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Abstract

Neural network representation learning for spatial data (e.g., points,
polylines, polygons, and networks) is a common need for geographic arti-
ficial intelligence (GeoAl) problems. In recent years, many advancements
have been made in representation learning for points, polylines, and net-
works, whereas little progress has been made for polygons, especially
complex polygonal geometries. In this work, we focus on developing a
general-purpose polygon encoding model, which can encode a polygo-
nal geometry (with or without holes, single or multipolygons) into an
embedding space. The result embeddings can be leveraged directly (or
finetuned) for downstream tasks such as shape classification, spatial
relation prediction, building pattern classification, cartographic building
generalization, and so on. To achieve model generalizability guarantees,
we identify a few desirable properties that the encoder should satisfy:
loop origin invariance, trivial vertex invariance, part permutation invari-
ance, and topology awareness. We explore two different designs for the
encoder: one derives all representations in the spatial domain and can
naturally capture local structures of polygons; the other leverages spec-
tral domain representations and can easily capture global structures of
polygons. For the spatial domain approach we propose ResNet1D, a 1D
CNN-based polygon encoder, which uses circular padding to achieve loop
origin invariance on simple polygons. For the spectral domain approach
we develop NUFTspec based on Non-Uniform Fourier Transformation
(NUFT), which naturally satisfies all the desired properties. We con-
duct experiments on two different tasks: 1) polygon shape classification
based on the commonly used MNIST dataset; 2) polygon-based spa-
tial relation prediction based on two new datasets (DBSR-46K and
DBSR-cplx46K) constructed from OpenStreetMap and DBpedia. Our
results show that NUFTspec and ResNet1D outperform multiple exist-
ing baselines with significant margins. While ResNetlD suffers from
model performance degradation after shape-invariance geometry mod-
ifications, NUFTspec is very robust to these modifications due to the
nature of the NUFT representation. NUFTspec is able to jointly con-
sider all parts of a multipolygon and their spatial relations during
prediction while ResNet1D can recognize the shape details which are
sometimes important for classification. This result points to a promising
research direction of combining spatial and spectral representations.

Keywords: Polygon Encoding, Non-Uniform Fourier Transformation, Shape
Classification, Spatial Relation Prediction, Spatially Explicit Artificial
Intelligence
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1 Introduction

Deep neural networks have shown great success for numerous tasks from com-
puter vision, natural language processing, to audio analysis, in which the
underlining data is usually in a regular structure such as grids (e.g., images)
or sequences (e.g., sentences, audios) [1, 2]. These successes can be largely
attributed to the fact that such regular data structures are natively supported
by the neural networks [1]. For example, convolutional neural networks (CNN)
are naturally suitable for image and video analysis. Recurrent neural networks
(RNN) are suitable for data with sequence structures such as sentences and
time series. However, it is hard to apply similar models on data with more com-
plex structures. Recent years have witnessed increasing interests in geometric
deep learning [1, 3], which focuses on developing deep models for non-Euclidean
geometric data such as graphs [4-9], points [10-13], and manifolds [3, 14] that
have rather irregular structures. In fact, deep learning models on irregularly
structured data or non-Fuclidean geometric data have various applications
in different domains such as computational social science (e.g., social net-
work [15, 16]), chemistry (e.g., organic molecules [17]), bioinformatics (e.g.,
gene regulatory network [18]), and geoscience (e.g., traffic network [19, 20], air
quality sensor network [21], weather sensor networks [22], and species occur-
rences [12, 13]). This trend indicates that representing various types of spatial
data in an embedding space for downstream neural network models is an
important task for geographic artificial intelligence (GeoAlI) research [2].

Recently, we have seen many research advancements in developing represen-
tation learning models for points [2, 12, 13, 23], polylines [24-26], and network
[20, 27]. Compared with other non-Euclidean geometric data, few efforts have
been taken to develop deep models on polygons, especially complex polyg-
onal geometries (e.g., polygons with holes, multipolygons), despite the fact
that they are widely utilized in multiple applications, especially (geo)spatial
applications such as shape coding and classification [28, 29], building pattern
classification (BPC) [30-32], building grouping [30, 33], cartographic building
generalization [34], geographic question answering (GeoQA) [9, 35-39], and so
on. Figure 1 demonstrates the importance of polygon data for two geospatial
tasks - GeoQA and BPC. Without proper polygon representations of Canada
and the US (Figure 1a), Question ‘How far it is from Canada to US’ cannot be
answered correctly even by state-of-the-art QA system'. As for the BPC task
(Figure 1b), the shape and arrangement of building polygons in a neighborhood
are indicative for its types, e.g., regular or irregular building groups [31].

A representation learning model on polygons is desired. In many previous
GeoAl study, due to the lack of ways to directly encode polygons into the
embedding space, researchers have to rely on feature engineering to convert
polygon shapes into a set of predefined shape descriptors before feeding them
into the neural networks. For building pattern classification, given a set of

!The answer to this brain teaser question should be 0 because Canada and the US are adjacent
to each other. However, since Google utilizes geometric central points as the spatial representations
for geographic entities, Google QA returns 2260 km as the answer as the distance between them.
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Fig. 1: Two geospatial tasks involving polygon data: (a) GeoQA: many
geographic questions can only be answered correctly based on polygon repre-
sentations of geographic entities. Otherwise, it will yield an incorrect answer
(2260 km) such as ‘How far it is from Canada to US’. (b) BPC: the shape,
scale, and arrangement of building footprints in a neighborhood are indicative
for the neighborhood types. The blue neighborhood (Disneyland Park in Los
Angles) shows irregular patterns whereas the red neighborhood (residential
area) shows regular patterns [31].

building polygons, Yan et al. [31], He et al. [30], and Bei et al. [32] converted the
polygon set into a graph in which each node represents a building polygon and
edges represent the spatial adjacent relations among buildings. They compute
a feature vector for each building polygon/node based on a set of predefined
shape descriptors. These vectors are used as initial node embeddings for the
following graph neural network for building pattern recognition. These feature
engineering approaches have several disadvantages: 1) these shape descriptors
can not fully capture the shape information polygons have which yield infor-
mation loss; 2) lots of domain knowledge is needed to design these descriptors;
3) this practice lacks generalizability — it is hard to used the developed shape
descriptors in other polygon tasks. In contrast, developing a general-purpose
polygon encoder has several advantages: 1) it allows us to develop end-to-end
neural architectures directly taking polygons as inputs which increases the
model expressivity; 2) it eliminates the need of domain knowledge when han-
dling polygon data; 3) this model is task agnostic and can benefit a wide range
of GeoAl tasks.

For the object instance segmentation task, existing deep models decode a
simple polygon? based on the object mask image [40-42]. These approaches
can be seen as a reverse process of polygon encoding and they cannot decode
complex polygonal geometries. In contrast, we propose to develop general-
purpose polygon representation learning models, which directly
encode a polygonal geometry (with or without holes, single or multi-
polygons) in an embedding space. Furthermore, we identify a few desirable
properties for polygon encoders to guarantee their model generalizability: loop

2A simple polygon is a polygon that does not intersect itself and has no holes.
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Fig. 2: Tllustrations of the proposed polygon encoders. (a) ResNet1D: given a
simple polygon (i.e., without hole) g;, its exterior coordinate sequence can be
encoded as a 1D point embedding sequence L by using KDelta point encoder.
L is fed into an initial 1D CNN layerand 1D max pooling layer, followed by
K 1D ResNet layers with circular padding. Eventually, a global max pooling
layer produces the final polygon embedding. (b) NUFTspec: given a polygonal
geometry g; (i.e., a single polygon with/without holes or multipolygons), first
it is converted into a j-simple mesh SU) (j = 2) based on auziliary node method
(See Section 5.2.1). After NUFT, the Fourier features are fed into a multi-layer
perceptron (MLP) to obtain the final polygon embedding.

origin invariance, trivial vertexr invariance, part permutation invariance, and
topology awareness, which will be discussed in detail in Section 3. The result-
ing polygon embeddings can be subsequently utilized in multiple downstream
tasks such as shape classification [28, 29, 43, 44], spatial relation prediction
between geographic entities [45], GeoQA [36], and so on.

Existing polygon encoding approaches can be classified into two groups:
spatial domain polygon encoders and spectral domain polygon encoders. Spa-
tial domain polygon encoders such as VeerCNN [28], GCAE [29], directly learn
polygon embeddings from polygon features in the spatial domain (e.g., ver-
tex coordinate features). In contrast, spectral domain polygon encoders such
as DDSL [46, 47] first convert a polygonal geometry into spectral domain fea-
tures by using Fourier transformations and learn polygon embeddings based
on these spectral features. Both practices have unique advantages and disad-
vantages. To study the pros and cons of these two approaches, we propose
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two polygon encoders: ResNetl1D and NUFTspec. ResNetlD directly takes
the polygon features in the spatial domain, i.e., the polygon vertex coordinate
sequences, and uses a 1D convolutional neural network (CNN) based architec-
ture to produce polygon embeddings. In contrast, NUFTspec first transforms
a polygonal geometry into the spectral domain by the Non-Uniform Fourier
Transformation (NUFT) and then learns polygon embeddings from these spec-
tral features using feed forward layers. Figure 2a and 2b illustrate the general
model architectures of ResNet1D and NUFTspec polygon encoder respectively.

We compare the effectiveness of ResNetlD and NUFTspec with vari-
ous deterministic or deep learning-based baselines on two types of tasks —
1) polygon shape classification and 2) polygon-based spatial relation predic-
tion. For the first task, we show that both ResNetlD and NUFTspec are
able to outperform multiple baselines with statistically significant margins
whereas ResNet1D are better at capturing local features of the polygons, and
NUFTspec better at capturing global features of the polygons. Our analysis
shows that because of NUFT, NUFTspec is robust to multiple shape-invariant
geometry modifications such as loop origin randomization, vertex upsampling,
and part permutation whereas ResNet1D suffers from significant performance
degredations. For the spatial relation prediction task, NUFTspec outperforms
ResNet1D, as well as multiple determinstic and deep learning-based baselines
on both DBSR-46K and DBSR-cplx46K datasets because it can learn robust
polygon embeddings from the spectral domain derived from NUFT. In addi-
tion, experiments on both tasks show that compared with other NUFT-based
methods such as DDSL[46], NUFTspec is more flexible in the choice of NUFT
frequency maps. Designing appropriate NUFT frequency maps for NUFT-
spec can help learn more robust and effective polygon representations which
is the key to its better performance. Our contribution can be summarized as
follows:

1. We formally define the problem of representation learning on polygonal
geometries (including simple polygons, polygons with holes, and multipoly-
gons), and identify four desirable polygon encoding properties to test their
model generalizability.

2. We propose two polygon encoders, ResNet1D and NUFTspec, which learn
polygon embeddings from spatial and spectral feature domains respectively.

3. We compare the performance of the proposed polygon encoders as well as
multiple baseline models on two representative tasks — shape classification
and spatial relation prediction, and introduce three new datasets — MNIST-
cplx70k, DBSR-46K, and DBSR-cplx46K.

4. We provide a detailed analysis of the invariance/awareness properties on
these two models and discuss the pros and cons of polygon representation
learning in the spatial or spectral domain. Our analysis points to interesting
future research directions.
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This paper is organized as follows: We discuss the motivation of polygon
encoding in Section 2. Then, in Section 3, we define the problem of repre-
sentation learning on polygons and discuss four expected polygon encoding
properties. Related work are discussed in Section 4. We present ResNet1D and
NUFTspec polygon encoder and compare their properties in Section 5. Experi-
ments on shape classification and spatial relation prediction tasks are presented
in Section 6 and 7, respectively. Finally, we conclude this work in Section 8.

2 Motivations

First of all, we discuss the challenges of representing polygons, especial complex
polygonal geometries into an embedding space. Given a polygonal geometry,
there are two pieces of important information we are especially interested
in: its shape and spatial relations with other geometries. These two pieces
of information correspond to two polygon-based tasks — shape classification
and polygon-based spatial relation prediction. In the following, we motivate
polygon encoding from these two aspects by using real-world examples.

2.1 Polygon Encoding for Shape Classification

Shape classification [48] (a.k.a. shape-based object recognition) aims at pre-
dicting the category label for a given shape represented by a polygon or
multipolygon. Figure 3 shows shape examples from the MNIST dataset [49]
illustrating the challenges of polygon encoding for shape classification, espe-
cially for complex polygonal geometries, which we summarize as the following;:

1. Automatic representation learning for polygonal geometries:
Traditional shape classification models are based on handcrafted shape
descriptors which capture different geometric properties based on vector

(a) Polygon g4 (b) Polygon gp (c) Polygon go (d) Polygon gp

Fig. 3: An illustration of the challenges of polygon encoding for shape classi-
fication task with examples from the MNIST-cplx70k dataset. Please refer to
Section 6.1 for details of the data set construction. (a) and (b) show that it is
important to encode polygon holes since only encoding the polygon exteriors
are not sufficient for shape classification. (c¢) and (d) shows that it is also criti-
cal to encode all parts of a multipolygon at once in order to capture its global
shape, since none of its subpolygons is sufficient for shape classification.
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geometries. Examples of shape descriptors are center of gravity, circular-
ity ratio, radial distance, fractality, and so on [31, 48]. For more advanced
shape descriptors such as Bag of Contour Fragments (BCF) [44], the first
step is also to vectorize a given image into vector geometries — polygons, so-
called “shape contours”. Then a feature extraction pipeline can be applied
to produce shape representations. Polygon encoding can be seen as an alter-
native to these traditional shape encoding models by replacing the feature
extraction pipeline with an end-to-end deep learning model.

2. Encoding the topology (such as holes) in polygons: Most existing
work on polygon encoding [28, 29] focus on encoding simple polygons, i.e.,
single part polygons without holes. This is insufficient to capture the overall
shapes for polygons with holes. For example, Polygon g4 and gg shown
in Figure 3a and 3b indicate two handwritten digits “8” and “9” from
our MNIST-cplx70k dataset. If we ignore their holes but only encode the
exteriors, Polygon g4 might be misinterpreted as “9” or “7” and Polygon
gp might be recognized as “1” or “7”.

3. Jointly encoding all sub-parts of a multpolygon: Polygon gc and
gp shown in Figure 3c and 3d indicate another two handwritten digits “8”
and “9” from our MNIST-cplx70k dataset. They are represented as two
multipolygons. A model can make the correct shape classification only if
it jointly considers all sub-parts of a multipolygon, whereas none of the
subpolygons of go and gp is sufficient for shape classification.

2.2 Polygon Encoding for Spatial Relation Prediction

Next, we discuss the challenge of polygon encoding for predicting the correct
spatial relations between two polygons, such as topological relations and rel-
ative cardinal directions. At the first glance, this task may seem trivial, and
a GIScience expert may question the necessity of a polygon encoder for spa-
tial relation prediction given that we have a set of well-defined deterministic
spatial operators for spatial relation computation based on region connection
calculus (RCC8) [50] or the dimensionally extended 9-intersection model (DE-
9IM) [51]. A computer vision researcher might also question its necessity by
suggesting an alternative approach that first rasterizes two polygons under
consideration into two images that share the same bounding box so that a
traditional computer vision model such as CNN can be applied for relation pre-
diction. However, we will demonstrate three different problems related to the
spatial relation prediction task - sliver polygon problem, extreme scale problem,
and semantic vagueness problem, which are illustrated by Figure 4 with real-
world examples from OpenStreetMap. In the following, we discuss how these
problems pose challenges to the above mentioned alternative approaches:
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Fig. 4: Three real-world examples illustrating different challenges in predict-
ing spatial relations between two polygons: (a) Sliver Polygon Problem:
dbr:Seal_Beach,_California (the red polygon) should be tangential proper part
(TPP) of dbr:Orange_County,_California (the blue polygon). However, because
of those sliver polygons shown in the zoom-in window 1, 2, and 3, a determin-
istic spatial reasoner such as those used by PostGIS and GeoSPARQL-enabled
triple stores will return partially overlapping as the result. (b) Extreme Scale
Problem: dbr:Seal_Beach,_ California (the red polygon) is extremely small
compared with dbr:California (the blue polygon). On one hand, a determin-
istic reasoner will pay too much attention to the geometry detail and predict
wrong relations because of the sliver polygons as shown in Figure (a). On the
other hand, if we convert these polygons into two images (e.g., two 128 x 128
images), that share the same bounding box, the red polygon becomes too small
and cannot cover even one pixel which will also affect the result. (c) Seman-
tic Vagueness Problem: dbr:Berkeley, California (the blue polygon) is in
the north of dbr:Piedmont,_California (the red polygon) according to DBpedia
and Wikipedia. However, based on their polygon representation, their cardinal
direction is vague which can be “north” or “northwest”.

1. Sliver polygon problem: As shown in zoom-in window 1, 2, and 3 in
Figure 4a, those three tiny polygons yielded from the geometry differ-
ence between the red and blue polygon are called sliver polygons®. Here,
dbr:Seal_Beach,_California (the red polygon) should be tangential proper
part (TPP) of dbr:Orange_County,_California (the blue polygon). However,
because of map digitization error, the boundary of the red polygon slightly
stretches out of the boundary of the blue polygon. A deterministic spatial
operator will return “intersect” instead of “part of” as their relation. Sliver
polygons are very common in map data, hard to prevent, and require a lot
of efforts to correct, while deterministic spatial operators are very sensitive
to them. Please refer to a detailed analysis on the sliver polygon problem
on our DBSR-46K and DBSR-cplx46K dataset in Section 7.6.

2. Scale problem: Two polygons might have very different sizes and
thus need to use different map scales for visualization (Figure 4b).
dbr:Seal_Beach,_California (the red polygon) is extremely small compared
with dbr:California (the blue polygon). When using deterministic spatial

3In GIScience, sliver polygon is a technical term referring to the small unwanted polygons
resulting from polygon intersection or difference.
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operators, sliver polygons will lead to wrong answers while as for the ras-
terization method, the red polygon become too small to occupy even one
pixel of the image.

3. Semantic vagueness problem: Some spatial relations such as cardinal
direction relations are conceptually vague. While this vagueness can be well
handled by neural networks through end-to-end learning from the labels,
it is hard to design a deterministic method to predict them. As shown in
Figure 4c, dbr:Berkeley,-California (the blue polygon) sits in the north of
dbr:Piedmont,_California instead of northwest according to DBpedia. How-
ever, based on their polygon representations, both “north” and “northwest”
seems to be true. In other words, their cardinal direction is vague.

Because of those challenges, designing a general-purpose neural network-
based representation learning model for polygonal geometries is necessary and
can benefit multiple downstream applications.

3 Problem Statement

Based on the Open Geospatial Consortium (OGC) standard, we first give the
definition of polygons and multipolygons.

Let G = {g;} be a set of polygonal geometries in a 2D Euclidean space R?
where G is a union of a polygon set P = {p; } and a multipolygon set Q = {¢;},
akaGg=PUQand PNQ =0. We have g; € PV g; € Q.

Definition 1 (Polygon) Each polygon p; can be represented as a tuple (B;, h; =
{H;;}) where B; € R %2 indicates a point coordinate matrix for the exterior of
p; defined in a counterclockwise direction. h; = {H;;} is a set of holes for p; where

each hole H;; € RV%i %2 §g o point coordinate matrix for one interior linear ring of
p; defined in a clockwise direction. Ny, indicates the number of unique points in p;’s
exterior. The first and last point of B; are not the same and B; does not intersect
with itself. Similar logic applies to each hole H;; and Np,; is the number of unique
points in the jth hole of p;.

Definition 2 (Multipolygon) A multipolygon q; € Q is a set of polygons qr = {pr;}
which represents one entity (e.g., Japan, United States, and Santa Barbara County).

Definition 3 (Polygonal Geometry) A polygonal geometry g; € P U Q can be either

. Ng. .
a polygon or a multipolygon. {e;,},, %% is defined as the set of all boundary seg-
ments/edges of the exterior(s) and interiors/holes of g; or all its sub-polygons. Ny,
is the total number of edges in g; which is equal to the total number of vertices of g;.

Definition 4 (Simple Polygon and Complex Polygonal Geometry) If a polygonal
geometry g; is a single polygon without any holes, i.e., g; = (B;, h; = 0), we call it a
simple polygon. Otherwise, we call it a complex polygonal geometry which might be
a multipolygon or a polygon with holes.

Definition 5 (Distributed representation of polygonal geometries) Distributed rep-
resentation of polygonal geometries in the 2D FEuclidean space R? can be defined as
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a function Encg g(g;) : G* — R? which is parameterized by 6 and maps any polyg-

onal geometry g; € G* in R? to a vector representation of d dimension®. Here G*
indicates the set of all possible polygonal geometries in R2 and G C G*.

s A_F po'

c ¢ ,D
J
/\p1
L
o) > 0 K >
(b) ¢ = {pp, p1}
A
o) > >

(c) ¢" = {po,p1,p2} (d) 2-simplex mesh S

Fig. 5: Illustrations of the four polygon encoding properties and the auxiliary
node method with a multipolygon. (a) A multipolygon ¢ = {po, p1} with two
parts. po = (Bg,ho = {Hgo}) has one hole and p; = (By,h; = () has no
hole. (b) A multipolygon ¢’ = {pj,, p1} where p{, has the same shape as pg but
adding additional 6 trivial vertices (red dots) - A’, B’,C', D', E', F’ - to its
exterior. (¢) A multipolygon ¢” = {p{, p1,p2} with three parts. pj = (Byg, 0) is
a simple polygon made up from the exterior of py. ps is a simple polygon made
up from the boundary of py’s interior Hgg. (d) The auxiliary node method
converts multipolygon ¢ into a 2-simplex mesh SU) by adding the origin point
X as another vertex (See Section 5.2.1).

Figure 5a illustrates a multipolygon ¢ = {pg,p1} where py = (Bg, ho =
{Hgo}) has one hole and p; = (By,h; = @) has no hole. Our objective is to

4We use Enc(g;) to represent Encg g(g;) in the following
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develop general-purpose polygon encoders, so model generalizability is the
key consideration. To test the generalizibility of a polygon encoder Enc(g;),
we propose four properties:

1. Loop origin invariance (Loop): The encoding result of a poly-
gon p; should be invariant when starting with different vertices to loop
around its exterior/interior. Let consider pj = (Byg, ) as a simple poly-
gon made up from the exterior of py. By can be written as By =
x%; x5y xL; x5; xL; xL] € R6%2. Let Bgs) = L,By as another repre-
sentation of pf’s exterior where Ly € R®*6 is a loop matrix that shifts the
order of By by s. For example, B(()B) =L;B = [x5; xL; xL; x%; x&; xL).
Conceptually, we have pj = (Bo,0) = p(()s) = (LsBy,0) Vs € {1,2,...,6}
where = indicates two geometries represent equivalent shape information.
Loop origin invariance expects Enc(pj) = Enc(pés)).

2. Trivial vertex invariance (TriV): The encoding result of a polygonal
geometry should be invariant when we add/delete trivial vertices to/from
its exterior or interiors. Trivial vertices are unimportant vertices such that
adding or deleting them from polygons’ exteriors or interiors does not
change their overall shape and topology. For example, 6 red vertices -
A" B, C", D' E' F' - (Figure 5b) are trivial vertices of Polygon p{, since
deleting them yield Polygon pg which has the same shape as p,. We expect
Enc(py) = Enc(po). It is particularly difficult for 1D CNN- or RNN-based
polygon encoders to achieve this since trivial vertices will significantly
change the input polygon boundary coordinate sequences.

3. Part permutation invariance (ParP): The encoding result of a mul-
tipolygon ¢; should be invariant when permuting the feed-in order of its
parts. For instance, the encoding result of Enc(q) (Figure 5a) should not
change when changing the feed-in order of pg, p;.

4. Topology awareness (Topo): The polygon encoder Enc(g;) should be
aware of the topology of the polygonal geometry g;. Enc(g;) should not only
encode the boundary information of g; but also be aware of the exterior
and interior relationships. For example, as shown in Figure 5a and 5c, ¢ =
{po,p1} and ¢" = {p{,p1,p2} are two multipolygons. pj and ps are two
simple polygons and po is inside of p{. Although ¢ and ¢” have the same
boundary information, the encoding results of them should be different
given their different topological information.

As can be seen, these properties are unique requirements for encoding
polygonal geometries. In certain scenarios, translation invariance, scale
invariance, and rotation invariance, which require the encoding results of
a polygon encoder unchanged when polygons are gone through translation/s-
cale/rotation translations, are also expected in many shape related tasks such
as shape classification, shape matching, shape retrieval [46]. However, in other
tasks such as spatial relation prediction (including topological relations and
cardinal direction relations) and GeoQA, translation/scale/rotation invariance
are unwanted. For example, after a translation transformation on py (Figure
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5a), the cardinal direction between py and p; changes. So in this work, we
primarily focus on the above mentioned four properties.

4 Related Work

4.1 Object Instance Segmentation and Polygon Decoding

Most existing machine learning research involving polygons mainly focus on
object instance segmentation and localization tasks. They aim at constructing
a simple polygon as a localized object mask on an image. Most existing works
adopt a polygon refinement approach. For example, both Zhang et al. [52] and
Sun et al. [40] proposed to first detect the boundary fragments of polygons
from images and then extract a simple polygon by finding the optimal circle
linking these fragments into the object contours.

A recent deep learning approach, Polygon-RNN [41], first encodes a given
image with a deep CNN structure (similar to VGG [53]) and then decodes
the polygon mask of an object with a two-layer convolutional LSTM with
skip connections. The RNN polygon decoder decodes one polygon vertex at
each time step until the end-of-sequence is decoded which indicates that the
polygon is closing. The first vertex is predicted with another CNN using a
multi-task loss. Polygon-RNN-++ [42] improves Polygon-RNN by adding a
Gated Graph Neural Network (GGNN) [54] after the RNN polygon decoder
to increase the spatial resolution of the output polygon. Since Polygon-RNN
uses cross-entropy loss which over-penalizes the model and is different from
the evaluation metric, Polygon-RNN++ changes the learning objective to
reinforcement learning to directly optimize on the evaluation metric.

Similar to the polygon refinement idea, PolyTransform [55] first uses a
instance initialization module to provide a good polygon initialization for each
individual object. And then a feature extraction network is used to extract
embeddings for each polygon vertex. Next, PolyTransform uses a self-attention
Transformer network to encode the exterior of each polygon and deform the
initial polygon. This deforming network predicts the offset for each vertex on
the polygon exterier such that the resulting polygon snaps better to the ground
truth polygon (the object mask).

Compared with our polygon encoding model, these polygon decoding mod-
els treat polygons as output instead of input to the model. In addition,
although Polygon-RNN++ and PolyTransform have sub-network modules that
take a polygon as the input and refine/deform it into a more fine-grained
polygon shape, both their modules — GGNN for Polygon-RNN++ and Trans-
former for PolyTransform — can only handle simple polygons but not complex
plolygonal geometries. Moreover, the GGNN for Polygon-RNN++ satisfies
loop origin invariance but not other properties while the Transformer module
of PolyTransform can not satisfy any of those four properties in Section 3.
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4.2 2D Shape Classification

Stemming from image analysis, shape representation is a fundamental prob-
lem in computer vision [44], since shape and texture are two most important
aspects for object analysis. Shape classification aims at classifying an object
(e.g., animal, leaf) represented as either a polygon or an image into its cor-
responding class. For example, given an image of the silhouette of an animal,
shape classification aims to decide the type of this animal [43]. Given a build-
ing footprint represented as a polygon, cartographers are interested in knowing
which type of building it falls into such as E-type, Y-type [29]. Further more,
given a neighborhood represented as a collection of building polygons as shown
in Figure 1b, we would like to know the type/land use of this neighborhood.

Traditional shape classification models are based on handcrafted or learned
shape descriptors. Wang et al. [44] proposed a Bag of Contour Fragment (BCF)
method by decomposing one shape polygon into contour fragments each of
which is described by a shape descriptor. Then a compact shape represen-
tation is max-pooled from them based on a spatial pyramid method. With
the development of deep learning technology, many image-based shape classi-
fication models skip the image vectorization step and directly apply CNN on
those input images for shape classification [56, 57]. Later on, instead of directly
applying CNN to images, Hofer et al. [58] first converted 2D object shapes
(images) into topological signatures and inputted them into a CNN-based
model. However, several recent work showed that when using deep convolu-
tional networks for object classification, surface texture plays a larger role than
shape information. Although CNN models can access some local shape fea-
tures such as local orientations, they have no sensitivity to the overall shape of
objects [59]. This indicates that it is meaningful to develop a polygon encoding
model that is sensitive to shape information for shape classification.

Table 1 provides statistic on multiple existing shape classification datasets.
We can see that except for Yan et al’s building dataset [29], most shape clas-
sification datasets provide images as shape samples and are open access. Yan
et al [29] created a building shape classification dataset where each building
is represented as one simple polygon, not image. But this dataset is not open
sourced. In addition, most datasets are rather small (less than 5K training
samples), which is very challenging for deep learning models. For example,
according to Kurnianggoro et al. [48], BCF [44], a feature engineering model,
is still the state-of-the-art model on MPEG-7 and outperforms all deep learn-
ing models. Our MNIST-cplx70k dataset is based on MNIST. See Section 6.1
for a detailed description, and Figure 3 for shape examples.

4.3 Polygon Encoding

Following Section 1, here, we review several existing work about spatial domain
and spectral domain polygon encoders.

Spatial domain polygon encoders [28, 29] directly consume polygon vertex
coordinates in the spatial domain for polygon encoding. Most of them only
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Table 1: Statistics of shape classification datasets. “#C” and “#S/C” indicate
the number of categories and the number of samples per category in each
dataset. “~” indicates an estimation of “#S/C” for datasets which are not
balanced. “#Train” and “#Test” indicate the number of training and testing
samples in each dataset. “-” indicates that there is no common agreement on
train/test split on this dataset. “Topic” indicates the type of object each shape
sample stands for. “OA” indicates whether this dataset is open access.

Dataset #C| #S/C | #Train | #Test | Data Format Topic OA
MPEG-7 [60] 70| 20 - - |Silhouette images | Various objects Yes
Animal [43] 20 | 100 - - |Silhouette images | Animals Yes
Swedish leaf [61]| 15 | 75 - - |Colorful images |Leaves Yes
ETH-80 [62] 8 | 410 | 3,239 41 |Colorful images |Various objects Yes
100 leaves [63] |100| 16 - - |Colorful images |Leaves Yes
Kimia-216 [64] | 18 | 12 - - |Silhouette images |Objects/Animals | Yes
MNIST [49] 10 [~7000| 60,000 (10,000 |Silhouette images | Handwritten digits | Yes
Yan et al [29] 10 | ~775 | 5,000 | 2,751 |Simple polygons |Building footprints |No

consider simple polygons . Veer et al. [28] proposed two spatial domain polygon
encoders: a recurrent neural network (RNN) based model and a 1D CNN
based model. The RNN model directly feeds the polygon exterior coordinate
sequence into a bi-directional LSTM and takes the last state as the polygon
embedding. The CNN model feeds the polygon exterior sequence into a series
of 1D convolutional layers with zero padding followed by a global average
pooling. Veer et al. [28] applied both models to three polygon-shape-based
tasks: neighbourhood population prediction, building footprint classification,
and archaeological ground feature classification. Results show that the CNN
model is better than the RNN model on all three tasks. In this work, the CNN
model denoted as VeerCNN is used as one of our baselines.

Another example of spatial domain polygon encoders is the Graph Convo-
lutional AutoEncoder model (GCAE) [29]. GCAE learns a polygon embedding
for each building footprint represented as a simple polygon in an unsuper-
vised learning manner. The exterior of each building (a simple polygon) is
converted to an undirected weighted graph in which exterior vertices are the
graph nodes which are connected by exterior segments (graph edges). Each
edge is weighted by its length. Each vertex (node) is associated with a node
embedding initialized by some predefined local or regional shape descriptors.

The GCAE follows a U-Net [65] like architecture which uses graph convolu-
tion layers and graph pooling [4] in the graph encoder and upscaling layers
in the graph decoder. The intermediate representation between the encoder
and decoder is the learned polygon embedding. The effectiveness of GCAE is
demonstrated qualitatively and quantitatively on shape similarity and shape
retrieval task.

Instead of encoding a polygonal geometry directly in the spatial domain,
spectral domain polygon encoders first transform it into the spectral space by
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using Fourier transformation and then design a model to consume these spec-
tral features. One example is Jiang et al [47] which first perform Non-Uniform
Fourier Transforms (NUFT) to transform a given polygon geometry (or more
generally, 2-/3-simplex meshes) into the spectral domain. And then Jiang et
al [47] perform a inverse Fast Fourier transformation (IFFT) to convert these
spectral features into 2D images or 3D voxels. The result is an image of the
polygonal geometry (or a 3D voxel for a 3D shape) which can be easily con-
sumed by different CNN models such as LeNet5 [49], ResNet [66], and Deep
Layer Aggregation (DLA) [67]. DDSL [46] further extends this NUFT-IFFT
operation into a differentiable layer which is more flexible for shape optimiza-
tion (through back propagation). The effectiveness of DDSL has been shown
in shape classification task (MNIST), 3D shape retrieval task, and 3D surface
reconstruction task. However, the NUFT-IFF'T operation is essentially a poly-
gon rasterization approach and sacrifice an information loss which depends on
the pixel size. As shown in Figure 4b, when the pixel size is too large, the
red polygon can not cover even one pixel which might lead to wrong predic-
tion. On the other hand, when the pixel size is too small, the image become
unnecessary large and lead to huge computation cost. Inspired by DDSL, our
NUFTspec model adopts the NUFT idea. Instead of performing an IFFT, we
directly learn the polygon embeddings in the spectral domain. Without the
restriction of IFFT, we have more flexibility in terms of the choice of Fourier
frequency map (See Section 5.2.2). So NUFTspec is expected to have lower
information loss and a better performance. We will discuss the NUFT method
in detail in Section 5.2.

5 Method

In this section, we first present two polygon encoders: ResNet1D and NUFT-
spec. Figure 2a and 2b show the general model architectures of ResNet1D and
NUFTspec respectively. Then we discuss how these encoders can be used to
form shape classification models and spatial relation prediction models. We
will compare the encoders with other baselines and discuss their properties in
Section 5.5. Finally, we provide proofs for their key properties in Section 5.6.

5.1 ResNetlD Encoder

We first propose a spatial domain polygon encoder called ResNet1D which
uses a modified 1D ResNet model with circular padding to encode the polygon
exterior vertices.

Given a simple polygon g = (B,0) where B =
xT; x¥5 5 %I x%g_l] € RN9%2 ResNetlD treats the exterior B of
g as a 1D coordinate sequence. Before feeding B into the 1D ResNet layer,
we first compute a point embedding 1,, € R**? for the mth point x,, by

concatenating x,, with its spatial affinity with its neighboring 2t points:

Ly = [Xm; Xm—t — Xmj o} Xm—1 — Xm Xm+1 — Xmj o} Xmat —Xm) (1)
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We call Equation 1 KDelta point encoder, which adds neighborhood struc-
ture information into each point embedding and helps to reduce the need to
train very deep encoders. Here, if m—t < 0 or m+t > N, we get its coordinates
by circular padding given the fact that B represents a circle. The resulting
embedding matrix L = 175 175 .. 12: 171:,9_1] € RNsx(4t42) ig the input
of a modified 1D ResNet model which uses circular padding instead of zero
padding in 1D CNN and max pooling layers to ensure loop origin invariance.
The whole ResNet1D architecture is illustrated as Equation 2.

Encresnetin(g) = [L — CNN1D%' — BNID — ReLU — MP1D2?,
(2)
—+ (ResNet1D,,)_, — GMPID — DP — p

CNN1D%}' indicates a 1D CNN layer with 1 stride, 1 padding (circular
padding) and d number of 3 x 1 kernel (1D kernel). BN1D and ReLU indi-
cate 1D batch normalization layer and a ReLU activation layer. MPIDS’XO1
indicates a 1D Max Pooling layer with 2 stride, 0 padding, and kernel size
2. (ResNetchp)kK:1 indicates K standard 1D ResNet layers with circular
padding. GMP1D and DP are a global max pooling layer and dropout layer.
The final output Encresnerin(g) = p € R? is the polygon embedding of the

simple polygon g.

5.2 NUFTspec Encoder

As shown in Figure 2b, NUFTspec first applies Non-Uniform Fourier Trans-
forms (NUFT) to convert a polygonal geometry ¢ into the spectral domain.
Then it directly feeds these spectral features into a multi-layer perceptron to
obtain the polygon embedding p of g. Polygonal geometry g can be either a
polygon with/without holes, or a multipolygon.

5.2.1 Converting Polygon Geometries to j-Simplex Meshes

Following DDSL’s auziliary node method [46], we first convert a given polyg-
onal geometry ¢ into a j-simplex mesh SU) = {s%’}ff;l = (V,E,D) (here
j = 2) by adding one auxiliary node (the origin point xp). A 2-simplex is
simply a triangle in the 2D space. The polygon-to-j-simplex-mesh operation
is illustrated in Figure 6 and summarized as below:

1. As shown in Figure 6a, we first apply a series of affine transformations
including scaling and translation to transform g into a unit space. First, a
translation operation is applied to move g such that the center of its bound-
ing box is the origin point xo = [0,0]. Then, a scaling operator is applied
to scale g into the unit space [—1,1] x [—1, 1]. Finally, another translation
operation is used to move g into the space [0, 2] x [0, 2], since positive coordi-
nates are required for NUFT. These transformation operations are used to
allow each polygon lays in the same relative space which is critical for neu-
ral network learning. Polygon encoding mainly aims at encoding the shape
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of each polygon. The global position of g (e.g., the real geographic coordi-
nates of each vertex of California’s polygon) should be encoded seperately
through location encoding method [2, 13]. If we would like to do spatial
relation prediction between a polygon pair, they should be transformed into
the same unit space [0, 2] x [0, 2].

2. We add the origin point xp = [0,0] as an auziliary node which helps us to
convert Polygonal Geometry ¢ into j-simplex mesh S (See Figure 6b).

3. We loop through all edges in {sn}gil (See Definition 3) of g. For the
nth edge e, we connect its two vertices to the auxiliary node xo (origin)
to construct a 2-simplex (triangle) ng ). For instance, for Edge €45, we
construction a Triangle SEX}BO = Aapo (See Figure 6¢).

4. For a polygonal geometry g with in total N, vertices, we can get N, 2-

simplexes which form a 2-simplex mesh SU) = {Sg )}gil (See Figure 6d).
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Fig. 6: An illustration of the auxiliary node method. (a) Applying a series of
affine transformations to a polygonal geometry g¢; (b) Adding auxiliary node
“0”; (c) Converting each polygon edge to a 2-simplex; (d) Constructing a
2-simplex mesh S,

A 2-simplex mesh SU) = {SS)}Q’; = (V,E,D) is represented as three
matrices - vertex matrix V € R(No+tD*2 for polygon/simplex vertex coordi-
nates, edge matrix E € Név 9% for 2-simplex connectivity, and density matrix
D € RNo*da for per-simplex density. V is a float matrix that contains the
coordinates of all vertices of g as well as the origin xo = [0, 0] (the last row).
The edge matrix E contains non-negative integers. The nth row of E corre-
sponds to the nth simplex ng ) in SU) whose values indicate the indices of
vertices of S¢) in V. For the density matrix D € RNs%da_ the nth row indi-
cates a dg-dimensional density features associated with the nth edge/simplex
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(e.g., edge color, density, and etc.). In our case, we assume each edge ¢, has a
constant 1D density feature — [1], i.e., D = 1 € RNsX! a constant one matrix.

We should make sure that the boundary of g is oriented correctly by fol-
lowing Definition 1 - the exteriors of all sub-polygons should be oriented in
a counterclockwise fashion while all interiors should be oriented in a clock-
wise fashion. This makes sure that we can use the right-hand rule® to infer
the correct orientation of each edge €,,. So the orientation of the boundary of
the corresponding simplex ng ) can be determined (e.g., counterclockwise or
clockwise). Based on that, we can compute the signed content (area) of each
simplex ng ) 50 that the topology of g is preserved - topology awareness.

To concretely show how to convert a polygonal geometry g into a 2-
simple mesh S = (V,E, D), we use the example of Multipolygon g shown

in Figure 2b. It can be converted into Simplex S(?) = (V,E,D) where

_ . T o T. T. o T o T. (T T. .  T. . T 13x2
V = [x4; xL; xL; xE; xL; x5y xL; x5y xT xT xEs xEs xD) e R

E = [[0,1,12],[1,2,12],[2,3,12],[3,4,12], [4,5,12], [5,0,12], 6, 7, 12],[7,8,12],
8,6,12],[9,10,12], [10,11,12],[11,9,12]] € N12X3 and D is a 12 x 1 constant
one matrix.

5.2.2 Non-Uniform Fourier Transforms

Next, we perform NUFT on this j-simplex mesh SU) = {Sg)}nNil (here j = 2).
Compared with the conventional Discrete Fourier transform (DFT) whose
input signal is sampled at equally spaced points or frequencies (or both), NUFT
can deal with input signal sampled at non-equally spaced points or transform
the input into non-equally spaced frequencies. This makes NUFT very suit-
able for irregular structured data such as point cloud, line meshes, polygonal
geometries, and so on [46, 47]. In contrast, DFT is more suitable for regular
structured data such as images, videos [68].

Definition 6 (Density Function on j-simplex) For the nth j-simplex S(j) in a j-
simplex mesh SU) = {S(J)} neq1 = (V,E, D), we define a density function f(])( ) on

Sg,]) as Equation 3 in which pj, is the signal density defined on S,(f).
(4)
() pn, XES;
3
n ( ) {07 % ¢ S(]) ( )

Definition 7 (Piecewise-Constant Function over a simplex mesh) The Piecewise-
Constant Function (PCF) over a simplex mesh S () is the superposition of the density
function f(J)( ) for each simplex Sg):

Ny
') =3 17 x) (4)
n=1

Definition 8 (NUFT of PCF f{(x)) The NUFT of PCF f(x) over a j-simplex
mesh SU) = {SSf)}gil = (V,E,D) on a set of Ny Fourier base frequencies W =
{wk}iv;"l is a sequence of N,, complex numbers:

Shttps://mapster.me/right-hand-rule-geojson-fixer/
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FY (x) = [FY) (), FSY (%), o0y FS ) (%), e FS Ny ()] (5)
where the NUFT of f 2 x) on each base frequency wy € R? can be written as

the weighted sum of the Fourier transform on each j-simplex Sﬁf):

FY) (x / / 9 (x)e ik g

- z:: / /s(” e (6)
N,
n=1

F éj ,)C (x) is the NUFT on the nth simplex S with base frequency wy, which
can be defined as follow:

J+1 efi(wk,xt)

=5 THE (e o) —e=ilmnix)’

FOL) = @ (S ™)
where u(-) : SU) — {—1,1} is a sign function which determines the sign of
the content (area) of s (J ) is the content distortion factor, which is the ratio

() C(])

of the unsigned content of Sy - and the content of the unit orthogonal

j-simplex - C’;j ) =1 /3l (S(J )'yn is the signed content distortion factor of
ng ) which can bg computed based on the determinant of the Jacobian matrix®
J,, of simplex Sﬁf). Let x,,,1,Xn,2,X0 the three vertices of ng), we have:

p(SPCY  1/5! det( )

oy 1/;! (8)

= det([xp,1 — X0, Xn,2 — X0]) = det([Xn,1,Xn,2])

The proof of Equation 6, 7, and 8 can be found in [47].

Note that in Definition 8, we have not specified the way in which we select
the set of N,, Fourier base frequencies W = {Wk}iv;"l where w;, € R2. We can
either use a series of equally spaced frequencies along each dimension, denoted
as linear grid frequency map WUTH  or a series of non-equally spaced frequen-
cies along each dimension. For the second option, in this work, we choose to use
a geometric series as the Fourier frequencies in the X and Y dimension, denoted
as geometric grid frequency map WU T which has been widely used in many
location encoding literature [2, 13, 69, 70] and Transformer architecture [71].
We formally define these two Fourier frequency maps as below.

p(SIHY =

Definition 9 (Linear Grid Frequency Map) The linear grid frequency map wlf1t)
is just simply the normal integer Fourier frequency bases used by the Fast Fourier

Shttps://en.m.wikipedia.org/wiki/Simplex# Volume
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Transform (FFT). It is defined as a Cartesian product between the linear frequency

sets along the X and Y axis — ngfft) and Wéfft) — which contain Nyz and Ny
integer values respectively:

W(fft) _ ngfft) « Wéfft) c NVwe o NNuwy (9)
Here, Nuw = Nwz Nwy. W,gfft) and ngfft) are defined as Equation 10.

WU _ {{—U7..., ~1,0,1,U}, if Nuz =2U + 1
T {-U,..,=1,0,1,U =1}, if Nyz =2U
(10)
W(fft)_{{o,l,U}, if Nuy =U +1
Y {0,1,U =1}, if Nuy=U

Where U € N1 is half number of frequencies we use which decides Nyz and Nuwy.
Note that a normal practice of FFT is to use half frequency bases in the last

dimension. So here ngfft) has roughly half of ngfft)’s frequencies

Definition 10 (Geometric Grid Frequency Map) Since polygonal geometries are
non-uniform signals, we do not need to use the normal integer FFT frequency map
wl ), Instead, we can use real values as Fourier frequency bases to increase the
data variance we can capture. By following this idea, the geometric grid frequency
map W) ig defined as a Cartesian product between the selected geometric series

based frequency sets along the X and Y axis — Wégmf) and W?ngf):
W(!]mf) — Wa(cgmf) % Wégmf) c RNwz % Rwa (11)
Here, nggmf) and Wégmf) are defined as Equation 12.

wiomp) _ [ {-wu Vb u{oy u{wa}VZd,  if Nue =20 +1
* {~wu}V g U {0y U {wa}U 22, if Nue =2U

wtoms) _ )10} {wu Ul if Nuy =U +1
! (0} U{wa}U=2, if Nuy=U

uw=0"

(12)

Here, Wégmf ) also has roughly a half of Wg(?gmf )g frequencies. In Equation 12,
{wu}gg()l = {wo = Win, W1, e, W, ..., Wy—1 = Wmaz} IS defined as a geometric
series, where

-g"/(U_l); where g = M; uwe {0,1,..,U — 1} (13)

Wmin

Wy = Wmin

Wimin, Wmaz € RT are the minimum and maximum frequency (hyperparameters).

A visualization of WU and W(9™/) can be seen in Figure 7a and 7b. To
investigate the effect of NUFT frequency base selection on the effectiveness of
polygon embedding, we compute the data variance on each Fourier frequency
base across all 60K training polygon samples in MNIST-cplx70k training set.
More specifically, for each polygonal geometry g; in the MNIST-cplx70k train-
ing set, we first perform NUFT. Each g; yield Ny, = NyzNyy complex valued
NUFT features each of which corresponds to one frequency item wj, € R? in
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WU or Wleml)  We compute the data variance” of each wy, across all 60K
training polygons in MNIST-cplx70k and visualize them in Figure 7a and 7b.
We can see that for linear grid frequency map W7 most of the data vari-
ance is captured by the low frequency components while the high frequencies
are less informative. When we switch to the geometric grid frequency map
wleml) more frequencies have higher data variance which is easier for the
following MLP to learn from.

E R

P

121110 9 8 7 6 5 4 3 2 1 0 1 2 34 56 78 911 12 9067503828211612090705 0 0507 09 12 16 21 28 38 50 67 90

(a) Linear grid W9 (b) Geometric grid W™

Fig. 7: An illustration of the full set of the linear grid frequency map Wt
and geometric grid frequency map W@/,

5.2.3 NUFT-based Polygon Encoding
Finally, we can define the NUF'T spec polygon encoder Encnurrspec(g) as:

Encnurrspec(9) = MLPF(‘I’(Féj)(X))) (14)

Here, M LPp(-) is a Kp layer multi-layer perceptron in which each layer is a
linear layer followed by a nonlinearity (e.g., ReLU), a skip connection, and a
layer normalization layer [72]. ¥(-) first extract a 2N,, dimension real value

vector from Fg )(x) and then normalize this spectral representation, e.g., L2,
batch normalization.

5.3 Shape Classification Model

Given a polygonal geometry g, we encode it with a polygon encoder Enc(-)
followed by a multilayer perceptron (MLP) M LPs,(-) and a softmax layer to
predict its shape class y:

P(r| g) = softmazx(M LPsy,(Enc(g))). (15)

Here Enc(-) can be any baseline or our proposed encoders and softmaz(z;) =
zi S E oz
€)Y =1

“We only compute the data variance for the real value part for each NUFT complex feature.
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5.4 Spatial Relation Prediction Model

Given a polygon pair (gsus, gobj), the spatial relation prediction task aims
at predicting a spatial relation between them such as topological relations,
cardinal direction relations, and so on. In this work, we adopt a MLP-based
spatial relation prediction model

P(r | gsub,s gob;) = softmax(MLPre([Enc(gsus); Enc(gos;)])), (16)

where [Enc(gsub); Enc(gon;)] € R?@ indicates the concatenation of the polygon
embeddings of gsup and gop;. M LP,c;(-) takes this as input and outputs raw
logits over all N, possible spatial relations. softmaz(-) normalizes it into a
probability distribution P(7 | gsus, gobj) over N, relations.

5.5 Model Property Comparison
Theorem 1 ResNet1D is loop origin invariant for simple polygons g = (B, 0).

Theorem 2 NUFTspec is (1) loop origin invariant, (2) trivial vertex invariant, (3)
part permutation invariant, and (4) topology aware for any polygonal geometry g.

Now we compare different polygon encoders discussed in Section 4 as well
as ResNet1D and NUFTspec based on: 1) their encoding capabilities — whether
it can handle holes and multipolygons; 2) four polygon encoding properties
(See Section 3).

By definition, VeerCNN, GCAE, and ResNet1D can not handle polygons
with holes nor multipolygons. To allow these three models handle complex
polygonal geometries, we need to concatenate the vertex sequences of differ-
ent sub-polygons’ exteriors and interiors. After doing that, the feed-in order
of sub-polygons will affect the encoding results and the topological relations
between exterior rings and interiors are lost. So none of them satisfy the part
permutation invariance and topology awareness. Since VeerCNN consumes the
polygon exterior as a coordinate sequence and encodes it with zero padding
CNN layers, the origin vertex and the length of the sequence will affect its
encoding results. So it is not loop origin invariant nor trivial vertex invari-
ant. Both GCAE and ResNet1D are sensitive to trivial vertices which means
they are not trivial vertex invariance. However, GCAE and ResNet1D are both
loop origin invariant when encoding simple polygons. GCAE achieves this by
representing the polygon exterior as an undirected graph where no origin is
defined. ResNet1D achieves this by using circular padding in each 1D CNN
and max pooling layer. However, this property can not be held for GCAE and
ResNet1D if the input is complex polygonal geometries. We use “Yes*™” in
Table 2. Only DDSL [46, 47] and our NUFTspec can handle polygons with
holes and multipolygons. They also satisfy all four properties. This is because
the nature of NUFT. For ResNet1D and NUFTspec, we declare Theorem 1
and 2 whose proofs can be seen in Section 5.6.1 and 5.6.2. Table 2 shows the
full comparison result.
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Except for GCAE [29], the performance of all other polygon encoders listed
in Table 2 are compared and analyzed on the shape classification (Section 6)
and spatial relation prediction (Section 7) task. We do not include GCAE in
our baseline models since its implementation is not open sourced.

Table 2: The comparison among different polygon encoders by properties
such as whether it can handle polygon with holes or multipolygons as well as
the four polygon encoding properties we discuss in Section 3. “Yes*” indicates
that loop origin invariance only holds for GCAE and ResNet1D if the input is
simple polygons.

Property Type Holes | Multipolygons | Loop | TriV | ParP | Topo
VeerCNN [28] Spatial No No No No No No
GCAE [29] Spatial No No Yes* No No No
DDSL [46, 47] | Spectral | Yes Yes Yes Yes Yes Yes
ResNet1D Spatial No No Yes* No No No
NUFTspec Spectral Yes Yes Yes Yes Yes Yes

5.6 Theoretical Proofs of the Model Properties
5.6.1 Proofs of Theorem 1

In ResNetlD, circular padding is used in the convolution layers with stride
1. Given a polygon p = (B,h = {)), circular padding wraps the vector B
on one end around to the other end to provide the missing values in the
convolution computations near the boundary. Thus, CNNng’Xl’ll(LSB) =
LSCNNng’Xl’l1 (B) for any input B. Max pooling layer with stride 1 and cir-
cular padding has the similar property. MP1Dy}, (L,B) = L,(MP1D;},B).
Trivially, BN1D(L;B) = L,BN1D(B) and ReLU(L;B) = L;ReLU(B). In the
end, there is a global maxpooling GMP1D(L,B) = GMP1D(B). With these
layers as components, ResNet1D would keep the loop origin invariance.

5.6.2 Proofs of Theorem 2

Proof of Theorem 2 (1) - Loop Origin Invariance.

Given a simple polygon p = (B,(), we convert it to a 2-simplex mesh
SU) = {Sg)}nNil similar to what is shown in Figure 8a. Since {Sg)}nNil is an
unordered set of 2-simplexes, for any loop matrix Ly, Polygon p(*) = (L,B, )
will have exactly the same 2-simplex mesh as p - SU). 2-simplex mesh SU) is the
input of our NUFTspec. So the output polygon embedding Encyy prspec(p) is
invariant to any loop transformation Ly on Polygon p’s exterior B. Similarly,
we can prove that the encoding results of NUFTspec is also invariant to a
loop transformation on the boundary of one of holes of the complex polygon
geometry g.
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Fig. 8: A illustration to facilitate the proof of Theorem 2 . (a) Polygon ps is

a simple polygon from Figure 5¢c. We convert it to a 2-simplex mesh Sg(j ) =

{Sg;o, ng})IO, Sg)GO}. (a) Polygon p} is also a simple polygon which has the
same shape as p» but add an additional trivial vertex H . We convert it to a
2-simplex mesh Séf) = {Sg}o, Sg%,o, Sg?HO, Sg)GO}.

Proof of Theorem 2 (2) - Trivial Vertex Invariance.

We use Polygon py and p) shown in Figure 8a and 8b as an exam-
ple to demonstrate the proof. The only difference between them is that
ph has an additional trivial vertex H’ while p, and p), have the same
shape. They have different 2-simplex meshes: Sz(j) = {S(GJ}O,S%){O,S%)GO}
and 82(9) = {Sg}o,S(IJI},O,ngHO,Sg)GO}. The Piecewise-Constant Function
(PCF) é])(x) =N #9)(x) defined on the simplex mesh S is essentially
a summation over the individual density function f,gj )(x) defined on each sim-
plex of 82(] ). Since p2 and p), have the same shape, the PCF defined on them
should be exactly the same. Since NUFTspec polygon embedding is derived
from the NUFT of the PCF over a 2-simple mesh. So we can conclude that
the NUFTspec polygon embeddings of ps and p} should be the same. In other
words, NUFTspec is trivial vertex invariant.

Proof of Theorem 2 (3) - Part Permutation Invariance.

Given a multipolygon ¢ = {p;}, its 2-simplex mesh SU) = {Sg)}gil (similar
to Figure 5d) is an unordered set of signed 2-simplexes/triangles. Changing
the feed-in order of polygon set {p;} will not affect the resulting 2-simplex
mesh. So NUFTspec is part permutation invariant.
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Proof of Theorem 2 (4}) - Topology Awareness.

Given a polygon p = (B,h = {H;}) with holes, its 2-simplex mesh SU) =
{S%j )}gil is consist of oriented 2-simplexes. Since we require each polyg-
onal geometry is oriented correctly, the right-hand rule can be used to
compute the signed content of each 2-simplex. So the topology of polygon
p = (B,h = {H,}) is preserved during the polygon-simple mesh conversion.
Thus, NUFTspec is aware of the topology of the input polygon geometry.

6 Shape Classification Experiments

Shape classification is an essential task for many computer vision [48] and car-
tographic applications [29, 31]. In this study we focus on a large scale polygon
classification dataset MNIST-cplx70k, which is based on the commonly used
MNIST dataset.

6.1 MNIST-cplx70k Dataset

According to Table 1, MNIST is the only large-scale open-sourced shape clas-
sification dataset with 60K training samples. The original MNIST data was
originally designed for optical character recognition (OCR) which uses images
to present shapes, not polygons. Jiang et al. [46] convert MNIST into a poly-
gon shape dataset for shape classification purpose. Following their practice,
we construct a polygon-based shape classification dataset — MNIST-cplx70k.

The original MNIST pixel image is up-sampled using interpolation and
contoured to get a polygonal representation of the digit by using the functions
provided by Jiang et al. [46]. Then we simplify each geometry by: 1) making
sure that each polygon sample contains 500 unique vertices in order to do mini-
batch training; 2) dropping very small holes and sub-polygons while keeping
large ones. The result is a shape classification dataset of 70k examples (see
Table 1 for its detailed statistics). Figure 9 shows the histogram statistic of the
number of sub-polygons and number of holes of each samples in the resulting
MNIST-cplx70k training and testing set.

6.2 Baselines and Model Variations

We use the same shape classification module as shown in Equation 15 but vary
the polygon encoders we used. We consider multiple polygon encoders for the
shape classification task on MNIST-cplx70k dataset:

1. VeerCNN [28]: We strictly follow the TensorFlow implementation® of Veer
et al. [28] and re-implement it in PyTorch. The polygon embedding is used
for shape classification.

2. ResNet1D: We implement ResNet1D as described in Section 5.1 and use
it for shape classification.

8https://github.com/SPINlab/geometry-learning
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Fig. 9: The statistic of the complexity of polygonal geometries in the MNIST-
cplx70k training and testing set.

3. DDSL+MLP: This is a model developed based on the DDSL model
proposed by Jiang et al. [46]. Similar to NUFTspec, DDSL+MLP first trans-
forms a polygonal geometry into the spectral space with NUFT. Instead
of learning embedding directly on these NUFT features, it converts this
NUFT representation back to the spatial space as an image by Inverse Fast
Fourier Transform (IFFT). Note that in order to make sure the NUFT
features can be later used for IFFT, we can only use linear grid feature
map WU/ (See Definition 9) as the Fourier feature bases for NUFT in
DDSL+MLP. This NUFT-IFFT transformation is essentially a vector-to-
raster operation. DDSL+MLP converts the resulting 2D image into a 1D
feature vector and directly applies a multi-layer percetron (MLP) on it to
learn polygon embeddings.

4. DDSL4+PCA+MLP: Directly applying an MLP on 1D image fea-
ture vector can lead to overfitting. In order to prevent overfitting,
DDSL+PCA+MLP applies a Principal Component Analysis (PCA) on the
1D NUFT-IFFT image feature vectors across all training shapes in MNIST-
cplx70k. The first Kpca PCA dimensions (which accounts for 80+% of the
data variances) of the NUFT-IFFT image feature vector are extracted and
fed into an MLP.

5. NUFTspec|fft] +MLP: We first use NUFT to transform a polygonal
geometry into the spectral space with linear grid W/t (indicated by
“[fft]”). Then an MLP is directly applied on the resulting NUFT features.
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6. NUFTspec[fit]+PCA+MLP: Similarly, in order to prevent overfitting,
we apply a projection of NUFT features down to the first Kpca PCA
dimensions (which account for 80+% of the data variance) before the MLP.

7. NUFTspec[gmf]|+MLP: One advantage of NUFTspec is that since
NUFTspec does not require IFFT, we do not need to use regularly spaced
frequencies (W(f f t)) but choose whatever frequency map works best for
a given task. So compared with NUFTspec[fft]+MLP, we switch to the
geometric grid frequency map W™/) as proposed in Mai et al. [13].

8. NUFTspec[gmf]+PCA+MLP: Similar to NUFTspec[gmf]+MLP but
we perform an extra PCA before feeding into the MLP.

Both VeerCNN and ResNet1D can only encode simple polygons by design
while MNIST-cplx70k contains complex polygonal geometries. So given a com-
plex polygon geometry, we concatenate the vertex coordinate sequences of all
sub-polygons’ exterior and interior rings before feeding it into VeerCNN or
ResNet1D. We call this preprocess step as boundary concatenation operation.
For example, Geometry ¢ = {po,p1} shown in Figure 5a is represented as
x4; xE; x5y x5y xEs x5y x5y x5y xTs xTs xEs xT) before feeding into
VeerCNN and ResNet1D. After boundary concatenation operation, a complex
polygonal geometry is converted to a single boundary vertex sequence. It is
like using one stroke to draw a complex polygonal geometry [73] whereas all
topology information is lost. In this situation, circular padding does not ensure
loop origin invariance for ResNet1D anymore.

VeerCNN and ResNet1D are spatial domain polygon encoders while the
last six models are spectral domain polygon encoders. The last six NUFT-
based polygon encoders essentially provide a framework for the ablation study
on the usability of NUFT features for polygon representation learning. We
vary several components of the polygon encoder: 1) DDSL v.s. NUFTspec
— whether to learn representation in the spectral domain (NUFTspec) or the
spatial domains (DDSL); 2) fft v.s. gmf — whether to use linear grid or
geometric grid frequency map; 3) MLP v.s. PCA+MLP: whether to apply
PCA for feature projection before the MLP layers. Here, we keep the learning
neural network component to be an MLP to make sure the model performance
differences are all from those three model variations but not from different
neural architectures.

The whole model architectures of ResNet1D, NUFTspec as well as all
baselines are implemented in PyTorch. All models are trained and evaluated
on one Linux machine with 256 GB memory, 56 CPU cores, and 2 GeForce
GTX 1080 Ti CUDA GPU (12 GB memory each).

6.3 Main Evaluation Results

Figure 10 compares the shape classification accuracy of the eight models
described in Section 6.2 on the MNIST-cplx70k testing set. Each bar indicates
the performance of one model, where we mark the estimated standard devia-
tions from 10 runs for each model setting. The hyperparameter tuning detailed
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are discussed in Appendix A.2. The best hyperparameter combinations for
different models are listed in Table A2. From Figure 10, we can see that:

1.

VeerCNN performs the worse. Our ResNet1D achieves the best performance
while our NUFTspec[gmf]+PCA+MLP comes as the second best.

. PCA significantly improves the accuracy of all three settings. This is espe-

cially evident for NUFTspec|[fft], which supports our intuition that a linear
grid introduces too many higher frequency features which are noisy and
make learning hard (See Figure 7a). For more analysis on the PCA features,
please see Section 6.4.

When using the linear grid frequency map WU/ two DDSL mod-
els outperform their corresponding NUFTspec counterparts, i.e.,
DDSL+MLP > NUFTspec[fft]+MLP, and DDSL+PCA+MLP >
NUFTspec|fft] +PCA+MLP.

. However, when we switch to the geometric grid W@™f) NUFTspec out-

performs DDSL, i.e., NUFTspec[gmf{]+MLP > DDSL+MLP, and NUFT-
spec[gmf]+PCA+MLP > DDSL+PCA+MLP. These differences are statis-
tically significant given the estimated standard deviations. Note that for the
geometric grid W@™/) TFFT is no longer applicable so that we can not use
DDSL logic to transform those spectral features into the spatial domain.
This shows the flexibility of NUFTspec in terms of the choice of Fourier
frequency maps which have a significant impact on the model performance,
while DDSL is restricted to uniform frequency sampling.

In order to understand how different polygon encoders handle polygons

with different complexity, we split the 10K polygon samples in the MNIST-
cplx70k testing dataset into 6 groups using the number of sub-polygons of
each sample, and compare the performances of VeerCNN, DDSL+PCA+MLP,
ResNet1D, and NUFTspec[gmf]+PCA+MLP on each group. The numbers in
the parenthesis are the estimated standard deviations. The results are shown
in Table 3. We can see that:

ResNet1D

NUFTspec[gmf]+PCA+MLP

NUFTspec[gmf]+MLP

NUFTspec[fft]+PCA+MLP

Model

NUFTspec[fft]+MLP
DDSL+PCA+MLP
DDSL+MLP

VeerCNN

97.3 97.5 97.7 97.9 98.1 98.3 98.5 98.7 98.9 99.1
Accuracy

Fig. 10: Overall classification accuracy comparison among different polygon
encoders on the MNIST-cplx70k testing set. We also plot the standard devia-
tion of each model’s performance as black lines on each bar based 10 runs of
each model. We test multiple mode variations of DDSL and NUFTspec.
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Table 3: Shape classification results on different polygon groups of the
MNIST-cplx70k testing set. The “#Sub-Polygon” row indicates the number of
sub-polygons each shape sample have in each group. “6+” indicates all shape
samples who have at least 6 sub-polygons. “ALL” indicates the evaluation on
the whole testing set. “#Samples” row shows the number of shape samples in
each groups. “()” indicates the standard deviations of 10 runs of each model.

#Sub-Polygon 1 2 3 4 5 6+ ALL
#Samples 9,656 | 250 61 19 9 5 10,000
VeerCNN 98.06 | 93.60 | 88.52 | 68.42 | 55.56 | 60.00 | 97.60 (0.43)
DDSL+PCA+MLP 98.78 | 95.20 |96.72|84.21 | 77.78 | 80.00 | 98.60 (0.05)
ResNet1D 99.25 [ 96.00 | 96.72 | 63.16 | 66.67 | 40.00 | 99.00 (0.05)
NUFTspec[gmf]+PCA+MLP | 98.87 | 96.00 | 96.72 | 84.21 | 77.78 | 60.00 | 98.70 (0.05)

Table 4: Shape classification results on different polygon groups of the
MNIST-cplx70k testing set (the same as Table 3) after training models on the
MNIST-cplx70k+AUG dataset, which adds data augmentation for samples
with more than 3 subpolygons.

#Sun-Polygon 1 2 3 4 5 6 ALL
#Samples 9,656 | 250 61 19 9 5 10,000
VeerCNN 97.41 | 87.60 | 83.61 | 73.68 | 66.67 | 60.00 | 96.99
DDSL+PCA+MLP 98.76 | 96.00 | 95.08 | 78.95 | 88.89 | 80.00 | 98.61
ResNet1D 99.10 | 96.80 | 96.72 | 68.42 | 77.78 | 60.00 | 98.93
NUFTspec[gmf]+PCA+MLP | 98.81 | 96.80 | 98.36 | 89.47 | 88.89 | 80.00 | 98.76

1. Compared with DDSL+PCA+MLP and NUFTspec[gmf]+PCA+MLP,
ResNet1D does poorly on multi-polygon samples, especially on samples with
more than 3 subpolygons. This indicates that the superority of ResNet1D on
MNIST-cplx70k dataset is mainly because most of samples (96.56%) in
MNIST-cplx70k testing set are single polygons. Therefore, for shape clas-
sification tasks with a higher proportion of complex polygonal geometry
samples, we expect NUFTspec[gmf]+PCA+MLP to perform better than
ResNet1D.

2. Comparing DDSL+PCA+MLP and NUFTspec[gm{]+PCA+MLP, we see
that they both can handle multi-polygon samples well due to the NUFT
component. However, NUFTspec[gmf]+PCA+MLP performs better at 1
and 2 sub-polygon groups.

3. We find out that DDSL+PCA+MLP and NUFTspec[gmf]+PCA+MLP
have the same performance on the 3, 4, and 5 sub-polygon groups. This indi-
cates that both models fail on the same number of samples in each group.
After looking into the actual predictions, we find out that they actually fail
for different samples.

Since there are much less samples with more than 3 sub-polygons in
MNIST-cplx70k training and testing dataset (see Figure 9a and 9c¢), it might
be questionable to draw a conclusion that compared with DDSL+PCA+MLP
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and NUFTspec[gmf]+PCA+MLP, ResNet1D does poorly on samples with
more than 3 subpolygons. The lower performance of ResNetlD on sam-
ples with more than 3 subpolygons might be due to the unbalanced training
data with respect the number of samples with different sub-polygons. To
mitigate the unbalanced nature of the training data, we perform data aug-
mentation to increase the number of multi-polygon samples in the training
set. For each training sample with more than 3 subpolygons, in addition to
the original sample, we generate 10 extra samples by adding random Gaus-
sian noise to the vertices of current polygonal geometry. We denote this
augmented training set as MNIST-cplx70k+AUG. We train four polygon
encoders on MNIST-cplx70k+AUG dataset and evaluate them on the original
MNIST-cplx70k testing set.

The evaluation results on different polygon groups are shown in Table 4. We
can see that, after adding extra multipolygon samples, the overall accuracy of
ResNet1D decrease whereas the over accuracy of NUF Tspec[gmf]+PCA+MLP
increase when we compare them with those in Table 3. Moreover, we can
still observe that both DDSL+PCA+MLP and NUFTspec[gmf]+PCA+MLP
can outperform ResNetlD on 4, 5, 6+ sub-polygon groups. This result
demonstrates that ResNet1D has an intrinsic model bias to perform poorly
on multi-polygon samples as opposed to model variance (lack of training
examples).

6.4 Analysis of PCA-based Models

We also investigate the nature of the feature representations of those three
PCA models — DDSL+PCA+MLP, NUFTspec|fft|+PCA+MLP and NUFT-
spec[gmf]+PCA-+MLP. The results are show in Figure 11. Figure 11a compares
the PCA explained variance curves of three models when N,,, = 24. Instead
of fixing Ny, Figure 11b compares three PCA models based on the number
of PCA components needed to explain 90% of the data variance with different
Ny We can see that for any given N, these three models need different
numbers of PCA components with NUFTspec[gmf]+PCA+MLP being the
most compact and NUFTspec|fft| +PCA+MLP being the least compact. The
curve of NUFTspec[gmf]+PCA+MLP is very flat indicating that geometric
frequency introduces much less noise when N,,, increases.

6.5 Understanding the Four Polygon Encoding Properties

Section 6.3 shows that NUFTspec and ResNetlD are two best models on
MNIST-cplx70k dataset. In order to deeply understand how those four poly-
gon encoding properties discussed in Section 3 affect the performance of
NUFTspec and ResNet1D, we conduct four follow-up experiments. To test the
rotation invariance property of their proposed models, both Deng et al. [74]
and Esteves et al. [75] kept the training dataset unchanged and modified the
testing data by rotating each testing shape. They investigated how the test-
ing shape rotations affect the model performance. Inspired by them, we also
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Fig. 11: The comparison of DDSL+PCA+MLP, NUFTspec|fft|+PCA+MLP
and NUFTspec[gmf]+PCA+MLP on how their PCA components explain
the data variance. (a) The PCA explained variance curves of three models
when N, = 24. (b) The curve of the number of top Kpca PCA compo-
nents that can explain 90% of data variance for MNIST-cplx70k training set
with different N,,. We can see that compared with the other two models,
NUFTspec[gmf]+PCA+MLP has a more compact set of PCA features.

keep the training dataset of MNIST-cplx70k unchanged and adopt four ways
to modify the polygon representations in the MNIST-cplx70k testing dataset.
We compare the performances of NUFTspec and ResNet1D on these modified
datasets.

The first three properties are invariance properties. So what we expect for
a polygon encoder is that when we 1) loop around the exterior/interiors by
starting with different vertices, or 2) add/delete trivial vertices, or 3) permute
the feed-in order of different sub-polygons, the resulting polygon embedding
is invariant since the shape of the input polygon does not change. So for
the first three properties, we modify the polygon representations in MNIST-
cplx70k testing set while keeping their shape invariant. We call them shape-
mwvariant geometry modifications.

The topology awareness property is not an invariance property. So our
expectation is that when the topology of a polygon changes, the polygon
embedding should be different even if they have the same vertex information
such as ¢ = {po,p1} and ¢ = {p{, p1, p2} shown in Figure 5a and 5c.

Figure 12 visualizes the evaluate results for each property.

1. Loop origin invariance (Loop): As for all training and testing poly-
gons in original MNIST-cplx70k dataset, we always start looping around
each polygon’s exterior/interiors with its upper most vertex. To study
the loop origin invariance property, We randomize the starting point of
the coordinate sequence of each sub-polygon’s exterior or interiors. We
refer to this method as loop origin randomization. For example, as shown
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Fig. 12: The experiments on the four polygon encoding properties of
NUFTspec[geometric| +PCA+MLP and ResNet1D. “ResNet1D” and “NUFT-
spec[geometric]+PCA+MLP” indicate the evaluations of these two models on
the original MNIST-cplx70k testing set while model names with “(*)” indi-
cate their results on modified datasets. “(*)” indicates different modification
methods for different properties: (a) Loop origin invariance: looping around
the testing polygons’ exterior/interiors with 10 different origins; (b) Trivial
vertex invariance: adding different numbers of trivial vertices; (c) Part permu-
tation invariance: permuting the feed-in order of different sub-polygons; (d)
Topology awareness: converting polygon holes into subpolygons.

in Figure 5a, the exterior of Polygon pg, i.e., By, can be written as
By = [x4; x§; xL; xB; xL; xL] € R%*2 with x4 as the start point.
When we select xp as the start point, the exterior of Polygon py becomes
Bég) = L3Bg = [x5; xL; x%; x%; xE; xZ] which has an identical shape
as By. In total, we generate 10 independent testing datasets based on the
MNIST-cplx70k original testing set by using the above method. We evalu-
ate the trained ResNet1D and NUFTspec model on these different modified
testing sets whose evaluation results are shown as two curves — “ResNet1D

(Loop)” and “NUFTspec[geometric|+PCA+MLP (Loop)” in Figure 12a.
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We also show their performance on the original testing set as the dot-
ted lines. We can see that while NUFTspec’s performance is unaffected
under loop origin randomization, ResNet1D is affected with roughly abso-
lute 1% performance decrease, which is statistically significant. Note that
ResNet1D is loop origin invariance only if the polygon is a simple polygon.
However, MNIST-cplx70k contains multiple complex polygonal geometries.
In these cases, loop origin invariance property of ResNet1D does not hold.
That is why we see this performance drop.

Trivial vertex invariance (TriV): For each polygonal geometry in the
MNIST-cplx70k testing dataset, we upsample its vertices to have more than
the initial 500 points (600 - 1200) by adding trivial vertices. Figure 5b shows
the example of trivial vertices (red points). We compare the performance
of ResNet1lD and NUFTspec on these upsampled testing datasets which
indicate as “ResNetlD (TriV)” and “NUFTspec[geometric|+PCA+MLP
(TriV)” in Figure 12b. We can see that while the performance of NUFT-
spec is unaffected no matter how many vertices we upsampled, the
performance of ResNetlD decreases dramatically when the number of
vertices increases.

Part permutation invariance (ParP): The feed-in order of sub-polygons
in each polygonal geometry sample in the original MNIST-cplx70k dataset
follows the normal raster scan order — from up to down and from left to
right. To test the part permutation invariance property, we do random part
permutation for each multipolygon in MNIST-cplx70k testing set. Since this
part permutation operation will only affect the multipolygon shape samples,
we only compare the performance of ResNetlD and NUFTspec on this
subset of the testing set which consists of 344 multipolygon samples. Similar
to Figure 12a, we also do 10 different experiment trials. The performances of
ResNet1D and NUFTspec on these permuted testing datasets are indicated
as “ResNetlD (ParP)” and “NUFTspec|geometric] +PCA+MLP (ParP)”.
Dotted lines indicates their performance on the original dataset. We can
see that while NUFTspec is unaffected, ResNet1D’s performance decreased
by 0.8%.

Topology awareness (Topo): From a theoretical perspective, it is easy to
see that NUFTspec is topology aware since NUFT knows which points are
inside the polygon and which outside whereas ResNet1D is not as shown in
Section 5.6.2. However, since topology awareness is not an invariance prop-
erty, it is rather difficult to show with experiments. Nevertheless, to align
with the experiments of other three properties, we did a similar experi-
ment by modifying the polygon representations. More specifically, for each
polygonal geometry with holes, we delete the holes and use the holes’ coor-
dinate sequence to construct a new sub-polygon for the current geometry.
One example consists of the multipolygon ¢ = {po, p1} and multipolygon
q" = {p{,p1,p2} shown in Figure 5a and 5¢c. The hole of sub-polygon pg
is deleted. Instead, it is instantiated as a new sub-polygon ps. By doing
that, we change the topology of a geometry while keeping the vertices
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unchanged. Note that when a hole become the exterior of a sub-polygon, the
coordinate sequence should switch from clockwise rotation to counterclock-
wise rotation. We evaluate ResNet1D and NUFTspec on the original and
modified MNIST-cplx70k testing set as shown in Figure 12d. “ResNet1D
(Topo)” and “NUFTspec[gmf]+PCA+MLP (Topo)” indicate the results on
the modified dataset. We can see that when changing the polygon topology,
the performances of both models are affected while NUFTspec is affected
more severely. This is actually expected, or even desired since when the
topology of a polygonal geometry changes, the shape also changes and the
decision of shape classification should also change. Figure 12d shows that
NUFTspec are more sensitive to topological changes of polygons.

In conclusion, based on the above study, we can see that compared with
ResNet1D, NUFTspec is more robust to loop origin randomization, vertex
upsampling, and part permutation operation whereas it is more sensitive to
topological changes. In other words, NUF Tspec retains identical performance
when polygons undergo shape-invariant geometry modifications due to the
invariance inherented from the NUFT representation, whereas models that
directly wutilize the polygon vertex features such as ResNetlD suffer significant
performance degradations.

6.6 Qualitative Analysis

Figure 13 shows the qualitative analysis results of DDSL+PCA+MLP,
ResNet1D, and NUFTspec[gmf]+PCA+MLP. We visualize some illustrated
examples in which these models win or fail.

Figure 13a shows sampled winning and failing examples comparing NUFT-
spec[gmf]+PCA+MLP and ResNetlD. From the lower row of Figure 13a,
we can see that NUFTspec[gmf]+PCA+MLP is able to jointly consider all
sub-polygons of a multipolygon sample and the spatial relations among them
during prediction while ResNet1D fails to do so. From the upper row of Figure
13a, we can see that NUFTspec[gmf]+PCA+MLP sometimes fails because
it can not recognize the shape details which are sometimes important for
classification (such as the 1st case — “7” vs “3”).

Figure 13b shows sampled positive and negative examples comparing
NUFTspec[gmf]+PCA+MLP and DDSL+PCA+MLP. From the model design
choice, we expect NUFTspec works better than DDSL in certain cases because
DDSL is essentially a vector-to-raster operation that may lose global informa-
tion that is important for a given task. As shown in the first 2 examples in
the lower row, DDSL+PCA+MLP may classify shapes as “4” because topo-
logically the shapes do conform to “4”. However, based on the overall shape
NUFTspec[gmf]+PCA+MLP is able to determine that they are more likely
“6” and “9”. The small “local” protruding elements highlighted in dashed
boxes in these examples are not intended by the writer, and have a relatively
small impact on NUFTspec’s features, since all Fourier features are global
statistics. Similarly having no hole in the “8” example (the last example in
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Truth (3) Truth (4) Truth (3) Truth (7) Truth (3)

ResNet1D (3) ResNet1D (4) ResNet1D (3) ResNet1D (7) ResNet1D (3)

NUFTspec (7) NUFTspec (9) NUFTspec (5) NUFTspec (2) NUFTspec (8)

Truth (9) Truth (8) Truth (.9) Truth (7) Truth (7)
ResNetlD (7) ResNetlD (5) ResNetlD (8) ResNetlD (1) ResNetlD (1)
NUFTspec (9) NUFTspec (8) NUFTspec (9) NUFTspec (7) NUFTspec (7)

(a) ResNet1D v.s. NUFTspec[gmf{]+PCA+MLP

Truth (2) Truth (3) Truth (7) Truth (3) Truth (4)

DDSL (2) DDSL (3) DDSL (7) DDSL (3) DDSL (4)
NUFTspec (7) NUFTspec (5) NUFTspec (9) NUFTspec (7) NUFTspec (9)

Truth (6) Truth (9) Truth (5) Truth (9) Truth (8)

DDSL (4) DDSL (4) DDSL (3) DDSL (4) DDSL (9)
NUFTspec (6) NUFTspec (9) NUFTspec (5) NUFTspec (9) NUFTspec (8)

(b) DDSL+PCA+MLP v.s. NUFTspec[gmf]+PCA+MLP

Fig. 13: A qualitative analysis on the performance of DDSL+PCA+MLP,
ResNet1D, and NUFTspec[gmf]+PCA+MLP on the MNIST-cplx70k testing
set. In each example’s caption, “*” in “Truth (*)” indicates the ground truth
labels while the other numbers in “()” indicates the predicted labels for dif-
ferent models. The dashed boxes highlight the parts which might lead to the
wrong predictions of polygon encoders. (a) The upper row contains examples
where ResNet1D predicts correctly while NUF Tspec[gmf]+PCA+MLP fails.
The lower row contains examples in which these two models perform other-
wise. (b) The upper row contains examples where DDSL+PCA+MLP predicts
correctly while NUFTspec[gmf]+PCA+MLP fails. The lower row contains
examples in which these two models perform otherwise.

the lower row of Figure 13b) prevents DDSL+PCA+MLP from classifying it
as “8”, while NUFTspec[gmf]+PCA+MLP can well handle this topological
abnormality. On the other hand, this insensitivity to local features may also
hurt NUFTspec[gmf]+PCA+MLP when they are important. This is evident
in the upper row in Figure 13b for number “27, “3”, and “7” where a small
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protruding structure, or a small gap indicates the topological changes that are
intended by the writer.

Based on the above experiment results, we can see that compared with
ResNet1D, both DDSL and NUFTspec are better at handling multi-polygon
samples. While DDSL focuses on the localized features, NUFTspec pays atten-
tion to the global shape information. Moreover, since NUFTspec does not have
the IFFT step, it is more flexible in terms of choosing the frequency maps.

7 Spatial Relation Prediction Experiments

The polygon-based spatial relation prediction is an important component for
GeoQA [39]. To study the effectiveness of NUFTspec and ResNet1D on this
task, we construct two real-world datasets DBSR-46K and DBSR-cplx46K for
the evaluation purpose based on DBpedia and OpenStreetMap.

7.1 DBSR-46K and DBSR-cplx46K Dataset

Since there is no existing benchmark dataset available for this task, we con-
struct two real-world datasets - DBSR-46K and DBSR-cplx46K- based on
DBpedia Knowledge Graph as well as OpenStreetMap. DBSR-46K and DBSR-
cplx46K use the same entity set £ and triple set 7 and the only different is that
DBSR-46K uses simple polygons as entities’ spatial footprints while DBSR-
cplx46K allows complex polygonal geometries. The dataset construction steps
are described as below:

1. We first select a meaningful set of properties R = {r;}, from DBpedia
representing different spatial relations.

2. Then we collect all triples {(esup,Ti,€0p;)} from DBpedia whose relation
r; € R and ey, €op; are geographic entities.

3. Next, we filter out triples whose subject e,y or object eqp; is located outside
the contiguous US. The resulting triple set T = {(esup, i, €obj)} forms a
sub-graph of DBpedia with the entity set £.

4. For each entity e € &£, we obtain corresponding Wikidata ID by using
owl:sameas links.

5. With each entity e’s Wikidata ID, we can obtain its polygonal geometry
from OpenStreetMap by using Overpass API°.

6. The raw polygonal geometries from OpenStreetMap are very detail and
complex. For example, Keweenaw County, Michigan is represented as a
multipolygon that is consist of 462 sub-polygons. Lake Superior has in total
3130 holes and 206661 vertices in its polygon representation. United States
has 128873 vertices. Figure 14a-14c show statistic about the complexity of
these raw geometries. We simplify those polygonal geometries collected from
OpenStreetmap and make two datasets: DBSR-46K and DBSR-cplx46K.

7. As for DBSR-46K, we delete all holes and only keep one single simple poly-
gon with the largest area as the geometry for each geographic entity. We

9https://wiki.openstreetmap.org/wiki/Overpass_API
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also simplify the exterior of each simple polygon by using the Douglas-
Peucker algorithm such that they all have 300 unique vertices. For those
polygons with less than 300 vertices, we do a equal distance interpolation
on the exteriors to upsample the vertices to 300. The reason to do so is that
same number of vertices make it possible for mini-batching.

As for DBSR~cplx46K, we also simplify the polygonal geometries but we
keep holes and multipolygons if necessary. We delete holes if their area are
less than 2.5% of the total area of their corresponding polygonal geometries.
Figure 14d-14f show the statistics (number of holes, multipolygons, vertices)
of the simplified geometries. Similarly, we make the simplified polygonal
geometries to have 300 vertices, N, = 300, for mini-batching. DBSR-
46K and DBSR-~cplx46K use the same entity set £ and triple set 7 and the
only difference between them is the polygonal geometry of each entity.
Table Al in Appendix A.1 shows the number of entities with different place
types in DBSR-46K and DBSR-cplx46K. Figure 15 shows the polygonal
geometries of these geographic entities in these datasets.

We split T into training/validation/testing dataset by roughly 80:5:15. By
following the traditional transductive knowledge graph embedding litera-
ture [9, 76], we make sure all entities in £ appear in the training dataset.
We construct balanced validation and testing dataset with respect to each
spatial relation. Table 5 shows the statistic of the dataset split. In the train-
ing dataset, the balance of triples with different spatial relations can not be
achieved at the same time with the need to include all entities in the graph.
So in training dataset we have far more dbo:isPartOf triples than other
spatial relations. This phenomenon is caused by the nature of DBpedia. So
we need to keep this imbalance.

The spatial relation prediction task does not need the absolute position of
each geographic entity but focuses on their relative spatial relation. So given
a triple (esup, 73, €obj), We first compute the shared minimal bounding box
of subject polygon gsu» and object polygon g.s;. Then we use this shared
bounding box to normalize both gsu, and gep; into [—1,1] x [—1,1] 2D unit
space. Later on, VeerCNN and ResNet1D directly encodes the normalized
polygon geometries for spatial relation prediction. As for DDSL and NUFT-
spec, since NUFT prefers positive coordinate inputs, we translate those
polygons into [0, 2] x [0, 2] space before feeding into the NUFT layer.

7.2 Baselines and Model Variations

We keep the spatial relation prediction module in Equation 16 the same but
vary the polygon encoders we use. Two exceptions are the Deterministic and
DDSL+LeNet5. Deterministicis based on deterministic (no-learning) spatial
computation and DDSL+LeNet5 uses LeNet for spatial relation prediction.
All models we used for the spatial relation prediction tasks are listed as below:

1.

Deterministic: We implement a deterministic baseline based on RCC8
topological operators and cardinal direction operations. First, given a triple
(Esub, T3, €obj), if the geometry of egyp is inside of the geometry of e,
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Table 5: The training/validation/testing split of DBSR-46K/DBSR-cplx46K.

2

Number of Geographic Entities
g & g

Number of Geographic Entities
5 5

2

N

N

2

Relation All Train Valid Test
dbo:isPartOf 27364 | 26164 300 900
dbp:north 2807 1607 300 900
dbp:east 2797 1597 300 900
dbp:south 2770 1570 300 900
dbp:west 2759 1559 300 900
dbp:northwest | 2063 863 300 900
dbp:southeast 2024 824 300 900
dbp:southwest 2000 904 274 822
dbp:northeast 1994 1175 205 614
All 46578 | 36263 2579 7736
ratio 100% | 77.85% | 5.54% | 16.61%
élﬂlj %10‘
i 11 1 1 ' i 1 100 m__1 11 1
Y Number of Sub-pabygons b M umberorraies ° 00 umberofvertices
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(d) # Sub-polygons (e) # Holes (f) # Vertices

Fig. 14: A statistic of the complexity of the raw polygonal geometries as well
as the simplfied geometries in DBSR-cplx46K from OpenStreetMap. (a)-(c)
indicate the statistics on the raw polygonal geometries retrieved from Open-
StreetMap while (d)-(f) are the same statistics on DBSR-cplx46K. (a) & (d)
A histogram of the number of sub-polygons per geographic entities. (b) & (e)
A histogram of the total number of holes per geographic entities. (c) & (f) A
histogram of the total number of unique vertices on each polygonal geometry’s
exterior and interiors per geographic entities.

Deterministic gives dbo:isPartOf as the prediction. Otherwise, Determin-
istic computes the geometric center of the subject and object geometry
and compute their cardinal direction. This is how the current SQL or
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AdministrativeRegion Mountain
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Fig. 15: A map of geographic entities in DBSR-46K dataset. Some geographic
entities’ spatial footprints overlays with each other.

GeoSPARQL-based geographic question answering models [36, 77] use to
answer spatial relation questions.

2. VeerCNN: We use VeerCNN to encode both subject and object polygons
and feed them into the spatial relation prediction model (Equation 16).

3. DDSL+LeNet5 [46]: We utilize the original DDSL implementation'® and
modify it for mini-batch training. DDSL+LeNet5 does not include the
spatial relation prediction model. Since the output of NUFT-IFFT of a
polygonal geometry is an image, we concatenate the output images of the
subject and object geometries in the channel dimension and feed it into the
LeNetbh, one type of 2D CNN, for spatial relation prediction.

4. DDSL+MLP: Unlike DDSL+LeNetb, given a polygonal geometry,
DDSL+MLP first flattens the NUFT-IFFT output image into 1D and feeds
it into an MLP to encode it into an embedding. The embeddings of the
subject and object geometries are concatenated and fed into another MLP
as described in Equation 16.

5. ResNetl1D: We implement our ResNet1D as described in Section 5.1 and
utilize it in the spatial relation prediction model.

6. NUFTspec[fft]+MLP: This version of NUFTspec is the same as what we
described in Section 6.2. It uses a linear grid W7t for NUFT followed by
an MLP to encode the polygon into an embedding. The only difference is

Ohttps://github.com/maxjiang93/DDSL
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that it concatenates the embeddings of subject and object geometries and
uses them in the spatial relation prediction model (Equation 16).

7. NUFTspec[gmf]+MLP: Different from NUFTspec[fft]+MLP, this ver-
sion of NUFTspec uses the geometric grid W@m/),

Among these seven models, the first four models are baseline approaches
while ResNet1D, NUFTspec[fft]+MLP, and NUFTspec[gmf]+MLP are poly-
gon encoders we proposed. In order to allow VeerCNN and ResNet1D to handle
complex polygonal geometries in the DBSR~cplx46K dataset, we perform the
same boundary concatenation operation as described in Section 6.2.

Table 6: Spatial relation prediction accuracy on the DBSR-46K (simple
polygon) and DBSR-cplx46K (complex polygon) datasets.

DBSR-46K DBSR-cplx46K

Train Valid Test Train Valid Test
Deterministic 75.42 75.18 73.80 75.17 75.30 73.90
VeerCNN [28] 92.10 77.90 77.59 91.60 77.51 77.08
DDSL+LeNet5 [46, 47] 93.19 80.27 79.22 93.50 80.11 78.68
DDSL+MLP 95.23 | 78.32 78.63 92.89 79.64 79.78
ResNet1D 91.98 78.13 77.79 92.02 78.52 78.24
NUF Tspec|fft]+MLP 93.02 80.85 79.20 93.77 79.33 79.12
NUFTspec[gmf]+MLP 93.41 80.92 | 79.80 | 94.63 | 81.04 | 80.44

7.3 Main Evaluation Results

We evaluates all models described in Section 7.2 on our DBSR-46K and
DBSR-cplx46K dataset. Table 6 shows the overall performance (classification
accuracy) of different models on the training, validation, and testing set of
DBSR-46K as well as DBSR-cplx46K dataset. The hyperparameter tuning
detailed can be seen in Appendix A.2 and the best hyperparameter combina-
tions for different models on two datasets are listed in Table A3. From Table
6, we can see that:

1. NUFTspec[gmf]+MLP achieves the best performance on the validation
and testing set of both DBSR-46K and DBSR-cplx46K. It outperforms
NUFTspec|fft]+MLP, ResNet1D as well as all four baseline models. This
demonstrates the effectiveness and robustness of our NUFTspec model.

2. On both datasets, ResNet1lD outperforms Deterministic and VeerCNN,
but still falls behind DDSL+LeNet5, DDSL+MLP, NUF Tspec|fft]+MLP,
and NUFTspec[gmf]+MLP. This might because that both VeerCNN and
ResNet1D only encode the polygon boundary information but ignore the
polygon topological information (i.e., distinguishing the exterior from the
interiors of a polygon) which is very important for spatial relation predic-
tion (e.g., dbo:isPartOf). Our qualitative analysis in Section 7.8 confirms
this assumption.
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Similar to the experiment results on MNIST-cplx70k, NUFT-
spec[gmf]+MLP outperforms NUFTspec|fft]+MLP on both
DBSR-46K and DBSR-cplx46K. This demonstrates that a good choice
of the Fourier frequency map can help improve the model performance.

Since DDSL requires an IFFT, the non-integer geometric grid frequency
map W) is no longer applicable. This also shows the flexibility of
NUFTspec in terms of frequency choice.

The original DDSL+LeNet5 model [46] and DDSL+MLP share the same
NUFT-IFFT layer while using different learnable components — LeNet5 v.s.
MLP. We can see that DDSL+LeNet5 can outperform DDSL+MLP on
DBSR-46K dataset but underperform DDSL+MLP on DBSR-cplx46K test-
ing dataset. This shows that when predicting spatial relations between
complex polygonal geometries, using more complex learnable model (e.g.,
LeNet5) might not be helpful.

NUFTspec[gmf]+MLP outperforms DDSL+MLP by 2.6% and 1.2% on
the validation and testing set of DBSR-46K(1.4% and 0.7% for DBSR-
cplx46K). Given the fact that they are using the same MLP-based spatial
relation module, these performance improvements are mainly attributed
to the advantages of NUFTspec: learning polygon representations directly
from the NUFT spectral features enables us to have more flexible choices of
NUFT frequency map W. This allows us to design W that can effectively
capture irregular polygon representations.

7.4 Ablation Study on ResNet1D

Table 7: Ablation study of ResNet1D on DBSR-46K dataset.

DBSR-46K
Train | Valid | Test
ResNet1D 91.98 | 78.13 | 77.79
ResNet1D(zero padding) | 90.67 | 74.49 | 73.07
ResNet1D(raw pt) 91.34 | 75.92 | 75.35

Despite the fact that ResNetlD is similar to VeerCNN in the sense

that both of them use 1D CNN layers to model polygons’ coordinate
sequences, ResNet1D outperforms VeerCNN on both DBSR-46K and DBSR-
cplx46K dataset. To understand the superiority of ResNetlD, we do an
ablation study which is shown in Table 7. It shows that when we replace
the circular padding with zero padding — ResNet1D(zero padding), the per-
formance of ResNet1D drops 3.64% and 4.72% on the validation and testing
set. This demonstrates that circular padding is critical for ResNet1D since
it preserves the loop origin invariance property. A similar situation happens
when we delete the KDelta point encoder component and direct feed the raw
point coordinates to ResNet layers — ResNet1D(raw pt). This demonstrates
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that KDelta is very helpful for polygon encoding and spatial relation predic-

tion since it uses the spatial affinity features (Equation 1) to enrich the point
embedding with its neighborhood information.

7.5 The Impact of N,

-
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Fig. 16: Performance comparisons among four NUFT-based polygon encoder
models on the validation and testing sets of DBSR-46K and DBSR-
cplx46K with different numbers of NUFT frequencies used in X - N,,,. Here,
Nz X Nyy o< U o /Ny,

Among the 7 models listed in Section 7.2, there are 4 NUFT-based models.
In this section, we test the robustness of these 4 models on DBSR-46K and
DBSR-cplx46K when we vary the number of frequencies we use in NUFT. Here,
we use Ny, to indicate the used NUFT frequency numbers since Nyg ¢ Ny X
U x +/N,,. Figure 16 compares the model performance of them with different
Ny, in the validation and testing dataset of DBSR-46K and DBSR-cplx46K.
We can see that NUFTspec[gmf]+MLP achieves the best performance on all



Springer Nature 2021 BTEX template

44 Polygon Representation Learning

Table 8: Relation classification result on DBSR-46K based on the determin-
istic RCC8 spatial operator.

Relation Contains | Intersects | Touches | Disjoint
dbo:isPartOf 20,923 6,309 0 132
dbp:north 4 2,451 0 352
dbp:east 2 2,447 0 348
dbp:south 5 2,405 0 360
dbp:west 3 2,408 0 348
dbp:northwest 4 1,644 0 415
dbp:southeast 2 1,618 0 404
dbp:southwest 4 1,622 0 374
dbp:northeast 3 1,634 0 357

these four datasets with any given N,,, and show a clear advantage over the
other three models.

7.6 Analysis of The Sliver Polygon Problem

To investigate the difficulty of polygon-based spatial relation prediction task
and how the performance can be affected by sliver polygons, we compute
the topological relations between the subject and object entity of each triple
in DBSR-46K based on a deterministic RCC8-based spatial operator'!. The
statistics is shown in Table 8. We can see almost all triples with cardi-
nal direction relations (the last 8 relations) have subject and object entities
that intersect or are disjoint with each other. Interestingly, for dbo:isPartOf
relation, in 76.5% of the 27,364 triples the subject polygons are inside the
corresponding object polygons whereas in 6309 triples (23%-+) the subject
and object polygons intersect with each other when computing their relations
deterministically. Based on manual inspection, most of those ‘intersects’ cases
are caused by the sliver polygon problem shown in Figure 4a. This clearly
indicates the necessity of polygon encoding models.

To qualitatively show how our proposed polygon encoders mitigate the
sliver polygon problem, we show two examples in Figure 17 and 18. In both
examples, the subjects indicated by the red polygonal geometries should be
part of the objects, denoted by the blue polygonal geometries. However,
because of the sliver polygons which are illustrated in the zoom-in windows,
both Deterministic and DDSL+MLP fail to make the correct predictions while
both ResNet1D and NUFTspec[gmf]+MLP can predict the correct relations.

7.7 Analysis of the Scale Problem

To evaluate how well different polygon encoders can handle the scale problem
shown in Figure 4b, we evaluate the performance of each models under differ-
ent area ratio groups. For each triple in the testing set of DBSR-cplx46K, an
area ratio R 4 is computed as the ratio between the areas of the subject geom-
etry and object geometry. R4 shows the scale different between the subjects

Mhttps://shapely.readthedocs.io/en/stable/manual. html#binary- predicates
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and objects. Based on R4, DBSR-cplx46K testing set are divided into seven
different mutually exclusive area ratio groups. Table 9 shows the performances
of different polygon encoders in each area ratio groups. We can see that in all
area ratio groups except R4 € [1,1.1), NUFTspec[gmf]+MLP can outperform
all other polygon encoders. This indicates that NUFTspec is flexible to handle
spatial relation prediction task under different area ratio settings.

7.8 ResNetlD v.s. NUFTspec

Comparing the evaluation results from both tasks, we mnotice that
ResNet1D can outperform NUFTspec on shape classification task but lose
on spatial relation prediction. To understand the reason why ResNet1D fails
on the spatial relation prediction task, we explore triples in DBSR-46K test-
ing set on which NUFTspec[fft]+MLP can make the correct predictions while
ResNet1D fails. Two representative examples are shown in Figure 19 and 20.

Model Prediction
Deterministic dbp:northeast
" DDSL+MLP dbp:northeast
- ResNetlD dbo:isPartOf
NUFTspec[gmf]+MLP| dbo:isPartOf
Ground Truth dbo:isPartOf

Fig. 17: One example in DBSR-cplx46K testing set to show how the sliver
polygons can affect the the prediction results of different polygon encoders.
Red geometry (subject): dbr:Oznard,_California; Blue geometry (object):
dbr: Ventura_County,_California. The table shows the predictions of different
polygon encoders on this example.

Model Prediction
Deterministic dbp:northwest
DDSL+MLP dbp:northeast
ResNet1D dbo:isPartOf
NUF Tspec[gmf]+MLP| dbo:isPartOf
““““ Ground Truth dbo:isPartOf

Fig. 18: Another example in DBSR-cplx46K testing set to demonstrate
the affect of the sliver polygon problem similar to Figure 17. Red
geometry (subject): dbr:Simi_Valley,_California; Blue geometry (object):
dbr: Ventura_County,_California. The table shows the predictions of different
polygon encoders on this example.
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Table 9: Evaluation results of different polygon encoders on different area
ratio groups of DBSR-cplx46K testing set. Given a triple, the area ratio R4 is
the ratio between the areas of the subject geometry and object geometry.

Model \ Area Ratio R4

[0,0.1)[[0.1,0.2)|[0.2,0.3)|[0.3,1)|[1,1.1)|[1.1, 1.2)|[1.2, c0)
# Triples 1027 156 167 3152 | 675 411 2148
Deterministic 66.60 | 50.00 62.87 | 74.62 | 81.19 | 74.70 | 76.49
VeerCNN 86.95| 51.92 50.30 | 75.44 | 82.67 | 76.89 | 76.96
DDSL+LeNetb 87.93 | 58.33 61.68 | 76.84 | 84.44 | 81.75 | 77.37
DDSL+MLP 87.24 | 54.49 63.47 | 79.09 | 84.44 | 80.78 | 78.68
ResNet1D 87.05 | 45.51 52.69 | 76.78 | 84.59 | 79.81 | 78.26
NUFTspec[fft]+MLP | 87.15| 57.05 61.08 | 77.35 (85.63| 81.75 | 78.35
NUFTspec[gmf]+MLP|87.93| 59.62 | 64.07 |79.22|85.33 | 83.94 | 79.24

A _________ Model Prediction

: & Deterministic dbp:north
VeerCNN dbo:isPartOf

DDSL+LeNet5 dbp:north

DDSL+MLP dbp:north
ResNet1D dbo:isPartOf

NUFTspec|fft|+MLP| dbp:north

Ground Truth dbp:north

Fig. 19: An example in DBSR-~46K relation prediction testing set to show
the drawback of ResNet1D. Red geometry (subject): dbr:Clark-County,-Idaho;
Blue geometry (object): dbr:Beaverhead-County,_Montana. The table shows
the predictions of different polygon encoders for this example.

In both cases, NUFTspec]fft]+MLP and Deterministic can correctly predict
the spatial relation. However, two spatial domain polygon encoders — Veer-
CNN and ResNet1D — predict dbo:isPartOf, although the subject geometry is
clearly not part of the object geometry. We guess the reason is that both Veer-
CNN and ResNet1D only encode vertex information but are not aware of the
topology of the polygonal geometries. So it is hard for them to understand the
concept of “interior” and “exterior” of polygons. Even there are sliver poly-
gons between subject and object polygons, VeerCNN and ResNet1D still give
dbo:isPartOf as predictions.

8 Conclusion

In this work, we formally discuss the problem of polygon encoding — a general-
purpose representation learning model for polygonal geometries that can be
used in various polygon-based tasks including shape classification, spatial rela-
tion prediction, building pattern classification, geographic question answering,
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A A Model Prediction

: ~  Deterministic dbp:west
el VeerCNN dbo:isPartOf
L7V DDSL+LeNet5 dbp:northwest
< || 77 DDSL+MLP dbp:northwest
e ResNet1D dbo:isPartOf

\ NUFTspec]fft] +MLP| dbp:west

Ground Truth dbp:west

drawback of ResNet1D. Red geometry (subject): dbr:Arlington, Texas; Blue
geometry (object): dbr:Fort.Worth,_Texas. The table shows the predictions of
different polygon encoders for this example.

and so on. However, polygon encoding is not an easy task given the fact that
polygonal geometries can have rather irregular structure, containing holes or
multiple sub-polygons which cannot be easily handled by existing neural net-
work architectures. To highlight the uniqueness of this problem, we point out
four important polygon encoding properties including loop origin invariance,
trivial vertex invariance, part permutation invariance, and topology awareness.

To design a polygon encoder that can handle complex polygonal geometries
(including polygons with holes and multipolygons) and at the same time sat-
isfy those four properties, we propose the NUFTspec polygon encoder which
utilizes Non-uniform Fourier transformation (NUFT) to transform a polygo-
nal geometry into the spectral space and then learn the polygon embedding
from these spectral features. We also propose another 1D CNN-based polygon
encoder called ResNet1D as a representative model of spatial domain polygon
encoders. ResNet1D utilizes circular padding to achieve loop origin invariance
on simple polygons but fail to satisfy other three properties.

To investigate the effectiveness and robustness of these two polygon
encoders, we evaluate them and multiple existing baselines on two rep-
resentative polygon-based tasks — shape classification and spatial relation
prediction.

For the shape classification task, we construct a polygon-based shape clas-
sification dataset, MNIST-cplx70k, based on the well-known MNIST dataset.
Experiment results show that both ResNetlD and NUFTspec can outper-
form all baselines with statistical significant margins. Moreover, NUFTspec is
robust to many shape-invariant geometry modifications including loop origin
randomization, vertex upsampling, and part permutation and is more sensi-
tive to topological changes due to the invariance inherented from the NUFT
representation. In contrast, models that directly utilize the polygon vertex fea-
tures such as ResNet1D suffer performance degradations under these geometry
modifications.

For the spatial relation prediction task, we construct two real-world
datasets - DBSR-46K and DBSR-cplx46K based on DBpedia Knowledge
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Graph and OpenStreetMap. Evaluation results show that NUFTspec outper-
forms all baselines on both datasets and is very robust when we vary the
number of sampled frequencies in NUFT.

In addition, compared to other NUFT-based methods such as DDSL,
NUFTspec does not use the Inverse Fast Fourier Trasnform (IFFT) so it is
more flexible for the choice of the NUFT frequency maps. Both experiments
show that by using non-integer frequency maps such as geometric grid W5
NUFTspec can outperform DDSL on both tasks.

Despite these success, several issues still remain to be solved. First, the
training dataset of DBSR-46K and DBSR-cplx46K is very unbalanced since
there are more dbo:isPartOf triples than triples with other relations. This
imbalance causes an overfitting issue for all current models. How to design
spatial relation prediction model which is more robust for dataset imbalance is
a very interesting research direction. Second, how to effectively utilize NUFT
features in the spectral domain is also an interesting future research direction.
Moreover, instead of using predefined Fourier frequency maps such as W/
and WU can we let the neural network learn the optimal W based on
network backpropagation? Finally, another interesting future direction is to
combine NUFTspec and ResNet1D for their different strengths.

We believe that a general-purpose representation learning model for polyg-
onal geometries will be a critical component of so-called spatially explicit
artificial intelligence [9, 13, 38, 78-81]. It can also serve as an important build-
ing block to develop a foundation model for geospatial artificial intelligence
[82] in general.
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Appendix A Appendix

A.1 The Type Statistic of Polygonal Geometries in
DBSR-cplx46K

Table A1l: The place type statistic of geographic entities in DBSR-46K and
DBSR-cplx46K dataset.

Place Type Entity Count
City 7887
Town 6668
Settlement 3688
Village 2502
AdministrativeRegion 1420
CityDistrict 980
Unknown 57
ProtectedArea 20
BodyOfWater 12
ManMadeFeatures 12
Park 9
HistoricPlace 3
Island 2
Location 2
MountainPass 1
Mountain 1

A.2 Model Hyperparameter Tuning

We use grid search for hyperparameter tuning. For all polygon encoders on
both tasks, we tune the learning rate lr over {0.02,0.01,0.005,0.002,0.001},
the polygon embedding dimension over d € {256,512,1024}. As for all
DDSL and NUFTspec-based models, we tune the frequency number N, =
{16, 20,24, 28,32,36,40,44} for the shape classification task while N, =
{16,32,64} for the spatial relation prediction task. As for NUFTspec[gmf]-
based models, we tune the w,,;,, = {0.2,0.4,0.5,0.8,1.0} and we tune wy,qq
around N,./2. For all PCA models, we vary Kpca such that the top
Kpca PCA components can account for different data variance > poA =
{80%, 85%, 90%, 95%}. As for ResNet1D, we tune the KDelta point encoder’s
neighbor size 2t € {0,2,4,6,8,10,12,14,16,18,20} and tune the number of
ResNetlD,, - K € {1,2,3}. For DDSL+LeNet5, we tune the hidden dimen-
sion of LeNet5 over {128,256,512,1024}. As to NUFTspec-based models,
DDSL+MLP, and DDSL+PCA+MLP, we tune the number of hidden lay-
ers h and the number of hidden dimension o in MLPg(-) over h = {1,2,3},
o = {512,1024}. We also try different NUFT spectral feature normalization
method ¥(-) such as no normalization, L2 normalization, and batch normal-
ization. We find out no normalization usually leads to the best performance
on all three datasets.
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Table A2: The best hyperparameter combinations for each model on MNIST-
cplx70k dataset.

Model Ir|d Nuwa | Wmin | Wmaz | D poa | Kpca | K| 2t
VeerCNN 0.01|1024 |- - - - - - |-
ResNet1D 0.01|512 |- - - - - 3 |12
DDSL+MLP 0.001|512 |24 - - - - - |-
DDSL+PCA+MLP 0.0005 | 512 |24 - - 90% 39 - |-
NUF Tspec|[fft]+MLP 0.0005 [ 512 |24 |- - - - - |-
NUFTSpeC[Ht]+PCA+MLP 0.0005 | 512 |24 - - 80% 42 - |-
NUFTspec[gmf]+MLP 0.0005 | 512 |24 0.5 12 - - - |-
NUFTspec[gmf{]+PCA+MLP | 0.0005 | 512 |24 0.5 12 95% 46 - |-

Table A3: The best hyperparameter combinations for each model on DBSR-
46K and DBSR-cplx46K dataset.

Dataset Model Ir d Nuwz | Wmin | Wmaz | I | 2t
VeerCNN 0.01 | 1024 - - - - -
DDSL+LeNetb 0.01 | 512 32 - - - -
DDSL+MLP 0.001 | 512 32 - - - -
DBSR-46K ResNet1D 0.01 | 512 - - - 1|4

NUF Tspec|[fft]+MLP 0.01 | 512 | 16 - - -l -
NUFTspec[gmf]+MLP | 0.002 | 512 32 0.8 16 - -

VeerCNN 0.02 | 512 - - - - -
DDSLA+LeNet5 0.01| 512 | 32 - S I
DDSL+MLP 0.001 | 512 | 32 - I R
DBSR-cplx46K | b Net1D 0.02| 512 | - - - 14

NUF Tspec|[fft]+MLP 0.01 | 512 | 32 - - -] -
NUFTspec[gmf|+MLP | 0.002 | 512 | 32 0.5 20 -] -

The best hyperparameter combinations for all models on MNIST-
cplx70k are shown in Table A2. As for DBSR-~46K and DBSR-cplx46K, each
model’s best hyperparameter combinations are shown in Table A3.
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