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Abstract Moving object monitoring is becoming essential for companies and
organizations that need to manage thousands or even millions of commercial
vehicles or vessels, detect dangerous situations (e.g., collisions or malfunctions)
and optimize their behavior. It is a task that must be executed in real-time, re-
porting any such situations or opportunities as soon as they appear. Given the
growing sizes of fleets worldwide, a monitoring system must be highly efficient
and scalable. It is becoming an increasingly common requirement that such
monitoring systems should be able to automatically detect complex situations,
possibly involving multiple moving objects and requiring extensive background
knowledge. Building a monitoring system that is both expressive and scalable
is a significant challenge. Typically, the more expressive a system is, the less
flexible it becomes in terms of its parallelization potential. We present a system
that strikes a balance between expressiveness and scalability. Going beyond
event detection, we also present an approach towards event forecasting. We
show how event patterns may be given a probabilistic description so that our
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system can forecast when a complex event is expected to occur. Our proposed
system employs a formalism that allows analysts to define complex patterns in
a user-friendly manner while maintaining unambiguous semantics and avoid-
ing ad hoc constructs. At the same time, depending on the problem at hand, it
can employ different parallelization strategies in order to address the issue of
scalability. It can also employ different training strategies in order to fine-tune
the probabilistic models constructed for event forecasting. Our experimental
results show that our system can detect complex patterns over moving entities
with minimal latency, even when the load on our system surpasses what is to
be realistically expected in real-world scenarios.

Keywords Complex Event Processing - Big Data - Distributed Computing

1 Introduction

Commercial vehicle fleets constitute a major part of Europe’s economy. There
were approximately 37 million commercial vehicles in the European Union
in 2015! and this number is growing every year with an increasing rate. De-
vices emitting spatial and operational information are installed on commercial
vehicles. This information helps fleet management applications improve the
management and planning of transportation services [48].

Consider another case of moving object monitoring, equally important from
an economic and environmental point of view: maritime situational awareness
[46,47,37]. The Automatic Identification System (AIS) 2 is used to track ves-
sels at sea in real-time through data exchange with other ships nearby, coastal
stations, or even satellites. Cargo ships of at least 300 gross tonnage and all
passenger ships, regardless of size, are nowadays required to have AIS equip-
ment installed and regularly emit AIS messages while sailing at sea. Currently,
there are more than 500,000 vessels worldwide that can be tracked using AIS
technology®. It is crucial, both for authorities and for maritime companies, to
be able to track the behavior of ships at sea in order to avoid accidents and
ensure that ships adhere to international regulations.

Streams of transient data emitted from vehicles or ships must be processed
with minimal latency, if a monitoring system is to provide significant margins
for action in case of critical situations. We therefore need to detect complex
patterns of interest upon these streams in an online and highly efficient man-
ner that can gracefully scale as the number of monitored entities increases.
Besides kinematic data, it is also important to be able to take into account
static (or “almost” static, with respect to the rate of the streaming data),
background knowledge, such as weather data, point of interest (POI) infor-
mation (like gas stations, ports, parking lots, police departments, NATURA
areas where ships are not allowed to sail, etc [30]). This enhanced data stream

1 http://www.acea.be/statistics/article/vehicles-in-use-europe-2017
2 http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx
3 https://www.vesselfinder.com
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produces valuable opportunities for the detection of complex events. One can
identify certain routes a vehicle or a ship is taking, malfunctions in the GPS
tracker or the AIS transponder, cases of illegal shipping in protected areas or
possible collisions between ships moving dangerously close to each other, to
name but a few of the possible patterns which could be of interest to ana-
lysts. Besides detecting patterns of interest, another important functionality
is that of forecasting whether such a pattern might occur in the future before
it actually occurs. Especially in the domain of moving object monitoring and
fleet management, such a functionality could allow analysts to have significant
margins of action by responding to alarms indicating the possible occurrence
of critical situations. Collision avoidance is an obvious example where forecast-
ing is significantly more important than simple detection, but other patterns
are also useful to forecast, such as predicting whether a ship is about to enter
an anchorage area or a port so that the traffic around a port may be more
efficiently managed.

As a solution to the problem of monitoring of moving objects, we present
a Complex Event Processing and Forecasting system that aims to improve
the operating efficiency of a commercial fleet. It operates online with enriched
data in a streaming environment. Our contributions are the following:

— We present a Complex Event Processing and Forecasting (CEP /F) system
based on symbolic automata and Markov models which allows analysts to
define complex patterns in a user-friendly language. Our proposed language
has formal semantics, while being able to also take into account background
knowledge.

— We define a series of realistic complex patterns that identify routes and
malfunctions of vehicles and detect critical situations for vessels at sea.

— We present and compare various parallel processing techniques and discuss
their applicability. We use them to implement a parallel system for online
recognition, training and forecasting.

— We augment the parallel training/forecasting implementation with basic
adaptation capabilities that change on-the-fly characteristics of the trained
model.

— We test our approach using large, real-world, heterogeneous data streams
from diverse application domains, showing that we can achieve real-time
performance even in cases of significantly increased load, beyond the cur-
rent demand levels.

This paper extends the work that we have already presented in [35]. Tt
presents a more comprehensive and detailed description of our engine. It also
describes its forecasting capabilities (see also [13]). We enrich the experiments
presented in [35] to include results on forecasting and we also present a first
step towards adaptive forecasting where the engine needs to adapt its fore-
casting model(s) on-the-fly.

The remainder of this paper is organized as follows. Section 2 discusses
related work, while Section 3 describes our CEP/F engine. In Section 4 the
parallel version of our engine is presented. Section 5 summarizes the datasets of
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vehicle and vessel traces and defines the recognition patterns. It also presents
our empirical evaluation. Finally, we conclude the paper in section 6 and de-
scribe our future work.

2 Related Work

Complex event recognition systems accept as input a stream of time-stamped,
“simple, derived events” (SDEs). These SDEs are the result of applying a
simple transformation to some other event (e.g., a measurement from a sen-
sor). By processing them, a CEP engine can recognize complex events (CEs),
i.e. collections of SDEs satisfying some pattern. There are multiple CEP sys-
tems proposed in the literature during the last 15 years, falling under various
classes [22,14,27]. Automata-based systems constitute the most common cat-
egory. They compile patterns (definitions of complex events) into finite state
automata, which are then used to consume streams of simple events and re-
port matches whenever an automaton reaches a final state. Examples of such
systems may be found in [24,50,45,5,12]. Another important class of CEP
systems are the logic-based ones. In this case, patterns are defined as rules,
with a head and a body defining the conditions which, if satisfied, lead to the
detection of a CE. A typical example of a logic-based system may be found
in [15]. Finally, there are some tree-based systems, such as [33,32], which are
attractive because they are amenable to various optimization techniques.

For efficient processing on big data streams, distributed architectures need
to be employed [27]. Big data platforms, such as Apache Spark and Storm,
have been used to embed CEP engines into their operators. Both platforms
have incorporated Sidhi [7,9] and Esper [3,4] as their embedded engines. Flink
[1], on the other hand, provides support for CEP with the FlinkCEP built-in
library [5]. Besides using these Big Data platforms, numerous other paral-
lelization techniques have been proposed in the literature that can achieve a
more fine-grained control over how the processing load is distributed among
workers. Pattern-based parallelization is the most obvious solution, where the
patterns are distributed among the processing units [21]. One disadvantage
of this parallelization scheme is that events have to be replicated to multiple
processing units, since a new input event may need to be consumed by more
than one pattern. Moreover, the parallelization level is necessarily limited by
the number of patterns (for a single pattern, this method offers no benefits).
Operator-based parallelization constitutes another approach, where the CEP
operators are assigned to different processing units [45,16]. This allows for
multi-pattern optimizations and avoids the data replication issue of the previ-
ous technique. On the other hand, the parallelization level is again limited, this
time by the number of operators present in the pattern (which is closely related
to the number of automaton states in automata-based CEP systems). Finally,
in data-parallelization schemes, events are split among multiple instances of
the same pattern [29]. For example, a pattern trying to detect violations of
speed limits must be applied to all the monitored vehicles and thus the input
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stream may be partitioned according to the id of the vehicles. The advantage
of this method is that it can scale well with the input event rate. It is, however,
not always obvious how an input stream should be partitioned, while avoiding
data replication.

Forecasting has not received much attention in the field of CEP. Some
conceptual proposals have acknowledged the need for CEF though [26,25,
19]. The first concrete attempt at Complex Event Forecasting (CEF) was
presented in [34], where a variant of regular expressions and automata was used
to define complex event patterns, along with Markov chains. Each automaton
state was mapped to a Markov chain state. Symbolic automata and Markov
chains were again used in [11,12]. The problem with these approaches is that
they are essentially unable to encode higher-order dependencies, since high-
order Markov chains may lead to a combinatorial explosion of the number
of states. In [36], complex events were defined through transitions systems
and Hidden Markov Models (HMM) were used to construct a probabilistic
model. The observable variable of the HMM corresponded to the states of the
transition system. HMMs are in general more powerful than Markov chains,
but, in practice, the may be hard to train ([17,10]) and require elaborate
domain modeling, since mapping a pattern to a HMM is not straightforward.
In contrast, our approach constructs seamlessly a probabilistic model from
a given CE pattern (declaratively defined). Knowledge graphs were used in
in [31] to encode events and their timing relationships. Stochastic gradient
descent was employed to learn the weights of the graph’s edges that determine
how important an event is with respect to another target event. However, this
approach falls in the category of input event forecasting, as it does not target
complex events.

3 Automata-based Complex Event Processing and Forecasting

We begin by first presenting our framework for CEP. It is based on Wayeb,
a Complex Event Processing and Forecasting engine which employs symbolic
automata as its computational model and Markov models as a probabilistic
framework [12,11]. The rationale behind our choice of Wayeb is that, contrary
to other automata-based CEP engines, it has clear, compositional semantics
due to the fact that symbolic automata have nice closure properties [23]. At
the same time, it is expressive enough to support most of the common CEP
operators [27], while remaining amenable to the standard parallelization so-
lutions. In this paper, we extend Wayeb’s language in order to support more
expressive patterns.

3.1 Complex Event Processing

Symbolic automata constitute a variation of classical automata, with the main
difference being that their transitions, instead of being labeled with a symbol
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from an alphabet, are equipped with formulas from Boolean algebra [23]. A
symbolic automaton consumes strings and, after every new element, applies
the predicates of its current state’s outgoing transitions to that element. If a
predicate evaluates to TRUE then the corresponding transition is triggered and
the automaton moves to that transition’s target state. A Boolean algebra is
defined as follows:

Definition 1 (Boolean algebra [23]) A Boolean algebra is a tuple (D, ¥,
[_], L, T,V,A, ) where D is a set of domain elements; ¥ is a set of predicates
closed under the Boolean connectives; L, T € ¥; the component [ ] : ¥ — 27
is a denotation function such that [L] =0, [T] = D and V¢,¢ € ¥:

= lo vyl =Iel VIv];
= [ A4l = o] N [4;
= [l =D\ 4.

Elements of D are called characters and finite sequences of characters are
called strings. A set of strings £ constructed from elements of D (£ C D*,
where * denotes Kleene-star) is called a language over D.

Wayeb uses symbolic regular expressions to define patterns and to represent
a class of languages over D [13]. Wayeb’s standard operators are those of the
classical regular expressions, i.e., concatenation, disjunction and Kleene-star.
We extend Wayeb to include various extra CEP operators: that of negation
and those of different selection policies (see [27] for a discussion of selection
policies). Symbolic regular expressions are defined as follows:

Definition 2 (Symbolic regular expression) A Wayeb symbolic regular
expression (SRE) over a Boolean algebra (D, ¥, [ ], L, T, V, A, —) is recur-
sively defined as follows:

— If ¢ € ¥, then R := 1) is a symbolic regular expression, with £(v)) = [¢],
i.e., the language of v is the subset of D for which ¢ evaluates to TRUE;

— Disjunction / Union: If R; and Rs are symbolic regular expressions, then
R := Ry + R; is also a symbolic regular expression, with L(R) = L(R;) U
L(Ry);

— Concatenation / Sequence: If Ry and Ry are symbolic regular expressions,
then R := Rj - Ry is also a symbolic regular expression, with £(R) =
L(Ry) - L(Rz), where - denotes concatenation. L(R) is then the set of all
strings constructed from concatenating each element of £(R;) with each
element of L(R»);

— Tteration / Kleene-star: If R is a symbolic regular expression, then R’ := R*
is a symbolic regular expression, with £(R*) = (L(R))*, where L* = |J L'

i>0
and L’ is the concatenation of £ with itself 4 times.

— Bounded iteration: If R is a symbolic regular expression, then R’ := R**
x times
is a symbolic regular expression, with R** = R. ... - R- R*.

— Negation / complement: If R is a symbolic regular expression, then R’ := R
is a symbolic regular expression, with L(R') = (L(R))°.
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— skip-till-any-match selection policy: If Ry, Ro, - -- , R, are symbolic regular ex-
pressions, then R’ := #(Ry, Rg, -+ , R,) is a symbolic regular expression,
with R\ :=R; - T* Ry - T*---T*- R,,.

— skip-till-next-match selection policy: If Ry, Rs,--- , R, are symbolic regular
expressions, then R’ := @Q(Ry, Ra, - -+ , Ry,) is a symbolic regular expression,
with R := Ry-(T* - Ra-T*) - Ro---(T* Ry, - T*) - R,,.

A Wayeb expression without a selection policy implicitly follows the strict-
contiguity policy, i.e., the SDEs involved in a match of a pattern should occur
contiguously in the input stream. The other two selection policies relax the
strict requirement of contiguity (see [27] for details). For example, if we use the
skip-till-any-match policy as defined above, then we allow any number of “irrele-
vant” events to occur between matches of the sub-expressions Ry, Ra, - , R,,.
Note that all these operators, even those of selection policies, may be arbi-
trarily used and nested in an expression, without any limitations. This is in
contrast to other CEP systems where nested operations may be prohibited.

Wayeb patterns are defined as symbolic regular expressions which are sub-
sequently compiled into symbolic automata. The definition for a symbolic au-
tomaton is the following:

Definition 3 (Symbolic finite automaton [23]) A symbolic finite automa-
ton (SFA) is a tuple M =(A, Q, ¢°, F, A), where A is an effective Boolean
algebra; @ is a finite set of states; ¢° € @ is the initial state; Qf C Q is the
set of final states; A C Q x ¥4 x (Q is a finite set of transitions.

A string w = ajas---ay is accepted by a SFA M iff, for 1 < ¢ < k, there
exist transitions ¢;_, —% ¢; such that ¢ = ¢° and ¢ € Qf. The set of strings
accepted by M is the language of M, denoted by L£(M). It can be proven that
every symbolic regular expression can be translated to an equivalent (i.e., with
the same language) symbolic automaton [23].

We are now in a position to precisely define the meaning of “complex
events”. Input events come in the form of tuples with both numerical and
categorical values. These tuples constitute the set of domain elements D. A
stream S is an infinite sequence S = t;, o, - - -, where each t; is a tuple (¢; € D).
Our goal is to report the indices i at which a CE is detected. If S7 ; =
-+ tp_1,t is the prefix of S up to the index k, we say that an instance of a
SRE R is detected at k iff there exists a suffix S,, , of S1. g such that S,, . €
L(R). If we attempted to detect CEs, as defined above, by directly compiling
an expression R to an automaton, we would fail. Consider, for example, the
(classical) regular expression R := a - b and the (classical) stream/string S =
a,b,c,a,b,c. If we compile R to a (classical) automaton and feed S to it, then
the automaton would reach its final state after reading the second element
to of the string. However, it would then never reach its final state again. We
would like our automaton to reach its final state every time it encounters a, b
as a suffix, e.g., again after reading t5 of S. We can achieve this with a simple
trick. Instead of using R, we first convert it to Ry = T* - R. Using R, we can
detect CEs of R while consuming a stream S, since a stream segment S, j is
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Table 1: An example stream composed of six events. Each event has a vehicle
identifier, a value for that vehicle’s speed and a timestamp.

vehicle id 78986 78986 78986 78986 78986

speed 85 93 99 104 111
timestamp 1 2 3 4 5
T

speed > 100 speed > 100
start —( 0 @ @

Fig. 1: Streaming symbolic automaton created from the expression R :=
(speed > 100) - (speed > 100).

recognized by R iff the prefix Sy is recognized by Rs. The prefix T* lets us
skip any number of events from the stream and start recognition at any index
m,1 <m <k.

As an example, consider the domain of vehicle monitoring. An analyst could
use the Wayeb language to define the pattern R := (speed > 100) - (speed >
100) in order to detect speed violations on roads where the maximum allowed
speed is 100 km/h. This pattern detects two consecutive events where the
speed exceeds the threshold in order to avoid cases where a vehicle momentarily
exceeds the threshold, possibly due to some measurement error. This pattern
would be compiled to the (non-deterministic) automaton of Figure 1. Table
1 shows an example stream processed by this automaton. For the first three
input events, the automaton would remain in its start state, state 0. After the
fourth event, it would move to state 1 and after the fifth event it would reach
its final state, state 2. We would thus say that a complex event R was detected
at timestamp = 5.

Note that our engine has been designed to be as generic as possible. It
can be used in a domain such as moving object monitoring, where the geospa-
tial component is dominant, but it can also be used in other domains which
fall completely outside this field, such as credit card fraud management. The
experimental results that we present in Section 5 have thus been obtained
without employing any domain-specific optimizations. Such optimizations are
of course conceivable and could presumably yield significant advantages. For
example, evaluating whether a given position lies within a given polygon can
be performed efficiently by partitioning geographical areas through the use of
a grid. We intend to pursue this line of work in the future, but for now we
restrict our attention to the problem of boosting efficiency through paralleliza-
tion techniques in the most generic and widely applicable manner. We would
also like to mention that our queries target individual objects and not groups of
objects (as in [43,44]). Our engine does not in principle preclude group queries.



Online fleet monitoring with scalable event recognition and forecasting 9

We will explore in the future whether modifications in the architecture of the
engine are required in order to accommodate such queries.

3.2 Complex Event Forecasting

We now show how we can use the framework of symbolic automata to per-
form Complex Event Forecasting (for more details, see [13]). The main idea
behind our forecasting method is the following: Given a pattern R in the form
of a symbolic regular expression, we first construct an automaton. In order
to perform event forecasting, we translate the automaton to an equivalent de-
terministic symbolic automaton. This deterministic automaton can then be
used to learn a probabilistic model, typically a Markov model, that encodes
dependencies among the events in an input stream. Note that deterministic
automata are important because they allow us to produce a stream of “sym-
bols” from the initial stream of events. By using deterministic automata, we
can map each input event to a single symbol and then use this derived stream
of symbols to learn a Markov model. By definition, if we are at any time in a
given state of a deterministic automaton, only one of the outgoing transitions
may be triggered. Thus, if we assign a unique symbol to each transition, then
we can map a stream of events to a stream of symbols: the symbols correspond-
ing to the transitions that were triggered after reading each input event. The
probabilistic model is learned from a portion of the input stream which acts
as a training dataset. It is then used to derive forecasts about the expected
occurrence of the complex event encoded by the automaton. After learning a
model, we need to estimate the so-called waiting-time distributions for each
state of our automaton. These distributions let us know the probability of
reaching a final state from any other automaton state in k events from now.
These distributions are then used to estimate forecasts, which generally have
the form of an interval within which a complex event has a high probability
of occurring.

We propose the use of a variable-order Markov model (VMM) [17,42,41,
20,49]. Compared to full-order Markov models, VMMs allow us to increase
their order m (how many events they can remember) to higher values and
thus capture longer-term dependencies, which can lead to a better accuracy.
We use Prediction Suffix Trees, as described in [42,41], as our VMM of choice.
The formal definition of a PST is the following:

Definition 4 (Prediction Suffix Tree [42]) Let X' be an alphabet. A PST
T over X' is a tree whose edges are labeled by symbols o € X' and each internal
node has exactly one edge for every o € X' (hence, the degree is | X' |). Each
node is labeled by a pair (s,s), where s is the string associated with the walk
starting from that node and ending at the root, and 7, : X — [0, 1] is the next
symbol probability function related with s. For every string s labeling a node,
Y wex Vs(0) = 1. The depth of the tree is its order m.

Figure 2b shows an example of a Prediction Suffix Tree of order m = 2. Ac-
cording to this tree, if the last symbol that we have encountered in a stream is
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(D@ @2 0109

(a) Example of a Counter Suf- (b) Example of a Prediction Suffix Tree T for X' = {a, b} and
fix Tree with m = 2 and S = m = 2. Each node contains the label and the next symbol
aaabaabaaa. probability distribution for a and b.

Fig. 2: Examples of Counter and Prediction Suffix Trees.

a and we ignore any other symbols that may have preceded it, then the prob-
ability of the next input symbol being again a is 0.7. However, we can obtain
a better estimate of the next symbol probability by extending the context and
looking one more symbol deeper into the past. Thus, if the last two symbols
encountered are b, a, then the probability of seeing a again is very different
(0.1). On the other hand, if the last symbol encountered is b, the next symbol
probability distribution is (0.5,0.5) and, since the node b, (0.5,0.5) has not
been expanded, this implies that its children would have the same distribution
if they had been created. Therefore, the past does not affect the prediction
and will not be used. Note that a Prediction Suffix Tree whose leaves are all
of equal depth m corresponds to a full-order Markov model of order m, as
its paths from the root to the leaves correspond to every possible context of
length m.

Our goal is to incrementally learn a Prediction Suffix tree 7' by adding new
nodes only when it is necessary. First, we need to derive the initial empirical
conditional distributions about the various symbols (e.g., P(a | b), the proba-
bility of seeing a after b). In [42], it is assumed that the empirical probabilities
of symbols given various contexts are available. The suggestion in [42] is that
these empirical probabilities can be calculated either by repeatedly scanning
the training stream or by using a more time-efficient algorithm that keeps
pointers to all occurrences of a given context in the stream. We opt for a vari-
ant of the latter choice. We basically need to count the number of occurrences
of the various candidate strings s in S7_j. In order to keep track of these
counters, we can use a tree data structure which allows to scan the training
stream only once. We call this structure a Counter Suffix Tree. Each node in
a Counter Suffix Tree is a tuple (o, c) where o is a symbol from the alphabet
(or € only for the root node) and ¢ a counter. By following a path from the
root to a node, we get a string s = gg - 01 - - - 0, Where oy = € corresponds
to the root node. The property maintained as a Counter Suffix Tree is built
from a stream S7_j is that the counter of the node o, that is reached with s
gives us the number of occurrences of the string o, - 0,—1 - - - 01 (the reversed
version of s) in S7. . As an example, see Figure 2a, which depicts the Counter
Suffix Tree of maximum depth 2 for the stream S = aaabaabaaa. If we want
to retrieve the number of occurrences of the string b-a in S, we follow the left
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child (a,7) of the root and then the right child of this. We thus reach (b, 2)
and indeed b - a occurs twice in S.

After we have a Counter Suffix Tree available, we can then try to learn
a Prediction Suffix Tree. The learning algorithm in [42] starts with a tree
having only a single node, corresponding to the empty string €. Then, it decides
whether to add a new context/node s by checking two conditions:

— First, there must exist o € ¥ such that P(o | s) > 6; must hold, i.e., o
must appear “often enough” after the suffix s;

__P(als) _ P(als) 1 ; it i
) Plolsuffia®) > 6y (or B o [suffin(a)) < 02) must hold, i.e., it is

“meaningful enough” to expand to s because there is a significant differ-
ence in the conditional probability of o given s with respect to the same
probability given the shorter context suffiz(s), where suffiz(s) is the longest
suffix of s that is different from s.

— Second

For example, consider node a in Figure 2b and assume that we are at a stage
of the learning process where we have not yet added its children, aa and
ba. We now want to check whether it is meaningful to add ba as a node.
Assuming that the first condition is satisfied, we can then check the ratio

P(o]s) __ P(alba) __ 0.1 _ 1
Bolsufie@) — Blaja) — 07 ~ 0.14. If 8, = 1.05, then 9, ~ 0.95 and the

condition is satisfied, leading to the addition of node ba to the tree. It can
be proven that the hypothesis tree T constructed via the above procedure, is
an e-good hypothesis (where € is an approximation parameter) with respect to
the source that generates the training dataset, i.e., the KL.-divergence between
the distributions of 7" and the original source is bounded above by ¢. For more
details, see [42].

We can use a Prediction Suffix Tree T' to calculate the so-called waiting-
time distribution for every state ¢ of an automaton A, i.e., the distribution of
the index n, given by the waiting-time variable W, = inf{n : Y5, Y1,....,Y,,},
where Yy = ¢, ¥; € AQ\A.Qy for i #n and Y,, € A.Q;. Given an automaton
A and its Prediction Suffix Tree T', we can estimate the probability for A to
reach for the first time one of its final states in the following manner. As the
system processes events from the input stream, besides feeding them to A, it
also stores them in a buffer that holds the m most recent events, where m is
equal to the maximum order of the Prediction Suffix Tree T'. After updating
the buffer with a new event, the system traverses 1" according to the contents
of the buffer and arrives at a leaf [ of T'. The probability of any future sequence
of events can be estimated with the use of the probability distribution at [.
In other words, if S1., = -+ ,tx_1,tr is the stream seen thus far, then the
next symbol probability for ¢q1, i.€., P(tg+1 | thom+1, -, tk), can be directly
retrieved from the distribution of the leaf [. If we want to look further into the
future, e.g., into t;42, we can repeat the same process as necessary. Namely,
if we fix tg41, then the probability for tx1a, P(tgto | thomt2, " s tk+1), CAn
be retrieved from T, by retrieving the leaf I' reached with that, s th—mao-
In this manner, we can estimate the probability of any future sequence of
events. Consequently, we can also estimate the probability of any future se-
quence of states of A, since we can simply feed these future event sequences
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Fig. 3: Automaton and waiting-time distributions for R = a-b-b-b, X = {a, b}.

—Inside(PortLon, PortLat) Inside(PortLon, PortLat)

Inside(PortLon, PortLat)
start —( 0

—Inside(PortLon, PortLat)

Fig. 4: Deterministic symbolic automaton created from Pattern (1).

to A and let it perform “forward” recognition with these projected events. In
other words, we can let A “generate” a sequence of future states, based on
the sequence of projected events, in order to determine when A will reach a
final state. Finally, since we can estimate the probability for any future se-
quence of states of A, we can use the definition of the waiting-time variable
Wy =inf{n:Yy,Y1,....Y,, Yo =¢,g € AQ\A.Qy,Y, € A.Qs}) to calculate
the waiting-time distributions.

Figure 3 shows an example of an automaton (its exact nature is not im-
portant, as long as it can also be described as a Markov chain), along with
the waiting-time distributions for its non-final states. For this example, if the
automaton is in state 2, then the probability of reaching the final state 4 for
the first time in 2 transitions is ~ 50%. However, it is 0% for 3 transitions, as
the automaton has no path of length 3 from state 2 to state 4.

In order to ground the above discussion in the domain of moving object
monitoring, we will provide here a more concrete example. Assume that we
are interested in the following very simple pattern:

InsidePort := Inside(PortLon, PortLat) (1)

This pattern consists of a single predicate that evaluates to TRUE whenever
a ship is within the boundaries of a given port (the exact details of how this
predicate is evaluated are not relevant here). If we wanted to detect only
entrances to the port (and not exits), we would need to enhance this pattern
by requiring that complex events are detected only when the ship was first
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outside the port and then, with the next input event, inside it. We could use
the concatenation operator to define this pattern, along with logical negation,
as follows:

InsidePort := —Inside(PortLon, PortLat) - Inside(PortLon, PortLat)  (2)

For reasons of simplicity, we will base the following discussion on Pattern
(1). The deterministic symbolic automaton corresponding to this pattern is
shown in Figure 4. This automaton has two “symbols”: a corresponding to
Inside(PortLon, PortLat) and b for its negation —Inside(PortLon, PortLat).
After constructing the automaton, we can use a training dataset to learn the
relevant Counter and Prediction Suffix Trees, e.g., as those shown in Figure
2. This is achieved by converting the training stream of position signals to a
stream of symbols composed only of as and bs. As we have explained above,
each position signal corresponds exactly to one symbols, either a (meaning
that the position is inside the port) or b (meaning that the position is outside
the port). The learnt Prediction Suffix Tree of Figure 2b should be interpreted
in this example as follows: the left-most node aa, (0.75,0.25) implies that the
probability of the ship being inside the port (symbol a) is 0.75, given that it
was already inside the port for the last two positions. Similarly for the other
nodes. With the help of the Prediction Suffix Tree we can then calculate the
waiting-time distributions for the automaton of Figure 4.

We can use the waiting-time distributions to produce various kinds of fore-
casts. In the simplest case, we can select the future point with the highest
probability and return this point as a forecast. We call this type of forecasting
REGRESSION-ARGMAX. Alternatively, we may want to know how likely
it is that a CE will occur within the next w input events. For this, we can
sum the probabilities of the first w points of a distribution and if this sum
exceeds a given threshold we emit a “positive” forecast (meaning that a CE is
indeed expected to occur); otherwise a “negative” (no CE is expected) fore-
cast is emitted. We call this type of forecasting CLASSIFICATION-NEXTW.
These kinds of forecasts are easy to compute. There is another kind of useful
forecasts, which are however more computationally demanding. Given that
we are in a state g, we may want to forecast whether the automaton, with
confidence at least 6., will have reached its final state(s) in n transitions,
where n belongs to a future interval I = [start, end]. The confidence thresh-
old 0. is a parameter set by the user. The forecasting objective is to se-
lect the shortest possible interval I that satisfies 0¢.. Figure 3b shows the
forecast interval produced for state 1 of the automaton of Figure 3a, with
6. = 50%. We call this third type of forecasting REGRESSION-INTERVAL.
In this paper and the empirical results that we present in what follows, we
focus on CLASSIFICATION-NEXTW. The reason is that this type of fore-
casting can be more comprehensively evaluated in the context of CEP. With
CLASSIFICATION-NEXTW we can evaluate how our solution performs both
against positives (i.e., when the complex event does indeed occur within the
specified window) and against negatives (i.e., when no complex event occurs).
Given that complex events are generally rare and thus negatives are frequent,
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Fig. 5: Parallel schemes used with Wayeb.

the performance of a CEF method against negatives is crucial. Measuring this
performance with regression forecasting (either REGRESSION-INTERVAL
or REGRESSION-ARGMAX) is, however, not possible, since these types of
forecasting always assume that a complex event will happen and they then
measure the difference between the predicted timestamp (or interval) and the
actual one. In the future, we intend to investigate if and how regression fore-
casting can provide meaningful ways to evaluate the performance of a CEF
engine.

4 Scalable CEP/F Over Multiple Trajectories

We now discuss how various parallelization schemes may be applied to our CEP
engine. For this purpose, we leverage a popular streaming platform, Apache
Flink [18,1]. Flink is a distributed processing engine for stateful computations
over unbounded and bounded data streams. It is designed to run in cluster
environments and perform computations at in-memory speed. In this paper,
we focus on two parallelization techniques: pattern-based and partition-based
parallelization [27]. We currently exclude state-based parallelization, since, as
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explained above (Section 2), its parallelization level is limited by the number
of automaton states, which is typically quite low (it is often a single-digit
number). We do intend, however, to examine in the future how it could be
combined with pattern- or partition-based parallelization to provide them with
an extra performance boost.

4.1 Scalable Event Processing

In pattern-based parallelization, each available CEP engine receives a unique
subset of the patterns and performs recognition for these patterns only, with
these subsets being (almost) equal in size (see Figure 5a). On the other hand,
the stream is broadcast to all parallel instances of any downstream operators.
This is a significant (yet unavoidable) drawback of pattern-based paralleliza-
tion, since each worker has a subset of the patterns while each pattern may
need to process the whole stream. Note that each blue rectangle in Figure
5a represents a single thread. This means that in this architecture we have
one thread for the source plus as many threads as the parallelism of the CEP
operator.

In partition-based parallelization the opposite happens. Every CEP engine
is initialized with all patterns, but the stream is not broadcast (see Figure 5b).
A partitioning function is used to decide where each new input event should
be forwarded. This function takes as input any attribute of the event (we use
the id of a vehicle or vessel) and, by performing hashing, it outputs which
parallel instance of the next operator the event will go to. As with pattern-
based parallelization, we have one thread for the source plus as many threads
as the parallelism of the CEP operator.

Besides Flink, we also use the Apache Kafka messaging platform to con-
nect our stream sources to Wayeb instances [2]. Kafka provides various ways
to consume streams. So far, we have focused on linear streams, i.e., events
are assumed to be totally ordered and arrive at our system sequentially one
after another. With Kafka, however, there is the option of using parallel input
streams. A Kafka input topic can have multiple partitions and each partition
can be consumed in parallel by a different consumer. In this case the input
stream is already partitioned on some attribute of the events.

Through this Kafka functionality, a variant of partition-based paralleliza-
tion becomes possible, where both the input source and the recognition engine
work in parallel (see Figure 5¢). If the parallelism of the input source (i.e.,
the number of partitions of the topic is the same as that of the recognition
operator (i.e., number of CEP engines), then we can simply attach each source
instance to a CEP engine instance without further re-partitioning on our end.
When, however, the parallelisms are different, further re-partitioning is per-
formed by partitioning each source the same way we partitioned the single
threaded source. Unlike the previous architectures, each pair of a source and
a CEP operator parallel instances belong in a single thread. This is attributed
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to operator chaining [8], a Flink mechanism that chains operators of the same
parallelism in a single thread for better performance.

Similarly to partition-based parallelization, we can have multiple sources
for pattern-based parallelism as well. Messages in Kafka are still partitioned by
a desired attribute, albeit we always have to perform the broadcasting step for
each source. Hence, we don’t have a variant of pattern parallelization, rather
we use it only as a way to test Wayeb with streams of higher input rate.

4.2 Scalable Training and Forecasting

We present the parallel version of Wayeb, enhanced with adaptation capabil-
ities. Figure 6 depicts the Flink operators comprising the module. Events are
first loaded into a Kafka topic and then forwarded to the training and the
forecasting operators. Note that training and forecasting (i.e., the emission
of forecasts) are two separate sub-processes within this module. Training in-
volves the use of a dataset to estimate suffix trees, distributions and forecast
intervals, as described in Section 3.2. This step can be performed offline on a
training dataset and the constructed model can then be used for forecasting
on multiple testing datasets, assuming that the testing datasets have the same
statistical properties as the training one. In what follows, we will show how
this step may be performed online and thus how we can avoid relying on the
stationarity assumption. Forecasting, on the other hand, involves the emission
of the forecast intervals from each state. As soon as an automaton reaches a
given state, it can emit the interval of this state as a forecast, if the confi-
dence for that interval is above a user-provided threshold. This step is always
performed online.

The training operator is a co-flatmap function (i.e., a function that has two
different input streams and for each input message of an input stream produces
zero, one or multiple output messages) that has embedded training engines in
each parallel instance. The first input stream of the operator, as described
above, consists of the input events that are broadcast to all parallel instances
of the operator. That is because pattern-based parallelization is chosen in the
training phase with each parallel instance having a subset of the patterns.
Each pattern needs to have the whole stream of events in order to search and
forecast possible matches of the pattern. The reason we have chosen pattern-
based parallelization is that we want to produce a single global model for every
pattern.

The second input stream consists of the configuration messages. Such mes-
sages are sent by the user. Two parameters of the model to be trained can be
updated on-the-fly by these messages. First, it is the order of the model, i.e.,
how deep into the past a state can look when calculating its transition prob-
abilities. Second, the confidence threshold. Only forecasts with a probability
higher than this threshold are emitted.

Models forwarded by the training operator are first processed by an inter-
midiate operator that calculates the Waiting Time Distributions of the model
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(see Figure 6). This is a time consuming operation that increases in time the
higher the new order is. As this calculation only happens whenever a new
model is produced, it is detached from the rest of the training phase.

Finally, produced models reach the forecasting operator. This operator is
another co-flatmap function as every input event does not guarantee a forecast.
Models are broadcast to the operator because data distribution may be imple-
mented in the forecasting phase and, in such a case, each parallel forecasting
instance needs to have all the models. Moreover, each message forwarded from
training has one model inside due to pattern distribution during training. Due
to this, models are accompanied by their pattern id. This id is used to sort
out all the models inside each parallel forecasting instance. On the other hand,
input events are partitioned by a custom function, in our case a hash function
on the key of the messages. This ensures that events of the same entity end
up in the same parallel instance, which preserves semantics in the distributed
version.

5 Experimental Evaluation

We present an extensive experimental evaluation of our parallel CEP /F engine,
Wayeb, on two datasets containing real-world trajectories of moving objects.
The first dataset comes from the domain of fleet management for vehicles mov-
ing on roads and emitting information about their status. The second dataset
consists of vessel trajectories from ships sailing at sea. In both cases, our goal
is to simultaneously monitor thousands of moving objects and detect/forecast
interesting (or even critical) behavioral patterns in real-time, as defined by
domain experts. All experiments were conducted on a server with 24 proces-
sors. Each processor is an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz. The
server has 252 GB of RAM. The source code for Wayeb may be found in the
following repository: https://github.com/ElAlev/Wayeb.
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5.1 Fleet Management

Efficient fleet management is essential for transportation and logistics com-
panies. We show how our proposed solution can effectively help in this task.
With the help of experts, we define a set of patterns to be detected on real-
time streams of trajectories and show that our engine can detect these patterns
with an efficiency that is orders of magnitude better than real-time.

5.1.1 Dataset Description

The dataset is provided by Vodafone Innovus?*, our partner in the Track &

Know project, which offers fleet management services. It contains approxi-
mately 270M records (243GB). It covers a period of 5 months, from June
30, 2018 11:00:00 PM to November 30, 2018 11:59:59 PM. The initial source
emitting the data is composed of GPS (Global Positioning System) traces of
moving vehicles. The data also includes speed information provided by an
installed accelerometer and information regarding the level of fuel in a ve-
hicle’s tank measured by a fuel sensor. It is also enriched with weather and
point-of-interest (POI) information (e.g., if a vehicle is close to a gas station,
a university, a school etc), as described in [48]. Duration, accelaration and
distance are some extra attributes that are calculated on the fly as they enter
our system by storing information from previous events. These preprocessing
steps are not necessary for using our engine. Wayeb could also work on the raw
position signals. However, they do offer a wider range of behavioral patterns
that can be detected, since they provide extra information which is usually
not present in the raw data stream.

5.1.2 Pattern Definitions

The first pattern we have defined concerns vehicle routes. A route is the basic
element of vehicle management and aggregates data between the start and the
end point of a vehicle’s motion cycle. A motion cycle is based on the engine
status. Each vehicle route must start and end with an “engine-off” message,
i.e., a message whose engine status attribute is “off”. According to Vodafone
Innovus, there are 12 patterns that describe the most frequent routes. These
12 route patterns can be expressed with a single Wayeb pattern as follows:

Definition 5 A route pattern for a vehicle is defined as the following se-
quence: emitting “engine-off” messages for at least 30 minutes, emitting at
least one “moving” message and again emitting “engine-off” messages for at
least 30 minutes:

Route := (Engine = Off A Duration > 30)-
(Engine = Moving)™-
(Engine = Off A Duration > 30)

4 https://www.vodafoneinnovus.com/



Online fleet monitoring with scalable event recognition and forecasting 19

Unfortunately, the expected data flow can be corrupted due to a variety of
reasons. These reasons include bad connection during the device installation
or after the vehicle has been serviced, movement of the satellites, hardware
malfunctions or, simply, just an issue with the GPS. The result of these reasons
is reflected in the data. For example, coordinates may change even though the
vehicle is not moving or the vehicle may be moving but the coordinates remain
the same. It is also often the case that the engine status is incorrect (e.g.,
parked messages are emitted even though engine is on, vehicle is moving yet
engine status is not moving etc). These issues are important and need to be
detected. We have summarized those issues in a number of patterns, defined
as follows:

Definition 6 ParkedMovingSwing. Engine status swings between “parked”
and “moving” during consecutive events.

ParkedMovingSwing := (Engine = Parked) - (Engine = Moving)-
(Engine = Parked) - (Engine = Moving)

Definition 7 IdleParkedSwing. Engine status swings between “idle” and “parked”
during consecutive events.

IdleParkedSwing := (Engine = Idle) - (Engine = Parked)-
(Engine = Idle) - (Engine = Parked)
Definition 8 SpeedSwing. Speed swings between Okm/h and greater than
50km/h during consecutive events.
SpeedSwing := (Speed > 50) - (Speed = 0) - (Speed > 50) - (Speed = 0)

Definition 9 Moving WithZeroSpeed. Engine status is “moving”, distance trav-
eled is greater than 30m, yet speed is Okm/h for more than 3 consecutive mes-
sages.

MWZS := (Engine = Moving A Speed =0 A Distance > 30)>"

Definition 10 Moving WithBadSignal. Vehicle is accelerating and distance
traveled is greater than 30m yet there are no satellites tracking the vehicle
for more than 3 consecutive messages.

MWBS := (Accelaration A Satellites =0 A Distance > 30)T

In addition to the above issues, possibly related to malfunctions, experts
are also interested in the following patterns:

Definition 11 Possible Theft. Engine status is parked, speed is Okm/h and
distance traveled is greater than 30m for more than 3 consecutive messages.

PossibleTheft :== (Engine = Parked A
Speed = 0 A Distance > 30)>
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Definition 12 Dangerous Driving. There is ice on the road and the vehicle
is moving above a specific speed limit for at least 2 consecutive messages.

DangerousDriving := (IceExists = TRUE A\ Speed > vyimit)*+

Definition 13 Refuel Opportunity. Vehicle is close to a gas station and the
fuel in the tank is less than 50% for at least 2 consecutive messages.

RefuelOpp := (CloseToGasStation = TRUE A FuelLevel < 0.5)*"

Note that Patterns 6 — 10 refer to a kind of noise detection. For our pur-
poses, these patterns are treated as normal complex events and are simply
reported whenever they are detected. We leave the decision of whether these
events and their participating input events should be discarded at the discre-
tion of analysts.

5.1.3 Recognition Results

Figure 7a and Table 2 showcase recognition times for our various paralleliza-
tion techniques: pattern-based, partition-based and partition-based with one
source per engine. We also show results for the non-parallel version. We have
duplicated some of the patterns defined previously to simulate a greater work-
load of 16 patterns. We have repeated the experiment for 1, 2, 4 .8 and 16
cores. Note that pattern-based and partition-based parallelization (i.e., or-
ange and green bars) have an extra thread that handles the entirety of the
source which is not present in the figure. This makes their actual thread count
to 2+1, 441, 841, 16+1 respectively. Compared to the original single-core
version, all three parallelization techniques exhibit speed-ups. For partition-
and pattern-based parallelization, however, there seems to be an upper limit
on the number of cores it is most efficient to use. For pattern-based paralleliza-
tion there is a significant raise in time after 4 cores, while for partition-based
there is no improvement after 2 cores. The reason is that the single source
acts as a bottleneck. For partition-based parallelization we have one thread
(the partitioner) deciding in which core each event will be forwarded, while
for pattern-based events are broadcast to all cores, again in a single threaded
manner. This explanation is supported by the smooth decrease in time when
a parallel source is used for partition-based parallelization. While it starts off
worse than pattern- and partition-based, it exhibits the best results for 16
cores.

To further support our claim above, we conducted a second experiment
with a larger load, as shown in Figure 7b. 48 patterns were used this time
(replicated in similar fashion as before) without any other changes. Indeed,
with every recognition node having more work to do, execution time becomes
less dependent on partitioning/broadcasting and more dependent on the actual
recognition. Hence, speed-ups are now visible even for higher number of cores.
As suspected, for parallel sources the results are not affected. Partition-based
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Fig. 7: Recognition times of different parallelization techniques for different
workloads. The horizontal axis represents the number of worker threads.

parallelization with parallel sources is slower when few threads are used (e.g.,
for two threads). This is because of the extra source thread that the other
two techniques use. The work is in fact split between this one source thread
and two other threads performing recognition. We thus have three threads
performing similar volumes of work. When parallel sources are used, however,
each parallel source is chained to a Wayeb engine in a single thread and we
thus have two threads doing more work. Each thread handles half the source
and performs recognition on half the stream.

In order to evaluate recognition speed independently from source speed
we had to turn operator chaining off as we cannot measure them separately
when they belong in the same thread (i.e., in the case of one source per CEP
engine). In addition, we leveraged parallel sources to achieve input streams
of higher input rate. The goal here is to determine if our system can process
input events faster than the source produces them. Flink offers a metric for
this purpose, called backpressure [6]. Backpressure is judged on the availability
of output buffers. Assuming that some task A sends events to some task B,
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Table 2: Recognition times (in hours) of different parallelization techniques for
different workloads.

number of patterns 16 48
no parallelization 3.09 7.57
pattern-based-2-threads 1.71  4.69
partition-based-2-threads 1.52 4.63

partitionOneStreamPerEngine-2-threads 2.25 5.13

pattern-based-4-threads 1.17  2.88
partition-based-4-threads 0.93 2.65
partitionOneStreamPerEngine-4-threads 1.18  2.72
pattern-based-8-threads 1.5 2.17
partition-based-8-threads 091 1.86

partitionOneStreamPerEngine-8-threads 0.61 1.41
pattern-based-16-threads 1.53 1.72

partition-based-16-threads 094 1.49

partitionOneStreamPerEngine-16-threads  0.38  0.81

if there is no output buffer available for task A, we say that task B is back
pressuring task A. In our case A, is the source operator and B is the operator
with the CEP Engine. 100 samples (each sample checks if there is any output
buffer available) are triggered every 50ms in order to measure backpressure.
The resulting ratio notifies us how many of these samples were indicating back
pressure, e.g. 0.6 indicates that 60 in 100 were stuck requesting buffers from
the network stack. According to the documentation [6] a ratio between 0 and
0.1 is normal. 0.1 to 0.5 is considered to be low and anything above 0.5 is
high. Note that low and high pressure will slow down the source to match the
throughput of the pressuring operator.

Results for Partition-based parallelization are presented in Figure 8a. The
backpressure ratio is plotted against the number of threads used for recogni-
tion. Generally, the more threads used the faster Wayeb can process events and
hence less pressure is noted. Each dashed line represents a source with paral-
lelism varying from 1 to 6. The event rate of a parallel source is measured by
executing an experiment with 0% backpressure (i.e., it will not slow down due
to pressure) and summing the event rate of each parallel instance presented
by the flink dashboard (e.g., for 2 parallel instances of 120K events/second
(e/s) for each one the overall sum is 120 + 120 = 240K (e/s)). Although, the
greater the parallelism of the source the larger the event rate, it is not a mul-
tiplier as for 1, 2, 3, 4, 5 and 6 sources the rate becomes 130K, 240K, 350K,
430K, 440K and 490K e/s respectively. The workload in this experiment tries
to emulate a real scenario and hence the route and the 5 malfunction patterns
are used (i.e., they are not replicated). The results show that Wayeb can ef-
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Fig. 8: Backpressure experiments for fleet management. The horizontial axis
expresses the number of recognition threads. Workload is 6 patterns. Each
dashed line represents a different parallelism of the source stream.

fectively process streams of at least 490K e/s (black line) for this workload as
0 pressure is exhibited when 16 workers are used. As it was stated before, the
duration of the dataset is 5 months which translates to roughly 13M seconds.
Since the total number of input events is 270M, the average event input rate
is 270M/13M = 20 e/s. Comparing the pattern throughput rate (490K e/s)
with the event input rate clearly exhibits a performance that is 4 orders of
magnitude better than the real-time requirements of this use case.

We perform a similar experiment for pattern-based parallelization. This
time the number of threads used for recognition varies between 1, 2, 3 and 6
as there are only 6 patterns - a handicap of this technique discussed earlier.
Figure 8b showcases the results of our experiment. Unfortunately, even with
6 recognition threads and a single threaded source (purple dashed line) there
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is about 13% backpressure. Due to this, all sources are being slowed down to
110K e/s regardless of their parallelism. There is a drop in pressure the more
recognition threads are used due to the better distribution of the patterns.
However, it is not significant as the events are also multiplied as many times
as the number of these threads and add extra pressure. Eventually more space
is requested from the output network buffers of the source.

5.2 Maritime Situational Awareness

We now present experimental results on another real-world dataset. This
dataset contains trajectories of vessels sailing at sea. We have defined a set
of patterns that are similar to the ones presented in [37,39], which have been
constructed with the help of domain experts. We demonstrate the effectiveness
of our system which is capable of efficiently processing a dataset that contains
trajectories from ~ 5K vessels and covers a period of 6 months in less than
one hour.

5.2.1 Dataset Description

A public dataset of 18M position signals from 5K vessels sailing in the Atlantic
Ocean around the port of Brest, France, between October 1st 2015 and 31st
March 2016 has been utilized [40]. A derivative dataset has been released in
[38], containing a compressed version of the original dataset (4.5M signals),
as decribed in [37]. Each trajectory in this dataset contains only the so-called
critical points of the original trajectory, i.e., points that indicate a significant
change in a vessel’s behavior (e.g., a change in speed or heading) and from
which the original trajectory can be faithfully reconstructed. We processed
these compressed trajectories in order to determine the proximity of vessels to
various areas and locations of interest, such as ports, fishing areas, protected
NATURA areas, the coastline, etc.

5.2.2 Pattern Definitions

We now present a detailed description of the maritime patterns that we im-
plemented, assuming that the input events contain the information described
above.

Definition 14 High Speed Near Coast: Vessel is within 300 meters from the
coast and is sailing with speed greater than 5 knots for at least one message.

HSNC := (IsNear(Coast) = TRUE A Speed > 5)"

Definition 15 Anchored: Vessel is inside an anchorage area or near a port
and is sailing with speed less than 0.5 knots for at least three messages.
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Anchored :== ((IsNear(Port) = TRUE V
WithinArea(Anchorage) = TRUE) A
speed < 0.5)3F

Definition 16 Drifting: There is a difference between heading and actual
course over ground greater than 30 degrees while the vessel is sailing with at
least 0.5 knots for at least three messages.

Drifting := (|Heading — Cog| > 30 A Speed > 0.5)*"

Definition 17 Trawling: A vessel is inside a fishing area sailing with speed
between 1 and 9 knots for at least three messages. In addition, it must be a
fishing vessel.

Trawling := (VesselType = Fishing N\
WithinArea(Fishing) = TRUE A
speed > 1.0 A speed < 9.0)3+

Definition 18 Search and Rescue: A SAR Vessel sails with a speed of greater
than 2.7 knots and constantly changes its heading for at least three messages.

SAR := (ChangelnHeading = TRUE A
VesselType = SAR A speed > 2.7)3"

Definition 19 Loitering: Vessel is neither near port nor the coastline while
it sails with speed below 0.5 knots.

Loitering := (IsNear(Port) = FALSE A
IsNear(Coast) = FALSE A
speed < 0.5)%T

5.2.3 Recognition Results

We used the 6 patterns defined above as the workload for a number of exper-
iments. Following a similar approach to our fleet management experiments,
we avoided replicating the patterns to emulate a real scenario and evaluated
them for streams of different event rates.

Figure 9a presents results for the partition-based parallelization scheme.
This time the backpressure remains always above 40% for a 6-threaded input
source, even with 16 recognition threads. Due to the fact that the CEP opera-
tor cannot keep up with the initial rate of the source, the source has to adjust
its rate to match the throughput of the CER operator. According to the Flink
dashboard, this rate is at most 180K e/s (with 16 worker threads). This lower
throughput of our CEP operator (compared with the fleet management use
case) can be attributed to the fact that the patterns are now more complex, as
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Fig. 9: Backpressure experiments for the Maritime dataset. The horizontal axis
expresses the number of recognition threads.
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on average they contain more unions, disjunctions and iterations to evaluate
for every event. The duration of the dataset is 6 months which translates to
roughly 15.5M seconds. Since the total number of input events is about 4.5M,
the average event input rate is 15.5M/4.5M = 3.5 e/s. Comparing the pat-
tern throughput rate with the event input rate showcases again a performance
that is 4 orders of magnitude better than the real-time requirements of this
use case. The results for pattern-based parallelism are presented in Figure 9b
and follow a similar trend. The event rate here is capped at 90K e/s due to
backpressure.

We conducted a second series of experiments with a setting where the
number of patterns is naturally high, in order to determine whether pattern-
based parallelism offers an advantage in such settings. Consider the following
pattern, describing the movement of a vessel as it a approaches a port.

Definition 20 Approaching Port: Vessel is initially more than 7 km away
from the port, then, for at least one message, its distance from the port is
between 5 and 7 km and finally it enters the port (i.e., its distance from the
port falls below 5 km).

Port .= (DistanceToPort(Portx) > 7.0)
DistanceToPort(Portyx) < 10.0)-
(Distance ToPort(Portx) > 5.0) A
DistanceToPort(Portx) < 7.0)*" -
(Distance ToPort(Portx) < 5.0)

A

The predicate DistanceToPort calculates the distance of a vessel from the
port Porty passed as argument and is evaluated online. If we want to monitor
vessel activity around every port in a given area, then we need to replicate this
pattern N times, if there are IV distinct ports. We would thus naturally have
N patterns, which would be almost identical except for the argument passed
to DistanceToPort (Port;, Portg, up to Porty). For the area of Brest, the
total number of ports is 220. We run an experiment with these 220 patterns
with partition- and then with pattern-based parallelization. Figure 9¢ shows
the results. Contrary to previous experiments, in this one we used a stream
simulator to feed the dataset to our CEP system. This simulator, instead of
reading input events from a file and instantly sending them to our engine,
has the ability to insert a delay between consecutive events. For example, we
can set the delay to be exactly the time difference between two events. This
would allow us to re-play the stream as it was actually produced, which would
take 6 months for this dataset. We also have the ability to re-play the stream
at higher speeds. For these experiments, we re-played the stream at various
different speeds in order to determine the “breaking point” of our system.
Figure 9c shows the results for two such speeds, where the whole stream was
processed in 0.5 and 1 hour, corresponding to a speed-up of 8640 and x4320
compared to the original dataset. While the CEP operator lags behind the
source when it is re-played at half an hour, it is evident that it can process it
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without any problems when it is replayed at one hour, as both pattern- and
partition-based parallelism exhibit 0% backpressure. In fact, pattern-based
parallelism performs better in this experiment. This lends credence to our
belief that pattern-based parallelism might actually be more suitable than
partition-based parallelism when there is a high number of patterns to be
processed simultaneously.

5.3 Forecasting Experiments

For the forecasting experiments described in this Section, we focus on the
CLASSIFICATION-NEXTW task (see Section 3.2). The evaluation task itself
consists of the following steps. At the arrival of every new input event, we first
move to a new automaton state, as explained above. We use its waiting-time
distribution to produce the forecast. Two parameters are taken into account:
the length of the future window w within which we want to know whether
a CE will occur and the confidence threshold 0y.. If the probability of the
first w points of the distribution exceeds the threshold 6., we emit a positive
forecast, essentially affirming that a CE will occur within the next w events;
otherwise, we emit a negative forecast, essentially rejecting the hypothesis that
a CE will occur. We thus obtain a binary classification task.

As a consequence, we can make use of standard classification measures, like
precision and recall. Each forecast is evaluated: a) as a true positive (TP) if
the forecast is positive and the CE does indeed occur within the next w events
from the forecast; b) as a false positive (FP) if the forecast is positive and the
CE does not occur; ¢) as a true negative (TN) if the forecast is negative and
the CE does not occur and d) as a false negative (FN) if the forecast is negative

and the CE does occur; Precision is then defined as Precision = TPZ% and

recall (also called sensitivity or true positive rate) as Recall = TPT_F%.

There are also some other metrics that can be used for assessing the qual-
ity of the forecasts, such as the Root Mean Squared Error (RMSE) and the
Mean Absolute Error (MAE) (MAE is less sensitive than RMSE to outliers).
The so-called negatively oriented interval score (NOIS) [28] is another such
metric for evaluating forecasting given in the form of intervals (RMSE and
MAE assume that forecasts refer to a single timepoint). NOIS penalizes fore-
casts whose intervals are long (so that focused intervals are promoted). If a
forecast is correct, then no other penalty is applied. If it is false, then an extra
penalty is added, which is essentially the deviation of the forecast from the
actual observation, weighted by a factor that grows with the confidence of the
forecast. We avoid using these metrics in this paper, because they can only be
applied in regression experiments, since they all assume that there is an ob-
servation (i.e, a complex event occurs) and the timestamp of this observation
can be compared to our forecast. As we have explained, we currently refrain
from running regression experiments.

For the following forecasting experiments we have used the approaching
port pattern for the port of Brest. The results of partition-based parallelization
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Fig. 10: Maritime backpressure experiment of vessels approaching the port of
Brest. Partition-based parallelization is used. The horizontal axis expresses
the number of forecasting threads. Each dashed line represents a different
parallelism of the source stream

for forecasting are presented in Figure 10. The backpressure ratio is plotted
against the number of threads used for forecasting. Each dashed line represents
a source with parallelism varying from 1 to 5. Event rate of 1, 2, 3, 4 and 5
sources is calculated at 100K, 200K, 285K, 348K and 375K e/s respectively.
Again, note that the parallelism of the source is not a multiplier of the event
rate, The workload in this experiment tries to foresee which vessels approach
the port of Brest. The results show that Wayeb can effectively process streams
of at least 375 e/s (black line) for this workload as 0 pressure is exhibited
when 16 workers are used. As with the recognition experiments the event rate
of the stream is ~ 3.5 e/s. Comparing the pattern throughput rate (375K
e/s) with the event input rate clearly exhibits a performance that is 5 orders
of magnitude better than the real-time requirements of this use case.

We now demonstrate how the adaptation mechanism works when we up-
date the order of a model. Changing the order via a configuration message
requires the construction of a new Counter Suffix Tree (CST) (see Section
3.2). This new CST however does not have any information about the previ-
ous events of the input stream. Thus, we need to wait for a specific number
of events to be processed in the training phase before actually producing the
new model. This number of events is user-defined and in this experiment it
is 30K events. After the required number of events is met the calculation of
the Waiting Time Distributions (WTD) takes place. The higher the order the
more time it takes for the calculation to complete. Figure 11 showcases this
behavior. Figure 11a shows results where configuration messages are sent at
30K events. The calculation of WTD happens at 60K events (dashed vertical
line) due to the extra heating period of 30K events needed for training. The
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Fig. 11: On-the-fly order adaptation. Dashed lines indicate the points in the
stream when the message to change the order is sent.

change in F1 score values implies that the new model has been created and
forwarded to the forecasting operator. Originally the order is 1 and the ex-
periment is performed multiple times, each time with a different order. For an
order of 2 the model is instantly updated at 60K events. For order 3 it takes
about 50K events to calculate the WTD. For 4 it takes 110K events. Finally,
for an order of 5 execution time is so large that the whole dataset is processed
by the forecasting operator before updating the model. Thus, we don’t see any
change in the Fl-score.

Figure 11b shows results from experiments where an attempt is made to
change the order of the model twice at runtime. A stream simulator was used
which emits the whole dataset in about a minute, rather than consume it
instantly from Kafka. Calculations of WTD start at 60K messages and at 140k
messages for orders of 3 and 5 respectively. As in the previous experiments,
we witness an increase in the F1-score when the order increases.

For completeness, we show how the throughput is affected as the order
of the model changes. Figure 12 shows that it largely remains unaffected.
Originally, it starts from about 7K e/s and rises from there on. This has to do
we the JVM heating up and compiling the code. It has nothing to do with the
order. After this raise it hovers at about 12K e/s. To simplify the presentation,
we have used a non-parallel version, hence the throughput values are rather
low.

Finally, we have run experiments to showcase the adaptation of the thresh-
old parameter. Figure 13 showcases the results. After the first 30K events have
been processed by the training operator a model is produced with some thresh-
old value. Messages to change this value are sent at both the 60,000th event
and 140,000th event. There is a forced pause on the stream during these two
events in order to wait for the waiting-time distributions to be calculated so
models are seemingly updated instantly. We do this to simplify the presen-
tation as WTDs execution times are unaffected when the order remains the
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Fig. 13: On-the-fly threshold adaptation

same. Moreover, when updating the threshold of a model, there is no need to
create a CST from scratch (like we did with the order parameter) and hence
wait for a fixed number of events to be processed by the new model. Instead,
the same CST is used which means the later we update the threshold of a
model the more events this model will have under its belt.

Figure 13 measures how this number of events a model has processed affects
performance. By using an ascending and a descending fashion to the updating
threshold values in Figures 13a and 13b respectively, we test if models with the
same threshold value but having processed different number of events exhibit
different F1-scores. In this case it seems that using 30K events only for training
is sufficient. When using a threshold of 0.3 (blue line in both figures) both the
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model that has processed 30K events (Figure 13a) and the other model with
140K events (Figure 13b) exhibit similar F1 scores (around 80%). The same
holds for the 0.7 threshold value (green line in both figures) as both the 30K
and 140K versions of the model have around 40% F1-score.

6 Summary & Future Work

We presented Wayeb, an open-source tool for Complex Event Recognition and
Forecasting, as a means of analyzing big mobility data streams. We defined a
number of patterns that are useful in fleet management and maritime monitor-
ing applications. Moreover, we presented implementations of two paralleliza-
tion techniques and compared their efficiency against the single-core version.
Our results demonstrate the superiority of partition-based over pattern-based
parallelization, when the number of patterns is relatively low. When this num-
ber is high, then pattern-based parallelization becomes a viable option.

Furthermore, we introduced a parallel version for online training and fore-
casting enhanced with adaptation capabilities. Forecasting experiments show-
cased results similar to recognition, as the throughput of partition paralleliza-
tion is orders of magnitude higher than the event rate of the input stream.
Our preliminary adaptation experiments showed that increasing the order of
a model leaves forecasting throughput unaffected, while it greatly increases
accuracy. However this comes at a cost of training execution time as there is
a delay in producing the new model.

For the future, we intend to combine various parallelization techniques and
construct more patterns for the domains presented. Another research avenue
would be to compare our automata-based method against other approaches,
such as logic-based ones, which have been applied to similar datasets [37,
48]. Finally, we aim to improve the adaptation process and have the order,
threshold (and possibly other) parameters be set automatically rather than
having the user send them. For example, Bayesian optimization could possibly
be used in order to find the sweet spots for the values of these parameters that
try to maximize the accuracy of our forecasts and the throughput of our system
while also trying to minimize training time.
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