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Abstract. In this paper, we present an Inverse Multi-Objective Robust Evolutionary (IMORE) 

design methodology that handles the presence of uncertainty without making assumptions 

about the uncertainty structure. We model the clustering of uncertain events in families of 

nested sets using a multi-level optimization search. To reduce the high computational costs of 

the proposed methodology we proposed schemes for 1) adapting the step-size in estimating the 

uncertainty, and 2) trimming down the number of calls to the objective function in the nested 

search. Both offline and online adaptation strategies are considered in conjunction with the 

IMORE design algorithm. Design of Experiments (DOE) approaches further reduce the number 

of objective function calls in the online adaptive IMORE algorithm. Empirical studies 

conducted on a series of test functions having diverse complexities show that the proposed 

algorithms converge to a pareto set of design solutions with non-dominated nominal and 

robustness performances efficiently. 

1   Introduction   

Evolutionary Algorithms (EAs) [1] are modern stochastic optimization technique that 

has emerged as a prominent contender for global optimization in complex engineering 

design. Its popularity lies in the ease of implementation and the ability to arrive close 

to the global optimum design. Most studies on the application of EAs to complex 

engineering design have focused on locating the global optimal design using determi-

nistic computational models. However in many real-world design problems, uncertain-

ties are present and practically impossible to avoid. In the case where a solution is 

very sensitive to small variations either in design variables or operating conditions, it 

may not be desirable to use this design. Hence optimization without taking uncertainty 

into considerations produce designs that should not be labeled as optimal because they 

are likely to perform differently when put into practice.  
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Various classifications of uncertainty in design optimization have been suggested 

over recent years [2-8]. In [2], four types of uncertainty were described. They are 1) 

noise in fitness function, 2) uncertainty in design and/or environmental parameters, 3) 

approximation errors in fitness function, and 4) time-varying fitness function. Similar 

categorization can also be found in [3]. Others [4-5] classify uncertainty as either 

aleatory or epistemic. Aleatory uncertainty refers to naturally irreducible variability, 

e.g., quantities that are inherently variable over time and space. In contrast, epistemic 

uncertainty is caused by incomplete knowledge about the designs to be optimized and 

should be reducible if more knowledge can be acquired. In [6-8], uncertainty is de-

fined as the gap between known and unknown facts.  In this paper, we follow the cate-

gorization of uncertainty in [2] and [3]. In particular, we focus on uncertainty in the 

design and/or environmental parameters.  

To date, many approaches exist for coping with uncertainty in complex engineer-

ing design optimization. These include the One-at-a-Time Experiments, Taguchi Or-

thogonal Arrays, bounds-based, fuzzy and probabilistic methods [9]. A detail analysis 

of deterministic optimization framework for dealing with uncertainty in linear pro-

gramming and general convex programming was presented in [10]. In the context of 

stochastic optimization, especially evolutionary algorithms, a number of prominent 

new studies on handling the presence of uncertainty in engineering designs have 

emerged recently. In [11], a Genetic Algorithm with Robust Searching Scheme 

(GA/RS3) was introduced. In this work, a probabilistic noise vector is added to the 

genotype before fitness evaluations. The study of (1+1)-Evolutionary Strategy (ES) 

with isotropic normal mutations using the noisy phenotype scheme was subsequently 

reported in [12]. [13] considers the trade-off between robustness and the nominal 

performance of a potential solution using a multi-objective EA approach while [3] 

described a combined max-min and Baldwinian1 trust-region optimization strategy for 

conservative robust design. To reduce the high computational costs of robust evolu-

tionary design, computationally cheap local surrogate models was introduced in [3] 

and [14] for estimating the expected fitness and/or variance of potential solutions in 

place of the exact fitness functions. The success of robust evolutionary design has 

been shown on a series of realistic mechanical and aerodynamic problems, including 

2D aerodynamic airfoil [3,18], lightweight space structures [19] or multilayer optical 

coating design [20]. 

In most of the existing schemes proposed, prior knowledge about the structure of 

the uncertainty, for instance, its distribution properties is assumed to be available. 

Hence, the quality of a solution is attainable only if the assumptions made on the 

structure of the uncertainty exactly reflect the actual uncertainty. In this paper, we 

present an evolutionary design optimization that handles the presence of uncertainty in 

view of the desired robust performance, which we call the Inverse Multi-Objective 

                                                           
1 There are two basic strategies for using Memetic Algorithms [15][16][17]: 

• Lamarckian learning forces the genotype to reflect the result of improvement in local 
search by placing the locally improved individual back into the population to compete for 

reproductive opportunities 

• Baldwinian learning only alters the fitness of the individuals and the improved genotype is 
not encoded back into the population. 



Robust Evolutionary design or IMORE in short. In contrast to conventional robust 

optimization, our proposed approach avoids making assumptions about the uncertainty 

structure in formulating the optimization process, since it can lead to erroneous de-

signs with catastrophic consequences. A drawback of the IMORE methodology is the 

massive computational effort of the nested evolutionary searches involved which can 

be defined by the step-size and maximum fitness function calls used.  To improve the 

efficiency of the proposed methodology, we present both offline and online strategies 

for adapting step-size and minimizing calls to the fitness function using Design of 

Experiments (DOE) sampling methods. 

The rest of this paper is organized as follows. In section 2, we provide an over-

view of robust evolutionary design and our proposed IMORE methodology. Section 3 

introduces the adaptation strategies for improving the computational efficiency of 

IMORE. To illustrate the efficacy of the adaptive IMORE, section 4 provides an em-

pirical study on a series of test functions with diverse complexities. Further enhance-

ments on speed-up of the adaptive IMORE algorithm using DOE methods is also 

presented in the section. Finally, Section 5 concludes this paper.   

2 Robust Evolutionary Optimization in the Presence of Uncertainty   

In this section, we present a brief overview of robust evolutionary design in the pres-

ence of uncertainties. In particular, we consider the general bound constrained nonlin-

ear programming problem of the form: 

 

Maximize  :   ( )f x  

                                           Subject to :  l u≤ ≤x x x  

 

(1) 

where ( )f x  is a scalar-valued objective function, n∈ℜx  is the vector of design vari-

ables, while lx  and ux are vectors of lower and upper bounds for the design variables.  

Here, our focus is on EAs for robust design optimization in the presence of uncer-

tainty that arises in:  
  

i) design parameters x  

 

( ) ( )'f f= +x x δδδδ  (2) 

where ( )1 2, ,..., kδ δ δ=δδδδ , is the noise vector in the design parameters and ( )'f x is the 

perturbed function value of the design vector x .  
 

ii) operating/environmental conditions 

 

( ) ( )' ,f f= +x x c ζζζζ  (3) 

where ( )1 2, , , nc c c=c K , is the nominal vector of the environmental parameters and 

ξξξξ  is a random vector used to model the variability in the operating conditions. Both 

forms of uncertainties may be treated equivalently [13].   



The core mechanism of many evolutionary techniques for handling uncertainty 

has relied on the probability theory, assuming prior knowledge about the structure of 

the uncertainty. For example, the uncertainties, δδδδ  and/or ξξξξ , are often assumed to have 

a Gaussian (normal), Cauchy, or uniform distribution. More often, a Gaussian noise 

with zero mean and variance σ
2
, N(0, σ

2
) is considered, by virtue of the central limit 

theorem2.  The effective fitness ( )F x  is then be defined as: 

 

( ) ( ) ( )F f d

∞

−∞

= + Φ∫x x δ δ δδ δ δδ δ δδ δ δ  
 

(4) 

where ( )Φ δδδδ is the probability distribution of δδδδ . In practice, ( )F x is often approxi-

mated by ˆ ( )F x  using Monte Carlo Simulation (MCS) assuming m samples of noise 

term δδδδ  as follows: 
 

1

1ˆ ( ) ( )

m

i

i

F f
m

=

= +∑x x δδδδ  
 

(5) 

To locate a robust design solution in the presence of uncertainty in the design vec-

tor, one may consider using the GA/RS3 proposed in [11] that is outlined in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 Based on the central limit theorem, random samples from a given distribution with mean µ 

and variance σ2 will approach a Gaussian/Normal distribution N(µ, σ2) when the sample size 

increases. 



 
 

Figure 1. A Genetic Algorithm with Robust Solution Searching Scheme (GA/RS3) 

 

Consider the one-dimensional function depicted in Figure 2 which is given by 
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(6) 

 

Equation (6) defines a multimodal function with a nominal global maximum lo-

cated at sharp peak x*∈ [6.5, 7.8] and has many other local optima located elsewhere3. 
The robust optimal solution that the GA/RS3 converges to is dependent on the pertur-

bation assumed, i.e., assumptions on the distribution of δ in f(x). For instance, Figures 

2(a) and (b) illustrate two resultant effective fitness landscapes (denoted by circles) of 

the one-dimensional function defined in equation (6), assuming a uniform distribution 

for δ with σ of ±1.0 or ±0.25, respectively. Note that σ denotes the range or bound of 
δ. If σ  is configured to ±1.0, the robust global maximum

4 can be observed to be lo-

cated at x^∈[3.0,4.0] in Figure 2(a). On the other hand, when σ  is set to ±0.25, the 

global robust maximum approaches that of the nominal fitness function f(x), i.e., 

x^=x*, see in Figure 2(b). 

  

                                                           
3 Note that x* represents the nominal global optimum (maximum). 
4 Note that x^ represents the robust global optimum (maximum). 

BEGIN EA (for maximization problem) 

• Generate a population of designs 

• While(termination condition is not satisfied) 

   For(each individual i in the population) 

        For(j=1 to m)              

•   Perturb individual ix to arrive at ijx  

•   Evaluate '( ) ( )x xij ij jf f= + δδδδ   

        end For 

•  Determine effective fitness, F(xi) of individual i   

 ˆ ( )iF x =

1

1
'( )

m

ij

j

f
m

=
∑ x   

    end For 

• apply mutation and crossover to create new population 
• perform selection of individuals. 

• End while 

END EA 



 
 

(a) Range of the uncertainty, σσσσ = ± 1.00 
 

 
(b) Range of the uncertainty, σσσσ = ± 0.25 

Figure 2. Effective fitness F(x) of the function defined in eq. (6) 

 assuming a uniform distribution for δ  
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2.1 Inverse Multi-Objective Robust Evolutionary (IMORE) Design  

Optimization 
 

In this section, we present a Inverse Multi-Objective Robust Evolutionary 

(IMORE) design optimization strategy for locating solutions with non-dominated 

nominal performance and robustness in the presence of uncertainties. In contrast to 

existing robust EA schemes [10-14], we do not make assumption on the uncertainty 

involved, since little knowledge about the structure of the uncertainty involved is 

available a priori in most realistic problems. Hence, instead of focusing on making 

any probably unjustifiable mathematical model out of the uncertainty, IMORE focus 

here on how a design may deteriorate in the presence of uncertainties. Further, taking 

into account the necessity to deal with the trade-off between robustness and nominal 

fitness in IMORE, we consider the bound-constrained multi-objective optimization 

problem of the form: 

 

                          Maximize  :  Objective-1 (nominal fitness) = ( )f x  

                                                     Objective-2 (robustness) = ( ; , )td d ∆x  

                                  Subject to :  l u≤ ≤x x x  

 

(7) 

 

The basic steps of the proposed IMORE algorithm are outlined in Figure 3. In the first 

step, the maximum degradation tolerable for the final design, dt and the step-size ∆  
used to conduct nested searches are initialized. A population of designs is then gener-

ated randomly or using DOE methods such as the Latin hypercube sampling or mini-

mum discrepancy sequences [24]. Each individual in the population is first evaluated 

to obtain its nominal fitness. Subsequently, each individual undergoes a sequence of 

nested searches to establish the uncertainty or maximum variations in design parame-

ters for the given maximum performance degradation tolerable, in the spirit of Info-

Gap theory [6-8]. In particular, we solve a sequence of constrained optimization sub-

problems for each chromosome of the form: 

 

     Maximize  :  ( ) ( ) ( )i id f f= −x x x  

                                   Subject to  :  k k
l u≤ ≤x x x  

 

(8) 

where k
lx  and k

ux  are the appropriate bounds on the design parameters, which are 

updated at each k iteration based on the defined step-size, ∆ .  
For each optimization sub-problem (or during the k

th
 iteration), the optimal solu-

tion of the k
th
 sub-problem is sought. The objective of each sub-problem search is to 

find the worst possible performance degradation by solving a bound constrained 

maximization problem. After each iteration, the search bounds of the design parame-

ters, k
lx  and k

ux  are updated using the step-size ∆  which is given by 

 
k
l i k= − ∆x x , k

u i k= + ∆x x  (9) 

By conducting a sequence of nested searches across a family of ascending nested 

bounds parameterized by the uncertainty vector, we arrive at a monotonically increas-



ing function of performance degradation versus uncertainty as illustrated in Figure 4 

such that 

 

( ) ( )1 1 1,k k k k k k
l l u u opt optd d+ + +≤ ≤ → ≤x x x x x x  (10) 

where k
optx  denotes the optimum (i.e., worst-case design vector) at the k

th
 iteration and 

( ) ( ) ( )k k
opt i optd f f= −x x x  is the corresponding maximum performance degradation 

obtained for k k
l u≤ ≤x x x . 

In addition, the ( )k
optd x  obtained and associated ∆k  of each search iteration are 

then stored to create a database of uncertainties and corresponding performance de-

gradations. For example, consider a design point with ix  =4 and ∆  is set to 1in Fig-

ure 4, the labeled points A, B and C correspond to ( , ( ))k k
opt optfx x  for k=1, 2 and 3 

respectively. For each individual, the iterative searches terminate when the optimal 

solution of the k
th
 sub-problem exceeds the maximum degradation defined, i.e. 

 

( ) ( ){ }( )
k k

i i opt td f f d= − >x x x  (11) 

 



 

Figure 3. The IMORE design optimization algorithm. 

At the end of the iterative search, the maximum uncertainty 
maxδ  that a design may 

handle for given maximum performance degradation of td  tolerable can be interpo-

lated from the database of previous uncertainties and corresponding maximum per-

formance degradations, i.e., ∆k and ( )k
id x . This is also illustrated using Figure 4 

where D represents the point where a maximum performance degradation of td  is 

reached and 
maxδ  is the corresponding maximum uncertainty that the design guaran-

tees to handle. The IMORE search then proceeds with the multi-objective evolution-

ary operators to create a new population and stops when the termination condition is 

met. 

 

 

 

 

 

BEGIN IMORE (Consider a maximizing problem) 

Initialization Phase: 

• Initialize Maximum degradation tolerable for the final design, dt  

• Initialize the step size ∆  for nested search  

• Generate a population of design vectors 

Search Phase: 

While (termination condition is not satisfied) 

   For (each individual i in the population) 

•     Objective-1 (nominal fitness) = ( )if x  

• Objective-2 (robustness) = ( ; , )i td d ∆x = i
maxδ  

� Repeat 

o Maximize: ( ) ( ) ( )i id f f= −x x x  

                        subject to: 
k k
l u≤ ≤x x x  where 

k
l i k= − ∆x x , 

k
u i k= + ∆x x  

o Obtain 
k
optx  and ( )k

optd x  

o Store ( )k
optd x  and associate it with ∆k  

� until ( ) ( ){ }( )
k k

i i opt td f f d= − >x x x  

� Estimate maximum uncertainty i
maxδ   using linear interpolation from 

( )k
optd x for different ∆k  

   end For 

• Apply standard MOEA operators to create a new population 

end While   

END IMORE 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Steps of IMORE for xi=4 and ∆ =1.  
 

To illustrate how the results obtained by the IMORE algorithm may be useful for 

robust design, we consider here a multimodal test function based on the one-

dimensional "Michalewicz 2" function which is defined by: 

 
10 2

10

1

( ) sin( )sin

i

ix
f x x

π
=

  
=       
∑  , -1.5 ≤ x ≤ 3           

 

(12) 
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Figure 5. (a) Pareto front, 

(b) Corresponding offspring in (a) for the function in eq. (12).  

 

This function contains a mixture of flat robust region having moderate nominal fit-

ness around x∈[-0.5, 0.5] and some noisy peaks with good nominal fitness around 
x∈[0.5, 3] as depicted in Figure 5b. The solutions in the pareto front of Figure 5a 
represent the diverse set of designs having non-dominated nominal performances and 

robustness in the presence of uncertainties. To explain the results presented in Figure 

5, we cluster the solutions in the pareto front as three separate groups. Group A con-

sists of solutions that have excellent nominal fitness at the expense of poor robustness. 

On the other hand, group B are solutions that gives a good balance between nominal 



fitness and robustness, while the solution members of group C have poor nominal 

fitness but excellent robustness measure. Hence, in the case of real world engineering 

problem, the availability of the set of non-dominated solution can provide a wide 

range of option for selecting the design vectors based on the requirements on robust-

ness and nominal fitness. 

 

3 Adaptive Inverse Multi-Objective Robust Evolutionary Design 

Optimization 

 
In this section, we present a study on the computational complexity of the proposed 

IMORE methodology and subsequently introducing possible strategies to achieve 

better efficiency with minimum impact on the performance of the algorithm. The 

computational complexity of the IMORE algorithm described in section 2 is O(gnkl), 

where g is the maximum number of IMORE generations, n is the number of individu-

als,  k is the average number of nested search iterations required by an individual to 

reach 
maxδ  and l is the average number of function evaluations incurred in a nested 

search. Hence the computational costs to locate the Pareto-optimal solutions can be-

come intractable if the objective function is computationally expensive.  

For every individual, if approx
maxδ  represents the approximated robustness fitness by 

IMORE, while exact
maxδ  is a more accurate robustness fitness obtained from using an 

exhaustive search, the Average Approximated Robustness (AAR) and Average Exact 

Robustness (AER) of an EA population is then measured as: 

 

AAR = %
xxn

n

i lu

i
approx
max

100
1

1

×
−∑

=

δ
, AER = %

xxn

n

i lu

i
exact
max

100
1

1

×
−∑

=

δ
 

 

(13) 

where n is the population size, xu and xl are the upper and lower bounds of the search 

space, respectively.  

Besides the standard evolutionary parameters, IMORE has an additional control 

parameter ∆ , which is inversely proportional to k, i.e., 
∆

∝
1

k .  Here, we illustrate the 

effect of varying ∆  and k in the IMORE algorithm when searching for the pareto-
optimum solutions in the "Michalewicz 2" one-dimensional function. 

The AAR and AER of a population for differing step-size ∆  and hence k in 

IMORE are tabulated in Table 1. From these results, it is worth noting that the average 

error in the robustness accuracy across a typical population, i.e., |AAR-AER| AER , 

varies greatly with ∆  and k. It can be observed that the average error in estimating the 
robustness increases with∆ , but incurs a lower computational cost due to a smaller k. 
This makes good sense since a larger step-size generally gives rise to greater interpo-

lation errors. However, this inferiority in accuracy could also lead the IMORE search 

convergence to false Pareto-optimal solutions. On the other hand, fine step-size pro-

vides a lower average error but at the expense of higher computational costs. Since the 

number of iterations, k, is inversely proportional to the step-size, an intuitive way to 



reduce the search time of evolutionary optimization algorithm is to achieve an appro-

priate balance between k and ∆  throughout the IMORE search.  

Table 1. Average Approximated Robustness (AAR) and Average Exact Robustness (AER) 

of an IMORE population for different step size ∆  when applied on the test function in eq. 

(12). 

Step Size 

∆  (%) 

Average 

number 

of itera-

tions k 

Average Ap-

proximated 

Robustness 

AAR   

(%) 

Average 

Exact Ro-

bustness 

AER 

 (%) 

|AAR-AER|/AER 

(%) 

 

1 6 5.59 5.60 0.2 

3 3 7.16 6.95 3.0 

5 2 5.83 4.91 18.8 

10 1 9.33 6.13 52.2 

 

In the next subsections, we introduce the offline and online adaptive IMORE for 

robust design in the presence of uncertainty. 

 

3.1 Offline Adaptive IMORE Design Optimization 
 

In this sub-section, we present an offline adaptive IMORE optimization algorithm for 

robust design in the presence of uncertainty. The basic steps of the proposed adaptive 

algorithm are outlined in Figure 6. 

 

 
Figure 6.  Offline adaptive IMORE design optimization algorithm. 

BEGIN OFFLINE ADAPTIVE IMORE (Consider a maximizing problem) 

Initialization Phase: 

• Initialize Maximum degradation tolerable for the final design, dt. 

• Initialize s levels of step sizes to use, i.e., 1∆ , 2∆ , …, s∆  where 

s... ∆>>∆>∆ 21 . 

• Initialize step size update interval, t=n/s, where n is the maximum number of 

IMORE search generations before termination. 

• Generate a population of design vectors. 

Search Phase: 

While (termination condition is not satisfied) 

   For (each non-duplicated individual i in the population at current generation, g) 

•     Objective-1 (nominal fitness) = f(xi) 

• ∆ = y∆  where 







=

t

g
y  

• Objective-2 (robustness) = i
maxδ  obtained using ∆  and the procedure de-

scribed in Figure 3. 

   end For 

• Apply standard MOEA operators to create a new population 

end While   

 END OFFLINE ADAPTIVE IMORE 



In the initialization phase of the offline adaptive IMORE search, s levels of step-

sizes are defined from 1∆ , 2∆ , …, s∆ . Since high robustness accuracy may not be 

exceedingly crucial during the exploration stage of the IMORE search, we consider 

using finer step sizes with increasing search generations, i.e., s... ∆>>∆>∆ 21 . 

This indicates that the number of function calls, which is proportional to k, can be 

reduced for the initial stage of the search. In particular, we adjust the step-size so that 

it decrements every t generations and is defined by t=n/s where n is the number of 

IMORE search generations. Then for each individual during the search phase, a series 

of nested searches are conducted by solving a sequence of bound constrained optimi-

zation sub-problems described by eq. (8). The appropriate bounds of k
lx  and k

ux  for 

each nested search are defined by y∆ , where 







=

t

g
y  and g is the current generation 

counter. The offline adaptive IMORE search operates exactly like the IMORE search 

(as described in Figure 3) and stops when the termination criterion is reached.  

 

3.2 Online Adaptive IMORE Design Optimization 
 

Next, we present an alternative to achieve a suitable balance of k and ∆  throughout 
the IMORE search based on an online adaptation strategy. In contrast to the offline 

adaptation strategy, which fixed the step sizes to be used across the various phases of 

the IMORE search in advance, the online adaptation strategy decides the values of k 

and ∆  using online feedback on the accuracy of the approximated robustness fitness 
throughout the search. The detailed procedure of the online adaptive IMORE is de-

scribed in Figure 7. 

In the online adaptive IMORE algorithm studied here, we consider a straightfor-

ward toggling between two different step-sizes, particularly, a fine and coarse step-

sizes which are denoted by f∆ and c∆ , respectively. To start with, f∆ , c∆ , and the 

update interval, t are initialized. The IMORE search then begins with a coarse step-

size, 
c∆ . Subsequently, the error in estimating the robustness of the fitness is assessed 

for every t generations. The error of the i
th
 individual, denoted by ρi, is then deter-

mined by 

 

%100

max

maxmax
×

−
=

−

−−

i
f

i
c

i
f

i
δ

δδ
ρ  

(14) 

where 
i

f−maxδ  and i
c−maxδ  are the robustness fitness measurements obtained by f∆  

and c∆ , respectively. If a large robustness fitness error is found, i.e., most of the indi-

viduals have iρ  ≥20%, the fine step-size f∆  will be used for the next t generations to 

gain a better accuracy. On the other hand, if most individuals in the population have 

iρ <20%, a coarse step-size c∆  will be adopted for the next t generations since the 

accuracy of the robustness fitness is considered as adequate. Here, we empirically 



determine 75% of the population size and 20% of i
f−maxδ  as the cut-off values to 

represent the majority of the population and to classify an error as low, respectively.  

 

 
 

 

Figure 7. Online adaptive IMORE design optimization algorithm. 

 

4 Empirical Studies 

 
To facilitate a detailed study of the IMORE algorithms, a number of test functions are 

created using an expansion in terms of Gaussian basis functions as follows: 

 

BEGIN ONLINE ADAPTIVE IMORE (Consider a maximizing problem) 

Initialization Phase: 

• Initialize Maximum degradation tolerable for the final design, dt. 

• Initialize the fine and coarse step size, f∆ and c∆ .  

• Set c∆ = ∆ . 

• Generate a population of design vectors. 

Search Phase: 

While (termination condition is not satisfied) 

•  Set 0ρ =  

    For (each non-duplicated individual i in the population at generation g) 

•    Objective-1 (nominal fitness) = f(xi) 

• Objective-2 (robustness) =  
i
maxδ   obtained using ∆  and the procedure de-

scribed in Figure 3. 

•     If  (mod(g,t) == 0) 

� Obtain max
i

fδ −  and max
i

cδ −  for ∆ = f∆ and 
c∆ , respectively. 

� Obtain %100

max

maxmax
×

−
=

−

−−

i
f

i
c

i
f

i
δ

δδ
ρ  

� 
iρ ρ ρ= +  

end If 

 end for 

• If  (mod(g,t) == 0) 

� If  (( ∆  == c∆ )&(75% of  population having iρ ≥20%)), then ∆  = f∆  

� Else if (( ∆  == 
f∆ )&(75% of population having iρ <20%)),  

then ∆ = c∆  

� Else ∆  is left unchanged 

 End If 

End While 

END ONLINE ADAPTIVE IMORE 
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where x=(x1,x2,…,xd) is the design vector, d is the dimension of the function, m is the 

number of basis functions,  iσ  and iβ  are the standard deviation and magnitude of 

the ith basis function, and ijµ  is the centroid of the jth dimension at the ith basis func-

tion. The parameters of the constructed test functions are listed in Table 2. 

 

 
Table 2. Parameters used to construct the test functions based on Gaussian basis function 

as in eq. (15) 

 

Test 

Function 

Centroid  

[µ1, µ2,…, µm ] 

 

Standard Devia-

tion 

 [σ1, σ2,…, σm] 

 

Magnitude  

[β1, β1,…, βm ] 

Dimen-

sionality 

G1 

0≤ x≤13, 

dt = 1.0 

 

[ 1, 1.25, 1.5, 1.6, 1.8, 

2.2, 2.4, 2.75, 3, 6, 7, 8, 

9.5, 11, 12 ] 

[ 0.5, 0.15, 0.08, 

0.05, 0.1, 0.1, 

0.05, 0.15, 0.5, 

0.4, 0.3, 0.5, 0.5, 

0.3, 0.3 ] 

 

[ 1, 2, 0.5, 1, 2.5, 

2.5, 2, 2, 1, 2, 

2.2, 2.4, 2.3, 3.2, 

1.2 ] 

1 

G2  

0≤x≤ 10, 

dt = 0.5 

 

[ (1,1), (1,3), (3,1), (3,4), 

(5,2) ] 

[ 0.6, 0.2, 1, 0.8, 

0.6 ] 

[ 0.7, 0.75,  

1, 1.2, 1 ] 

2 

G5 

0≤x≤ 10, 

dt = 0.5 

[ (4,1,6,7,8), 

(1,3,8,9.5,2), (8,8,2,2,5), 

(6,4,1.3,5,5), (5,2,9,7,8), 

(9,2,9,3,4.6), 

(6.9,3,2,8,7), (3,5,5,2,4), 

(4,3,5,7,3), (9,8,0.6,3,8) ] 

 

[ 0,3, 0.4, 1.0, 

0.4, 0.6, 0.5, 0.1, 

1.0, 0.2, 0.3 ] 

[ 0.7, 0.75, 1, 

1.2, 1, 0.6, 0.5, 

0.2,  0.4, 0.1 ] 

5 

G10  

0≤x≤ 10, 

dt = 0.5 

 

[ (4,1,6,7,8,3,1,1,5,6), 

(1,3,8,9.5,2,1,5,2,8,4), 

(8,8,2,2,5,3,6,4,3,5,5), 

(6,4,1.3,5,5,3,4,8,4,2), 

(5,2,9,7,8,5,2,7,4,3), 

(9,2,9,3,4.6,2,6,8,8,0), 

(6.9,3,2,8,7,5,2,7,7,3), 

(3,5,5,2,4,7,7,2.3,5,10), 

(4,3,5,7,3,3,1,2,5,2), 

(9,8,0.6,3,8,7,8,9,3,4,6) ] 

[ 0,3, 0.4, 1.0, 

0.4, 0.6, 0.5, 0.1, 

1.0, 0.2, 0.3 ] 

[ 0.7, 0.75, 1, 

1.2, 1, 0.6, 0.5, 

0.2, 0.4, 0.1 ] 

10 

 

In the numerical studies, we employ a 16-bit binary coded Non-dominated Sort-

ing Genetic Algorithm, NSGA-II [21]. Both the population size and the maximum 

search generation allowed are configured as 100. Uniform crossover and mutation are 



applied at probabilities of 0.9 and 0.1, respectively. The offline adaptive IMORE is 

configured with four grades of step-sizes having 1∆ =10%, 2∆ =5%, 3∆ =3%, and 

4∆ =1%. The parameters of the online adaptive IMORE are configured as follows: 

f∆ =1%, 
c∆ =5%, and t=20. Each iteration of nested search is set with a maximum 

computational budget of 400 and 2000 fitness function calls for low (G1, G2, G5) and 

high (G10) dimensional problems, respectively.  

Further, the Pareto front convergence metric (Pc) reported in [22] is used for 

measuring the ability of the adaptive IMORE algorithms in converging to the true 

optimum Pareto-front. This is one of the well-known metrics to evaluate the conver-

gence towards a reference set of non-dominated solutions [23]. To determine Pc, a 

target Pareto front P* is used as the reference. For each solution i in the Pareto front F, 

the shortest Euclidean distance di to P* is calculated using equation (16). 
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where m is the number of objectives, k

uf  and k

lf  are the upper and lower bounds of 

the kth objective, respectively. The Pareto front convergence metric, Pc, is the average 

of di for all design solutions in the final Pareto front F using eq. (17). 
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(17) 

Note that a smaller Pc indicates a greater accuracy of convergence to the true target 

Pareto front. Here, the target Pareto front, P*, is obtained based on the IMORE with 

∆ =1%. 

 

4.1 Comparative Study on IMORE and Adaptive IMORE 
 

In this subsection, we provide an empirical study on the IMORE and adaptive IMORE 

algorithms on each of the abovementioned test functions. The typical Pareto fronts for 

G1, G2, G5, and G10 using the IMORE with ∆ =1% are depicted in Figures 8-11 (a), 
respectively. Also plotted in Figures 8-11 (c) and (d) are the final Pareto fronts for 

both the offline and online adaptive IMORE. It can be observed that both the offline 

and online adaptive IMORE algorithms can converge approximately to the Pareto 

front obtained by an IMORE with ∆ =1%. It is worth noting that the results obtained 
by IMORE with ∆ =5% (from Figure 8-11 (b)) are also presented as an indication of 
possible false convergences. 

 



 
 

Figure 8. Pareto fronts of test function G1 at the end of the 100th generation using 

IMORE for ∆ =1%, ∆ =5%, offline and online adaptive IMOREs 

 

 

 
 

Figure 9. Pareto fronts of test function G2 at the end of the 100th generation using  

IMORE for ∆ =1%, ∆ =5%, offline and online adaptive IMOREs 

 

(a)  IMORE ∆ = 1% (b)  IMORE ∆ = 5% 

(c)  Offline Adaptive IMORE (d)  Online Adaptive IMORE 

(a)  IMORE ∆ = 1% (b)  IMORE ∆ = 5% 

(c)  Offline Adaptive IMORE (d)  Online Adaptive IMORE 



  
 

Figure 10. Pareto fronts of test function G5 at the end of the 100th generation using 

IMORE for ∆ =1%, ∆ =5%, offline and online adaptive IMOREs 

 

 

 

 

 

Figure 11. Pareto fronts of test function G10 at the end of the 100th generation using 

IMORE for ∆ =1%, ∆ =5%, offline and online adaptive IMOREs 

 

 

(a)  IMORE ∆ = 1% (b)  IMORE ∆ = 5% 

(c)  Offline Adaptive IMORE (d)  Online Adaptive IMORE 

(a)  IMORE ∆ = 1% (b)  IMORE ∆ = 5% 

(c)  Offline Adaptive IMORE (d)  Online Adaptive IMORE 



Figure 12 presents the average normalized computational costs for different 

IMORE algorithms across 20 independent runs. Note that the computational cost 

incurred by both offline and online adaptive IMORE algorithms are significantly re-

duced in comparison to the IMORE with ∆  fixed at 1%. As described earlier in sec-
tion 3, the computational cost of the IMORE algorithm is O(gnkl). The offline and 

online adaptive IMORE on the other hand incur a computational cost of O(gnpl) 

where p is the average number of nested searches required. Since p << k, it makes 

good sense that the adaptive IMORE algorithms are significantly faster than its origi-

nal non-adaptive counterpart. Further, a small value for Pc in Figure 13 also indicates 

that both offline and online adaptive IMORE provide good convergence to the true 

optimal Pareto front.   
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Figure 12. Normalized computational 

cost incurred for functions G1, G2, G5, and 

G10 in the IMORE for ∆ =1%, ∆ =5%, 

offline and online adaptive IMOREs 
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Figure 13. Pareto front convergence 

metric for functions G2, G5, and G10  

in the IMORE for ∆ =5%,  

offline and online adaptive IMOREs 

 

 

4.2 Effect of Update Interval Setting in Online Adaptive IMORE 

 
Now, we consider the effect of the step-size update interval, i.e., t in Figure 7, on the 

computational efficiency of the online adaptive IMORE. The 1) normalized computa-

tional cost (with respect to the cost incurred by the IMORE with ∆ =1%), 2) the 

Pareto front convergence metric for several step-size update intervals, t, are presented 

in Figures 14 and 15, respectively. These are the average results of 20 independent 

runs.  

It can be observed from Figure 14 that all settings of the update interval consid-

ered in the study lead to great savings in computational cost over the IMORE with 

∆ =1%. On the other hand, the final Pareto front which the online adaptive IMORE 

converges to is highly sensitive to the configurations of the update interval, t. This 

may be observed in Figure 15 where the Pareto front convergence metric is shown to 

increase with t, which indicates a high dissimilarity between the final and true Pareto 



front with increasing t. Hence, in order to avoid convergence to the false Pareto front 

and maintain the utility of the online adaptive IMORE, appropriate values for t should 

be chosen. From Figure 14 and 15, t=20 appears to give an appropriate balance be-

tween computational cost and convergence accuracy in the online adaptive IMORE 

search. Such an outcome makes good sense and can be easily explained. At the ex-

treme where t=1, the online adaptive IMORE has a computational cost that is equiva-

lent to the IMORE for ∆ =1% due to the overheads to determine the robustness accu-

racies in every search generation. Conversely, since the total computational budget is 

fixed at 100 generations, a lower adaptation frequency may be achieved for large 

values of t, (for instance, when t=50, c∆ = 5% is used in the search for at least the 

initial fifty search generations and has an upper bound adaptation frequency of 1), 

leading to the high possibility of converging to the false optimal Pareto front. In Fig-

ure 15, it may also be observed the convergence accuracies deteriorate when t in-

creases to 40 or 50. Consequently, t at 20 (i.e., providing an adaptation frequency 

upper bound of 4) serves as an appropriate configuration for providing a good balance 

between computational cost and accurate convergence in the online adaptive IMORE. 
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Figure 14. Normalized computational cost 

incurred for functions G1, G2, G5, and 

G10 using different t generation intervals 

in the online adaptive IMORE 
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Figure 15. Pareto front convergence metric 

for functions G1, G2, G5, and G10 using  

different t generation intervals in the online 

adaptive IMORE

 

 

4.3 Enhancing the Computational Efficiency of Online Adaptive IMORE 

by Design of Experiments (DOE) Sampling Techniques 
 

In our efforts to further enhance the computational efficiency of the online adaptive 

IMORE, we also study the possibility of replacing the series of nested optimization 

sub-problems which is computationally very intensive, with well-known sampling 

methods. In particular, we consider the use of Design of Experiments (DOE) sampling 

approaches including Random Sampling (RS), Stratified Sampling (SS), and Latin 

Hypercube Sampling (LHS) [24-26] to generate m sampled design points as an ap-



proximation of the worst-case performance for a design in each of the k iterations 

(please refer to eq. (8)). Here, we present only the empirical results obtained for the 

more complex test functions, which include G2, G5, and G10.  

To generate any possible savings in computational cost using approximation via 

DOE approaches in the online adaptive IMORE, it is required for m<<l, where m and 

l are the number of calls to objective function required for using DOE approaches and 

nested optimization sub-problems, respectively. In the experimental study here, m is 

configured to 243 for lower dimensional problems (G2 and G5), and 1024 for higher 

dimensional problem G10 (since l is around 400 and 2000 for these two types of prob-

lems). Note that this guarantees a computational cost reduction of approximately 40-

50% when using the DOE approaches in the IMORE. All other configurations of the 

online adaptive IMORE are kept the same as in Section 4.1.  

Consequently, our aim here is to determine whether the incorporated approxima-

tion through DOE samplings could also lead to convergence to the true Pareto front. 

The normalized computational cost (with respect to the cost incurred by the IMORE 

with ∆ =1%) and Pareto front convergence metric for the various IMORE algorithms 

averaged across 20 independent runs are presented in Figures 16 and 17, respectively. 

The online adaptive IMORE with DOE samplings are labeled here as OAS-RS 

IMORE, OAS-SS IMORE and OAS-LHS IMORE.  
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Figure 16. Normalized computational cost 

incurred for functions G2, G5, and G10 in 

IMORE, online adaptive IMORE, and OAS  

IMORE algorithms 
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Figure 17. Pareto front convergence metric 

for functions G2, G5, and G10 in online 

adaptive and OAS IMORE  

algorithms 

 

 

All the OAS IMORE algorithms lead to significant savings in computational costs 

over both the IMORE and online adaptive IMORE as expected (since m:l = 243:400, 



and 1024:2000), and arrive at approximately 40-50% increase in search efficiency 

compared to the online adaptive IMORE.   

From Figure 17, there is a clear trade-off in convergence accuracies for reduction 

in computational cost when using approximation in the OAS IMORE algorithms. 

Nevertheless, the OAS IMORE algorithms remain to converge to the true Pareto front 

accurately. This is indicated in Figure 17 where the Pareto front convergence accura-

cies, Pc, are observed to maintain below or around 0.02 for G2, G5, and G10, which 

is clearly competitive to the online adaptive IMORE. In addition, among the OAS 

IMORE algorithms, RS results in poorer convergence accuracies compared to using 

SS or LHS for approximations when searching on the 2D and 5D functions considered. 

This is likely due to the poor coverage of the search space when using random sam-

pling. Further, larger convergence inaccuracies to the Pareto front for G5 and G10 are 

observed in Figure 17. It is worth noting that this is the effect of the ‘curse of dimen-

sionality’ and implies the sample size used, m, may require to increase exponentially 

in order to provide a good coverage of the nested search space as the search dimen-

sion grows. To cope with the issue, a possible solution is to also adapt the sample size 

in the OAS IMORE search.  

In Figures 18 and 19, we present the average performances of the OAS-LHS 

IMORE search on G2, G5, and G10 with an increasing sample size. The sample size 

is to increment gradually with increasing search generations, and is formulated as 

follows: 
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(18) 

where mi is the sample size at the i
th
 generation, gmax is the maximum total search gen-

erations before termination, mmin and mmax are the minimum and maximum sample 

sizes. The setting for mmin, mmax, and gmax in the experiments are listed in Table 3.  

 

 
Table 3. mmin, mmax, and gmax used for test function G2, G5, and G10. 

 

Test Function mmin mmax gmax 

G2 20 200 100 

G5 20 200 100 

G10 102 1024 100 

 

The results are compared to those of the online adaptive and OAS-LHS IMORE as 

reported in Figure 16 and 17 previously. By adapting the sample size m, there is now 

more than 70% reduction in the computational cost. More importantly, the trade-off of 

this significant cost saving for convergence accuracy is minimum as shown in Figure 

19, even on the higher dimensional G10 problem.    
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Figure 18. Normalized computational cost 

incurred for functions G2, G5, and G10 in 

online adaptive, OAS-LHS with fixed sam-

ple size, and OAS-LHS with adaptive sam-

ple size IMORE algorithms. 
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Figure 19. Pareto convergence metric for 

functions G2, G5, and G10 in online adap-

tive, OAS-LHS with fixed sample size, and 

OAS-LHS with adaptive sample size 

IMORE algorithms 

5    Conclusion 

In this paper, an Inverse Multi-Objective Robust Evolutionary (IMORE) algorithm for 

design optimization in the presence of uncertainty has been presented. Using the a 

prior information on the desired robustness of the final design, the algorithm has been 

shown capable of converging to a set of solutions that gives good nominal perform-

ances while exhibiting maximum robustness. Most importantly, these solutions were 

discovered without any requirement to make assumptions about the structure of the 

uncertainties involved. It is realized that the major drawback of the IMORE would be 

the massive computational cost that could incur. Hence, adaptation strategies are in-

troduced in the IMORE algorithm to reduce the massive computational efforts in-

curred in the nested design searches. In particular, we consider adapting the step-size 

for determining the search bound in every sub-problem optimization and trimming 

down the number of objective function calls by the DOE sampling methods. Empirical 

results on diverse test functions show that the proposed adaptive IMORE algorithms 

provide convergence to the true Pareto fronts on all the functions considered. The 

computational costs incurred by the adaptive IMORE algorithms are also significantly 

reduced.  

Since the adaptive IMORE still typically requires an enormous number of func-

tion evaluations to locate near Pareto optimal solutions, the use of IMORE can be-

come computationally prohibitive for a class of problems with computationally expen-

sive objective functions. It is thus desirable to retain the appeal of inverse multi-

objective robust evolutionary algorithms that can handle computationally expensive 



design problems and produce high quality designs under limited computational budg-

ets. An intriguing future work is hence to consider the use of meta-modeling strategies 

[27-28] in the IMORE design methodology for solving problems with computationally 

expensive objective functions. 
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