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Abstract With the rapid advancements of sensor technologies and mobile
computing, Mobile Crowd Sensing (MCS) has emerged as a new paradigm to
collect massive-scale rich trajectory data. Nomadic sensors empower people
and objects with the capability of reporting and sharing observations on their
state, their behavior and/or their surrounding environments. Processing and
mining multi-source sensor data in MCS raise several challenges due to their
multi-dimensional nature where the measured parameters (i.e., dimensions)
may differ in terms of quality, variability, and time scale. We consider the con-
text of air quality MCS and focus on the task of mining the micro-environment
from the MCS data. Relating the measures to their micro-environment is cru-
cial to interpret them and analyse the participant’s exposure properly. In this
paper, we focus on the problem of investigating the feasibility of recognizing
the human’s micro-environment in an environmental MCS scenario. We pro-
pose a novel approach for learning and predicting the micro-environment of
users from their trajectories enriched with environmental data represented as
multidimensional time series plus GPS tracks. We put forward a multi-view
learning approach that we adapt to our context, and implement it along with
other time series classification approaches. We extend the proposed approach
to a hybrid method that employs trajectory segmentation to bring the best of
both methods. We optimise the proposed approaches either by analysing the
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exact geolocation (which is privacy invasive), or simply applying some a pri-
ori rules (which is privacy friendly). The experimental results, applied to real
MCS data, not only confirm the power of MCS and air quality (AQ) data in
characterizing the micro-environment, but also show a moderate impact of the
integration of mobility data in this recognition. Furthermore, and during the
training phase, multi-view learning shows similar performance as the reference
deep learning algorithm, without requiring specific hardware. However, during
the application of models on new data, the deep learning algorithm fails to
outperform our proposed models.

Keywords Mobile Crowd Sensing - Trajectory Segmentation - Activity
Recognition - Multivariate Time Series Classification - Multi-view Learning -
Air Quality Monitoring

1 Introduction

Nowadays, the Internet of Things (IoT) basically relies on advanced sensor
technologies to bridge the physical world and information systems. In par-
ticular, along with the widespread use of GPS, various mobile sensors bring
rich information collected from both the surrounding environment and human
activities, which are generally represented as geo-referenced time series (i.e.
trajectories enriched with several measures). Mobile Crowd Sensing (MCS)
[23] emerges as a new paradigm which empowers volunteers to contribute data
acquired by their personal sensor-enhanced mobile devices. Polluscope', which
is a French project deployed in Ile-de-France (i.e., Paris region), is a typical
use case study based on MCS. It aims at getting insights constantly on indi-
vidual exposure to pollution everywhere (indoor and outdoor) while enriching
the traditional monitoring system with the collected data by the crowd. The
recruited participants, on a voluntary basis, collect air quality (AQ) measure-
ments. Each participant is equipped with a sensor kit and a mobile device
which allows the transmission of the collected measurements together with
the GPS coordinates as a geo-referenced data stream containing (timestamp,
longitude, and latitude). In addition, the participants are asked to annotate
their environment type through a custom mobile application. This will allow
participants to have personalized insights about their exposure to pollution
everywhere, either in indoor or outdoor environments, and at a higher res-
olution along their trajectories; thereby, allowing to capture local variability
and peaks of pollution, depending on participants’ whereabouts, i.e., micro-
environments.

It is worth mentioning that air quality strongly depends on the micro-
environment, and so is the individual exposure to pollution. For this reason,
there is a great interest in making exposure analysis micro-environment-aware.
Beyond that, ignoring the micro-environment would make the data collection
useless, precisely because of the influence of the micro-environment. However,

1 http://polluscope.uvsq.fr
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the micro-environment annotation is by far the most difficult information to
collect in a real-life application setting since very few participants thoroughly
annotate their micro-environment. Therefore, there is a great interest in un-
burdening the participants by automatically detecting the micro-environment.

The problem of automatically annotating MCS data can be seen as a prob-
lem of activity recognition from rich trajectory data collected by heterogeneous
sensors. There is a broad variability of research studies on the subject of ac-
tivity recognition. The survey by Yu Zheng [54] proposes a systematic review
of the major research in trajectory mining. Whilst the author provides a va-
riety of trajectory data mining methods, an overall approach that combines
several sensor data besides GPS data is missing. In contrast, combining sev-
eral sensory data suggests the usage of multivariate time series classification
(MTSC) for activity recognition. Although this solution showed excellent per-
formance in some application domains [37], its success is not guaranteed with
heterogeneous sensors such as environmental data. First, the usage of hetero-
geneous data may induce some missing data problems when some sensors stop
working. Therefore, there is a need for a model that characterises the micro-
environments even with missing dimensions. Second, it is not known to what
extent environmental data can determine micro-environments, which needs to
be investigated.

As a matter of fact, when visually exploring the data, we noticed that
micro-environments preserve a certain pattern. Moreover, we observe the ex-
istence of an inter-sensor correlation and with the micro-environment. Figure
1 shows the evolution of three dimensions (i.e. Black Carbon (BC), NO2 and
Particulate Matters (PM)) with micro-environments identification. As shown
in Figure 1, BC and NO2 preserve the same shapes and statistical charac-
teristics in the micro-environment “car”. Specifically, BC maintains the same
fluctuations pattern in the micro-environment “car” and conserves approxi-
mately the same average value in these segments. Likewise, NO2 fluctuates
promptly and preserves roughly the same average value in both segments of
the micro-environment “car” as well as approximate maximum values. We also
note that NO2 values keep roughly the same pattern in the micro-environment
“indoor”. Moreover, we can observe the existence of a correlation between the
three dimensions during the whole timeline, meaning that when one of the
dimensions fluctuates, the other two follow.

The idea we promote in this paper is to utilize a wisely chosen annotated
dataset in order to train a model on the acquired rich trajectories (composed
of both environmental and mobility dimensions) as predictors of the micro-
environment. We hypothesize that the multivariate time series collected by the
MCS campaigns not only depends on the micro-environment but could be a
proxy of it.

The question that arises now is how to combine all these different het-
erogeneous aspects of the data (geo-location, sensors) to identify the user’s
micro-environment automatically, and how much a model can discriminate
the observations in different micro-environments.
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Fig. 1: Inter-sensor and micro-environment correlations.

In this paper, we evaluate different approaches and provide a framework
dedicated to the preparation, the application, and the comparison of different
machine learning algorithms. Precisely, we make the following contributions:

— first and foremost, we identify the problem of micro-environment recogni-
tion in the MCS context.

— we demonstrate that AQ determines the type of micro-environment.

— thereafter, we propose a ML, approach based on multi-view learning for the
recognition of micro-environment.

— afterwards, we extend the proposed micro-environment recognition ap-
proach to include another layer which consists of the detection of stay
locations (i.e. stop detection) and transportation modes from GPS data,;
also known as trajectory segmentation. We refer to this extension as the
hybrid approach.

— we optimise the proposed approaches either by analysing the exact geolo-
cation, or simply applying some a priori rules. We emphasize that the first
optimisation is privacy invasive whilst the other one is privacy friendly.

— we conduct extensive experiments in a real scenario setting and compare
with baselines, which shows the effectiveness of our proposed approaches.

In the current work, Polluscope data is considered as a running application
example based on MCS. However, the proposed approach can be generalised
on other MCS applications besides the AQ scenarios. In fact, the same process
of activity recognition of moving objects holds with other sensory data such
as sound for noise sensing or temperature for heat comfort assessment. For
instance, the collaborative AIRLESS project between Cambridge and Beijing,
which is a typical use case study based on MCS, aims to understand the impact
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of air pollution on human health in the world’s largest country. One important
element of AIRLESS is to automatically detect and classify major exposure-
related micro-environments (home, work, other static, in-transit) using GPS
coordinates, accelerometry, and noise. The classification of micro-environment
can remarkably improve exposure metrics since pollutant inhalation rates vary
significantly by location and micro-environment [7].

The rest of this paper is organized as follows. We introduce the related
work in Section 2. Section 3 gives a thorough problem description. Section 4
describes the multi-view learning approach. The presentation of our micro-
environment recognition model is discussed in Section 5 and 6. Section 7
presents the experimental results and evaluation of the micro-environment
recognition model in the context of environmental crowd sensing. Section 6
gives an extensive discussion for the perspectives of this work. In section 7, we
summarize our conclusions and provide directions for future work.

2 Related Work

Human activity recognition (HAR) has gained, in the recent years, a great
interest from the research community. Its application domains encompasses all
the activities performed within daily human activities [51][30][10] and human
mobility [14][55] to cite a few. It represents a typical scenario of machine
learning, and some public datasets are widely used in the benchmarks.

In this section, we review some activity recognition research designs that
can be employed to infer the human activity from multivariate time series
and GPS trajectories. We break the problem of activity recognition down into
three categories, i.e. multivariate time series classification (MTSC), multi-view
learning as another MTSC solution, and trajectory segmentation to infer the
stop and move segments from GPS data.

2.1 Multivariate Time Series Classification

Human activity recognition falls in the problem of labelling data segments
with the type of activity which leads to a multivariate time series classification
(MTSC) problem based on data collected by multiple wearable sensors. There
is a wide range of time series classification approaches that can be classified
into four categories: distance-based methods [4], feature-based methods [35],
ensemble methods [21], and deep learning models [19][9][46]. The one-nearest
neighbor (1-NN) classifier with different distance measures, such as euclidean
distance (ED) or dynamic time wrapping (DTW) [4], is always considered as
the benchmark to give a preliminary evaluation in the MTSC problem.
Considering the real-life scenarios, where it is difficult or expensive to ob-
tain a large amount of labeled data for training, some studies used both la-
beled and unlabeled data to learn the human activity, that is semi-supervised
learning (SSL) [47] on MTSC. The pioneering work by [47] propose a semi-
supervised technique for time series classification. The authors demonstrated
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that semi-supervised learning requires less human effort and generally achieves
higher accuracy than training on limited labels. The semi-supervised model
[47] is based on the self-learning concept with the one-nearest-neighbor (1-NN)
classifier. First, the labeled set denoted by P (as positively labeled) is applied
to train the 1-NN classifier C. Then, the unlabeled samples U are given the
pseudo labels progressively based on their distance to the samples in P. There-
after, the enriched labeled set P allows iteratively repeating the previous step
and improving the classifier. More recently, the deep learning-based models
on MTSC show promising performance under weak supervision. For instance,
Zhang et al. [53] propose a novel semi-supervised MTSC model named time
series attentional prototype network (TapNet) to explore the valuable infor-
mation in the unlabeled samples. TapNet projects the raw MTS data into a
low-dimensional representation space. The unlabeled samples approach them-
selves to the class prototype in the representation space, where pseudo labels
are generated by the distance-based probability allowing training the model
progressively. Moreover, the hybrid convolutional neural network (CNN) and
long short-term memory (LSTM) structure adopted in TapNet allows model-
ing, respectively, the variable interactions and the temporal features of MTS.

2.2 Multi-View Learning

Another line of studies propose multi-view learning to classify time series data
originated from multiple sensors to recognize user activities. Garcia-Ceja et al.
[21] propose a method based on multi-view learning and stacked generalization
for fusing audio and accelerometer sensor data for human activity recognition
using wearable devices. Each sensor’s data is seen as a different “view”, and
they are combined using stacked generalization [48]. The approach trains a
specific classification model over each view and an extra meta-learner using the
view models as input. The general idea of the authors is to combine data from
heterogeneous types of sensors to complement each other and thus, increase
recognition accuracy.

Wang et al. [45] propose a framework based on deep learning to learn
features from different aspects of the data based on features of sequence and
visualization. In order to imitate the human brain, which can classify data
based on visualization, the authors transform the time series into an area
graph. Area graph here is used to model time series as images in order to apply
Convolutional Neural Network (CNN) on top of it. They use well-trained Long
short-term memory with an attention mechanism (LSTM-A) neural networks
and CNN with attention (CNN-A) to extract the features of time series data.
LSTM-A extracts sequence features, while CNN-A extracts visual features
from the time series. Then, based on the fusion of features, the authors carry
out the time series classification task. Although the approach gained promising
results, further performance gain was achieved by recent deep learning methods
such as InceptionTime [20].
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Li et al. [28] propose a multi-view discriminative bilinear projections (MDBP)
for multi-view MTSC. The proposed approach is a multi-view dimensionality
reduction method for time series classification, which aims to extract discrimi-
native features from multi-view MTS data. MDBP mainly projects multi-view
data to a shared subspace through view-specific bilinear projections that pre-
serve the temporal structure of MTS, and learns discriminative features by
incorporating a novel supervised regularization.

2.3 Trajectory Segmentation

There has been a substantial increase in spatial and spatio-temporal trajectory
data due to the advances in GPS-based tracking and mobile computing tech-
niques. Plenty of research has been proposed to shape the field of trajectory
data mining. In a survey paper, Zheng [54] provides a systematic review of
the major research in the trajectory data mining field in order to thoroughly
explore the existing techniques. The author proposed a methodical framework
that comprises a list of trajectory data mining methods from the derivation of
trajectory data to a variety of mining tasks (such as trajectory classification)
and passing by trajectory data processing (such as trajectory segmentation)
and trajectory data management.

Rehrl et al. [36] propose and evaluate a three-steps trajectory data mining
approach based on machine learning techniques. The authors focus on detect-
ing and classifying stop points in vehicle trajectories. The proposed approach
describes three mining steps: stop detection, feature extraction, and stop seg-
ments classification. The authors first segment the trajectory into stay points
clusters (referred to as trajectory segmentation). After extracting 14 charac-
teristics of each stop, they classify the detected stops into traffic-relevant and
non-traffic-relevant stops (referred to as trajectory classification). This work
is most similar to ours, but it is based on spatial data and does not include
temporal data.

As for the field of feature extraction, the research community has provided
several extensive works based on machine learning techniques. Etemad et al.
[18] provide a framework for the prediction of transportation mode based on
GPS data only. The key contribution of the authors’ work is to propose tra-
jectory point features generation and trajectory segments feature extraction
which comprise bearing rate, the change rate of the bearing rate, and the global
and local trajectory features. The usage of these features has shown promising
performances. Instead of using hand-crafted features with traditional machine
learning algorithms, Dabiri et al. [11] propose a travel mode inference model
based on convolutional neural network (CNN) schemes that can automatically
drive high-level features from raw input, which attains the state-of-the-art
accuracy on GPS data from GeoLife dataset [56].

Another line of work focuses on the detection of stops and moves within
GPS tracks deriving more semantic trajectories [34]. Pappalardo et al. [33]
propose a Python library for the analysis of mobility data. In addition to
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addressing different problems such as spatio-temporal trajectories cleaning,
trajectory visualization, and privacy risks, the authors provide an environment
to reproduce existing research related to the detection of Stay Points or Stops.
One of the common approaches is to apply spatial clustering algorithms on
trajectory points based on their spatial proximity. Thus, the authors propose
a stops function that finds the stay points visited by a moving object based
on the spatial proximity and time spent by the object. Although the library
has shown promising performance results, it uses GPS logs only as input and
does not take into consideration the temporal data. More advanced approaches
derive users’ habits in terms of visiting patterns from trajectories, to cite but
a few [40], [13], and some recent surveys [44].

We highlight that state-of-the-art that is related to micro-environment’s
recognition also focuses on data from sound and accelerometer [3], [46]. How-
ever, since this information is privacy-invasive and we do not use sound and
accelerometer in our context, we will not focus on their related work. Further-
more, work proposals such as Sonawani et al. [42], and Sai et al. [39] whose
main objective is monitoring AQ using machine learning methods, are out of
the scope of our study. The main focus of such proposals is AQ forecasting and
estimation, while our main objective is the detection of micro-environments
from AQ data plus GPS. Therefore, we will not focalize on investigating state-
of-the-art studies related to AQ estimation and forecasting.

To summarize, the study of related work of micro-environment recognition
are either based on multivariate time series classification without any concern
or attention to trajectory data to classify the label of the micro-environment,
or related to stop and move detection in trajectory data where the label of
the micro-environment is reduced to stop/move (where stops are indoor and
moves are outdoor, in general). Transportation mode detection approaches can
reveal the label of the move segments but not indoor segments. In contrast, to
our best knowledge, no previous approaches that combine environmental time
series and trajectory data in the micro-environment recognition problem have
been proposed so far, which is the focus of the current work.

3 Problem formalization

Before detailing the methodology of the proposed approach, we start with a
thorough description of the problem.

3.1 What are rich trajectories ?

In the context of MCS, the collected type of data are typically continuous
sensors measures along with the participant’s spatial location (e.g., GPS co-
ordinates). They represent a specific type of trajectories that we call rich
trajectories. We define hereafter this concept, starting from the definition of
time series.
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Definition 1 (Univariate Time Series). A univariate time series is a sequence
U = [(t1,v1), ..., (t;,v;)] where [ is the length of U and for i = 1...I, ¢; € T is a
timestamp from a time domain 7" and v; € D is a scalar value of a domain D.

Example 1 FEnvironmental sensor measurements such as temperature consti-
tute a untvariate time series.

Definition 2 (Multivariate Time Series). A multivariate time series MV is
defined as MV = (U1, Us, ..., U, ...,U,) where U; is a univariate time series for
dimension D;, and ¢ =1, ..., n.

Example 2 FEnvironmental sensor measurements such as temperature, hu-
midity and NO2 constitute a 3-Dimensional time series.

Definition 3 (Trajectory). A trajectory T is defined as a multivariate time
series with two or three dimensions for the spatial position.

Example 3 A multivariate time series with latitude and longitude as dimen-
stons represent a trajectory.

Definition 4 (Rich Trajectory). A rich trajectory RT is defined as a multi-
variate time series where a subset of the dimensions D; where i € [1,...,n]
constitutes a spatial position, plus additional non-spatial informational.

Example 4 A GPS trajectory data of a moving object associated with envi-
ronmental sensor measures such as temperature, humidity and NO2 is a typical
example of a rich trajectory.

3.2 What is micro-environment recognition ?

First, we define a trajectory segmentation, then we introduce the annotated
version of rich trajectories before defining the target problem of micro-environment
recognition learning.

Definition 5 (Rich Trajectory Segment). A rich trajectory segment RTS
is defined as a sub-sequence of contiguous vectors of RT between j and k
(1 <j<k<Il).So, RTS = RT(j,k) = (U{,Us,...,U!,...,U}) where U] =
[(tij, Uij), ceey (tlk,vlk)], and V1 S ) S n.

Example 5 A one hour trajectory constitutes a rich trajectory segment of a
one week rich trajectory data.

Definition 6 (Trajectory Segmentation). Given a trajectory or a rich tra-
jectory as input, trajectory segmentation is a process that splits it into non
overlapping trajectory segments.

Example 6 Splitting trajectory data of a moving object into hourly segments
represent a one form of trajectory segmentation.



10 Hafsa El Hafyani et al.

An annotated rich trajectory is defined as a sequence of trajectory segments
along with annotations that belong to a predefined list of categories. Formally:

Definition 7 (Annotated Rich Trajectory). An annotated rich trajectory ART
is defined as a sequence of couples ART = [(RT'(1,41),a1), (RT (i1,12), a2), ...,
(RT(35,%541), @j41), -y (RT(ip, 1), apy1)], where RT(i;,4;41) are rich trajec-
tory segments RT'S between j and j + 1, a € A, and A is a discrete domain.

Example 7 Rich trajectory segments enriched with contextual information
such as the whereabouts of a moving object represent an annotated rich trajec-
tory.

In this work, annotations describe the micro-environment of the partici-
pant. In this work, micro-environments can either be an indoor space (e.g.
home, office, restaurant, etc.), outdoor space (e.g. street, park, etc.) or a trans-
portation mode (e.g. metro, bus, car, etc.). The micro-environment recognition
question relates to the problem of segmenting data and assigning a label to
each segment by combining every available data.

Definition 8 (Micro-environment Recognition). Given a rich trajectory RT
as input, micro-environment recognition is a process that outputs the corre-
sponding annotated rich trajectory ART.

Definition 9 (Micro-environment Recognition Learning). Given a set of an-
notated rich trajectories, train a model where the rich trajectory segments are
the predictors, and the annotations constitute the class labels.

Using a trained model on a wisely chosen annotated dataset, we aim at
predicting the annotation on a completely unseen data by the model.

Why is this information of the micro-environment important ¢ The anno-
tation information of a moving object enables to understand rich trajectory
on a semantic level. Its usefulness depends on the application scenario. For
instance, in the case of peoples’ trajectories, the semantic information can be
used to identify the most visited places by the moving object and therefore
to offer trip recommendations [57]. In the case of daily human activity recog-
nition from wearable sensors, several application domains exist including, but
not limited to, pervasive healthcare [52] [24] and following athletic activities
[26]. In these applications, the annotation, described by daily activities such
as walking, standing up, and raising hand, is fundamental to give feedback
about the application scenario.

Specifically, and in our case, the information of annotation (which micro-
environments here) allows us to give feedback about personal exposure to
pollution, since it is directly correlated to people’s habits and where they spend
most of their time. For instance, if a person is highly exposed in their home
during cooking time without much room ventilation, it would be time for them
to revisit their habits and start ventilating the room when cooking. Therefore,
the information of micro-environment is necessary to correctly interpret the
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collected AQ data, get insight on the individual exposure, and for a participant,
adapt her behavior to reduce her exposure.

While there are several works related to activity recognition from spatio-
temporal trajectory (e.g. Sardianos et al. [40] and Toch et al. [44]), this work
investigates the capability of environmental data in characterizing and infer-
ring automatically the activity of the moving object. Therefore, we envision
to combine every available information (i.e. AQ data, mobility data, declared
annotations) to detect efficiently the micro-environment of the moving object.

3.3 How can micro-environments be recognised ?

Micro-environments can mainly be characterised by the temporal attributes
(i.e. AQ measures) as well as the spatial one. There are several works for activ-
ity recognition that are either based on geographical or temporal information.
However, an overall methodological approach for combining these different
aspects on real-world complex trajectory data is missing. This combination
may lead to a more robust detection model rather than the usage of a single
attribute, and it needs to be investigated.

To employ every available facet of the rich trajectories, the design of the
micro-environment recognition model needs to integrate two layers: a geo-
graphic layer and a multivariate time series layer. The geographic layer may
infer the stop and move segments (aka trajectory segmentation) from GPS
tracks only. This layer can go further and discover the location of home and
work. The second layer of the multivariate time series may detect the exact
label of segments (e.g. home, office, store, metro, park, etc.). Usually, this prob-
lematic leads to a multivariate time series (MTS) classification with AQ data
as input and the detected micro-environments as output. However, MCS data
is characterised by its heterogeneous property, designating that data is origi-
nated from different sensor readings. In fact, some sensors may be offline and
do not transfer any data for hours, which may lead to missing data problems.
Therefore, the usage of MTS classification is not straightforward. Naturally, it
is necessary to design a model that combines data from heterogeneous sensors,
and has the ability to classify it efficiently even if one (or more) dimension is
missing.

Furthermore, in real-world settings, problems such as imbalanced data oc-
cur. For instance, we observe that the predominant labels are home and work
since people spend most of their time there. Thereby, most segments are natu-
rally mistaken by the model as home or work. Therefore, the proposed model
should take into consideration all these aspects of the data and be efficient and
robust enough to overcome these challenges. This model is explained further
in Section 5.
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Table 1: An example of the new generated dataset D’.

First-Level Learners Associated Prediction Probabilities | True Label
hlb ] J] - Jlp[p] - Ip] ] Pn Y

4 Multi-view Learning Model

In this section, we present the approach of multi-view learning with stacked
generalisation. We followed the proposal of Garcia-Ceja et al. [21], and adapted
it to best fit for solving our problem.

It is not unusual to have applications in which heterogeneous types of
sensors (e.g. accelerometers, gyroscopes) are involved for activity recognition.
One way to deal with this problem is to extract features from each sensor and
aggregate them to build the final classification model. However, this approach
is not optimal since each sensor has its own statistical properties. Hence the
idea of multi-view stacking to fuse data from heterogeneous sensors.

The multi-view paradigm consists of learning a model based on the different
views of the data. The key idea is to consider each source of data indepen-
dently and fuse them with stacked generalization (also called stacking), which
is a type of ensemble method [58] for combining multiple learners.

The overall process is described as follows:

1. The first step consists of defining the set of first-level learner and meta
learner.

2. Train the first-level learner on each view of the original data.

3. Predict the labels of each view using the first-level learner. Each view will
produce a prediction vector with associated prediction probabilities.

4. Form a new matrix by column binding the prediction vectors and the true
labels. This matrix forms the new training data D’ for the meta-learner.

5. Train the meta-learner with D’.

6. Generate the final multi-view stacking model.

From an abstract view, assuming that Yj; is a dimension of the n-dimensional
time series Y; = (Y1, Yau, .., Yie, ..., Yir), each view V;, where V = (V1, Vs, ..., V;,
..., V'n) is the set of views, represents a dimension Yj; of the multivariate time
series Y;. Thus, we have as many views as dimensions.

The first-level learner takes as input the time series values coming from
each view. Then, each view will generate its own predicted labels with associ-
ated prediction probabilities with the form [I;, p1,p2, ..., pj, ..., Dk, Y], Where [;
is the predicted label of the first-level learner ¢, p; is the associated prediction
probability for each class j of the k possible classes, and y is the true label.

A new dataset D’ is then created by column binding the output of each
view and the true labels. We remind that these outputs consist of the predicted
labels and the associated prediction probabilities for each of the & possible
classes. Thus D’ has the form shown in Table 1, where I; is the predicted label
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of the first-level learner i, p; is the probability of this prediction, and y is the
true label.

After generating a new dataset D’, a second-level classifier, or meta-learner,
is trained over D’ through ensemble learning [58]. This approach allows to
preserve the statistical properties of each view and learn the classes of the
MTS instances with a significant improvement in the classification accuracy.

Many ensemble methods [58] have been proposed to further enhance the
algorithm accuracy by combining learners rather than trying to find the best
single learner. Due to their versatility and flexibility, ensemble methods attract
many researchers and can be applied in different domains including, but not
limited to, time series classification [21] and time series segmentation [16]. In a
previous work [16], we used a multi-view approach for segmenting MCS data
where we employed an unsupervised learning for change detection on each
view.

5 Micro-environment recognition model

In this section, we provide an overview of our proposed framework for micro-
environment recognition in the context of MCS [1].

Figure 2 provides a panorama of the steps followed to achieve the micro-
environment recognition objective. It shows a roadmap from the derivation of
air quality and trajectory data (i.e. step 1), to data preparation (i.e. step 2)
which produce data ready to be consumed by a univariate time series classifi-
cation model (e.g. kKNN-DTW, LSTM, random forest, decision tree, etc.) (i.e.
step 3). The outputs of the univariate time series classification constitute a
new data set (i.e. step 4) which serves as an input for a meta-learner (i.e. step
5). The meta-learner produces the final classification results. In the following
sections, we discuss each step separately. It is necessary to mention that the
red dashed lines represent the hybrid approach, which we thoroughly discuss
in Section 6.

5.1 Data Collection

The first step of the micro-environment recognition process is the data col-
lection. During three campaigns, more than one hundred participants have
been recruited to collect environmental measurements along with geo-location
for one week, 24 hours a day, while performing their daily activities. Each
participant carries a multi sensor box and a tablet empowered with a GPS
chipset. The sensors collect time annotated measurements of Particulate Mat-
ter (PM1.0, PM10, PM2.5), nitrogen dioxide (NO3), Black Carbon (BC), plus
Temperature and Relative Humidity, and the tablet records participants’ geo-
locations and allows them to annotate their micro-environment by using a
self-reporting mobile app. Therefore, they report every transition to a micro-
environment (e.g., home, office, park, restaurant, etc.).



14 Hafsa El Hafyani et al.

SN Hybrid multi-view
N Qarning model
N
= \
= \ .
& ES
) . - s
g learner for i
NO; ¥> & o onabiltes Metadeamer Trajectory ‘ g
f o 8 L ) | [Metateamertor || > 2
PMI0 & outdoor - 8
o Meta-learner for detecti g
LSTM Network transport letection 2
- 173
Speed ———— 2
F g )
_ <
Temperature o N
Annotated s | Classification Result ‘
Measurements _
L Etc.
Random Forest
Step1 Step 2 Step 3 Step 4 Step 5
Data Collection &) Data Preparation & Class =)  Univariate Time  E) Generating =) Meta-learner

Balancing Series new dataset construction
Classification i

Fig. 2: Overview of the Micro-Environment Recognition Process.

5.2 Data Preparation

The second step is the data pre-processing which includes data de-noising,
data imputation, data segmentation, and class balancing.

First, most sensor data are noisy, with irrelevant measurements from the
actual condition. Even though the sensor data quality is a permanent pre-
occupation of the project, we observed the noisy data in both GPS (due to
signal loss) and air quality data after careful evaluation before data selection
and periodic qualification during the campaign [27]. The sensors for climatic
parameters do not show such defects. Therefore, a de-noising process is ap-
plied on both GPS and air quality data. Precisely, we distinguish between
peaks and artefacts by referring to the expert’s judgment. The peaks that are
judged to be real are then conserved. The same goes for GPS data which has
been cleaned based on a maximum threshold of velocity (here 130km/h as it
is the speed limit in France). Beyond this threshold, GPS points that are in
charge of producing the velocity will be removed.

Second, the collected sensory data are usually incomplete due to device er-
ror or communication issues, with missing values at some time stamps. There-
fore, we set a threshold of ten consecutive missing steps to conduct the imputa-
tion process. In other words, we perform data imputation on missing intervals
that do not exceed 10 minutes (i.e., 10 steps). Precisely, new values are inferred
with the linear interpolation approach on the non-missing temporal neighbors;
that is, new values are interpolated by a linear function of the two temporal
ends of the missing values. Globally, the highest quality sample of annotated
data is selected as a baseline to validate the process of micro-environment
recognition. The idea is to generalize the micro-environment recognition to all
participants’ data by using the model derived from a good-quality dataset.We
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describe in Section 7.1 how the high quality sample of annotated data is se-
lected.

Third, data is segmented into samples of fixed length (here 5 minutes).
The choice of the fixed length value is discussed in Section 7.1. Each segment
will be assigned a unique label. Essentially, the proposed model will take the
observed measurements of the segment as input and produce a unique label
by virtue of the multi-view learning.

Last but not least, micro-environment recognition is also subject to class
imbalance problem. Usually, individuals spend most of their time indoors,
either at home or at the office. A dataset is imbalanced if the classification
categories are not equally represented, which is the case in our study.Therefore,
because of this problem (home is the majority class, followed by office), the
likelihood of having a good accuracy value of the classification is very high.
The classifier will practically attribute the majority class to almost every data
segment and fail to detect the minority classes, which leads to an overall
good accuracy but does not necessarily reflect the actual performance of the
classifier. Hence the solution of re-sampling and data augmentation, which are
the commonly used techniques to solve this problem.

For data re-sampling, random oversampling of the minority classes and
random under-sampling of majority classes are the most popular approaches.
However, the random oversampling approach usually introduces duplicates to
stabilize the training process, which does not thoroughly explore the valuable
information from the data. Therefore, some work considers synthesizing new
samples from the minority class. For instance, synthetic minority oversampling
technique (SMOTE) [8] under-samples the majority class and over-samples the
minority one based on the K-nearest neighbors. SMOTE selects samples that
are close in the feature space, then generates a synthetic sample nearby. This
procedure can be used to create as many synthetic examples for the minority
class as required.

For data augmentation, Generative Adversarial Network (GAN) [22] has
shown promising performance among various types of data, which uses existing
data more effectively than re-sampling techniques. In the time series domain,
the Time series Generative Adversarial Networks (TimeGAN or TGAN) [50]
was proposed recently to generate realistic time series data considering the
temporal dependency. However, in practice, it is generally hard to converge
the adversarial training process with very limited samples [2], which is the case
in our context.

Therefore, we combine both approaches of data re-sampling and data aug-
mentation. First, we adopt SMOTE to under-sample the majority classes and
over-sample slightly the minority classes. Then we apply the TimeGAN net-
work to generate new samples over the minority classes. Figure 3 and 4 show
the data distributions before and after class balancing respectively.
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5.3 Multi-View Learning Model Application

We propose to learn the micro-environment of participants from multivariate
time series (MTS) through a two-stage model based on multi-view learning.
The classification model consists of training a first-level learner on each view
(i.e. step 3 in Figure 2), and then training a meta-learner (i.e. step 5 in Figure
2) to combine the output of each view and enhance the global accuracy of
the classification. As stated before, we have as many views as dimensions. For
instance, given a multivariate time series with four dimensions: temperature,
humidity, speed, and NO2, each dimension will be considered as a view. There-
fore, four different views will be considered in the multi-view learning model.
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The spatial dimension as GPS tracks is not considered as a view because of the
low spatial coverage. Also the target class is the type of micro-environment.
The spatial dimension has less impact than the temporal pattern (2 locations
could be spatially close but have different patterns in terms of exposure if one
is indoor and the other outdoor).

In step 3, the first-level learner (e.g. kNN, LSTM, random forest, decision
tree, etc.) takes as input the values of the time series data coming from each
view, and outputs, for each view, a vector in the form [l;, p1,p2, ..., Dj, -.s P> Yl
where [; is the predicted label of the first-level learner ¢, p; is the associated
prediction probability for each class j of the k possible classes, and y is the
true label. Let us take the example above of the multivariate time series with
four dimensions which are temperature, humidity, speed, and NO2, and ex-
amine the output of the first level learners. Let us say that our objective is
to classify the MTS into three classes that are indoor, outdoor, and trans-
port, while supposing that the true label is indoor. The temperature view will
generate its own predicted label - let us say- indoor, and the associated predic-
tions probabilities in this form [ltemperature = iAOOT, Dindoor = 0.6, Poutdoor =
0.2, Piransport = 0.2,y = indoor]. In the same way, the three remaining dimen-
sions shall generate their own predicted labels with corresponding probabilities
in this structure:

[lhumidity = indoor, Pindoor = 0-77poutdoor = 0‘17ptransport =02,y = indOOT]a
[Zspeed = OUtdOOT; Dindoor = 0.4, Doutdoor = 0-5aptransport =01,y = indoor],
[ZNOQ = transport, pindoor = 0.2, Poutdoor = O-2apt'ransport =06,y = indoor].

In step 4, we aimed at giving a weight for each learner. Therefore, a new
dataset D’ is generated by column binding the output of first-level learner
and the true label as shown in Table 1, where [; is the predicted label of the
first-level learner i, p; is the probability of this prediction, and y is the true
label. Continuing with the same example of the four dimensional MTS above,
the feature structure of the generated dataset would be in the structure shown
in Table 2.

Table 2: A concrete example of the new generated dataset D’.

First-Level Learners Associated Prediction Probabilities
temperature ‘ humidity ‘ speed ‘ NO2 temperature ‘ humidity ‘ speed ‘ NO2
indoor | indoor | outdoor [ transport 0.6 \ 0.7 | 05 [ 06 indoor

True Label

In step 5, and after generating a new dataset D', a meta-learner is trained
over D’. That said, by referring to the example above, the second level-learner
(e.g. Random Forest) will take the generated features (i.e. every view’s de-
tected label plus its corresponding probability) as input and produce the final
detected label. For instance and from D’ shown in Table 2, the meta-learner
takes as input the label produced by the view “temperature” (i.e. indoor)
and its associated prediction probability (i.e. 0.6), plus the labels and their



18 Hafsa El Hafyani et al.

corresponding probabilities from the other three views (i.e. humidity, speed
and NO2). Therefore, the meta-learner’s input has the following structure [in-
door, indoor, outdoor, transport, 0.6, 0.7, 0.5, 0.6] and produces the final label
(e.g. indoor) from the combination of labels and their associated prediction
probabilities.

One of the advantages of multi-view learning is its versatility in first and
second level learners’ choices. One can flexibly substitute classifier choices
as wished between kNN, LSTM, random forest decision tree, or any other
classifier [15]. In this work, we opt for Random Forest classifier for the first
as well as meta-learners since it has shown high performance when applied in
the human activity recognition domain [21].

6 Hybrid Multi-view Learning Model

The multi-view learning model records some limitations, especially when it
comes to discriminating between some indoor micro-environments that share
similar characteristics such as “home” and “office”, or between some trans-
portation modes. Besides, the time of presence is often characteristic of some
micro-environments (e.g. night hours is likely to indicate home, and work-
ing hours usually denotes the office). Identifying precisely some stay locations
from GPS data is possible, and may improve discriminating the corresponding
micro-environments. Thus, the need for an improvement in the model seems
necessary.

We introduce new optimisations based on these observations. Specifically,
the new optimisations include two approaches. The first one is privacy inva-
sive. It includes the exact locations of home and office reported by participants
in the post-processing layer. Certainly, it requires to have this private infor-
mation ahead. The second approach is privacy friendly. The latter approach
(i.e. privacy friendly) will be the subject of discussion in this section.

Figure 2 shows the new privacy friendly optimisations presented by the red
dashed lines, which consist mainly of adding trajectory data as another layer
while post-processing the results of the multi-view learning model, along with
the disambiguation between home and office based on the location.

This post-processing layer consists of splitting trajectory data into stop and
move segments (i.e. the trajectory segmentation box in Figure 2). We propose
a stop detection algorithm based on grid density that we will present and
discuss in the following section. We tag every stop with a unique and specific
number to distinguish between them.Plus, we infer the location of home and
office based on a priori rules according to the time of presence in the stop
and the density of the stop. We further discuss these rules in Section 6.1.
Furthermore, and after distinguishing between stop and move segments, the
move segments are labeled by transportation means (e.g., metro, bus, car, etc.),
which is represented by the transportation detection box in Figure 2. We take
advantage of the work of Etemad et al. [18], which we have already discussed
in the related work section, to detect the transportation mode and include the
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results in the post-processing layer. In the following section, we present our
proposed algorithm for Grid Density-Based Stop Detection (GDSD).

6.1 Stop Detection

In this section, we present a novel and robust algorithm for stop detection
based on GPS data only, namely Grid Density-Based Stop Detection (GDSD).
This approach can be used either as a separate view in the multi-view learning
model to infer the stay places from GPS data (i.e. mobility view), or as a post-
processing layer to correct the ambiguity between home, work, and other stop
places. In the current work, the mobility data is used as a post-processing
layer.

GDSD approach takes GPS points as input, and outputs segments of the
same fixed length as the multi-view model’s segments, to ensure their com-
parability. Each segment is labeled with the number of the stops or the label
“home” or “office”. Let us take an example of four segments sl, s2, s3, and
s4. Each segment is 5 minutes long. The multi-view model results assign to
segments s1 and s2 the home label, and to s3 and s4 the work label. However,
according to the results of the stop detection model, all the four segments be-
long to the same cluster, which implies that the four segments are all together
either at home, work, or any other indoor micro-environment. But, since these
four segments (s1, s2, s3, and s4) are labeled “home” by the GDSD approach,
the final class shall be “home”. That is precisely the objective of this stop de-
tection extension: to eliminate the ambiguity between stop micro-environments
and improve the performance of the multi-view model.

Therefore, in this approach, the GPS tracks (i.e. latitude and longitude) are
transformed into discrete values referencing a pixel of a rectangular grid with a
spatial resolution (here of 50 m?). Then, in order to organize the cells in a way
that allows to maintain the locality of spatially close GPS points, we adopt
spatial indexing using 2D Hilbert Space-Filling Curves (SFC), which provides
a grouping feature per proximity [31]. In other words, neighboring cells are
likely to be assigned to close Hilbert indices. Figure 5 shows the rasterization
of the spatial dimension using Hilbert SFC. The spatial extent is defined to
cover the study area (i.e. Paris region). It is worth mentioning that we only
maintain cells corresponding to the locations with GPS data, and discard cells
with no GPS data within.

The adopted rasterization approach allows us to derive the stay areas (often
indoors) of participants. We can discover the places where a participant spends
time the most based on cells densities.

When looking at the sample of GPS trajectory points in Figure 6, we can
easily and unambiguously detect the existence of two stops plus some noise
points that may or may not belong to any of the stops. The reason why the

2 This value has been chosen in accordance with the resolution adopted by Airparif (the
agency in charge of AQ monitoring in the Paris Region, also part of the Polluscope consor-
tium) in their simulation models.
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Fig. 6: Sample trajectory

human mind detects or recognizes the stops is because the density of points
inside the stops is higher than outside them. We mimic the same human brain
rational reasoning to detect the stops based on the cell density.

We formalize our intuitive notion of deriving stop places from a spatial
dataset D in a 2D euclidean space. The key idea is to set a minimum density
threshold MinDens in a cell in order to be detected as a stop cell. The ad-
justment of MinDens is utterly empirical and depends on the dataset size and
GPS sampling frequency. For instance, the MinDens in a dataset collected over
one week with a high sampling frequency (e.g. every one second) is naturally
different from a MinDens chosen from a dataset collected over one day with
the same sampling frequency. We explain further in Section 7 how we set the
MinDens threshold.
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Furthermore, because of the limitations of GPS readings, some stop clus-
ters may be shared by more than one cell (e.g. green cells in Figure 6). For
this reason, there is a need to include in the detected stop the neighbouring
cells that may belong to the same stop. Yet, as Hilbert SFC are by definition
hierarchical, one has only to divide the Hilbert index by 22", where n € N to
access the neighbouring cells.

Thereafter, the stop detection algorithm based on grid density takes as
input the minimum density threshold MinDens and n (as in 2°™). The al-
gorithm then joins the neighbouring cells to the detected stop even though
these neighbouring cells do not verify the density condition, forming a new
cluster composed of several cells and at least one cell that verifies the density
condition.

Algorithm 1 presents a basic version of the stop detection algorithm with-
out focusing on GPS data pre-processing and cleaning. Primarily, the algo-
rithm rasterizes the data and creates a Hilbert index that is assigned to each
cell. The algorithm then selects a set of cell indices whose density is higher
than the desired density threshold MinDens. All the selected cells are stop
candidates. The algorithm moves systematically to a higher level of hierarchy
by dividing the acquired Hilbert index by 22" (i.e., a grouping of 4 cells, 16
cells, 64 cells, etc.) and considers the whole grouping of cells around a stop
candidate as a stop. The remaining cells will be considered as move segments.
For instance, in Figure 6, let us suppose that only one of the four green cells
verifies the density condition (the upper right green cell), then this cell forms
a stop candidate. After dividing its Hilbert index by 22*!, we systematically
go to a higher level of hierarchy and the whole grouping of the four green cells
will be considered as a stop.

However, some outlier points may slip out of the grouping cells (e.g. blue
cells in Figure 6). The algorithm has another step which consists of post-
processing the trajectory segments based on a temporal threshold MinDur.
In other words, if a move (resp. stop) segment is jammed between two stops
(resp. move) segments and the duration of this segment is less than MinDur,
then this segment is to be merged with the previous segments.

A comparison between Grid Density-based Stop Detection (GDSD) and
state-of-the-art approaches is discussed further in Section 7.

Next comes the step of inferring the location of home and work based
on some a priori rules. The straightforward way is to draw the location of
home according to the time of presence in the stop. If the participant is static
between 2am and 4am every day at the same location, it is very likely that
the location in question is home. Another criterion for inferring the location
of home and work is the density of the stops. Usually and based on common
sense, people spend the most of their time in their home followed by their work.
Thereby, the densest stop is likely to be home and the second densest stop is
work, ceteris paribus. These assumptions are confirmed by the participants
declared annotations of their micro-environments - if they exist.
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Algorithm 1 Grid Density-Based Stop Detection (GDSD)

1: procedure GDSD(MinDens,n, MinDur)

2: SetOfCells = {}

3: create HilbertIndex from (Lon, Lat) > Create the Hilbert index from latitude and
longitude.

4: SetO fIndex = {HilbertIndex} > Create a set of all the possible Hilbert indices.

5: density < GroupBy(HilbertInder) and count

6: stops < HilbertIndex where density >= MinDens

7.

8

k=1
: for Hindex in stops do
9: x + Floor(Hindex/22™)
10: SetOfCells := SET (i i/2?™ = x) Vi € SetOfIndex label(SetOfCells) < k
11: k:=k+1

12: end for
13: for HindexinSetO fIndex \ stops do

14: label(Hindez) <+ —1

15: end for

16: segments := Set(segments) > segments is the set of all the stop segments
17: ji=1

18: while j < segments.size do

19: if Duration(segments[j]) < MinDur

20: & segments[j].label == segments[j + 1].label then

21: segments[j — 1] < concat(segments[j — 1], segments[j)]
22: del segments[j]

23: end if

24: end while

25: return segments

26: end procedure

7 Experiments and Results

The experiments are carried out in different environments. The multi-view
learning model was implemented in Python 3.6 using scikit-learn 0.23.2 and
tslearn [43]. The deep-learning models (MLSTM-FCN [25], TapNet [53]) were
trained on a single Tesla V100 GPU of 32 Go memory with CUDA 10.2, using
respectively Keras 2.2.4 and PyTorch 1.2.0.

7.1 Experimental Settings

We evaluate the proposed models in these experiments using real-life data col-
lected in the scope of the Polluscope project. In Polluscope, three data collec-
tion campaigns have been conducted, covering the whole study area (i.e., Paris
region). Each campaign was spread over 12 weeks, with a collection generally
carried out every other week (in order to check and re-qualify the sensors). 103
volunteers participated in the data collection phase, which lasted one week for
each participant. These participants are equipped with a kit that contains air
pollution sensors and tablets empowered with GPS chipsets. The sensors col-
lect, every one minute, time annotated concentrations of Particulate Matters
(PM1.0, PM10, PM2.5), Nitrogen dioxide NO2, Black Carbon (BC), temper-
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Table 3: General characteristics of the two campaigns VGP and RECORD.

Campaign  Number of participants Measurement period Sensor’s wearing time

15 October 2019

12 November 2019
VGP 09 November 2019 7 davs
15 December 2019 4

12 December 2019
RECORD 13 January - March 2020 7 days

ature, and relative humidity. The tablet serves to geolocate the participants
and to fill in their time micro-environment via an Android app developed for
this purpose. The speed dimension was derived from the geo-locational data.

In total, 13 activities (i.e., micro-environment to recognize) are considered
in this study, which can be organized into three categories:

e Indoor environment: home, office, restaurant, store, station
e Outdoor environment: park, walk, run, bike
e Transport environment: metro, car, bus, motorcycle

Previously (i.e. in [1]), we related to the annotation of the given tool (i.e.,
an Android app installed in the tablet). In this work, data have been enriched
both based on a tool (called TripBuilder Web) [6], and a thorough human con-
trol of participants’ annotations within the third campaign called RECORD
[5]. Therefore, this data is more reliable than our previously used data col-
lected during the second campaign, called VGP. Table 3 presents the general
characteristics of the two campaigns, i.e. VGP and RECORD. We select the
data of 13 participants with the best annotation activities in the RECORD
campaign. Overall, the dataset contains 8 dimensions, more than 1 million
rows (per dimension), with an average of 82071 rows per participant. The col-
lected data are split into two thirds for training and one third for testing, with
care taken to keep the data of each participant grouped either in training or
testing set. We use the cross-validation score with “repeated stratified k-fold”
to re-split the training set into training and validation sets, while we evaluate
the overall model performance on the testing set.

Considering the temporal feature of the data, we segment the collected
data into samples of 5 minutes’ length at maximum. Usually, people spend
most of their time indoors. We should thus consider outdoor activities with
a short period compared to indoor activities. For example, the average time
spent in “station” is around 4 minutes as shown in Table 4 which depicts
the average time spent per micro-environment. Participants tend to spend
more time in some micro-environment (typically “home” and “office”) than
others (e.g. “walk”, “metro”, “store”, etc.). Globally, as shown in Figure 3,
the distribution of data samples is highly imbalanced over the different classes,
leading to poor classification performance, especially for the minority classes.
More precisely, the model tends to optimize the global loss error which is biased
towards the majority classes while ignoring the minority ones. In consequence,
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Table 4: Average time spent per micro-environment.

Micro-environment Stay duration (in minutes)

Office 446
Bus 13
Home 899
Station 4
Store 24
Motorcycle 20
Metro 17
Park 76
Restaurant 46
Running 76
Car 29
Bike 50
Walk 12

the obtained accuracy is not reliable to evaluate the actual model performance.
To cope with this problem, we re-balanced the classes via data re-sampling
and data augmentation as mentioned in section 5.2 when pre-processing the
data. Figure 3 and figure 4 show the data distributions before and after class
balancing, respectively.

7.2 Experimental Design

First, we evaluate our basic multi-view learning model without integrating
the post-processing layer. Considering the mobility information in our data,
we carry out our experiments on the datasets with or without integrating
the speed variable. Furthermore, to thoroughly evaluate the importance of the
mobility information, we introduce and evaluate a two-step approach by first
discriminating between indoor, outdoor, and transport micro-environments,
followed by a refinement step to learn a more specific class.

Then, we evaluate our proposed algorithm for stop detection, which is a
key component in our post-processing layer. We compare it with the state-of-
the-art models implemented in Scikit-Mobility [33].

Finally, we conduct an extensive experiment considering various optimiza-
tion techniques proposed in the post-processing step. We evaluate the effect of
the post-processing layer not only on our multi-view learning model but also
on other classic MTSC models. We optimize the proposed approaches by either
analyzing the exact geolocation of the participant (privacy-invasive method)
or using a priori rules (privacy-friendly method).

7.3 Model Performance without Post-processing

In this section, we detail the experimental results of the multi-view learning
model without integrating the post-processing layer. First, we evaluate the
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Fig. 7: Accuracy among different views.

first-level learners on each single view and the multi-view learner on the global
view. We evaluate as well the multi-view learner when applying the two-step
approach which learns firstly the coarse-grained classes (i.e., indoor, outdoor
and transport) then refine them into more specific classes (e.g., home, park,
metro, etc.). Then, we compare the multi-view learner with MLSTM-FCN [25],
the state-of-the-art on Multivariate Time Series Classification.

As mentioned in Section 5.3, the micro-environment recognition can be
formulated as a Multivariate Time Series Classification (MTSC) problem, and
the multi-view learner combines the predictions of each independent view (i.e.,
dimension) from the first-level learners to get the final classification results.
In Figure 7, we report the accuracy of the first-level learners over the different
views, as well as the multi-view learner and the two-step approach with and
without considering the mobility (i.e., speed) dimension. Globally, the results
suggest that the multi-view learner shows comparable performance, with or
without adopting the two-step approach. Integrating the speed dimension helps
slightly improve the performance of the multi-view learner. We observe that
the first-level learners usually have low accuracy performance, which is not
surprising as the incomplete local information is not enough to train a reliable
model. By combining the local information from different views, the multi-view
learner can improve the model accuracy significantly.

To know how our multi-view learner performs compared to the state-of-
the-art work, we select MLSTM-FCN [25], a powerful deep learning model for
Multivariate Time Series Classification. We show as well the detailed evalua-
tion results when applying the two-step approach. Since MLSTM-FCN requires
enormous computational resources for parameter optimization, we train the
model on GPU. In contrast, our multi-view-based approaches are trained on
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Table 5: Performance of Multi-view Learner ( with/out speed)

Without Speed With Speed
class i i
Precision | Recall Precision | Recall

Score Score
Walk 0.96 0.86 0.91 0.95 0.87 0.91
Bus 0.99 0.96 0.98 0.98 0.97 0.98
Office 0.96 0.88 0.92 0.97 0.92 0.95
Restaurant | 0.97 0.97 0.97 0.99 0.97 0.98
Home 0.87 0.97 0.92 0.90 0.99 0.94
Bike 0.92 0.97 0.94 0.96 0.99 0.97
Car 0.99 0.98 0.98 0.99 0.99 0.99
Store 0.94 0.93 0.94 0.96 0.96 0.96
Metro 0.96 0.93 0.94 0.98 0.95 0.96
Station 0.98 0.96 0.97 0.99 0.97 0.98
Motorcycle | 0.99 0.99 0.99 0.99 0.99 0.99
Running 0.99 0.99 0.99 0.99 0.99 0.99
Park 0.99 0.98 0.98 0.99 0.98 0.99

Table 6: Performance of MLSTM-FCN ( with/out speed)

Without Speed With Speed
class ) i)
Precision | Recall Precision | Recall
Score Score
Walk 0.98 0.95 0.96 0.94 0.97 0.96
Bus 1.0 1.0 1.0 1.0 1.0 1.0
Office 0.97 0.95 0.96 0.96 0.94 0.95
Restaurant | 1.0 1.0 1.0 1.0 1.0 1.0
Home 0.97 0.97 0.97 0.98 0.97 0.97
Bike 0.98 1.0 0.99 0.98 1.0 0.99
Car 0.99 1.0 1.0 0.98 1.0 0.99
Store 0.99 1.0 0.99 0.99 1.0 0.99
Metro 0.99 1.0 0.99 1.0 0.97 0.99
Station 0.99 1.0 1.0 1.0 1.0 1.0
Motorcycle | 1.0 1.0 1.0 1.0 1.0 1.0
Running 1.0 1.0 1.0 0.99 1.0 0.99
Park 1.0 1.0 1.0 1.0 1.0 1.0

a normal CPU with less requirement on computational resources. For each of
the models, we study the impact of using or not the mobility data and report
the performance in terms of precision, recall, and F1 score.

The detailed results are grouped in Table 5, 6, and 7. Globally, the three
models have comparable results before and after adding mobility. While ML-
STM shows slightly better performance than the two-step model, the latter
outperforms the multi-view model. Looking at the F1-score, the out-performance
of MLSTM, compared to the two-step model, does not go beyond 3 point (e.g.
0.96 and 0.99 for the class bike) before adding mobility, and 2 points (e.g. 0.97
and 0.99 for the class store) after adding mobility, whereas the difference be-
tween the two-steps model and the multi-view model does not exceed 4 points
(e.g. 0.91 and 0.95 for the class walk) before and after adding mobility.

As for our multi-view learner, when integrating the speed dimension for
model training, we observe an improvement in the model’s performance, par-
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Table 7: Performance of Multi-view Learner (2-step approach with/out speed)

Without Speed With Speed
class i i
Precision | Recall Precision | Recall

Score Score

Walk 0.93 0.97 0.95 0.95 0.96 0.95
Bus 0.99 0.99 0.99 0.99 0.99 0.99
Office 0.97 0.92 0.94 0.97 0.91 0.94
Restaurant | 0.99 0.98 0.98 0.99 0.98 0.98
Home 0.93 0.97 0.95 0.93 0.98 0.95
Bike 0.97 0.96 0.96 0.97 0.97 0.97
Car 0.98 0.99 0.99 0.99 0.99 0.99
Store 0.98 0.97 0.97 0.98 0.96 0.97
Metro 0.98 0.97 0.98 0.98 0.98 0.98

Station 1.0 1.0 1.0 0.99 1.0 0.99
Motorcycle | 0.99 0.98 0.98 0.99 0.99 0.99
Running 0.98 0.98 0.98 0.98 0.98 0.98
Park 0.99 0.96 0.97 0.99 0.97 0.98

ticularly the Fl-score, while the performance of MLSTM-FCN does not im-
prove or even deteriorates. Figure 8 shows the confusion matrix of multi-
view approach. Figure 8a reports the confusion matrix with the presence of
the mobility dimension (i.e. speed), while figure 8b corresponds to the confu-
sion matrix of the model with the absence of mobility dimension. We notice
that the model can easily discriminate between the “indoor”, “outdoor” and
“transport” activities, but it cannot perfectly distinguish between the micro-
environments inside each category. For example, even though some of the sam-
ples in the “home” micro-environment are falsely predicted as “restaurant” or
“office”, the three micro-environments, “home”, “office” and “restaurant” can
be classified as indoor. Thereby, we introduced a grouping step before recog-
nizing the micro-environment. In this step we classify the sample into either
an “indoor”, “outdoor”, or “transport” environment. Based on the classifica-
tion result, a model will be specialized for each indoor, outdoor or transport
micro-environments. Table 7 shows the results of the added step.

7.4 Stop Detection Performance

In this section, we evaluate our proposed algorithm, Grid Density-based Stop
Detection (GDSD). First, we study the parameter effects on GDSD’s perfor-
mance and select the best ones when applying the algorithm. Then, we com-
pare GDSD with Scikit-Mobility [33], the state-of-the-art approach designed
for stop detection. Here, we adopt only the GPS data of the 13 participants
in the Polluscope RECORD campaign.

Before applying the proposed approach, the critical question is to set the
minimum density per cell (i.e., density threshold) and the number of grouping
cells within a stop. Generally, these parameters are set empirically. Without
prior knowledge of the data, it is necessary to conduct various tests to discover
the best parameters. To this end, we tune one parameter while blocking an-
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Fig. 8: Multi-view Approach Confusion Matrix

other one to observe how the model performance evolves. Precisely, we set the
values between 100 and 1000 points, with a step of 100, for the density thresh-
old. The number of grouping cells n varies between 0, 1, 2, and 3, meaning a
grouping of, respectively, 1, 4, 16, and 64 cells. Firstly, we start by searching
for the optimal value of the number of grouping cells. We iterate over the val-
ues of the density threshold (i.e. between 100 and 1000 with a step of 100). On
each round, we compute the performance of the model while iterating the val-
ues of n. We report the results with the optimal iterations. Figure 9 shows the
parameters’ effects on the model’s performance. From Figure 9a (with n=3),
we observe that the precision improves slightly, whereas the recall drops with
the increase of density threshold, indicating a trade-off between precision and
recall when the density threshold equals 100. This observation is supported
by the Fl-score, whose value is optimum at 100. As for the parameter’ effect
of n, Figure 9b (with density threshold equal to 100) shows that when n in-
creases, the precision drops slightly, whereas the recall score increases a little,
depicting an adequate trade-off between precision and recall when n equals 3
(i.e. a grouping of 64 cells). We observe as well an optimal F1-score under this
setting. In the rest of the paper, we set the grid density threshold to 100 and
set n to 3.

To validate the performance of our proposed stop detection algorithm
GDSD, we compare it with the state-of-the-art models implemented in Scikit-
Mobility [33]. We conduct the experiments of the stop detection for each cam-
paign participant separately. Table 8 depicts the results of this comparison.
On the one hand, when looking at the precision of the two models, the two
approaches are comparable for some participants (e.g., rows ID 1, 2, 4, 5, and
9), our approach outperforms the baseline for others except for one participant
(i.e., row ID 6). On the other hand, the recall score and the Fl-score show
that the grid-density-based approach outperforms the baseline on all partic-
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Table 8: Comparison between Scikit-Mobility and grid density based model.

Scikit-Mobility

Grid Density Based

Row ID  Participant ID
Precision  Recall F1 Precision  Recall F1

1 988088403 0.988 0.891 0.937 0.985 0.993 0.989
2 988231648 0.988 0.961 0.974 0.981 0.995 0.988
3 982228564 0.936 0.849 0.89 0.953 0.945 0.949
4 986002161 1.0 0.82 0.901 1.0 0.969 0.984
5 986939872 0.813 0.78 0.796 0.826 0.895 0.859
6 988335737 0.908 0.299 0.45 0.858 0.658 0.745
7 986174566 0.96 0.854  0.904 0.991 0.971 0.981
8 986884172 0.92 0.66 0.769 0.985 0.956 0.97

9 986938604 0.995 0.684 0.811 0.995 0.99 0.992
10 985935431 0.812 0.325 0.464 1.0 0.6 0.75

11 987014104 0.936 0.92 0.928 0.993 0.995 0.994
12 82119412 0.84 0.559  0.671 0.953 0.9 0.926
13 983602168 0.934 0.963  0.948 0.966 0.973 0.969

ipants. Overall, the proposed approach always has better performance than
the baseline.

7.5 Experiment Extension

In this section, we extend the experiments by applying the proposed post-
processing techniques which are designed to enhance the micro-environment
detection model. We apply four basic MTSC models:

e MVB: our proposed Basic Multi-View learning model.
e MV-2steps: our proposed Basic Multi-View learning model with two-step
classification as shown in Section 7.3.
e MLSTM-FCN [25]: a powerful deep learning model for Multivariate Time
Series Classification.
e KNN-DTW [4]: the most popular benchmark for Time Series Classification
which adopts the K-nearest neighbor (K-NN) classifier with dynamic time
wrapping (DTW) distance.
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As the models are trained on different hardware environments (e.g., MLSTM-
FCN is trained on a GPU, which is ten times faster than running on CPU),
it is unfair to compare them in terms of efficiency. However, according to the
recent study [38], the deep learning-based models usually require more com-
putational resources than classic data mining approaches; the lazy classifiers
(e.g., KNN-DTW) are much slower than the tree-based classifier (e.g., Ran-
dom Forest) due to the costly distance computations (e.g., DTW). As the
first-level learner and meta-learner in our multi-view learning model are based
on Random Forest, thus the model training and prediction are quite efficient
compared to other models.

The model variants after applying the post-processing techniques are de-
tailed in Table 9. We go through extensive experiments and test various model
variants to select the best model combinations. We organize the model vari-
ants into two categories: privacy-friendly and privacy-invasive models. For
privacy-friendly models, post-processing is performed using stop detection and
transportation mode detection techniques, while for privacy-invasive models,
additional private information is adopted such as Location of Home (LH) and
Location of the Office (LO).

7.5.1 Global accuracy comparison on the model variants

In this section, we used the trained model to predict the micro-environment
of our real MCS data and we adopted the post-processing techniques on the
results. Here, we show the global accuracy comparison between the models
within each privacy category. Tables 10 and 11 report the accuracy of var-
ious privacy-friendly and privacy-invasive models, respectively. The NaN in
the results of MLSTM and KNN models indicates that no complete data is
collected, thus, the models are not applicable. More precisely, some variables
are missing during the data collection process. However, the multi-view-based
models succeed all to detect the micro-environment even some dimensions are
missing.

For the privacy-friendly models, all the proposed multi-view-based models
show higher accuracy compared to baselines (i.e., KNN-based and MLSTM-
based models). On the one hand, there is a big performance difference between
multi-view-based models and the baseline models, especially for the partici-
pants who did not collect the complete variable data on which the baseline
models are not applicable (i.e., NaN value). On the other hand, the post-
processing does show its generalizability which improves the performance of
both multi-view-based and baseline models. Among all the privacy-friendly
models, the MVP (Multi-view with Post-processing) model shows the best
performance, which validates the reliability of our proposed model.

For the privacy-invasive models, we adopt the additional private informa-
tion: Location of Home (LH) and Location of the Office (LO), to check their
impact on the models. However, since the baselines showed poor performance
in the privacy friendly models, they will not be considered in this comparison.
It is already known that, even with the exact locations of home and office,
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Table 9: The description of various model variants

Model Description
MVB Basic multi-view model
Multi-view model having 2 steps, first discriminate be-
MV-2steps tween indoor/outdoor/transport and then classify the micro-
environment.
Multi-view model having 2 steps, first discriminate be-
tween indoor/outdoor/transport and then classify the micro-
MV-2stepsP . . . .
environment, with a post-processing step based on stop detection
transportation mode detection models.
PMV Multi-view model with a pre-processing step based on stop de-
tection transportation mode detection models.
MVP Multi-view model with a post-processing layer based on stop
detection and transportation mode detection models.
MLSTMB Basic MLSTM-FCN model.
MLSTM-FCN with a post-processing layer based on stop detec-
MLSTMP . . >
tion and transportation mode detection models.
KNN-DTWB Basic KNN-DTW model.
KNN-DTWP KNN-DTW w1t}'1 a post—procesm'ng layer based on stop detection
and transportation mode detection models.
MVB-4LO Basw. multi-view model with a post-processing step based on the
location of the office.
MVB4LH Basu:. multi-view model with a post-processing step based on the
location of home.
Multi-view model with a post-processing layer based on stop
MVP+LO detection and transportation mode detection models as well as
the location of the office.
Multi-view model with a post-processing layer based on stop
MVP+LH detection and transportation mode detection models as well as

the location of home.

Table 10: Performance comparison of various privacy-friendly models

Participant ID MVB MV-2steps PMV MVP MV-2stepsP MLSTMB MLSTMP KNN-DTWB KNN-DTWP
988088403 88.2 89.2 89.6 95.9 95.8 63.5 66.6 85.8 86.5
988231648 90.9 90.7 90.9 93.5 93.6 NaN NaN NaN NaN
982228564 94.3 93.8 91.7 94.8 94.9 23.6 24.0 74.8 76.7
986002161 91.0 89.5 89.5 91.0 89.7 NaN NaN NaN NaN
986939872 83.3 82.2 80.0 88.1 86.4 34.4 34.4 72.0 75.2
988335737 60.9 59.2 59.2 61.2 59.5 NaN NaN NaN NaN
986174566 92.0 92.5 92.1 92.2 93.5 10.8 11.3 76.7 78.3
986884172 85.9 85.7 86.5 88.6 88.3 NaN NaN NaN NaN
986938604 98.6 98.4 98.3 98.8 98.7 37.6 37.3 91.4 91.9
985935431 90.7 90.8 91.1 90.9 91.1 NaN NaN NaN NaN
987014104 98.1 97.6 97.6 99.1 98.6 38.5 39.6 89.8 92.2
82119412 96.8 95.9 96.0 97.2 96.2 10.0 9.8 66.0 65.5
983602168 89.8 89.9 89.1 92.4 92.5 NaN NaN NaN NaN

Overall Accuracy 91.33 91.0 90.71 93.43 93.10 31.14 31.70 83.48 85.06
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Table 11: Performance comparison of various privacy-invasive models

Participant ID MVB 4+LO MVB +LH MVP +LO MVP +LH

988088403 92.3 92.6 94.9 96.0
988231648 95.4 94.8 96.0 95.6
982228564 95.8 94.4 95.9 94.3
986002161 95.7 95.7 95.7 95.7
986939872 87.2 87.3 89.2 89.2
988335737 67.2 67.2 67.2 67.2
986174566 93.2 93.2 93.3 93.3
986884172 94.4 94.2 94.3 93.6
986938604 99.7 99.1 99.8 99.2
985935431 94.9 94.9 95.0 95.0
987014104 92.2 97.7 99.4 97.9
82119412 NaN 98.0 NaN 98.3
983602168 94.4 92.7 94.5 93.3
Overall Accuracy 94.70 94.20 95.27 94.87

they will fail with missing dimensions. By considering the office location cor-
rection, the MVP+LO model demonstrates the best performance among the
privacy-invasive models. More importantly, MVP+LO shows the highest over-
all accuracy among both privacy-friendly and privacy-invasive models. The
NaN in the results of MVB+4LO and MVP+LO models indicates that the
location of the office is unknown, and thereafter, the post-processing task is
not applicable. Globally, the privacy-invasive models show better performance
than the privacy-friendly models, indicating that the private information does
help improve the models. However, in practice, private information is not al-
ways available. Therefore, a trade-off between model performance and user
privacy should be considered in practice.

7.5.2 Post-processing effects on various basic MTSC models

In this section, we report the detailed results of various model variants applied
to new data (not seen before by the model) to show the effects of the post-
processing techniques. First, we show the performance of the privacy-friendly
models before and after adopting the post-processing layer (i.e., stop-mode and
transportation-mode detection). Then, for privacy-invasive models, we briefly
compare the effects between various location-correction techniques (i.e., LO
and LH) on our multi-view learner after post-processing (i.e., MVP).

For privacy-friendly models, we show the results on four basic MTSC mod-
els (i.e., multi-view learner, two-step multi-view learner, MLSTM-FCN, and
KNN-DTW) with or without pre-processing. Tables 12, 13, 14 and 15 show
the metric comparison (i.e., precision, recall, F1-Score) of the four models, re-
spectively. Globally, the multi-view models (i.e., MVB and MVP) show better
performance than both MLSTM-FCN and the two-step multi-view models.
Furthermore, the post-processing allows improving all the basic models, espe-
cially for the Fl-score, in which we can observe a noticeable improvement. To
have a more detailed understanding of the results, we show in Figures 10, 11,
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Table 12: Performance of Multi-view Learner on Participants’ data (be-

fore/after) post-processing

MVB MVP
class i 1
Precision | Recall Precision | Recall

Score Score
Walk 0.82 0.79 0.80 0.85 0.83 0.84
Bus 0.85 0.64 0.73 0.96 0.69 0.79
Office 0.86 0.85 0.85 0.92 0.90 0.90
Restaurant | 0.42 0.60 0.50 0.44 0.60 0.50
Home 0.95 0.95 0.95 0.96 0.96 0.96
Bike 0.57 0.61 0.59 0.61 0.61 0.61
Car 0.51 0.18 0.27 0.78 0.25 0.38
Store 0.61 0.61 0.61 0.64 0.68 0.64
Metro 0.62 0.70 0.66 0.71 0.70 0.71
Station 0.16 0.17 0.16 0.25 0.16 0.20
Motorcycle | 0.33 0.08 0.12 0.65 0.30 0.41
Running 0.30 0.61 0.40 0.38 0.61 0.48
Park 0.32 0.86 0.47 0.36 0.85 0.50
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and 12 the related confusion matrices of the models where we report the per-
centage of true predictions in each class. From the results, we observe that the
post-processing improved largely the recognition of the outdoor (e.g., walk,
bike, park) and transport (e.g., car, bus, metro) micro-environments, whereas
the performance on indoor micro-environments (e.g. station, restaurant, and
store) recognition is only slightly improved, which is mainly due to the limited

sample numbers in the testing set.
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Table 13: Performance of Multi-view Learner (2 steps classification) on Par-
ticipants’ data (before/after) post-processing

MV-2steps MV-2stepsP
class i 1
Precision | Recall Precision | Recall

Score Score

Walk 0.75 0.79 0.77 0.78 0.83 0.80
Bus 0.73 0.64 0.68 0.81 0.69 0.74
Office 0.85 0.87 0.86 0.92 0.96 0.94
Restaurant | 0.43 0.60 0.50 0.48 0.60 0.54
Home 0.95 0.95 0.95 0.97 0.97 0.97
Bike 0.43 0.38 0.41 0.52 0.41 0.44
Car 0.50 0.14 0.22 0.88 0.23 0.36
Store 0.45 0.62 0.53 0.60 0.68 0.60
Metro 0.57 0.50 0.53 0.76 0.45 0.53
Station 0.46 0.15 0.23 0.80 0.14 0.22
Motorcycle | 0.27 0.04 0.07 0.76 0.28 0.40
Running 0.24 0.61 0.35 0.38 0.60 0.46
Park 0.41 0.93 0.57 0.38 0.96 0.54

Table 14: Performance of MLSTM-FCN on Participants’ data (before/after)
post-processing

MLSTMB MLSTMP
class ) 1
Precision | Recall Precision | Recall
Score Score
Walk 0.13 0.02 0.03 0.13 0.09 0.01
Bus 0.0 0.0 0.0 0.0 0.0 0.0
Office 0.13 0.60 0.22 0.13 0.58 0.21
Restaurant | 0.0 0.0 0.0 0.0 0.0 0.0
Home 0.73 0.27 0.40 0.74 0.28 0.41
Bike 0.0 0.0 0.0 0.67 0.06 0.11
Car 0.0 0.0 0.0 0.0 0.0 0.0
Store 0.0 0.0 0.0 0.0 0.0 0.0
Metro 0.0 0.0 0.0 1.0 0.08 0.16
Station 0.0 0.0 0.0 0.0 0.0 0.0
Motorcycle | 0.0 0.0 0.0 0.55 0.33 0.42
Running 0.0 0.0 0.0 0.0 0.0 0.0
Park 0.0 0.0 0.0 0.0 0.0 0.0

However, as shown in Table 14 and 15, MLSTM-FCN-based and KNN-
DTW-based models show bad performances even after post-processing. For
instance, in Table 14, the MLSTM-FCN-based models fail to detect most of
the micro-environments, even though they perform relatively better on detect-
ing home, the performance is still much worse than multi-view-based models.
Therefore, we draw a similar conclusion as mentioned in Section 7.5.1: the
baseline models are not applicable on such complex scenarios where some di-
mensions are missing during data collection process; In other words, some
sensors may be inoperative due to a technique issue for a long time, thus,
some samples contain less dimensions than others. On this aspect, our multi-
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Table 15: Performance of KNN-DTW on Participants’ data (before/after)
post-processing

KNN-DTWB KNN-DTWP
class B T
Precision | Recall Precision | Recall
Score Score

Walk 0.13 0.52 0.20 0.26 0.62 0.36
Bus 0.06 0.55 0.11 0.1 0.83 0.17
Office 0.59 0.64 0.62 0.66 0.82 0.74
Restaurant | 0.04 0.24 0.06 0.05 0.33 0.09
Home 0.92 0.74 0.82 0.97 0.87 0.92
Bike 0.22 0.33 0.26 0.55 0.40 0.46
Car 0.0 0.0 0.0 0.0 0.0 0.0
Store 0.11 0.41 0.18 0.0 0.0 0.0
Metro 0.09 0.40 0.16 0.37 0.55 0.44
Station 0.09 0.11 0.10 0.33 0.20 0.25
Motorcycle | 0.05 0.08 0.06 0.44 1.0 0.62
Running 0.17 0.71 0.27 0.11 0.27 0.15
Park 0.04 0.50 0.08 0.33 0.50 0.40

Table 16: Performance of Multi-view Learner with Location Correction and
Post-processing on Participants’ data

MVP + LH MVP + LO
class ) 1
Precision | Recall Precision | Recall
Score Score
Walk 0.89 0.78 0.83 0.88 0.80 0.84
Bus 1.0 0.53 0.69 0.95 0.56 0.71
Office 0.94 0.93 0.93 0.92 0.95 0.94
Restaurant | 0.51 0.60 0.55 0.49 0.60 0.54
Home 0.96 0.98 0.97 0.97 0.98 0.98
Bike 0.67 0.54 0.59 0.68 0.62 0.65
Car 0.84 0.15 0.26 0.84 0.15 0.26
Store 0.78 0.54 0.64 0.71 0.41 0.52
Metro 0.78 0.49 0.60 0.83 0.64 0.72
Station 0.42 0.14 0.20 0.35 0.16 0.22
Motorcycle | 0.74 0.35 0.47 0.67 0.31 0.42
Running 0.24 0.30 0.27 0.41 0.60 0.49
Park 0.32 0.96 0.48 0.31 0.96 0.47

view-based models show a key advantage compared to the baseline models,
which can be explained by the fact that the meta-learner allows weighting
the predictions of the fist-level learners, thus eliminating the effects of the
missed dimensions. To this end, considering as well the high computation cost
of the MLSTM-FCN and KNN-DTW models, we judge that the the baseline
approaches are not qualified as appropriate models for predicting the micro-
environments.

For privacy-invasive modes, we show in Table 16 and Figure 13 the perfor-
mance of the MVP model when adopting the location-correction techniques
(i.e., LO and LH). Compared to the MVP model’s performance reported in
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Fig. 13: MVP + Office location Correction confusion matrix

Table 12, we observe that adding the location corrections of home or office not
only leads to better predictions on the target classes (i.e., home, office) but also
improves the general model performance. Moreover, the location of the office
(LO) helps the MVP model achieve better predictions in most classes than
the location of home (LH), which is coherent with our conclusion in Section
7.5.1 where the MVP+LO model shows the best accuracy for most campaign
participants. However, even though the location information allows to greatly
improve the model’s performance, the privacy stays as a crucial issue during
both the data collection and data application process. In practice, a trade-off
between the privacy and model performance should be considered.

In conclusion, MVP with location correction and MVP classifiers have com-
parable results. Although location corrections (i.e., LH and LO) can improve
the model’s performance, those location data are not always available due to
privacy issues.

7.6 Model Generalization

In practice, we should consider the model generalization on unseen data, which
allows evaluating the model in more complex scenarios. We have used the
multi-view model (which have been trained over RECORD campaign data) to
classify data that have never been seen by it before. We opt for the VGP cam-
paign data, which was collected during a different time period from RECORD,
to prove the generalization ability of the proposed model. For the VGP cam-
paign, we don’t have the ground truth for the data, so we have plotted the pre-
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Fig. 14: Predictions of VGP campaign for participant 9999988.

dictions versus the declared activities (which is not guaranteed to be accurate).
Figure 14 shows the plot of declared versus predicted micro-environments. For
this participant (i.e. participant 9999988), we trust his/her annotations, so we
can notice that the model has performed well. While for figure 15, as we don’t
have the real ground truth, we can see that the model’s predictions are more
reliable than the annotations. For instance, the participant in the plot has
declared three times staying outdoors in the middle of the night (i.e. 24, 25
and 26th of October 2019), which is very unlikely to be true. Some other par-
ticipants may completely forget to annotate the change of micro-environment,
so the declared annotations are indeed imperfect.

8 Discussions & Perspectives

In this section, we discuss the perspectives for improving our multi-view learn-
ing model and the possibility for tackling the practical label issue in the context
of Polluscope.

8.1 Multi-view Learner

The multi-view learner adopted in this paper is composed of the base learner
(i.e., Random Forest) and the meta-learner (i.e., Random Forest), which has
greatly improved the performance compared to the single kNN-DTW classi-
fier. The objective of this paper is not to propose the best classifier for MTS
classification, but to provide an insight that the multi-view learner is capable
of coordinating effectively the information from different variables and achiev-
ing more reliable performance than a single base learner. Moreover, the results
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Fig. 15: Predictions of VGP campaign for participant 9999944.

of the grouping approach which is based on the multi-view approach confirms
that there is a clear signature for each micro-environment, thus we can have
an effective prediction with this approach. Moreover, the multi-view approach
offers the reusability of the first-level learners, and allows using different clas-
sifiers and combinations for the first-level learners. Multi-view model doesn’t
require a special hardware such as GPU for training Neural Networks (i.e.
MLSTM-FCN). In addition, it does not require a long execution time for clas-
sification as other classifiers such as KNN-DTW do. Besides, using the multi-
view approach allows the prediction of micro-environments in the absence of
some dimensions in the data. Another advantage of using the multi-view ap-
proach is that its meta-learner is trained on out-of-fold predictions thus the
model will not over fit.

Nevertheless, the kKNN-DTW is considered as the baseline for MTS classi-
fication and is widely outpaced by the advanced approaches such as Shapelets
[49,59,60] or the frequent patterns [32]. Essentially, the kNN-DTW captures
the global feature based on the distance measure between the entire sequences,
while the local features (e.g., the frequent patterns [32], the interval features
[12], Shapelets [49], etc.) are more appropriate when a specific pattern charac-
terizes a class. More specifically, a combination of features extracted from dif-
ferent domains may dramatically improve the performance of the base learner
[29]. Therefore, one of the perspectives consists of the optimization of the
base learner and the exploration of the explainability of the multi-view
learner on both the feature interpretation and the variable importance for
building the classifier. For this reason, we have removed the NO2 and BC
dimensions to show their importance for some classes. Table 17 shows the pre-
cision, recall, and F1 score for MVB while removing some dimensions (NO2
and BC) compared to the MVB model containing all dimensions. The compar-
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Table 17: Performance of MVB without NO2 and BC VS. MVB

MVB without NO2 and BC MVB
class 1 B
Precision | Recall Precision | Recall
Score Score
Walk 0.74 0.76 0.75 0.82 0.79 0.80
Bus 0.58 0.54 0.56 0.85 0.64 0.73
Office 0.78 0.74 0.76 0.86 0.85 0.85
Restaurant | 0.43 0.60 0.50 0.42 0.60 0.50
Home 0.92 0.93 0.93 0.95 0.95 0.95
Bike 0.49 0.47 0.48 0.57 0.61 0.59
Car 0.34 0.15 0.20 0.51 0.18 0.27
Store 0.54 0.57 0.55 0.61 0.61 0.61
Metro 0.52 0.60 0.55 0.62 0.70 0.66
Station 0.10 0.12 0.11 0.16 0.17 0.16
Motorcycle | 0.25 0.07 0.11 0.33 0.08 0.12
Running 0.32 0.61 0.42 0.30 0.61 0.40
Park 0.26 0.89 0.41 0.32 0.86 0.47

ison shows that the Fl-score of the MVB model for all classes is greater than
that model without NO2 and BC. Except for Running class which is only one
point difference. This comparison shows the importance and role of those di-
mensions (NO2 and BC) in micro-environment prediction. We have chosen to
remove NO2 and BC because depending on figure 7, these 2 dimensions have
the highest accuracy compared to other dimensions. The visual representation
of Shapelets make them good candidates for such improvement.

8.2 Label Shortage Issue

The label shortage is a practical issue when building the learning model. In
the context of Polluscope particularly, post-labelling for time series sensor
data is much more costly than classic data (e.g., image, text, etc.) due to the
low interpretability over the real-valued sequence. Therefore, the data need
to be annotated during the data collection process. However, certain practical
factors limit the availability of labels. For instance, the participants are not
always conscious in annotating their micro-environment. Therefore, for certain
time periods, no annotations were marked.

In order to give an insight about the consistency between the labeled and
unlabeled data, and to see if the unlabeled data are valuable for improving
the classifier’s performance in our context, we conduct a preliminary test on
the Polluscope data with the newly proposed semi-supervised MTSC model
TapNet [53].

TapNet [53] is a deep learning based approach designed for multivariate
time series classification. By adopting the prototypical network [41], TapNet
allows learning a low-dimensional embeddings for the input MTS where the
unlabelled samples help adjust the class prototype (i.e., class centroid), which
leads to a better classifier than using only the labelled samples. Table 18 shows
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the semi-supervised learning results on Polluscope data considering or not
the speed variable. We evaluate the performance of TapNet under different
supervision ratios in the training set. The results show that the unlabeled
samples and the speed variable do improve the performance of the classifier.
Besides, the accuracy didn’t drop a lot when eliminating the annotations in
the training set (from ratio=1 for fully labelled to 0.5, and even for 0.2 when
only 20% data is labelled), indicating that the collected data within each class
is not sparsely distributed. Thus learning under weak supervision is reliable
with the aid of the unlabeled samples.

Table 18: The accuracy results of TapNet on Polluscope data under different
supervision ratios

[ Condition [ Sup_ratio=1 [ Sup_ratio=0.5 [ Sup_ratio=0.2 ]
Speed 0.746 0.725 0.717
No speed 0.713 0.703 0.695

Giving the promising results on the data distribution consistency, another
avenue worth exploring is to consider and integrate a semi-supervised model
into our multi-view learner. Various semi-supervised frameworks are applicable
to our model, such as applying self-learning [47] to produce the pseudo labels
on the multi-view learner, or adopting the label propagation and manifold
regularization techniques [17] on the base learner.

9 Conclusion

Activity recognition has gained the interest of many researchers nowadays, due
to the widespread use of mobility sensors. Micro-environment recognition is es-
sential in MCS projects such as Polluscope, in order to analyse the individual’s
exposure to air pollution and to relate it to his/her micro-environment. The
major finding of our study is to show to some extent that the environmental
observations can characterize the micro-environment. Moreover, the accuracy
of the model is high enough to consider an automatic detection of the micro-
environment without burdening the participants with self-reporting. By using
the mobility feature as a time series, the accuracy improves slightly though the
gain is moderate. Therefore, we can keep characterizing the micro-environment
even in the absence of the speed dimension.

We employed different approaches and learners, and conducted a thorough
experimental study, which shows the efficiency of the multi-view approach for
time series classification, even though some dimensions are missing. We have
also compared the results with the MLSTM-FCN and kNN-DTW classifiers
which were considered as the baselines. During the training phase, MLSTM-
FCN, on the one hand, showed promising results that could not be confirmed
during the phase of applying the model on new data due to over-fitting. kNIN-
DTW, on the other hand, was not comparable, plus it is not suitable because
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of its time consumption. Furthermore, training on a previous data set was
biased by the quality of the annotation. But this limitation was overcome by
using more reliable data that we did not have before.

Furthermore, we extend the proposed approach to include the detection of
stay locations based on trajectory segmentation into stop and move segments.
The move segments were labeled by the type of transportation mode. We
combine time series plus trajectory data as pre-processing and post-processing
layers to bring the best of them.

In addition, we present two optimisation methods which are either privacy
friendly or privacy invasive. The later approach adds the private location of
home and office in post-processing, whilst the first approach uses a priori rules.
According to our experiments, we highly recommend using the privacy friendly
models due to their ability to respect the private lives of the participants.
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