an RF based on
the features suggested in the state-of-the-art of crash prediction, including both those used
in [2] (aggregates of speed and mileage, divided by night and day) and those suggested in
previous works (e.g. statistics about accelerations [48], and harsh turns [49]). We name
RFI the RF classifier that improves over RFP by extending the classical features used in
literature with those we designed.

Table 2 reports the result for the experimental settings in D1, showing the evaluation
measures returned by the classifiers for Rome, Tuscany, and London. Note that for the D1.1
case the values are averaged among the various periods. The overall results we observe in
the various experimental settings of DI are the following. The simultaneous analysis of
the reported indicators shows that RFI provides the best and most reliable performances.

1 I particular, we used RF with 100 estimators, allowing leaves with at least 1% of the training data, and
with a cost matrix weighting a crash 100 times more than a no crash.
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Fig.3 ROC curve for different areas for D1.2 and D1.3

Indeed, the CST baseline obviously has the highest recall but a zero precision on no
crashes, making it useless for practical usage. On the other hand, RND easily gets a high
f1,, thanks to the high imbalance of data, but it loses half of the real crashes, with a recall
below 0.5. RFP gives a better trade-off than CST and RND for the f1,, but it shows an auc
just slightly better than CST and RND, with a value around 0.6. On the other hand, RFI has
always similar or larger f1, and recall compared to RFP, and it has systematically a higher
auc'.

In DI1.1 we observe different behaviors of RFI in the three areas considered. In Lon-
don, RFT has the highest rec, f1,, and auc. Notice that the other methods considered show
much worse results. In other words, the new features introduced in this paper appear to
make crashes easy to predict in London. Understanding the reasons for this effect is part
of our future works. For D1.2 we observe how the increased number of available records
for the training leads to a not negligible improvement in the performance of the classifiers
in the Rome, Tuscany, and London areas when compared to those of D1./. In addition, the
setting D1.3 that puts together records from all the different areas (“All” section in Table 2)
leads to a classifier even better than those resulting from D/.2. We highlight in Fig. 3 the
Receiver Operating Characteristic (ROC) curve of the classifiers for the experimental set-
tings D1.2 and DI.3. These plots show that London classifiers are much more accurate
than the others and that RFI classifiers markedly benefit from the usage of IMN-based and
contextual features with respect to RFP, whose ROC curve is always below.

Role of the features By exploiting the feature importance indexes of the models
extracted it was possible to evaluate which features are more heavily used in making pre-
dictions. In general, the top ones involve driving events data jointly with the annotations
inferred from IMNs: the number of starts in IMN locations labeled as occasional, the angle
of accelerations around the most frequent locations, the radius of gyration of regular trips,
etc. Then, various aggregations of simple driving features (duration of cornering events,
standard deviation of speed, average speed during nighttime, etc.) as well as purely struc-
tural features of IMNs (betweenness coefficient of regular trips, centrality of second most
frequent locations, etc). A more detailed evaluation can be found in [6].

5.3.1 LSTM-based approaches

The key component of our approach that makes it superior to its closest competitor
(RFP) is its extensive set of carefully engineered features, which are the result of a long
experience in mobility analytics and driving behavior modeling. However, recent works
in machine learning show that deep learning solutions are able to skip the human-made

12" An ablation study (omitted due to space limits) showed that both IMN- and context-based features sig-
nificantly contributed to such performances.
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Fig.4 FI score and auc for the RFI and RFP approaches on the Tuscany dataset by varying the prediction
span from 1 month to 4 months

features construction phase in many tasks, and autonomously learn effective data represen-
tations directly from raw data, achieving exceptionally good performances. It is, therefore,
natural to wonder if that can be the case also in the complex scenario we are considering.
Along this line, we tested an alternative approach to our problem-based deep learning. In
particular, we model the user’s mobility as time series of basic mobility indicators, namely:
maximum speed, distance covered, driving time and average trip duration. Then, we apply
an LSTM network to learn the association between such time series (containing the values
in the 3-month predictors intervals) and the target variable (crash / no-crash, observed in
the 1-month target intervals, as for the previous experiments). The training and test data are
partitioned exactly as in the experiments described above, and the time series has a 1-hour
sampling rate. Experiments have been performed on Tuscany only since it is the richest
dataset.

The network adopted follows the most commonly used structure for LSTM and time
series classification: one LSTM level with 1024 units, followed by a drop-out of 0.5; then
a dense layer with 256 nodes, followed by a drop-out of 0.2; finally, another dense layer
with 64 nodes, and a drop-out of 0.01. In particular, the drop-out was necessary for the
unbalance of the classes. A ReLu activation function was used in the internal layers, and
a sigmoid function for the output. The training adopted an Adam optimizer with a binary
cross-entropy loss function, using the area under the ROC curve (auc) as evaluation met-
rics. The misclassification weights were set to 0.5 for no-crashes and 95 for crashes, again
due to the class unbalance. The preliminary results obtained, however, show rather poor
performances. The auc has values close to random classification (0.5 +.008), and the f1
measure is significantly lower than those obtained with the other methods (0.01 + .005).
That is mainly caused by a low precision (0.005 +.003), whereas the recall is relatively
good (0.66 + .491) yet rather unstable and lower than the other methods. Our conclusions
are, therefore, that the approach, although interesting and worth exploring, does not work
well with the basic features and the standard setting adopted, and further investigations are
needed. We point them out as possible future works of this paper.

5.3.2 Testing longer prediction spans

An interesting aspect to study is whether predicting crashes over a longer time horizon
is harder or actually simpler. Indeed, on the one hand we are trying to infer events that
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Table 3 Crash prediction
performance for the various

geographical units inside City rec, fl, auc rec, fl, auc vrec; fl;, auc
Tuscany in D2

RF NN LGBM

Arezzo  0.15 0.08 0.84 027 0.14 0.81 0.00 0.00 0.50
Florence 091 0.09 092 031 0.11 0.84 0.00 0.00 0.90
Grosseto  0.04 0.07 094 0.12 0.15 093 0.00 0.00 0.50
Livorno 0.83 0.10 090 0.00 0.00 0.97 0.00 0.00 0.50
Lucca 098 0.07 089 032 0.16 0.85 0.04 0.00 043
Massa 0.89 0.11 0.88 032 0.15 0.89 095 0.09 0.80
Pisa 053 0.12 092 031 026 0.85 0.00 0.00 0.10
Pistoia 031 0.06 0.83 040 0.07 0.85 0.00 0.00 0.50
Prato 035 025 091 045 021 094 0.00 0.00 091
Siena 036 020 086 036 034 0.93 0.00 0.00 0.50
All 044 0.12 091 034 0.11 096 046 0.07 0.83

Each model is trained and tested in the same area similarly to D1.2.
The last line report the performance of a model trained and tested on
the whole dataset similarly to D1.3

are further in the future, and therefore harder to capture; on the other hand, since we are
enlarging the prediction window, and not just moving the same window further, the num-
ber of positive cases we are considering in the training phase is bound to increase, mak-
ing the problem less unbalanced. In order to understand what is the resulting trade-off, we
repeated the experiments made on the Tuscany area by changing the prediction span, now
ranging from 1 month (the value used in the previous experiments) to 4, and measuring the
f1 and auc scores. The results are plotted in Fig. 4, where also the values obtained by our
main competitor RFP are given. In both cases, we can observe that longer spans are overall
better captured by our models, meaning that the class unbalance is a stronger factor of the
problem. We see, in particular, that while the fI score grows at an almost constant rate,
the auc quickly reaches a sort of plateau, meaning that the associated risk probabilities
produced by the model form a significantly better sorting when passing from 1 month to
2, yet no large improvement is given by further extending the window to 3 and 4 months.
Interestingly, RFP follows exactly the same behavior, yet with much worse performances.

5.4 Geographically transferred crash prediction evaluation

In this section we evaluate the three geographical transfer learning strategies proposed in
Section 4.3 in the experimental setting (D2).

5.4.1 Testing local models

First, we analyze the performances of local models built separately on each province,
applying them to the test set of the same area, similarly to what was done for setting
(D1.2). We adopt and compare the three predictive models described in Section 5.2: Ran-
dom Forests (RF, the same used in (D1)), Deep Neural Networks (NN) and LightGBM.
The results are summarized in Table 3, reporting recall, f1, and auc for each province and
each algorithm. We can easily see that both RF and NN have high and stable performances,
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especially in terms of auc, which is the most informative measure. On the contrary, LGBM
performs poorly in most provinces (7 out of 10), and is always worse than the other meth-
ods. This led us to focus the rest of the experiments only on RF and NN. The last line
of Table 3 reports the performances obtained merging the data of all the provinces, thus
building a unique global model and testing it on all provinces. This is equivalent to setting
(D1.2) on a different data sample or, from a different perspective, to setting (D1.3) at a
smaller, regional scale. The results show performances that are perfectly aligned with the
single provinces, suggesting that the larger training set of the global dataset is well bal-
anced by the specificities of the local models of the provinces. In particular, this means that
the local training data of provinces is sufficient to infer reasonable models.

5.4.2 AO:Baseline approach

The straightforward approach to exploit the data available in the source domains is to
directly build a model using all the data, and try to apply it as is to the target domain. We
experimented this approach as a solution zero, and its results are shown in Table 5, which
will be used in the rest of this section as a reference for evaluating our proposed approaches
A1-A3. As expected, this baseline results to be competitive with (though generally worse
than) the simpler approaches (A1), and in most cases, significantly worse than the more
sophisticated ones (A2-A3).

5.4.3 A1:Best city transfer

Here we consider the first geographical transfer learning strategy we proposed, namely to
make predictions on a target domain (i.e., the province under analysis) using a local model
selected among the source domains (in our case, the 9 provinces left) by taking the prov-
ince which is most similar to the target one. The results are summarized in Table 4, which
reports the performances for all the pairs “source province vs. target province®, marking in
bold the values suggested by our first strategy. The performances are reported in terms of
auc, and are shown for both the NN and RF algorithms. The values obtained suggest that
the strategy works slightly better with RF, yet in general, it does not achieve satisfactory
results, in most cases performing worse than the average. Apparently, single models do not
provide knowledge which is directly usable, as is, in other areas, and then something more
refined is needed.

5.4.4 A2:Weighted ensemble model

We test the second proposed approach, which consists of combining all the local (source)
models into an ensemble, where their predictions over the target domain are aggregated.
We compare our weighted combination, where each province votes with a weight pro-
portional to its similarity w.r.t. the target, against a baseline where the weights are per-
fectly homogeneous. The baseline is named AZ2.1, while the weighted solution is named
A2.2. Table 5 reports the results obtained for the two methods over each province, taken in
turn as target domain, compared against the corresponding results of the best city transfer
approach, named A/. Again, the results are shown bot for NN and RF, using auc as refer-
ence metrics, and highlighting in bold the best results. We can see that both A2.7 and A2.2
consistently improve over A/, thus confirming that combining the information of multiple
sources is better than focusing only on one. At the same time, we can observe that A2.2

@ Springer



605

Geolnformatica (2022) 26:581-612

PIOq Ul 2IB SI0JedIpUl A1 JO AJLIR[IWUIS Y} ) I'm JoJsuel], A1) 1sog — | yoeoiddy Aq poise3Sns 1ojsuen oy} ‘paulIopun oIe I9Jsuel) Jsaq Y],

9 16 68 [4<} €6’ 6 06 88 16° LY 06" 9% 68’ 06° 98" 6S° €L v BUSIS
¥8 16" 16 68’ €6° 4 16’ 06’ 16’ o8 68 €L T6 o8 €6 69’ 98’ 69’ oreld
08" 99 €8 98" 98 98" ¥8 98" 8 08’ (42 6L €8 (42 6L 09 €9 ¢9°  elosid
6L 89 68" 68" 68’ 16 16° 06 16° €8 88 88 LY 68’ 98’ [V 18 bl esld
YL 89’ 98" <% 68’ 68’ L8 LY 88 LL €8 L8 1% 98’ 08’ ¥9’ 8L’ 8¢ BSSEIN
98’ 99 L8 9% LY 88" 68’ L8 88 €8 33 68" VL 98’ LY o (75 oL 'O
86 o7 86" 16 6 L6 96 L& 96 68 L6 16" 06 €6’ 6 8L €6 LS OUWOAT]
¥8’ 59 06" 16 €6’ 6 (4 €6’ 4 06 06 6”18 88 (4 [ LY §9" 019880ID
€8 LS w6 [ 6 €6 [ €6’ 98" 06 €6" ¥ 06’ 68’ 98’ 08" 69" 9dualolf
(43 €9’ [4: 3% €8’ [4:3 €8’ €8 (43 6L 08 8 €L 18 18 08° €L €L 07231y

1 901nos
BUSIS ORI RIOISI{ BSIJ PSSR BOON] OWIOAI] OJ9SSOID) OUSIO[ O0ZZ3Iy PBUSIS Ol RIOISI{ BSI BSSR[N BOONT OWIOAI] OJRSSOID) JOUAIO[] 0ZZ3ly « 19518}

onv g

onp NN

gAY pue NN Joj onp uonoipaid ysero pariojsuer) A[esyderdoan ajqel

pringer

As



606 Geolnformatica (2022) 26:581-612

Table 5 Geographically transferred crash prediction auc for NN and RF for the various approaches

NN auc RF auc
City A0 Al A2.1 A2.2 A3 A0 Al A2.1 A2.2 A3
Arezzo .546 575 .828 813 813 .822 969 .841 841 .892

Florence 501 .636 .882 .845 .849 921 .864 928 915 .848
Grosseto .645 .590 .849 931 931 .686 .908 918 938 .888
Livorno 493 .803 775 966 961 .885 .834 .885 .896 .863

Lucca 451 .824 .842 847 .808 181 .861 .885 .890 .888
Massa .602 811 852 887 .886 678 .836 890 .885 .865
Pisa .548 818 .844 854 854 877 918 .898 920 .868
Pistoia .561 892 763 .847 .850 728 872 .864 .833 811
Prato 735 .823 .863 937 937 .843 .661 .905 906 .860
Siena 522 799 .869 925 920 783 .826 916 .856 .686
Avg 561 156 .836 885 .880 .800 .854 893 .887 .847
Std .08 11 .03 .05 .05 .08 .08 .02 .03 .06

Best results for each target area are highlighted in bold

RF Target Pisa RF Target Firenze NN Target Pisa NN Target Firenze

1.0
0.8
0.6

0 — A3.0.868 — A3-0.848 04 — A3.0.854 04 — A3-0.849
£A2.2-0.920 A2.2-0.915 A2.2-0.854 £A2.2-0.845
02 —— A2.1-0.898 02 —— A2.1-0.928 0.2 — A2.1-0.844 02 —— A2.1-0.882
— AL-0.918 — AL-0.864 — AL-0.818 — AL-0.636
0.0 0.0 0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Fig.5 Receiver Operating Characteristic (ROC) curve for geographically transferred crash prediction with
target areas Pisa and Florence for D2

performs overall much better than A2.1, especially with NN, proving that in this strategy,
the similarity information becomes much more useful than what happened with the single-
domain approach. Besides that, we can also notice that between NN and RF there is not a
clear winner.

5.4.5 A3:Weighted sampling

With the third strategy, we combine the local information of all (source) provinces at a
lower level, combining data rather than models. As before, each province is considered
in turn as target domain, yet this time we build a predictive model from scratch, obtaining
the training data by sampling the training set of each source domain, taking larger samples
from more similar provinces. The results are shown again in Table 5, under the column A3.
Since the method involves a random sampling, the values shown are obtained as average
over 10 distinct runs. The values point out that the strategy works relatively well in com-
bination with NN, reaching very often performances equal or close to the best ones, yet
providing overall slightly less convincing results (on average, there is a drop of 0.5% of auc
w.r.t. A2.2). Also, the performances with RF are much worse since the average drop is 4%,
and it never gets close to the best solutions.
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An additional overall comparison of the results is provided by Fig. 5, which shows the
ROC curves of the models obtained with all four strategies discussed above, over two sam-
ple provinces: Pisa and Florence. In the case of A3, one of the 10 models generated was
(randomly) selected. The plots show that in both cities, despite the differences in total auc,
all strategies provide rather steep curves, and thus reasonable results, except for A1, which
is less stable and, indeed, in the case of the NN predictor has significantly worse perfor-
mances w.r.t. the others.

5.4.6 Conclusions on selecting the best transfer learning method

Summarizing the results seen above, we can conclude that combining the local knowledge
of multiple sources is the key to improve performances in this transfer learning setting.
This means, in particular, that using the baseline method A0 and the single-source method
Al is not recommended. In addition, the best level to perform such combination appears to
be the weighted ensembling of local models (A2.2), rather than directly combining local
datasets (A3), suggesting that in our data, the more detailed information that resampling
strategies could in principle provide is outweighed by the noise that they introduce — noise
that the local models have lost, together with other bits of (potentially useful) information.
However, the data size and variability in different applications might change this equilib-
rium. Thus we suggest considering both approaches as reasonable candidates to test.

5.4.7 Geographically transferred crash prediction explanation

Like in [6], a parallel objective of this work is to understand which behaviors in a driver
more likely could lead to future crashes. We realize it by adopting the SHapley Additive
exPlanations (SHAP) method [34] to locally estimate for each prediction the expected con-
tribution of each feature. SHAP returns the shapely values: the higher is a shapely value,
the higher is the contribution of the feature; if the shapely value is positive, it contributes
towards the positive class (crash); otherwise it contributes towards the negative class (no
crash). From [6] emerges that IMN-based features and collective features are fundamental
for detecting crashes: the average maximum acceleration of break events in areas visited
occasionally performed by other users is crucial in pushing towards the crash. Another fea-
ture having this effect is the number of acceleration and break events between the second
and third most visited locations.

In the following, we summarize SHAP explanations by reporting the mean values of the
absolute SHAP values for the drivers having a car crash. We focus our study on Al and A3
to observe the differences between an approach trained on a single geographical unit (A1),
and an approach trained on multiple weighted areas (A3). The idea is to understand which
features are the most important for recognizing crashes in geographical transfer learning.
The results are reported in Fig. 6 for Al and in Fig. 7 for A3. We report the explanations
for the records for both NN and RF, using Pisa and Florence as target domains. The longer
is the value bar, the higher is the contribution of the corresponding feature. We focus on
the top five values.

In general, we observe that there is not a clear pattern among the different classifiers
and geographical units. Similarly to the observation reported in [6], for Al in Fig. 6,
we have the presence of several IMN-based features like the betweenness of the move-
ment from the first and third most important locations (1111_betweenness), the num-
ber of incoming edges in the second most visited location (12_indegree), the events at
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Fig.6 Aggregated SHAP exlanation of the five most important features for geographically transferred crash
prediction with target areas Pisa and Florence for D2 using Al
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Fig.7 Aggregated SHAP exlanation of the five most important features for geographically transferred crash
prediction with target areas Pisa and Florence for D2 using A3

the most important locations (tot_events_loc1), and the acceleration for reaching them
(avg_max_acc_locl). Moving the observations to Fig. 7, we notice how all the classi-
fiers highly rely on features related to events. This means that, when aggregating data
from different sources, it becomes fundamental to predict a crash to discriminate along
dimensions involving harsh accelerations, harsh braking, and harsh cornering. In par-
ticular, besides the events happening in general (like tot_duration_Q that means the
total duration of harsh cornering), we notice how the focus is on events happening when
driving towards the second most visited location (like tot_events_type_Q_loc2 that
counts the number of harsh cornerings for going to loc2). Finally, we underline again
how IMN-based features are important. For instance, with NN over Florence using A3
(bottom right of Fig. 7) we have that the most important feature for deriving a car crash
is avg_reg_mov_duration, i.e., the average duration of the movements performed regu-
larly. This suggests that performing general actions to reduce the travel time for such
a specific portion of the mobility can have a significant impact on the probability of a
crash in the area, improving safety overall.
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6 Conclusion and future work

In this paper, we have introduced the long-term car crash prediction problem, its asso-
ciated task of risk assessment and the geographically transferred car crash prediction
problem. For the first problem, we proposed a solution consisting in extracting sophis-
ticated features of the user’s mobility, able to capture not only basic characteristics
of her mobility, but also higher-level information derived from a network view of her
mobility history as well as contextual knowledge directly inferred through analysis of
the collective data of all users. On top of such features, machine learning models can be
trained and successfully employed. Experiments on real data showed that our solution
outperforms basic solutions based on state-of-art features, and a preliminary inspection
of the prediction models through explainable Al methods allowed us to identify a few
representative features associated with crash risk. For the second problem, the solution
proposed consists in exploiting city indicators that can be derived from mobility data
to design geographical transfer learning solutions based on the ensemble principle and
weighted through city similarities. The experimentation on real data demonstrated that
solutions employing city indicators for driving the transfer overcome standard baselines
that do not use them. Explanation techniques also revealed some of the features that are
most important for the success of the transfer learning methodology.

The results and insights obtained with this work opened several research and practi-
cal questions that we would like to address in the future, among which we mention the
following. First, the IMN representation adopted in the driving modeling phase appears
to be the right tool for enriching the data with higher-level semantics, such as the pur-
pose of trips and stops, as done in [7], the driving moods (e.g., through unsupervised
analysis of speeds and accelerations, or driving through dangerous intersections [11]),
or by better describing the evolution of driving habits. Also, contextual data might be
expanded, integrating several external, public data sources, such as the presence of
Points of Interest, the road network structure, weather conditions, etc. While the model
explanation tools were used in this work as a means for understanding the causes of
crashes, their application can be further extended to improve the performance of the
models by integrating feedback from domain experts — a human in the loop approach
that can be made possible by model explanation itself. The city indicators we adopted,
which are at the basis of our transfer learning proposals, are just a subset of a large
spectrum of possible choices, our current purpose being to yield a general characteriza-
tion of the urban areas involved. However, searching the optimal set of city indicators to
reach the best model transferrability on the specific prediction problem would be indeed
an interesting extension of the current work.

Also, while the paper was focused on crash prediction, the transfer learning meth-
ods proposed are based on rather general principles (see Section 4.3) that can apply to
a much broader set of problems. In particular, any learning problem related to mobil-
ity in the urban context might fit the framework, from the classification of points-of-
interests to the estimate of a driver’s fuel consumption. We consider exploring some
of these alternative application settings as an interesting line of future work. Finally,
geographical transfer learning is a poorly explored area, and the results discussed in this
paper represent only a first step in this direction. More sophisticated solutions could be
obtained by an appropriate combination of standard techniques (for instance, domain
resampling for aligning distributions) and context-aware methods (e.g., the city indica-
tors themselves or external information about the territory).
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