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Abstract 
Most traditional pedestrian simulation methods suffer from short-sightedness, as they often choose the 
best action at the moment without considering the potential congesting situations in the future. To address 
this issue, we propose a hierarchical model that combines Deep Reinforcement Learning (DRL) and 
Optimal Reciprocal Velocity Obstacle (ORCA) algorithms to optimize the decision process of pedestrian 
simulation. For certain complex scenarios prone to local optimality, we include expert trajectory imitation 
degree in the reward function, aiming to improve pedestrian exploration efficiency by designing simple 
expert trajectory guidance lines without constructing databases of expert examples and collecting priori 
datasets. The experimental results show that the proposed method presents great stability and 
generalizability, evidenced by its capability to adjust the behavioral strategy earlier for the upcoming 
congestion situations. The overall simulation time for each scenario is reduced by approximately 8%-44% 
compared to traditional methods. After including the expert trajectory guidance, the convergence speed 
of the model is greatly improved, evidenced by the reduced 56%-64% simulation time from the first 
exploration to the global maximum cumulative reward value. The expert trajectory establishes the macro 
rules while preserving the space for free exploration, avoiding local dilemmas, and achieving optimized 
training efficiency. 
Keywords pedestrian simulation, Deep Reinforcement Learning, Local dilemma, Expert trajectory 
guidance, Optimization 

 

1 Introduction 

With the accelerated urbanization process, various complex buildings and public facilities have started 
to emerge, with people spending more and more time in these indoor environments. Without a well-
developed emergency plan in advance, chaos, crowding, and even trampling accidents could occur when 
emergencies happen [1]. In recent years, crowd evacuation has been a hot issue in domestic and 
international research. Due to the disadvantages of costly exercises, it is often difficult to organize 
evacuation drills in the field [2]. Consequently, the pedestrian simulation technology based on computer 
simulation has become the main means to study crowd evacuation nowadays. Currently, traditional 
pedestrian simulation models include the social force model (SFM) [3], cellular automata model (CAM) 
[4], fluid mechanics model [5], and agent-based model, to list a few. However, SFM fails to obtain 
smooth motion trajectories due to its necessity to balance the relationship between various virtual forces 
[6]. The individuals in the CAM are restricted to the grid and can only consider information from the 
surrounding neighborhoods [7]. As for fluid mechanics models, they focus on describing the overall 
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motion trends, largely ignoring the interactions between individuals. Pathfinder software uses the agent-
based model, which is a widely used evacuation simulation software. However, unreasonable moving 
behaviors tend to occur in many agent-based simulations. Therefore, it is crucial to develop novel and 
improved pedestrian simulation models. 

In recent years, as Deep Reinforcement Learning (DRL) has made significant breakthroughs in video 
games [8], robot navigation [9], and recommendation systems [10], scholars started to apply DRL to 
pedestrian simulation. DRL integrates the powerful feature representation capability of deep learning 
(DL) and the excellent decision-making capability of reinforcement learning (RL), realizing the self-
supervised learning of agents and completing the decision-making in a high-dimensional state and action 
space. Yao [11] proposed a method based on RL and a deep residual network to simulate crowd motion. 
Yao’s method boosted the realism of the simulation but with low evacuation efficiency. Xu et al. [12] 
proposed a hierarchical model consisting of Proximal Policy Optimization (PPO) and Optimal Reciprocal 
Velocity Obstacle (ORCA) for pedestrian simulation in local space, considering global path smoothing 
and local collision avoidance. The study by Xu et al. [12] used virtual visual rays to obtain the external 
environment. However, the computational complexity of this method increases exponentially with the 
number of rays. Some scholars [13,14] improved the multi-agent DRL method and achieved stable and 
effective strategies in some competitive and cooperative scenarios. However, these multi-agent RL 
algorithms generate a huge state space with the increase in the number of agents, leading to the curse of 
dimensionality. In addition, given the fact that DRL methods need to interact with the environment to 
obtain training data, The training time for DRL models is considerably long. In complex scenes 
containing dead ends and promenades, agents are very likely to fall into the dilemma of local optimality 
[15]. Therefore, it is crucial to explore effective optimizing means to reduce the learning difficulty of 
agents and improve the model training efficiency while outputting reasonable and feasible simulation 
results. 

In this study, we propose a single-agent hierarchical pedestrian simulation model that combines DRL 
and local collision avoidance, named D3QN-ORCA. To mitigate the issue of falling into local optimum 
in certain complex scenes with dead ends and promenades, we introduce expert trajectory guidance. By 
adding the expert trajectory imitation degree to the reward function, our agents are guided to avoid local 
dilemmas, leading to improved training efficiency. 
 

2 Related works 

2.1 Traditional simulation model 
In terms of the differences in spatial perspectives, traditional pedestrian simulation models can be divided 
into macroscopic models and microscopic models. The macroscopic approach mainly considers the 
global path planning problem, represented by the fluid mechanics model and the model based on the 
potential energy field. Yang [16] proposed an improved hydrodynamic model of pedestrian flow, 
obtained evacuation characteristics in several typical evacuation scenarios, and achieved pedestrian flow 
self-organization. Bounini et al. [17] searched for feasible paths in the potential field according to the 
potential gradient descent algorithm, added a repulsive potential to the current state in the blockage case, 
and overcame the local minimal problem of traditional potential methods; Wu [18] introduced the 
concept of the dynamic potential energy of the grid, which guides the movement of the crowd based on 
the crowd density on the dynamic division of the potential energy grid. 

In contrast, microscopic models, such as SFM, CAM, and ORCA, focus more on the interaction and 
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local control among individuals. Zhao [7] proposed an adaptive method to calculate the optimal motion 
vector of pedestrians. He improved the expected speed and direction derived from the pedestrian self-
driven force in SFM and enhanced the realism of crowd evacuation; Ma et al. [21] introduced the active 
avoidance force in SFM and combined it with the contact theory of the discrete element model of particles. 
The model improves the irrationality of the avoidance behavior of pedestrians walking close to each 
other in the original SFM simulation.  

ORCA solves the avoidance jittering behavior of the velocity obstacle (VO) model and the collision 
avoidance dilemma of multiple agents, transforming the velocity selection into a simple linear 
programming problem. Guo et al. [20] proposed the VR-ORCA approach that abandoned the assumption 
that a pair of agents take half of the collision avoidance responsibility in the original ORCA and only 
required their responsibility to sum to one. This study solves the asymmetric situation faced by 
neighboring agents and reduces the probability of pedestrian collision and passage time. He et al. [21] 
combined shadow obstacles with ORCA for large-scale crowd evacuation analysis. Compared with the 
SFM model, it produces simulation with great realism with high computational efficiency. In view of the 
superiority and efficiency of ORCA, we use it as the underlying collision avoidance mechanism for 
pedestrian simulation as a way to control the interaction between individual pedestrians. 
 

2.2 Deep reinforcement learning 

With the launch of AlphaGo [22] by the DeepMind team, which defeated the human Go world champion, 
DRL began to receive widespread attention. DRL combines the neural network perception capability of 
DL and the interactive trial-and-error idea of RL to realize the decision-making process in a high-
dimensional state and action space. Deep Q Network (DQN) [23], the first DRL algorithm, is a common 
algorithm applied in discrete action space scenarios. The DeepMind team fed original game images from 
Atari 2600 into a convolutional neural network and used tricks like experience replay and target network 
to achieve results beyond the level of top human players in dozens of games. Since then, DQN-based 
variants have started to emerge. For example, to solve the overestimation problem of DQN, the Double 
Deep Q Network (DDQN) algorithm uses a dual network structure for action selection and value 
evaluation, respectively [24]; the Dueling Double Deep Q Network (D3QN) algorithm improves the 
stability of the algorithm and the accuracy of action selection by improving the neural network structure, 
decomposing the network into a state value function network and an advantage function network [25]; 
The Prioritized Experience Replay DQN algorithm [26] uses Temporal Difference (TD) error to measure 
the importance level of experience trajectories, introduces random priority sampling, importance 
sampling, among others, to improve the slow training problem in reward-sparse environments. 

In continuous action space scenarios, policy gradient methods are more applicable, such as the 
REINFORCE algorithm with reduced variance with baseline [27] and trust region policy optimization 
(TRPO) [28], which mitigates difficulty in determining the learning step size and proximal policy 
optimization (PPO) [29] algorithm. Despite their slightly better performance than the DQN series 
algorithms in terms of convergence and stability, they own notable disadvantages: easy to fall into local 
optimum, large trajectory variances, and low sample utilization. 

Scholars have combined value-based methods with policy-based methods and proposed the actor-critic 
(AC) method. The actor updates the action based on the policy, while the critic evaluates the action 
through the value function. Some representative algorithms include the deep deterministic policy 
gradient (DDPG) [30], twin delayed deep deterministic policy gradient (TD3) [31], and the soft actor-
critic algorithm (SAC) [32], to list a few. Although the above algorithms integrate the advantages of 
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value-based and policy-based methods, they are hyperparameter-sensitive. 
 

2.3 DRL-based pedestrian simulation and optimization 

As pedestrian simulation can be modeled as a Markov decision processes (MDP) problem and RL 
considers MDP to find the optimal policy and maximize the expected total return, a number of studies 
have applied RL to the field of pedestrian simulation. Lee et al. [33] proposed a crowd simulation method 
based on the AC framework. By setting a simple reward function, their agents are able to perceive the 
surrounding environment and the situation of neighboring agents and make decisions independently to 
achieve collision avoidance and end-point approaching. Xu et al. [12] proposed a hierarchical simulation 
model combining PPO and ORCA, using ray perception of virtual vision as the state input to obtain the 
optimal policy for the movement of the agents. They verified the superiority of the algorithm in several 
classic scenarios. Sharma [34] et al. pre-trained the network weights of DQN to incorporate the shortest 
path information and added the importance vector to the action output, leading to significantly simplified 
action space with reduced training time. 

Expert knowledge assistance is an effective means to optimize problems prone to occur in RL, such 
as ineffective exploration and local optimality. Many scholars used expert strategies in the form of 
Behavior Cloning (BC) to guide training. Although BC omits the time to interact with the environment, 
it is prone to error accumulation. In other words, agents may fail to fit the expert behavior correctly at 
some point, step into an unfamiliar state that does not exist in the a priori data set, and continues to make 
decisions that deviate from the expert trajectory, eventually leading to data drift [35]. Offline RL [36] 
also uses static datasets to obtain the best strategy. Unlike BC, which is essentially a form of supervised 
learning, offline RL is still based on standard RL algorithms. All of the above expert experience-guided 
methods rely heavily on a priori data, and the quality and composition of the a priori data greatly affect 
the quality and efficiency of agent learning. 

Therefore, for complex environments containing promenades and dead ends, the dilemma of local 
optimum still exists in current pedestrian simulation research. In this study, when planning the global 
path of the agent with DRL, we supplement expert knowledge, thicken the sparse reward, and introduce 
expert trajectory guidance into the reward function. The proposed approach gives the pedestrian macro-
rule guidance while encouraging independent exploration, leading to enhanced exploration efficiency. 
 

3 Methodology 

3.1 Methodology overview 

In this study, we define the simulation environment as a two-dimensional plane space. The action 
decision interval is set to one time step, i.e., one frame 𝑓, the total number of simulation frames is 𝐹𝑚𝑎𝑥, 
and the total number of round frames is 𝑀. Each pedestrian 𝑖 can be described as a circle with attributes 𝛼𝑖 = {𝑟𝑖 , 𝑝𝑖 , 𝑣𝑖𝑝𝑟𝑒 , 𝑣𝑖𝑓𝑖𝑛}, where 𝑟𝑖 denotes the pedestrian radius, 𝑝𝑖  denotes the current position of the 
pedestrian, 𝑣𝑖𝑝𝑟𝑒  represents the initial desired speed of the pedestrian, and 𝑣𝑖𝑓𝑖𝑛 corresponds to the final 
speed of the pedestrian after collision avoidance adjustment. The task of pedestrians is to reach the 
specified target point 𝐺𝑖 with the shortest time in each round while trying to avoid collision with other 
agents. 

The whole simulation process can be divided into two parts, i.e., environment interaction sampling 
and neural network training (as shown in Fig. 1). The specific steps of environmental interaction 
sampling in Fig. 1(a) are as follows. 
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(1) Obtain the state 𝑠𝑡 according to the current environment. 
(2) Input the state 𝑠𝑡 into the neural network, obtain the expected value of each action after noise 

interference, and output the action 𝑎𝑡 with the largest value. 
(3) Transform the output action 𝑎𝑡 into a velocity vector 𝑣𝑡𝑝𝑟𝑒  and send it to the ORCA model for 

velocity adjustment, i.e., obtaining collision-free velocity 𝑣𝑡𝑓𝑖𝑛. 
(4) Update the pedestrian position according to 𝑣𝑡𝑓𝑖𝑛, obtain the reward 𝑟𝑡 and the next state 𝑠𝑡+1. 
(5) Deposit the experience data { 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 } into the experience replay pool. If the amount of 

data in the experience pool has reached the maximum capacity value 𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, the old data are 
eliminated, with new data deposited in order; otherwise, the new data are directly deposited. 

(6) Repeat steps (1)-(4) until the number of round steps reaches 𝑀 or all pedestrians reach the target 
point. Then, this round simulation ends, and the simulation environment is reset. 

(7) When the total number of simulation steps reaches 𝐹𝑚𝑎𝑥, the environment interaction process is 
terminated. 

The specific steps of the neural network training part in Fig. 1(b) are as follows: 
(1) Take 𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒 bars of experience data from the experience replay pool and feed them into the 

neural network. 
(2) Calculate the loss function to train the policy network 𝜃𝑐𝑢𝑟  based on the policy network 𝜃𝑐𝑢𝑟  and 

the target network 𝜃𝑡𝑎𝑟. 
(3) Copy the network parameters of the policy network 𝜃𝑐𝑢𝑟  to the target network 𝜃𝑡𝑎𝑟 at every fixed 

number of 𝑓𝑐𝑜𝑝𝑦 steps. 
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Fig.1 The methodology framework of the proposed approach. 
 

3.2 Deep reinforcement learning model for pedestrian simulation 

3.2.1 State space 

In the same way as the input of the Atari game [23], the state space in this study is designed as scene 
images. To reduce the state input dimension, we convert the color image into a grayscale map and scale 
the image size to 84*84. Meanwhile, the current frame is superimposed with four consecutive images of 
the previous three frames as the current state, i.e., 𝑠𝑡 = {𝑓𝑡−3, 𝑓𝑡−2, 𝑓𝑡−1. 𝑓𝑡}, to show the movement trend 
of the pedestrians. In addition, to distinguish the current decision pedestrian from other pedestrians, the 
pixel value of the decision pedestrian is set to 255, the pixel value of other pedestrians and obstacles is 
set to 100 with the same pixel value, and the background pixel value is set to 0 (as shown in Fig. 2). 
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Fig.2 State space. 
 

3.2.2 Action space 

The initial desired velocity 𝑣𝑝𝑟𝑒  of the pedestrian can be decomposed into the velocity direction 𝑣𝜃  
and the velocity magnitude 𝑣𝜇. Here, we assume that 𝑣𝜇 is always the maximum velocity limit 𝑣𝑚𝑎𝑥  
of the pedestrian, and the action to be obtained is 𝑣𝜃 . To reduce the action space and retain certain 
accuracy, we discretize the action space ℤ of pedestrians into eight directions. According to the general 
orientation method, a direction is divided every 45 degrees interval starting from due north, and index 
values 0-7 are assigned in clockwise order. As a result, the action space ℤ  of pedestrian 𝑖  can be 
expressed as ℤ = [𝑎𝑖𝑘] , and the action decision variables 𝑎𝑖𝑘 = {0,1,2, … ,7} , representing the eight 
directions of up, right up, right, right down, down, left down, left, and left up (as shown in Fig. 3). Further, 
the predicted action direction is transformed into the velocity direction 𝑣𝜃 , which are combined with the 
velocity magnitude 𝑣𝜇  to output the initial desired velocity 𝑣𝑝𝑟𝑒 . Finally, the final collision-free 
velocity 𝑣𝑓𝑖𝑛 is further calculated from ORCA. 

 

Fig.3 The action space of an agent in this study. 
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3.2.3 Reward function 

RL quantitatively evaluates decision actions by means of a reward function, and its optimization goal is 
to maximize the cumulative reward to guide an agent to explore the global optimal solution. Therefore, 
the design of a reasonable reward function is crucial for the convergence and stability of RL. Given that 
the pedestrian simulation aims to explore globally optimal paths and avoid collisions, we perform reward 
shaping for sparse rewards. Meanwhile, we introduce an expert trajectory simulation reward to enhance 
exploration efficiency and optimize simulation results for some complex environments that are prone to 
local dilemmas. 

The reward function 𝑅 defined in this study consists of four components, i.e., goal reward 𝑟𝑔𝑜𝑎𝑙, 
collision avoidance reward 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛, movement reward 𝑟𝑝𝑢𝑛𝑖𝑠ℎ, and expert trajectory imitation degree 
reward 𝑟𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛. The composition form of the reward function is distinguished in different scenarios 𝐸 = {𝑒𝑠𝑖𝑚𝑝𝑙𝑒 , 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥}  ( 𝑒𝑠𝑖𝑚𝑝𝑙𝑒   represents a simple environment, 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥   represents complex 
environment). 𝑅 = {𝜔1𝑟𝑔𝑜𝑎𝑙 + 𝜔2𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 + 𝜔3𝑟𝑝𝑢𝑛𝑖𝑠ℎ                                𝐸 = 𝑒𝑠𝑖𝑚𝑝𝑙𝑒𝜔1𝑟𝑔𝑜𝑎𝑙 + 𝜔2𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 + 𝜔3𝑟𝑝𝑢𝑛𝑖𝑠ℎ + 𝜔4𝑟𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛        𝐸 = 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥   (1) 

where 𝜔1, 𝜔2, 𝜔3, 𝜔4 are the weight coefficients. The target reward 𝑟𝑔𝑜𝑎𝑙  is used to guide pedestrians 
to approach the target point in the following form: 𝑟𝑔𝑜𝑎𝑙= { 𝑑𝑖𝑠(𝑝𝑖𝑡−1, 𝐺𝑖) − 𝑑𝑖𝑠(𝑝𝑖𝑡 , 𝐺𝑖)              𝑑𝑖𝑠(𝑝𝑡 , 𝐺𝑖) > 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑤𝑎                                                           𝑑𝑖𝑠(𝑝𝑡 , 𝐺𝑖) ≤ 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(2

) 

where 𝑤  is the end-point reward value for reaching the target point, 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   is the distance 
determination threshold. The current pedestrian reaches the end point when the distance between the 
agent and the target point is less than the threshold. 𝑑𝑖𝑠( ) denotes the Euclidean distance measure. 𝑝𝑖𝑡、𝑝𝑖𝑡−1 denote the positions of pedestrian 𝑖 at moments 𝑡 and 𝑡 − 1, respectively. Before the pedestrian 
reaches the target point, agents are encouraged to move closer to the target point through the difference 
form in formula (2), thickening the reward distribution in the exploration process. 

The collision avoidance reward 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is used to avoid mutual collisions between pedestrians and 
pedestrians and obstacles. It can be defined as: 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑣𝑝𝑟𝑒 · 𝑣𝑓𝑖𝑛|𝑣𝑝𝑟𝑒| · |𝑣𝑓𝑖𝑛| (3) 

where the denominator is the dot product of the initial desired velocity 𝑣𝑝𝑟𝑒  and the final collision-free 
velocity 𝑣𝑓𝑖𝑛. The numerator is the product of the respective mode lengths, which represent the degree 
of similarity between the two vectors and map the values to the range [-1,1]. 

The movement reward 𝑟𝑝𝑢𝑛𝑖𝑠ℎ is used to control the number of steps the pedestrian moves and can 
be written in the following form: 𝑟𝑝𝑢𝑛𝑖𝑠ℎ = 𝑤𝑏 (4) 

where 𝑤𝑏  is the hyperparameter generally set to a fixed negative value to encourage pedestrians to reach 
the target point with the least number of steps. 

For some complex environments, agents often fail to explore the optimal strategy, leading to slow 
convergence. Thus, we add expert trajectory guidance in some locations of the scene. Suppose the current 
position of pedestrian 𝑖 is 𝑝𝑖𝑡 and its predefined expert trajectory is ℒ𝑖 = {𝑇𝑖1, 𝑇𝑖2, … , 𝑇𝑖𝑛}, 𝑇𝑖𝑘 is the 
node of the expert trajectory path, 𝑇𝑖𝑘 → 𝑇𝑖𝑘+1 represents the road section from node 𝑘 to node 𝑘 + 1. 
We calculate the distance between 𝑝𝑖𝑡 and each road section at this time, find the closest road section 𝑇𝑖𝑡 → 𝑇𝑖𝑡+1, thus obtaining the trajectory direction of the road section 𝑑𝑔𝑢𝑖𝑑𝑒 = 𝑇𝑖𝑡+1 − 𝑇𝑖𝑡. The expert 
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trajectory imitation degree reward 𝑟𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛  can be defined as: 𝑟𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛
= { 𝑣𝑝𝑟𝑒 · 𝑑𝑔𝑢𝑖𝑑𝑒|𝑣𝑝𝑟𝑒| · |𝑑𝑔𝑢𝑖𝑑𝑒| + 𝑤𝑐 ∗ 𝑒−𝑑𝑖𝑠(𝑝𝑖𝑡 , 𝑇𝑖𝑡→𝑇𝑖𝑡+1)           𝑡 + 1 ≤ 𝑛 𝑤𝑑                                                                                𝑡 + 1 > 𝑛

(5

) 

where the similarity between the predicted velocity 𝑣𝑝𝑟𝑒 and the trajectory direction of the current road 
section is described in the form of a vector dot product. The distance between the current position 𝑝𝑖𝑡 to 
the current imitated road section  𝑇𝑖𝑡 → 𝑇𝑖𝑡+1 is described by 𝑒−𝑑𝑖𝑠(𝑝𝑖𝑡 , 𝑇𝑖𝑡→𝑇𝑖𝑡+1). 𝑤𝑐 is a weighting 
factor that aims to balance the direction simulation degree and distance excursion. 𝑤𝑑  is the fixed 
reward value given to the agent after it has simulated ℒ𝑖. 
 

3.3 Hierarchical model based on D3QN and ORCA 

3.3.1 ORCA algorithm 

For obstacle avoidance, we implement ORCA for short-range obstacle avoidance control. ORCA solves 
the problem of frequent jitter and mitigates the difficulty in multi-agent planning in the VO algorithm. It 
transforms the velocity space into a bipartite plane and finds the optimal solution using simple linear 
programming to achieve effective obstacle avoidance for dense crowds [37]. 

Suppose there exists a pedestrian 𝛼𝐴 = {𝑟𝐴, 𝑝𝐴, 𝑣𝐴𝑝𝑟𝑒 , 𝑣𝐴𝑓𝑖𝑛}  and a pedestrian 𝛼𝐵 ={𝑟𝐵 , 𝑝𝐵 , 𝑣𝐵𝑝𝑟𝑒 , 𝑣𝐵𝑓𝑖𝑛}, we define 𝑉𝐴−𝐵 to be the initial relative desired velocity (𝑣𝐴𝑝𝑟𝑒、𝑣𝐵𝑝𝑟𝑒  pointing to 
the target point respectively) and the initial velocity collision range to be a circle 𝐷 with center 𝑃 and 
radius 𝑅. 𝐷(𝑃, 𝑅) = {𝑉𝐴−𝐵| ‖𝑉𝐴−𝐵 − 𝑃‖ < 𝑅} (6) 

Considering the continuity of the moving process, the velocity barrier region is extended as a truncated 
cone, including circle 𝐷 and its rear range (as shown in the shaded part of Fig. 4). Thus, the velocity 
barrier region 𝑉𝑂𝐴|𝐵 of pedestrian A relative to pedestrian B can be described as: 𝑉𝑂𝐴|𝐵 = {𝑣∃𝑡 ∈ [0, 𝜏] ∷ 𝑡𝑣 ∈ 𝐷(𝑝𝐵 − 𝑝𝐴, 𝑟𝐴 + 𝑟𝐵) (7) 

 

Fig.4 The VO region and ORCA half-plane. 
 

The collision will occur in time 𝜏, if relative velocity falls in 𝑉𝑂𝐴|𝐵. At this point, it is necessary to 
find a collision-avoidance vector 𝑢, which is the shortest vector from the relative expected velocity 𝑉𝐴−𝐵 
to the boundary of 𝑉𝑂𝐴|𝐵. The normal of 𝑢 to the regional boundary position as 𝑛. Therefore, based 

on the principle of mutual avoidance, A only needs to change 12 𝑢 of the velocity while the direction is 
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the half-plane pointed by 𝑛. The half-plane 𝑂𝑅𝐶𝐴𝐴|𝐵 can be expressed as: 𝑂𝑅𝐶𝐴𝐴|𝐵 = {𝑣 | (𝑣 − 𝑣𝐴𝑝𝑟𝑒 + 12 𝑢) · 𝑛 ≥ 0} (8) 

We calculate the ORCA half-planes of A and other agents in turn and generate the half-plane 
intersection 𝑂𝑅𝐶𝐴𝐴. If 𝑣𝐴𝑝𝑟𝑒  falls within 𝑂𝑅𝐶𝐴𝐴, the final collision-free velocity 𝑣𝐴𝑓𝑖𝑛 of A is 𝑣𝐴𝑝𝑟𝑒; 
otherwise, the velocity closest to 𝑣𝐴𝑝𝑟𝑒  is taken in the intersection set. For scenarios with a dense crowd, 
there exists a situation where the half-plane intersection set is the empty set. We choose the shortest 
velocity of length from the current velocity point to each half-plane Euclidean distance maximizing 
velocity (as shown in Fig. 5). 

 

Fig.5 Speed selection when a half-plane intersection set is the empty set. 
 

3.3.2 D3QN algorithm 

In general, the state of the pedestrian at the next moment is only related to the current state, which means 
that the pedestrian motion process owns the Markovian property. Therefore, global path planning at the 
top level can be achieved by DRL. Since we use the scene picture as the state space input, the current 
decision pedestrian can perceive the motion state of the rest of the pedestrians, so we use the single-
agent-based D3QN algorithm that does not need to consider individual collaboration. 

The core idea of the DQN algorithms is to use the value function 𝑄𝜋(𝑠𝑡 , 𝑎𝑡; 𝜃) to evaluate the value 
of executing action 𝑎𝑡  for state 𝑠𝑡  under policy 𝜋  predicted by a neural network with parameter 𝜃[23]. 𝑄𝜋 is known to satisfy the Bellman equation: 𝑄𝜋(𝑠𝑡 , 𝑎𝑡; 𝜃) = 𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎𝑡+1  𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝜃)  (9) 

To optimize 𝑄𝜋, the mean square error loss function in the neural network is defined based on TD 
error as follows: 𝐿(𝜃) = (𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎𝑡+1  𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝜃𝑡𝑎𝑟) − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑐𝑢𝑟))2 (10) 

Here, two identical networks are introduced to solve the training instability problem. The policy 
network 𝜃𝑐𝑢𝑟  updates the network parameters in real-time to calculate the predicted values, while the 
target network 𝜃𝑡𝑎𝑟 is relatively fixed to calculate the target values, and the parameters are copied from 𝜃𝑐𝑢𝑟  every 𝑓𝑐𝑜𝑝𝑦 step. 

By decoupling action selection and value calculation, Double DQN uses the policy network 𝜃𝑐𝑢𝑟  to 
select the action and brings in the target network 𝜃𝑡𝑎𝑟 to determine the action value. It mitigates the 
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overestimation problem that tends to occur in the basic DQN to a certain extent [24], and only needs to 
replace the target value calculation function as follows: 𝑄𝜋(𝑠𝑡 , 𝑎𝑡; 𝜃) = 𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎𝑡+1  𝑄(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝜃𝑐𝑢𝑟); 𝜃𝑡𝑎𝑟) (11) 

Further, Dueling DQN changes the original network structure of DQN and proposes the concept of the 
dyadic network by splitting the original output value function 𝑄𝜋(𝑠𝑡 , 𝑎𝑡; 𝜃) into two branches, i.e., the 
state value function 𝑉(𝑠𝑡; 𝜃𝛼) and the action advantage function 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝛽) [25]. The state value 
function is used to predict the goodness of the state, while the action advantage function is used to predict 
the importance of each action under the state 𝑠𝑡: 𝑄𝜋(𝑠𝑡 , 𝑎𝑡; 𝜃) = 𝑉(𝑠𝑡; 𝜃𝛼) + 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝛽) (12) 

At the same time, for its "unidentifiable" problem, it is necessary to set the output vector sum of the 
action advantage function to 0. The value function can be rewritten as follows: 𝑄𝜋(𝑠𝑡 , 𝑎𝑡; 𝜃) = 𝑉(𝑠𝑡; 𝜃𝛼) + 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝛽) − 𝑚𝑒𝑎𝑛𝑎𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝛽) (13) 

Combined with the actual problem of pedestrian simulation, in many cases, the size of the value 
function 𝑄 is often not related to the action but influenced by the environment. For example, when the 
scene space and target location are sufficiently empty, the left-right movement of the agent at this moment 
may have no effect on the result, while the choice of action only becomes particularly important when 
there is an obstacle in front. Therefore, splitting the value function is an effective means to improve 
prediction accuracy. 

In addition, to improve the exploration efficiency, we replace the traditional 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 exploration 
method with Noisy net [38]. Compared with adding noises to the action at the output of the network, 
adding noises to the network parameters seems more reasonable and effective. Given a linear cell with 
input 𝑦 and output 𝑥: 𝑦 = 𝑤 · 𝑥 + 𝑏 (14) 

where 𝑤 is the weight and 𝑏 is the bias, noise 𝜀𝑤、𝜀𝑏 are sampled from the independent Gaussian 
distribution. The noise linear unit can be described as: 𝑦 = (𝜇𝑤 + 𝜎𝑤 ⨀ 𝜀𝑤) · 𝑥 + 𝜇𝑏 + 𝜎𝑏 ⨀ 𝜀𝑏 (15) 

where ⨀ is noted in dot product form, 𝜇 and 𝜎 represent the mean and variance, respectively. 
The network structure of the target network and the policy network is shown in Fig. 6. The state space 

is 84 × 84 × 4, and the input states pass through three convolutional layers with convolutional kernel 
sizes of 8 × 8 × 4, 4 × 4 × 32, and 3 × 3 × 64, respectively. Further, abstract features extracted from the 
convolutional layers are fed to two fully connected layer branches with noise. One branch represents the 
scalar state value 𝑉 and the other branch represents the vector action advantage function 𝐴, with the 
vector length being the action space length. Finally, the results of the two branches are aggregated and 
output as each action value 𝑄. 
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Fig.6 The neural network structure proposed in this study. 
 

4 Experiments and Results 

To verify the effectiveness and superiority of the proposed method, we divide the experiment into two 
parts and evaluate them in two scenarios, respectively. 
 In the simple environment, we compare the simulation results of Pathfinder software with the 

traditional simulation model and the proposed D3QN-ORCA hierarchical model. The results show 
that the proposed method is able to achieve higher quality pedestrian simulation, taking into account 
the local collision avoidance among individuals while planning the global path. 

 In the complex environment, we compare the simulation results of Pathfinder software and D3QN-
ORCA with the addition of expert trajectory guidance. The results prove the generalization of the 
proposed method for complex scenarios that are prone to local optimums. The addition of expert 
trajectory can reduce useless exploration and effectively guide the optimal path. The results 
demonstrate that the proposed method presents fast and stable convergence with the change of 
global reward value. 

Table 1 shows some of the hyperparameters covered in this study. 
Table 1 Hyperparameter settings. 

Hyperparameter Value 

Learning rate 1e-4 

Discount factor 𝛾 0.99 

Experience replay capacity 𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  7e-4 𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒 256 

Total number of simulation steps 𝐹𝑚𝑎𝑥 6e-5 

Parameter update interval 𝑓𝑐𝑜𝑝𝑦 1e-3 

The maximum speed limit for pedestrians 𝑣𝑚𝑎𝑥  2 

Pedestrian radius 𝑟 2 

Distance Threshold 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 𝜔1 1.25 𝜔2 1.25 
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𝜔3 1.0 𝜔4 1.0 𝑤𝑏  2.1 𝑤𝑐 1.25 𝑤𝑑 1.25 

 

4.1 Simple environment 
The simple environment aims to verify that combining DRL and ORCA is able to complement each other 
and achieve a more refined simulation of pedestrian behavior than traditional models. Therefore, we 
design two experimental scenarios: 
 Room evacuation scenario. The single exit room evacuation scenario is often used to evaluate the 

behavioral strategy of crowd evacuation. In this scenario, we visualize how pedestrians in a crowded 
and chaotic state make decisions to reach the exit as soon as possible. We set the environment as a 
square room with a length/width of 80 and the exit width set to 5, allowing only one person to pass 
through. We also place four static obstacles in the room to increase the complexity of the 
environment (as shown in Fig.7(a)). 

 Opposite motion scenario. The opposite direction movement is a classic scenario in pedestrian 
simulation. It shows the behavior of two groups of pedestrians moving close to each other face to 
face in an open environment and crossing each other to reach the end point on the other side. We 
set the road length to 120 and the width to 100 and place three static obstacles between the two 
groups of pedestrians to increase the difficulty of pedestrian decision-making (as shown in Fig.7(b)). 

 

Fig.7 Simple environment 
 

4.1.1 Room evacuation scenario 

In this scenario, we generate 15 random pedestrians on the left side of the room, whose goal is to exit the 
room using the right-side door. We visualize the current crowd state every 20 frames to explore 
pedestrians' behaviors. In particular, the differences between our model and Pathfinder software in terms 
of simulated pedestrian movements between obstacles and at exits are compared by five consecutive 
screenshots during congestion. 
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Fig.8 Simulation screenshots of room evacuation scenario (Pathfinder took a total of 138 frames, while 
the proposed D3QN-ORCA took a total of 127 frames) 

We notice that both models (i.e., Pathfinder and the proposed D3QN-ORCA) eventually complete 
crowd evacuation by frame 140, but their agents behave differently when approaching obstacles and at 
the exit (Fig.8). Until frame 20, both groups of pedestrians maintain the same movement strategy, but 
after that, attracted by the target point, the pedestrians in Pathfinder start to converge toward the middle 
of the scene. At frame 40, two pedestrians in D3QN-ORCA choose to move towards the top obstacle, 
while the pedestrians in the middle of the scene have adjusted their position and formed an orderly queue 
to pass through the passage between the obstacles to avoid congestion. Agents in Pathfinder create a 
blockage, with a few pedestrians still stranded between the barrier aisles until frame 60. The same 
situation occurs at the exit. In comparison, pedestrians in D3QN-ORCA try to reduce the evacuation time 
by passing the exit one by one, as the width of the exit is only for one person. We notice that Pathfinder 
fails to present the ability to maximize the global gain, evidenced by the congestion at the exit. Eventually, 
pedestrians in Pathfinder take 138 frames to complete the evacuation, while the ones in D3QN-ORCA 
take only 127 frames. 
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Fig.9 Five consecutive frames that present the motion process when passing through the passages 
between obstacles in Pathfinder and the proposed D3QN-ORCA methods. 

Fig.9 presents the motion process of the crowd simulated by the two methods in passing through the 
passage between obstacles for five consecutive frames, namely [𝑓𝑡−2 , 𝑓𝑡−1 , 𝑓𝑡  , 𝑓𝑡−1 , 𝑓𝑡+2]. It can be 
seen that pedestrians in D3QN-ORCA change the original travel route of pedestrians in advance before 
entering the narrow passage, and the crowd forms a neat and orderly queue and crosses the obstacles in 
turn. In comparison, congestion occurs for pedestrians in Pathfinder in the aisle. The great performance 
of the proposed D3QN-ORCA is due to its capability to maximize the overall reward by guiding the 
pedestrians through the DRL while avoiding collisions and optimizing the global path, while the 
Pathfinder makes decisions only for the current moment without considering subsequent situations. 
 

4.1.2 Opposite motion scenario 



16 

 

To analyze the behavior of pedestrians moving in opposite directions, we generate nine pedestrians on 
each side of the obstacles, whose goals are to reach the other side of the scene boundary. In this case, we 
focus on the intersection of the pedestrian streams every ten frames, followed by an interval of 30 frames 
to show the difference in the time taken to reach the target point (Fig.10). 

 

Fig.10 Selected frames in opposite motion scenario (Pathfinder took a total of 129 frames, and D3QN-
ORCA took a total of 112 frames) 

Within the first 20 frames, pedestrians in both approaches avoid static obstacles by splitting the queue 
in two. However, as the two groups of pedestrians are about to meet, their behavior patterns start to differ. 
We notice that, at frame 30, two groups of pedestrians in D3QN-ORCA have already transformed into 
an orderly queue to ensure that they do not collide with the oncoming crowd during the subsequent 
movement. At frame 60, two groups of pedestrians in D3QN-ORCA have completed the intersection of 
the crowd with a neat formation. In contrast, Pathfinder still plans the shortest path to the target point for 
all pedestrians when they meet in close proximity and are about to collide, without taking into account 
the future congested situation that may occur. The pedestrians in Pathfinder spend a considerable amount 
of time getting out of the local dilemma in frames 40-60. Eventually, five pedestrians are stranded in the 
scene until frame 120, while D3QN-ORCA completes the simulation in frame 112. The above 
observations demonstrate that, due to the powerful autonomous exploration capability of DRL, 
pedestrians are able to continuously adjust their own strategies by interacting with the environment. At 
the same time, DRL combined with ORCA achieves inter-individual collision avoidance, thus 
maximizing the global cumulative reward and optimizing the pedestrians’ paths. 
 

4.2 Complex environment 
In this section, we further complicate the scenario based on the simple environment to explore the 
generalization of the proposed method in this study and the effectiveness of adding expert trajectory 
guidance in some extreme environments where it is easy to fall into local optima. We design two 
scenarios: 
 Narrow promenade encounter scenario. In general, conventional pedestrian opposite movement 

scenarios are usually designed to have a relatively open space for pedestrians to move around. 
However, traditional methods become less capable when pedestrians’ action space is compressed. 
In this study, we design a narrow promenade encounter scenario to investigate the performance of 
two groups of pedestrians walking towards each other in a narrow area. We randomly place two 
groups of pedestrians on each side of the promenade, and their respective goals are to cross the 
promenade and walk to the other side. The length of the promenade is set to 60 and the width to 10, 
accommodating a maximum of two people moving side by side at the same time. The pedestrian 
distribution and the expert-guided route are shown in Fig.11(a). 

 Crowded obstacle scenario. For traditional models, pedestrians are driven to choose the path with 
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the shortest distance when approaching a target, which tends to result in congestion. Thus, we design 
a more complex congregation of pedestrians, where four groups of pedestrians are placed in four 
corners of the environment. Their goals are to reach the other end of their respective diagonal while 
avoiding obstacles. We want to explore whether DRL can find better action plans and achieve fast 
convergence with expert guidance. The scene is set as a square with a side length of 70, and the 
interval between obstacles is set as 10. The pedestrian distribution and the expert-guided route are 
shown in Fig. 11(b). 

 

Fig.11 Complex environment 
 

4.2.1 Narrow promenade encounter scenario 

The narrow corridor scenario complicates the opposite direction movement scenario in the previous 
section, as it further reduces the movement space available to the pedestrians and compresses the time 
for them to adjust their formation. We randomly generate ten pedestrians on each side of the promenade, 
who need to cross the narrow promenade to reach the other side. Certain behaviors of pedestrians in key 
frames are presented in Fig.12. 

 

Fig.12 Selected frames in narrow promenade encounter scenario (Pathfinder took a total of 171 
frames, D3QN-ORCA took a total of 101 frames, and D3QN-ORCA with expert guidance took a total 

of 96 frames) 
We notice that traditional methods present unsatisfactory performance in this complex scene. Before 

frame 40, the pedestrians in Pathfinder, driven by the attraction of the target point, always move at the 
best-desired speed towards the end until two groups of pedestrians meet and a speed barrier region is 
created. Then, pedestrians start to change their movement direction. However, by this time, the space 
available for pedestrian movement is limited, and the pedestrians can only fine-tune their respective 
directions of motion at a slow speed. After 20 frames, crowd congestion remains in the middle of the 
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promenade. In frame 80, an unreasonable behavior can be observed, where one pedestrian is forced back 
to the origin. In the end, pedestrians in Pathfinder take 171 frames to complete the simulation. 

In contrast, the DRL-based approach takes only about 100 frames to complete the simulation. At frame 
20, we notice that pedestrians in D3QN-ORCA, with the addition of expert trajectory guidance, have 
begun to consciously integrate the pedestrian queue into two columns. At frame 40, the basic D3QN-
ORCA presents an orderly queue, with individual pedestrians still needing to avoid minor collisions, 
while the expert-guided D3QN-ORCA starts to align the crowd, avoiding potential collision future 
frames. At frame 50, both D3QN-ORCA and D3QN-ORCA with expert trajectory present a smooth 
pedestrian moving process, where pedestrians are able to maintain their desired speed without 
considering local dilemmas such as those seen in Pathfinder. Finally, the expert trajectory-guided D3QN-
ORCA takes 96 frames for all pedestrians to reach the end point, while the basic D3QN-ORCA does not 
complete the simulation until 101 frames due to the longer time taken to adjust to the crowd. However, 
compared to Pathfinder, the DRL-based simulation approach aims to maximize the global reward. While 
the action taken at each moment may not be optimal at the moment, it should be the optimal global 
decision. 

The reward function curve can also be used to evaluate the effectiveness of the algorithm. To further 
verify the effectiveness of the expert trajectory guidance, we recorded the average cumulative reward 
value of all agents at the end of each round, smoothed the curve with a sliding window to enhance the 
visualization. We compared the change in reward value during training of the basic D3QN-ORCA and 
expert-guided D3QN-ORCA and explored their convergence speeds (Fig.13). 

 

Fig.13 Comparison of D3QN-ORCA reward values with and without expert trajectory guidance. 
For a more intuitive comparison, we only introduce the expert trajectory imitation degree reward at 

training time for the method with expert trajectory guidance, with the sum of the remaining three rewards 
recorded at plotting time.  

From Fig.13, the expert trajectory-guided D3QN-ORCA method gradually explores a better action 
strategy at around 100,000 steps and converges the reward value steadily around 0 after about 350,000 
steps. In contrast, the basic D3QN-ORCA model falls into a local dilemma at the beginning and does not 
reap a larger reward until around 280,000 steps, and then gradually converges smoothly at around 
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500,000 steps. Therefore, we can conclude that the expert trajectory guidance can effectively improve 
exploration efficiency by preventing agents from falling into local dilemmas. 
 

4.2.2 Narrow promenade encounter scenario 

In this scene, we placed more groups of pedestrians and obstacles to increase the difficulty of the 
environment, hoping to explore the behavior patterns of pedestrians in the highly crowded and chaotic 
scenarios. We generate four pedestrians in each corner of the scene, and their goal is to reach the other 
side of their respective diagonal. We present simulated screenshots of the current environment every 20 
frames to compare model performances (Fig.14). 

 

Fig.14 Selected frames in crowded obstacle scenario (the Pathfinder took a total of 157 frames, 
D3QN-ORCA took a total of 131 frames, and D3QN-ORCA with expert guidance took a total of 130 

frames) 
It is notable that agents in the traditional method behave differently compared to the ones in DRL-

based methods. Given the short-sightedness of the Pathfinder simulation method, pedestrians fail to 
consider the potential future chaos before a crowded collision and always prefer following the path with 
the shortest distance. At frame 40, due to the symmetry of the initial positions, four groups of pedestrians 
arrive at the middle of the scene almost simultaneously, causing congestion of pedestrian flow. The 
congestion did not ease until after frame 80. It took 157 frames for agents in the Pathfinder model to end 
the simulation. In comparison, agents in D3QN-ORCA discover the local dilemma after interacting with 
the environment and keep seeking other optimal solutions. It adopts a movement pattern of four groups 
of pedestrians going around clockwise synchronously from the beginning. The crowd moves smoothly 
without congestion until frame 120. As a result, all the pedestrians in the basic D3QN-ORCA reached 
the target point at frame 131. 

Similarly, given the local dilemma that may result from all pedestrians expecting to choose the shortest 
distance path at the same time, we set the expert-guided trajectory to a simultaneous same-direction 
detour mode for the four groups of people as well. Pedestrians in D3QN-ORCA with expert-guided 
trajectory present similar performance compared to basic D3QN-ORCA, with one frame difference when 
completing the simulation. 
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Fig.15 Comparison of D3QN-ORCA reward values with and without expert trajectory guidance. 
From Fig.15, we notice that the agents in the D3QN-ORCA method without expert trajectory guidance 

are to jump out of the local optimum before 400,000 steps, with insufficient exploration. The model starts 
to gradually converge from 450,000 steps when better behavioral strategies are sampled. On the contrary, 
in the model guided by expert trajectory, the effective exploration rate of the agents does not have a long 
stagnant phase, presenting a longer, constantly growing pattern. The global optimal decision action that 
can be achieved in each state is gradually explored, and the final reward value converges smoothly at 
around -100. 

Table 2 presents the total simulation time consumed by each method in all scenarios. In the simple 
scenarios, the overall time difference between the two models is about ten frames, while in the complex 
scenarios, the simulation time based on the DRL method is substantially better than that of Pathfinder. 
Therefore, it is proved that D3QN-ORCA has great generalizability, and the more complex the 
environment, the more prominent the advantage of being able to cope with potential congestion situations. 
Moreover, with the introduction of expert trajectory guidance, the simulation process can be further 
improved on the basis of enhancing training efficiency. It gives pedestrians certain guidance while 
encouraging ensuring that they are left with the space for free exploration and the characteristics of 
reinforcement learning for environmental interaction sampling to achieve optimization of pedestrian 
simulation. 

Table 2 Total simulation time consumed by each method in all scenarios (Unit: Frame) 

Model 

Simple environment Complex environment 

Room 

evacuation 

Opposite 

motion 

Narrow 

promenade 

encounter 

Crowded 

obstacle 

Pathfinder 138 129 171 157 

Basic D3QN-ORCA 127 112 101 131 

D3QN-ORCA with 

expert guidance 
— — 96 130 
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5 Conclusion 

Pedestrian simulation has received extensive attention over the past decades. Traditional pedestrian 
simulation methods often suffer from the problem of short-sightedness, as agents prefer the best action 
in the present moment without taking into account the potential congestion in the future. In this study, 
we combine the D3QN algorithm with the ORCA algorithm and propose a D3QN-ORCA hierarchical 
model. The proposed model plans the global trajectory via the D3QN algorithm in the upper layer while 
avoiding local collisions among individuals using the ORCA algorithm in the bottom layer. For certain 
scenarios where local optimum tends to occur, we introduce expert trajectory imitation degree in the 
reward function, which improves pedestrian exploration efficiency by designing simple expert trajectory 
guidance lines without collecting priori sample sets and constructing complex expert example databases. 
We design two different experimental scenarios, i.e., simple scenarios and complex scenarios, to verify 
the effectiveness of the proposed method. In simple scenarios, by comparing the overall simulation 
frames and pedestrians' behaviors, we notice that the D3QN-ORCA method proposed in this study is 
superior compared with the Pathfinder. The agents in the D3QN-ORCA method can make early 
adjustments for the upcoming congestion, which reduces the overall simulation time by about 8%-13%. 
In complex scenarios, the results suggest that our method presents great generalizability, and the overall 
simulation time is reduced by about 17%-44% compared to the Pathfinder. In addition, based on the 
reward curve graph, we notice that the D3QN-ORCA model with expert trajectory guidance improves 
the exploration efficiency, evidenced by the fact that the time from the initial exploration to the maximum 
cumulative reward value is reduced by about 56%-64%. Expert guidance facilities pedestrians in terms 
of moving out of local dilemmas, thus leading to improved training efficiency. The proposed conceptual, 
theoretical, and experimental knowledge this study presents is expected to benefit future pedestrian 
simulation and crowd evacuation studies. 
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