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Abstract

Understanding urban human mobility, particularly trip purposes, is essential for
optimizing traffic management, personalized recommendations, and urban plan-
ning. However, in real-world scenarios, trip purposes cannot be directly extracted
from trajectory data. To address this issue, we propose a geometry-driven neural
topic model for trip purpose inference. We integrate trajectory data with nearby
points of interest (POI) data using a geometry-driven technique to enhance the
interpretability of the results. Furthermore, our model captures the semantics and
relationships of the data in a high-dimensional space and identifies latent topics
representing distinct trip purposes. These learned topics are analyzed using clus-
tering algorithms to group similar trips, enabling trip purpose inference. And we
evaluate our model using the trajectory data of Shenzhen and Chengdu, and com-
pare it with baseline models. The results demonstrate that our model performs
well. Furthermore, we analyze trajectory data containing trip purpose informa-
tion to gain insights into human mobility patterns and the influence of trip
purposes, paving the way for potential implications and future research directions.

Keywords: Urban human mobility, Trip purposes inference, Neural network, Trip
embedding
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1 Introduction

In recent years, with the increasing popularity of devices equipped with Global Posi-
tioning System (GPS) has led to an accumulation of extensive human mobility data.
Understanding and analyzing human mobility data has become a central focus for
researchers [1–4]. Among which a key aspect is the trip purposes inference, aiming
to reveal the latent motivations behind the mobility. Determining trip purposes not
only provide strong support for urban planning [5, 6], traffic management [7], and
policy-making [8] but also further improve the quality of life for residents.

However, human mobility behaviors after leaving the taxi are not readily available,
as the trajectory data lacks information on trip purposes [9, 10], making trip purpose
inference a challenging task [11, 12]. Despite this, we can still observe that individuals’
mobility within a city follows certain patterns. For example, in Figure 1, during the
morning hours of 8 to 10 a.m. on weekdays, a large number of trips to Shenzhen
Science and Technology Park and Futian CBD business work areas. In the evening,
the number of trips near residential areas gradually increases.

Fig. 1 Heat map of working day trip destinations in Shenzhen.

The various methods have been proposed to analyze spatio-temporal trajec-
tory data for travel purpose inference. These approach include traditional statistical
method [13], machine learning [14–17], and deep learning approaches [2, 18], all of
which have seen widespread application in this domain [5, 10, 19]. However, these
models exhibit certain limitations when handling large volumes of spatio-temporal tra-
jectory data. Generally, they rely on bag-of-words (BOW) representation, where each
dimension corresponds to a unique word. The BOW representation accounts for the
presence of features within the trajectory but disregards the relationships and order
among them. This constraint prevents the models from capturing the latent semantic
information and relationships within the data. Considering the rich spatial and tem-
poral characteristics of spatio-temporal trajectory data and points of interest (POI)
on maps, such limitations adversely affect the performance of these models.

To solve the above problems, we propose a geometry-driven neural topic model
for inferring trip purposes from trajectories. Initially, we adopt a geometry-driven
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approach that takes into account the starting and ending points, duration, and dis-
tribution of POI surrounding the trajectory, thus enhancing the spatio-temporal
correlations within trajectory data. Next, we utilize embedding techniques to capture
the latent semantic information and relationships present in high-dimensional space,
effectively addressing the challenges and limitations faced by traditional models when
processing spatio-temporal data. Then, we develop a neural topic model that incorpo-
rates a geometry-driven loss function, preserving the geometric relationships between
the trajectory feature distributions and trip purpose distributions, and between tra-
jectory distributions and trip purpose distributions, This approach further improves
the accuracy and interpretability of trip purpose inference. Finally, we assessed the
effectiveness of our proposed method on a real-world urban trajectory dataset. By
comparing our model with the baseline model using coherence and perplexity, we
demonstrated the validity of our model.

The main contributions of this study can be summarized as follows:

• We propose a geometry-driven neural topic model that incorporates the trip start
time, trip duration, and distribution information of nearby POI categories using
a geometry-driven embedding method. This approach captures potential seman-
tic relationships within the high-dimensional trajectory data space, enhancing the
model’s performance and interpretability.

• We develop a geometry-driven loss function that effectively maintains the geometric
relationship between the trajectory feature distribution and the topic distribution,
thereby enhancing the model’s accuracy and interpretability.

• We compared our model with the baseline model using real-world datasets from
Shenzhen and Chengdu, demonstrating its high performance. Additionally, the prac-
tical application potential of this model for urban planning and traffic management
is illustrated through a case study.

The remainder of our paper is organized as follows. Section 2, we review the related
works on human mobility and trip purpose inference and compare our work with
the previous. The basic concepts and problem statements are presented in Section 3.
Section 4 introduces the detailed proposed method to infer the trip purpose. Section 5
we introduce the result and comprehensive analysis. Finally, we summarize the papers
and discuss future work in Section 6.

2 Related Work

In this section, we provide an overview of the relevant literature in the fields of human
mobility analysis, trip purpose inference, and neural topic modeling, highlighting the
key contributions and limitations of previous works.

2.1 Human Mobility Analysis

Human mobility analysis has been an active research area due to its significant implica-
tions for urban planning, traffic management, and location-based services[1]. In recent
years, an increasing number of studies have focused on human mobility analysis using
multi sources data and methodologies[4, 20]. These studies have provided insights
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into the spatial and temporal properties of human mobility, including established an
effective human mobility model for prediction and simulation by studying human
mobility after natural disasters [21], Fine-grained COVID-19 Propagation Model of
human mobility Data [22], and human activities exhibit periodic patterns correspond-
ing to daily and weekly cycles [23]. They have also explored the impact of social and
geographical factors on mobility behaviors [24, 25].

While these studies have contributed to our understanding of human mobility, they
often do not explicitly focus on inferring trip purposes, which is crucial for providing
more nuanced and context-aware insights into travel behavior. Moreover, most of
these studies rely on aggregated mobility patterns rather than individual trip-level
data, which may not accurately represent the complex relationships between individual
travel choices and urban contexts. Our work aims to address these limitations by
developing a novel geometry-driven neural topic model for trip purpose inference that
leverages rich trajectory data and points of interest information.

2.2 Trip Purpose Inference

Trip purpose inference has been a topic of increasing interest, as understanding the
reasons behind individual travel behaviors can lead to better traffic management and
urban planning strategies. In recent years, various techniques have been proposed to
infer trip purposes, leveraging diverse data sources and machine learning methods.

Traditionally, trip purpose studies relied on statistical methods, such as logistic
regression and decision trees, to infer trip purposes from survey data [26–28]. With
the increasing availability of large-scale trajectory data, researchers have developed
data-driven approaches, including clustering algorithms [29], topic models [5], and
deep learning methods [30] to extract trip purpose form GPS data. However, these
methods often fail to capture the complex semantic and spatial relationships between
trajectory data and points of interest, limiting their accuracy and interpretability.

Our work addresses these limitations by proposing a novel geometry-driven neu-
ral topic model for trip purpose inference. By incorporating travel start time, travel
duration, and nearby POI category distribution information with geometry-driven
technique, we enhance the potential temporal and spatial correlations within tra-
jectory data, and our model employs an embedding method to capture the latent
semantics and relationships within high-dimensional data. Enabling more accurate
and interpretable trip purpose inference.

3 Preliminaries

Before delving into the details of our proposed geometry-driven neural topic model
for trip purpose inference, it is essential to introduce the preliminary concepts and
notations used in this study.

3.1 Definition

Definition 1 (Trajectory). The trajectory data consists of a series of spatio-
temporal points representing motion. Formally, a trajectory T can be expressed as
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Ti = (s1, s2, . . . , si). Where the s represent the trip point, it can be expressed as
sj = (xj , yj , tj), the x and the y represents the geographical coordination (latitude,
longitude), t represent the timestamp.
Definition 2 (Origin-Destination (OD) Pair). Origin-Destination (OD) Pair refers
to the starting point (origin) and ending point (destination) of a trip. It is denoted as
a tuple, Tod = (so, sd).
Definition 3 (Point of Interest (POI)). Points of interest (POI) data refers to
the information about specific locations or establishments in a given geographic area,
such as restaurants, shops, parks, or tourist attractions. Each POI is associated with
geographic coordinates (latitude, longitude), a category (e.g., restaurant, hotel), and
additional attributes, such as the name, address, and opening hours. So the POI point
can be represented as: NPOI(xPOI , yPOI , cPOI , aPOI). where (xPOI , yPOI) are the geo-
graphic coordinates, cPOI is the category, and aPOI represents additional attributes of
the POI.

3.2 Problem Statement

Given a set of trajectories M = (T1, T2, ..., Ti) and city POIs V = (N1, N2, ..., NPOI).
The goal is to extract latent information from trajectory and POI data to facilitate
trip purpose inference. By simulating human mobility integrated with trip purpose
information, the results can better inform residents and city managers.

3.3 Topic Model

Before introducing the geometry-driven neural topic model, we provide a brief overview
of traditional topic models, such as Latent Dirichlet Allocation (LDA) [31]. In this
model, it is assumed that documents are generated from a mixture of topics, with
each topic characterized by a distribution over words. As illustrated in Figure 2, the
generative process can be described as follows:

Fig. 2 LDA graphical model.

For each topic K, generate a topic distribution θ from a Dirichlet distribution using
parameter δ. For each word wi in the document D, generate a word-topic distribution
Zwn

from a Dirichlet distribution using parameter β, generate a word wn from the
p(wn|Znβ) a multinomial probability by Zn.

The goal is to estimate the posterior distribution of latent variables, given the
observed data, in order to uncover the underlying semantic structure of the documents.

We establish an analogy between trajectory data and text data. As illustrated in
Table 1, we can consider trip feature attributes as words, each trip as a document, and
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Fig. 3 An overview of the proposed geometry-driven neural topic model for trip purpose inference.

Table 1 Analogy trip purpose to topic model.

The trajectory feature attribute → Words

A trip trajectory → Documents

The trip purpose → Topics

the trip purpose as the topic. This analogy enables the application of topic modeling
techniques to infer trip purposes.

However, traditional topic models, such as LDA, may not be well-suited for complex
spatio-temporal trajectory data, because they do not consider the spatial and temporal
correlations, and their limited expressiveness. Therefore, we developed a trip purpose
inference method based on neural topic model to make travel purpose inference more
accurate.

4 Methodology

In this section, we present the geometry-driven neural topic model for trip purpose
inference. Figure 3 offers an overview of the proposed geometry-driven neural topic
model. Our model is an variational autoencoder, which employs an encoder-decoder
based framework [32, 33]. In the next, we will describe the details of our model.

4.1 Feature Extraction

The spatial and temporal context of the trajectory data by integrating travel start
time, travel duration, and nearby POI category distributions into the generative pro-
cess. This allows the model to learn complex semantic information in high-dimensional
space, effectively capturing the spatial and temporal correlations within trajectory
data.
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Temporal feature: The trip temporal Extract pertinent temporal features from
the trajectory data, such as start time, end time, travel duration, day of the week
(weekday or weekend), and whether the day is a holiday.

POI feature: The nearby POI category distribution for the point si is an impor-
tant feature to consider when analyzing the trip’s spatial information, as it helps
capture the characteristics of the surrounding environment form the trip.

In order to calculate the nearby POI category distribution, we first need to define a
radius r around the points si. This radius represents the area of interest within which
we will consider the POIs.

We compute the nearby POI category distribution for the trip start point (so) and
end point (sd). For each point, we calculate the proportion of each POI category within
a certain radius (r) from the point. The POI category distribution can be represented
as a vector Ps = (p1, p2, . . . , pC), where n is the number of POI categories, and pc is
the proportion of POIs belonging to category c within the radius r as (1):

p =
Nc

∑n

j=1
Nj

(1)

Where Nc is the number of POIs of category c within the radius r, and
∑n

j=1
Nj

is the total number of POIs of all categories within the radius r.

4.2 Modeling

4.2.1 Embedding

Traditional topic models employ the bag-of-words (BOW) method, treating each doc-
ument as an unordered collection of words and disregarding syntactic or semantic
information [31]. This approach results in high-dimensional feature vectors, where each
dimension represents a unique word in the vocabulary. As the vocabulary grows, the
model’s effectiveness diminishes. To address this issue, and inspired by word embed-
ding techniques [34], we utilize the embedding approach to represent trip features
in an L-dimensional space, capturing the complex semantics and relationships in a
high-dimensional space.

feature embedding Let Tfeatures represent the trip feature vector containing the
trip origin point, trip destination point, destination time, day of the week, weekday
or weekend indicator, and holiday indicator, POI category distribution feature vector.
Then embedding the representation of the trip feature, as (2):

ET = Fφ(Tfeature) (2)

Where ϕ is the parameters of trip feature embedding.

4.2.2 Inference Net

Following the earlier work[35, 36], the inference net employs Gated Recurrent Unit
(GRU) network to learn temporal features correlation and a Convolution Neural Net-
work (CNN) to learn the spatial features correlation. The objective is to obtain latent
representations of trip purposes by capturing spatio-temporal relationships in the data.
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The output of the GRU layer is a hidden state vector that captures the temporal
information in each trip, The equations for the GRU layer are as follows (3):

ut = σ(Wu · [ht−1, et] + bu) (3)

rt = σ(Wr · [ht−1, et] + br) (4)

h̃t = tanh(Wh · [rt ⊙ ht− 1, et] + bh) (5)

ht = (1− ut)⊙ ht−1 + ut ⊙ h̃t (6)

Here, Wu, Wr, and Wh are weight matrices, bu, br, and bh are bias terms, and σ

is the sigmoid activation function. The element-wise multiplication is denoted by ⊙.
Then, through the CNNs,it equations as (7):

hcnn = f(W ∗ hT + b) (7)

Where hout is the feature map, f is the ReLU activation function, W is the con-
volutional filter, b is the bias term, and ∗ denotes the convolution operation. Then,
following a fully connected layer, we obtain the feature representation which captures
both temporal and spatial information, as (8):

hfinal = FC(hcnn) (8)

Fed it into an encoder part, which outputs the parameters of the approximate
posterior distribution q(z)|hfinal), where z is the latent trip purpose representation.

q(z|hfinal) = N (z;µ, σ2, ϵ) (9)

Where ϵ ∼ N (0, I) is a noise vector.

4.2.3 Generative Net

Our generative net primary goal of reconstruct the input trip embedding based on the
latent trip purpose representation z inferred by the inference network, while preserving
the geometric properties.

For a trip purpose zk, we draw the trip feature embedding distribution with θk,
where θk ∼ LN (0, I).

The generative net takes the latent trip purpose representation z as input and
generates a reconstructed fused feature representation ĥfinal ∼ p(hfinal|zk). Then,
through a fully connected layer, inverse CNN and inverse GRU, we obtain the
reconstructed embedding matrix.

4.2.4 Estimation

To train our model, we employ a combined loss function, the marginal likelihood
function and the geometric surrogate loss function, which enables our model to learn
topic distributions from trajectory feature embeddings while preserving geometric
relationships between features, as shown in (10).
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Ltotal = LGD + λLML (10)

The marginal likelihood function demands maximization, while the geometric sur-
rogate loss function calls for minimization. To address these optimization objectives,
we introduce the regularization parameter λ.

Geometry-driven loss function The geometry-driven loss term, Lgeo, aims
to minimize the distance between distributions generating POIs with identical trip
purposes. This loss term encourages the model to learn a latent trip purpose represen-
tation that more effectively captures the relationships between trip purposes and the
spatial distribution of POIs in the surrounding environment. Consequently, we obtain
the geometry-driven loss term, Lgeo.

Trip Purpose Similarity: For Two trip under the same topic, the similarity is cal-
culated using cosine similarity, a common metric that measures the similarity between
two vectors by considering the angle between them rather than their magnitudes. The
cosine similarity is computed based on their latent trip purpose representations zTi

and zTj
, as shown in (11):

Sij =
zTi

· zTj

∥zTi
∥∥zTj

∥
(11)

Spatial Distribution Similarity: The similarity between their POI distributions is
computed using Euclidean distance, an effective metric for capturing the relationship
between the spatial distribution of POIs in different trips, as shown in (12):

Dij =

n
∑

c=1

(pTi

c − pTj

c )2 (12)

Where pTi
c and p

Tj

c represent the true POI category distributions for the two trips,
by (1) and n denotes the number of POI categories.

Thus, the geometry-driven loss term can be obtained by minimizing the difference
between trip purpose similarity and spatial distribution similarity for each trajectory
pair, as shown in (13):

LGD =

T
∑

i=1

T
∑

j=1

∥Sij −Dij∥
2 (13)

By minimizing the geometry-driven loss term, the model becomes more adept at
capturing the relationship between trip purposes and the spatial distribution of POIs.

The marginal likelihood. We maximize the log-marginal likelihood to optimize
the parameters, as (14):

pθ(hfinal) =

∫

pθ(hfinal|z)p(z)dz (14)

Since it is intractable to compute the integral directly, we use the Evidence Lower
Bound (ELBO) as a surrogate objective:

LML = Eqφ(z|hfinal)[log pθ(hfinal|z)]−DKL(qφ(z|hfinal)||p(z)) (15)
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Finally, we utilize the random ELBO to optimized according to model param-
eter and variational parameter. Set the learning rate with Adam optimizer [37], a
generalized solver for neural network models, to optimize our model.

5 Experiment

5.1 Data

We utilize a real-world trajectory dataset gathered from Shenzhen taxi and Didi
Chengdu. The dataset is presented in Table 2.

Table 2 Statistics of datasets.

City Taxi
Occupied

Trip
Effective
days

Average
duration(min)

POI

Shenzhen 20898 1706676 15 13 1213656
Chengdu 33205 1937720 15 25 128376

Fig. 4 Passenger drop-off time distribution.

We set 30 minutes as the time bin. Following definition, we construct the number
of visits for each city area within these time bins. Figure 4 displays the passenger drop-
off time distribution for Shenzhen and Chengdu. A distinct peak is observed during
morning and evening hours for residents’ weekday city trips, suggesting that the trip
purpose of such trajectories is likely related to work and home.

5.2 Baseline Model

To demonstrate the effectiveness of our proposed method, we compare its performance
against baseline models:

1. Bayesian Model: This model represents a traditional probabilistic approach
to trip purpose inference, where trip purposes are modeled as latent variables
that follow a certain probabilistic distribution. We use this baseline to assess the
improvement provided by our proposed method over a classical statistical method.
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Fig. 5 Visualization results: before (left) and after (right) applying the embedding Method.

2. Latent Dirichlet Allocation (LDA): A generative probabilistic topic model
widely used for text data analysis.

3. Deep Embedded clustering (DEC): A deep learning-based clustering method
that learns an embedding space for the data.

To compare the performance of our propose model the geometry-driven neural
topic model, we use the perplexity metric and coherence, which measures how well
the model generalizes to unseen data [31, 33, 38, 39].

perplexity Lower perplexity values indicate better performance. Perplexity is
defined as the inverse of the geometric mean of the likelihood of the test data:

PP = exp

(

1

N

∑

logL

)

(16)

Where L means the likelihood function, and N is the number of trajectories.
Coherence Higher coherence score indicates that the words within a topic are

more semantically related and the topic is more interpretable.
The coherence measure is calculated as follows:

C(T ) =
1

|T |2 − |T |

|T |
∑

i=1

|T |
∑

j=1,j ̸=i

log
P (Ei, Ej) + ϵ

P (Ei)P (Ej)
(17)

Where T is the set of top feature for a given trip purpose, Ei and Ej are feature
within the set, P (Ei, Ej) is the joint probability of feature Ei and feature Ej occurring
together in the same context, and P (Ei) and P (Ej) are the individual probabilities
of feature Ei and Ej . The term ϵ is a small constant added to avoid division by zero.

The coherence of a trip purpose is the average coherence score of all pairs of terms
within the trip purpose, and the model coherence is the average coherence of all trip
purpose in the model.
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5.3 Results

5.3.1 Effectiveness of Embedding

To evaluate the effectiveness of our embedding process in capturing the underly-
ing structure and patterns of the data, we employ t-Distributed Stochastic Neighbor
Embedding (t-SNE) for visualization[40]. t-SNE is a nonlinear dimensionality reduc-
tion technique particularly well-suited for visualizing high-dimensional data, as it
preserves local structures and relations in the data. Figure 5 displays the visualiza-
tion results, allowing us to assess how well the embedding captures the semantics and
relationships between different trajectories.

5.3.2 Result Comparison

Table 3 and 4 presents the results of our proposed model and all baseline models.
Meanwhile, we also get the performance of our model without the geometric-driven
part.

Table 3 Comparison of the coherence with
baseline model

Model Shenzhen Chengdu

Bayesian based 0.45 0.41
LDA based 0.49 0.46
DEC based 0.55 0.54

Ours - without GD 0.57 0.55

Ours 0.69 0.63

Table 4 Comparison of the perplexity with baseline model and different number of trip
purpose.

Shenzhen
K 3 4 5 6 7 8

Bayesian based 235.46 220.65 211.73 199.65 206.72 209.81
LDA based 215.62 200.27 193.12 182.31 189.55 200.97
DEC based 205.53 198.44 190.14 187.22 188.82 197.44

Ours-without GD 203.55 194.46 185.66 175.48 183.91 186.15

Ours 181.55 182.46 173.66 157.48 165.91 176.15

Chengdu
K 3 4 5 6 7 8

Bayes Based 240.22 224.82 210.11 204.53 207.72 211.53
LDA Based 234.44 217.92 203.35 197.12 205.77 209.54
DEC based 210.32 201.53 194.02 198.93 206.23 210.33

Ours-Without GD 205.12 196.33 185.33 184.02 188.82 193.52

Ours 184.12 186.33 179.33 181.02 186.82 189.52
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The research findings indicate that our proposed model exhibits exceptional
consistency and performance across various datasets when compared to baseline
models.

Fig. 6 Comparison of the perplexity under various number of trips with baseline model.

In addition, we compare our model with the baseline model for various numbers of
trips, as illustrated in Figure 6. We observe that our model exhibits improvement com-
pared to traditional Bayesian and LDA topic based models. Without incorporating the
geometric-driven loss, our model performs comparably to deep embedded clustering.
However, as we increase the calculation of the geometric-driven loss, we find that our
model’s effectiveness further improves. This observation suggests that the geometric-
driven loss function is important in preserving the geometric relationships between
input trajectory feature embeddings and the learned trip purpose distributions.

5.3.3 Trip Purpose Inference Analysis

As depicted in Figure 7, the distribution of trajectory endpoints across different
trip purposes reveals various patterns. For the Work-Related trip purpose, numerous
trajectory endpoints are concentrated around the Nanshan Science and Technology
District and the Futian CBD area. The Shopping-Related trip purpose features many
trajectories ending in the Huaqiang North and Dongmen areas, which house numerous
shopping malls. In the case of the Home-Related trip purpose, a significant number
of trajectories terminate in the Meilin Zone and Baishizhou Zone, which are known
as famous urban villages in Shenzhen, suggesting that the majority of these trajec-
tories are generated by individuals returning home. Trajectory endpoints around the
university town are most likely associated with the Education-Related trip purpose,
while those in the vicinity of Dameisha and Happy Valley can be attributed to the
Vacation-Related purpose.
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Fig. 7 The Distribution of trajectory ending under different trip purposes in Shenzhen.

Subsequently, we examine the distribution of each trajectory’s end time under
various trip purposes. Additionally, we interpret our results by considering the dis-
tribution of POIs in specific regions and the proportion of different trip purposes in
those areas, as depicted in Figure 8.

Figure 8 A illustrates the distribution of trajectory end times for different trip
purposes. Topic 1 is concentrated between 8:00 and 10:00, Topic 2 between 6:00-9:00,
14:00-16:00, and 18:00-20:00, Topic 3 between 10:00 and 18:00, Topic 4 after 19:00,
and Topics 5 and 6 during daytime hours. We utilize the POI feature, which helps
us identify Topic 1 as Work Related due to the high concentration of companies and
typical work start times between 9:00 and 10:00 in Shenzhen. Topic 2 is Education
Related, as students generally attend school earlier than work hours and leave school
between 14:00 and 15:00, as well as after 18:00. Topic 3 is Shopping Related since
shopping malls typically operate from 10:00 to 22:00, attracting citizens during these
hours. In Shenzhen, people generally finish work after 19:00, with many employees
leaving between 22:00 and 23:00, making Topic 4 Home Related. Topic 5, with tra-
jectories concentrated in vacation areas as shown in Figure 7, is Vacation Related.
While Topic 6, with trajectories clustered around city transportation hubs, such as
the railway station and airport, is Transportation Related.

Figure 8 B features the Science and Technology Zone, home to numerous high-
tech enterprises and known as China’s Silicon Valley. This area attracts many workers,
resulting in a high proportion of Topic 1 trajectories.

The University Town area, shown in Figure 8 C, houses several educational insti-
tutions and has a significant distribution of educational POIs. Consequently, Topic 2
is more prevalent in this area than other trip purposes.

The Dongmen Area, depicted in Figure 8 D, is a well-known shopping district
in Shenzhen’s Luohu District. Numerous shopping malls are supported by the POI
distribution, and the number of individuals visiting malls increases sharply between
10:00 and 19:00, declining as the malls close. This explains the area’s high proportion
of Topic 3 trajectories.
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Fig. 8 The Distribution of Trajectory Ended Time in Different Trip Purposes And Some Typical
Region Cases

The Baishizhou Zone, shown in Figure 8 E, is a typical residential district in
Shenzhen with many home-related POIs. Most trajectories in this area belong to Topic
4, indicating a high influx of people after 19:00.

The Dameisha Area, illustrated in Figure 8 F, is a famous vacation destination in
Shenzhen, renowned for its beautiful beaches. The POI distribution reveals numerous
hotels, restaurants, and scenic spots in this area, contributing to the high proportion
of Topic 5 trajectories.

Figures 8 G and H display the largest and most comprehensive railway transporta-
tion hub and the only international airport in Shenzhen, respectively. As a result, most
trajectories ending in these areas belong to Topic 6.
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Fig. 9 The Simulation Results of One Day in Shenzhen.

Fig. 10 The Simulation Results After the
Issuance Policy About Telework.

Fig. 11 The Simulation Results After the
Issuance Policy About Do Not Leave Shenzhen.

5.3.4 Case Study

We conducted simulations of human mobility in Shenzhen. After applying the
geometry-driven topic model, we identified six distinct trip purposes. By using col-
ors to differentiate these purposes, we were able to simulate human mobility patterns
within the city.

Figure 9 presents a simulation of human mobility in Shenzhen, demonstrating that
the majority of movement is concentrated along Shennan Avenue, Beihuan Avenue,
and Binhai Avenue, the city’s primary east-west arterial roads. Notably, consider-
able human mobility is observed near Nanshan Science and Technology Park, Futian
CBD, and Luohu Dongmen Street. Our model assigns an orange color to the Trans-
portation Related trip purpose, emphasizing trajectories that end around the airport
and Shenzhen North railway station areas. This observation further substantiates the
effectiveness of our proposed model.

By adjusting simulation parameters, our model can aid government officials in
understanding urban population flow during events such as COVID-19-like infectious
disease outbreaks. The model can simulate the impact of various policies, includ-
ing the effects of a Telework policy on urban population flow, as depicted in Figure
10. Additionally, it can simulate human mobility within the city under a Do Not
Leave Shenzhen policy, as shown in Figure 11. Consequently, this tool can assist city
managers in formulating more accurate and targeted prevention and control policies.

In conclusion, our proposed geometry-driven neural topic model effectively
addresses the limitations of traditional topic models in handling complex spatio-
temporal trajectory data and demonstrates its superiority in trip purpose inference.
The experimental results confirm the effectiveness of our method in terms of both
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performance and interpretability, providing valuable insights into human mobility
patterns and potential implications for urban planning and traffic management.

6 Conclusion

we propose a geometry-driven neural topic model for trip purpose inference. Our model
addresses the limitations of traditional models by incorporating geometry-driven fea-
ture extraction and trip embedding methods. Specifically, our approach combines
trajectory with nearby POIs using a geometry-driven method, allowing a more com-
prehensive understanding of the complex relationships between trajectory data points.
Simultaneously, the trip embedding method captures latent semantic and relational
information between trajectory data in high-dimensional space, enabling our model
to effectively capture inherent spatial and temporal correlations. This results in more
accurate trip purpose inference.

The result demonstrate the effectiveness of our proposed method compared to
baseline approach, exhibiting improvements in both perplexity and model coherence.
The case study further underscores the practical applicability of our model in real-
world urban scenarios.

In future work, we plan to extend our model in several directions. Firstly, we
aim to explore advanced embedding techniques to better capture the latent semantics
and relationships inherent in trajectory data. Secondly, by combining the seman-
tic information and topic information of the trajectory, we intend to identify the
anomaly trajectory. Finally, we strive to contribute valuable insights and tools for
urban planning, traffic management, and location-based services.
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