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Abstract The genetic programming bibliography aims to be the most complete reference of
papers on genetic programming. In addition to locating publications, it contains coauthor and
coeditor relationships which have not previously been studied. These reveal some similarities
and differences between our field and collaborative social networks in other scientific fields.
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1 Introduction

This paper is not about genetic programming (GP) results or methodology; it is about us,
the actors of the genetic programming community. It is about the technical and social bonds
between us. Naturally these are difficult to quantify, so we will do as other fields have done,
and use joint published work to stand for social bonds. While this is obviously far from
perfect, we have an immediate, (almost) comprehensive and quantitative data source in the
genetic programming bibliography.

The genetic programming bibliography, created and maintained by one of us (WBL) and
by S. Gustafson,1 is a database that contains most of the papers published in the GP field
since its inception. As such, it is a rich source of data that implicitly describes many aspects
of the structure of the GP community. Searching the bibliography and looking at the images2

immediately provides a lot of useful information about the field and its actors. However,
a deeper analysis of the data, that goes beyond the mere pictorial aspect, provides a much
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more complete view. Indeed, in a very real sense, the coauthorship data is a social network
because the act of collaborating in a research study usually requires personal acquaintance
among the coworkers. Social network analysis, although it is an old discipline, has recently
received new impetus and tools from the field of complex networks [1]. Analysis of social
systems as complex networks has produced an amazing amount of important results in just
a few years. An excellent survey of the main methods and results can be found in [2].

Only a few basic concepts are needed to understand the specific case of the GP collabo-
ration network. An actor, or node, is an active GP researcher. That is, someone who has at
least one entry in the bibliography. There is a connection between two actors if they have
coauthored one or more papers. This gives rise to a network that can be described with
the tools of graph theory. Similar studies have been recently performed on several other
collaboration networks in disciplines such as physics, mathematics and medicine [3–5].

2 Fundamental features of the collaboration network

The GP coauthorship network comprises a total of N = 2684 connected nodes (authors) and a
total of 11,005 edges (collaborations). There are 358 isolated vertices. These represent authors
who have not collaborated with others to the extent of coauthoring a paper. (Isolated vertices
are ignored in our graph statistics.) Due to the youth of GP, the graph is small compared
to some previously studied collaboration networks which contain tens of thousands or even
hundreds of thousands of authors [4]. This has both advantages and drawbacks. The main
disadvantage is that, like any statistical study, more data allows deeper and more meaningful
inferences to be drawn. In particular, studies of the form of the distributions (such as whether
they follow exponential or power laws) requires a lot of data. The advantages are that the
graph almost fully represents the state of the whole GP community (as of April 2006). This
allows reliable characterisation of collaboration in the community. Also, the problems of
homonymy, outliers, and different name spelling that plague the larger data sets, are very
unlikely and easy to spot in our data. We included conference proceedings and edited books,
as well as standard conference and journal articles. While edited books and some proceedings
(e.g. EuroGP proceedings) usually do reflect personal acquaintance, some may not. Below,
we present and discuss some basic measures that characterise our collaboration network.

2.1 Number of papers per author

The average number of papers per author is 3.5. The graph of the distribution P(k) of the
number k of papers per author is rather bumpy, especially in the tail of the distribution.
Instead, we present in Fig. 1 the graph of the cumulative distributionP(k ≥ n) which is
smoother and allows the same inferences to be made. The curve is rather well fitted by a
straight line, and thus the distribution follows a power-law, with a calculated exponent of
2.5. This is in line with previous results on other coauthorship networks such as Medline and
NCSTRL (see Table 1) which have exponents 2.8 and 3.4, respectively [4].

2.2 Number of collaborators per author and number of authors per paper

The average number of collaborators per author is 8.2. However, this includes a single paper
with 108 coauthors in a nuclear physics journal. If we leave out this an anomalous entry,
then the average drops to 4.06. This is close to the values for disciplines that follow similar
collaboration patterns such as computer science (NCSTRL) or Mathematics (see Table 1).
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Fig. 1 Cumulative distribution
of the number of papers per
author. Log-log scale. The
straight line is a mean-square fit

Fig. 2 Cumulative distribution of the number of authors with a given number of collaborators on log-log
scales (a). The same distribution on linear-log scales (b)

Figure 2 shows the cumulative distribution of the number of collaborators. From Fig. 2(a)
one sees that the distribution is not a pure power-law, otherwise the points would approxi-
mately lie on a straight line, but rather there is a power-law regime in the first and middle
parts, while the tail decays exponentially. This is confirmed by Fig. 2(b), where the tail can
be approximately fitted by a straight line due to the use of a linear-log scale. That is, the
whole network cannot be fitted by a power-law. This is quite common. In fact, many social
networks do not follow a power-law degree distribution [6].

Table 1 Basic statistics for some scientific collaboration networks.

GP SPIRES Medline Mathematics NCSTRL

Total number of papers 4139 66,652 2,163,923 1,600,000 13,169
Total number of authors 2684 56,627 1,520,251 253,339 11,994
Average papers per author 3.5 11.6 6.4 7 2.55
Average authors per paper 2.25 8.96 3.754 1.5 2.22
Average collaborators per author 4.06 173 18.1 2.94 3.59
Size of the giant component (%) 35.0 88.7 92.6 82.0 57.2
Clustering coefficient 0.669 0.726 0.066 0.15 0.496
Average path length 4.72 4.0 4.6 7.73 9.7

GP is our network. SPIRES is a data set of papers in high-energy physics. Medline is a database of articles on
biomedical research. Mathematics comprises articles from Mathematical Reviews. NCSTRL is a database of
preprints in computer science. Details on those databases can be found in [3, 4].
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Fig. 3 Cumulative distribution of the number of papers with a given number of coauthors on log-log scales
(a). The same distribution on linear-log scales (b)

Figure 3 shows the cumulative distribution of the number of papers written by a given
number of coauthors. Here the distribution also has a tail that is fatter than that of a normal
or exponential distribution, but it does not appear to follow a power-law.

2.3 Distribution of connected components

In the theory of Poisson random graphs, above a critical value of average degree 〈k〉 = 1, one
observes the sudden appearance of a so-called giant component of size O(N ). That is most
vertices belong to that component and the other components are smaller with an exponential
size distribution [2]. Although collaboration graphs differ from standard random graphs, they
often also show this phenomenon. In our case, the size of the giant component is 942 authors,
which represents 35% of the total graph size. For the actors belonging to the giant component
the average number of collaborators per author is 5.54. The cumulative size distribution of
the connected components is depicted in Fig. 4; from these data, the probability density
function is well approximated by a power law exponent of −2.63. The existence of a big
connected component has a social meaning. It means 35% of GP researchers are members of
a single community, since those researchers are either directly connected via a collaboration
or they are close to each other in a way that will be made clear in Section 3.

2.4 Clustering coefficient

The clustering coefficient of a graph indicates to what extent your friends are themselves
friends. It can be seen as the fraction of connected triples in the graph that are triangles

Fig. 4 Cumulative distribution
of the number of components in
the graph as a function of their
size. Log-log scale. The straight
line is a mean-square fit
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[2]. Most biological and social networks (and some technological networks) have a much
larger clustering coefficient than would be expected of a random graph with the same
number of vertices and edges. Social networks are particularly clustered. For example, the
clustering coefficient is 0.669 for the GP collaboration graph. (We would expect 0.0031 for
the corresponding random graph). In terms of scientific collaborations, a high clustering
coefficient means that people tend to collaborate in groups of three or more. This agrees with
what we know of the GP field. It may mean that two researchers that collaborate independently
with a third one may, in time, become acquainted and so collaborate themselves. Alternatively
it might be due to collaborators coming from the same institution.

We summarise in Table 1 most of the results of this section, together with those for some
other collaboration networks. Most GP statistics are similar to those of the larger databases.
However one notable difference is the relative smallness of the largest component. This
may be due to the comprehensive nature of the GP bibliography. It captures work done by
smaller groups which does not get into major journals, whereas, perhaps, the other databases
concentrate upon higher impact outlets where work is heavily cited but at the expense of
ignoring less regarded authors. This may artificially inflate the fraction of authors within
their giant component. Alternatively it may be due to the youth of the GP field, with many
semi-isolated individuals and groups starting research independently. However as time goes
by, one should observe small components progressively connecting themselves to the large
one. The clustering is rather high, which shows that GP researchers know each other quite
well within the large component, and the community is rather homogeneous. In contrast in
biology and medicine or mathematics, where scientist from different sub-disciplines seldom
collaborate, the clustering coefficient is much lower. Note also the high number of authors
per paper, and especially the strikingly high number of collaborators per author in the nuclear
physics community (SPIRES). Clearly, nobody can maintain an average of 173 scientific
partners on a first-hand acquaintance basis and thus this figure is not socially meaningful.

3 Distances, centrality, and assortativity

A social network can be characterised by a number of measures that give an idea of “how far”
people are from each other, or how “central” they are with respect to the whole community.
These measures are well known in social network analysis. Here we shall concentrate on
mean path length and on betweenness.

3.1 Mean path length

In many real networks, such as the Internet, the World Wide Web, social networks, and
many others, including random graphs, the path length between any two vertices scales as a
logarithmic function O(log N ) of the number of vertices N. Such networks, if they also have
a high clustering coefficient, are known as small worlds networks. Since, even for very large
graphs, in contrast to regular lattices, any two nodes in a small world network are only a few
steps apart. The mean path length3 of the giant component of the GP collaboration graph
is 4.72 and the longest among all the shortest paths (known as the diameter) is 14. Thus,
unsurprisingly, the GP community, but only as far as its “core” component is concerned,
is indeed a small world and is characterised by measures that are typical of these kinds of

3 The mean path length is the average of the shortest paths between all pairs of nodes in the graph.
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network (see Table 1). Being a small world means that information may circulate quickly
and collaborations are easier to set up, which is advantageous for a research community. The
connected components following the largest one are themselves small worlds. We expect
over time some of them will merge with the largest component. (For this to happen, only a
single new collaboration between two scientists each belonging to one of the components is
needed.)

3.2 Betweenness

The betweenness b(v) of a vertex v is the total number of shortest paths between all possible
pairs of vertices that pass through this vertex. Nodes that have a high betweenness have more
control, i.e. they are more central in the network, in that there is more “traffic” that goes
through them. The first five authors (in decreasing order) in terms of centrality in the network
are: W. Banzhaf, H. Iba, U.-M. O’Reilly, H. de Garis and W. B. Langdon. People who have
a large value of betweenness play the role of intermediaries or “brokers” in a social sense.
W. Banzhaf is also the researcher that has the highest number of different collaborators.

3.3 Degree correlations

One interesting aspect of real-life networks is the correlation between the degrees of neigh-
bouring nodes, called degree assortativity. Most technological and biological networks have a
negative correlation. That is, high-degree vertices are preferentially connected to low-degree
vertices, while most measured social networks are assortative. Meaning highly connected
nodes tend to be connected with other highly connected nodes [2]. Our collaboration net-
work confirms this general observation with a correlation coefficient of 0.13 for the giant
component, and 0.27 for the whole graph (excluding the single physicist’s paper). These are
close to the coefficients observed for other social networks (specifically 0.127 for Medline
and 0.120 for Mathematics [7]).

In the mathematical literature, a popular game is the calculation of the “Erdös number”
[3]. P. Erdös was an extremely prolific mathematician who published more than one thousand
papers, most of them with other researchers. A mathematician’s m Erdös number is the length
of the path from m to Erdös in the collaboration graph. Just for fun, we did the same for three
well known GP-ers: J. R. Koza, W. B. Langdon, and R. Poli. Our arbitrary criterion of choice
of these three names was just that they have the highest number of published GP papers,

Fig. 5 Distance distributions for
some authors in the collaboration
graph
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in that order. We also added a fourth distribution, corresponding to W. Banzhaf, because he
had the highest betweenness. Figure 5 shows the distributions of Koza’s, Langdon’s, Poli’s,
and Banzhaf’s numbers. We observe that W. Banzhaf has the shortest distances to most other
actors, which is a confirmation of him having the highest betweenness. On the other hand,
J. R. Koza, who is the person having the highest number of papers, is a bit more eccentric in
the network. W. B. Langdon and R. Poli appear to have a rather similar distance distribution
ranging between the previous two.

4 Conclusions and outlook

We have characterised the GP coauthor collaboration graph by means of a number of
statistical measures. When doing so, several interesting features emerge that are analogous
to those observed for other collaboration networks. Our community also has its peculiarities,
mostly due to the its youth and to the fact that the discipline is more narrowly focused
than, say, mathematics or physics. It should be obvious that the present “hard” approach to
social network analysis can only provide some answers but not all of them. Typically, such
“emotional” human aspects such as friendship in scientific collaboration or the geographic
closeness of two research institutions will be buried in the sea of numbers and will never
appear explicitly from such analyses. Nevertheless, we feel that our results are interesting
and useful in the way that they characterise our community.

There are several other interesting observations that could be made, for which we do not
have space here. One is the study of the sub-communities present in the large component.
While the giant component is in itself a community with a clear boundary, one could search
it for groups of closely connected researchers. Another aspect that would be revealing is the
analysis of the time evolution of the collaboration graph. Perhaps there is not enough data for
that study but it could highlight things about the community’s evolution. Another interesting
point concerns the act of collaboration itself. While an edge between two researchers in the
graph means that they have collaborated at least once, it would be more correct to study
the weighted graph. That is each edge could be weighted proportionally to the number of
corresponding joint papers thus somehow expressing the “strength” of the collaboration. We
are investigating these extensions.
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