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Abstract. Cochlear implants are devices that become more and more
sophisticated and adapted to the need of patients, but in the same time
they become more and more difficult to tune. After a deaf patient has
been surgically implanted, a specialised medical practitioner has to spend
hours during months to precisely fit the implant to the patient. This pro-
cess is a complex one implying two intricated tasks: the practitioner has
to tune the parameters of the device (optimisation) while the patient’s
brain needs to adapt to the new data he receives (learning). This paper
presents a study that intends to make the implant more adaptable to en-
vironment (auditive ecology) and to simplify the process of fitting. Real
experiments on volunteer implanted patients are presented, that show
the efficiency of interactive evolution for this purpose.’

! This work has partially been funded by the French ANR. - RNTS HEVEA project
04T550



1 Introduction

Cochlear Implants (CI) [Nih89] allow totally deaf people to hear again pro-
vided their auditory nerve and cochlear are still functional: a computer processes
sounds picked up from a microphone, to stimulate directly the auditory nerve
through several electrodes inserted inside the cochlea (cf. fig. 1).

As one can imagine, there are hundreds of parameters that can be tuned,
and in the same time the patient has to learn to “hear” using new informations
provided to his auditory nerve. The tuning of such a device is thus extremely
complex, and highly dependent on the patient. This process is currently done
“by hand” by medical practitioners, and looks like an optimisation process based
on “trial and error.” This process is so delicate that sometimes, no satisfactory
fitting can be found for some patients.

Hence, it seems interesting to use an interactive evolutionary algorithm (IEA)
to help finding the best values for implant parameters. This is the main topic
of the HEVEA project, which is a collaboration between computer scientists,
signal processing experts and medical researchers. The aim is actually twofold: to
facilitate the initial fitting of cochlear implants, and to automatise the adaptation
of cochlear implants to various sound environments. A simple IEA was developed
with this in mind, and tested on a very basic feature, the range of intensities
that a specific electrode can take when stimulating the auditory nerve. The IEA
has been implemented on a PDA and tests have been performed on volunteering
patients with satisfying results.

The paper is organised as follows: section 2 presents cochlear implants, and
section 3 describes how they are currently tuned by medical practitioners. The
approach of the HEVEA project is developed in section 4, and a first implemen-
tation of an IEA is detailed in section 5. Experiments on several patients are
reported in section 6, yielding good results as well as important conclusions on
manual fitting procedures. This first validation step is important: an analysis
of the success and failures raises new questions that are developed in section 7,
related to the well-known “user fatigue” problem of IEAs, and to the fact that
different sound environments have an important influence on implants fitting.
Automatic adaptation of the device to sound has been investigated, based on
a sound signal classification scheme, which is detailed in section 7. Conclusions
and perspectives are described in section 8.

2 Cochlear Implants

A cochlear implant is a surgically implantable device [GFM™98]| that provides
hearing sensations to individuals with severe to profound hearing loss, and can-
not benefit from hearing aids. In a normal ear, sound energy is converted to
mechanical energy by the middle ear, which is then converted to electrical im-
pulses by the inner ear (see figure 1). In order to perform this last stage, the
cochlea (part of the inner ear) contains a fluid which is set into motion by the
oval window which is connected to the middle ear. Within the cochlea, sen-
sory cells (inner and outer hair cells) are sensitive transducers that convert the



mechanical fluid motion into electrical impulses conveyed to the brains by the
auditory nerve. Cochlear implants are designed to be a substitute for the middle
ear, cochlear mechanical motion, and sensory cells, transforming directly sound
energy into electrical energy that will initiate impulses in the auditory nerve
[B.C95], [Coh89] thanks to a digital signal processor.

Fig. 1. All implant devices have the following features in common : sound is collected by
a microphone (1) and sent to electronic components within a speech processor (2). The
speech processor analyzes the input signal (sound) and converts it into an electronic
signal (electrical). This code travels along a cable (3) to the transmitting coil (4) and
is sent across the skin via frequency modulated (FM) electro-magnetic waves to the
implant package (5). Based on characteristics of the code transmitted to the internal
device, electrode contacts within the cochlea (6) provide electrical stimulation to the
spiral ganglion cells and dendrites extending into the modiolus. Electrical impulses
then travel along the auditory nerve (7), ascending auditory pathways to the brain.

Cochlear implants have been very successful in restoring partial hearing to
profoundly deaf people [ALMO95], [Osb97]. In 2006, around 70 000 deaf people
are implanted with such devices around the world. Efficiency is quite variable,
ranging from totally deaf patients that have fully recovered their audition and
are capable to follow telephone conversations and enjoy music, to others who
hear strange sounds they can’t benefit from, to a point where they prefer to
switch off the implant [COM94], [GTBVCO01|, [BTE04], [Rom98|.

For many people, it is still difficult to fully take advantage of the device
because it is not easy to tune the parameters of digital signal processor and
adjust them for the characteristics for each patient, since all patients are different
(cause of deafness, number of years between total deafness and implantation, age,
depth of electrode insertion,. .. ).

Research has been going on since nearly 50 years ago on how to electrically
stimulate the auditory nerve to give a totally deaf patient sound sensations



[LPDO00,Loi01]. Even though the early devices stimulated the auditory nerve
with one electrode only, some lucky patients managed to hear again and even
understand speech. Nowadays, it is technologically possible to use more than one
electrode, in order to stimulate more of the thousands of neurons the auditory
nerve is made of [PCMF79] [CFMLS83|. However, the more electrodes, the more
parameters to tune.

The cochlea is used to interface electrodes and the auditory nerve. The
cochlea is a biological device that mainly allows to map different sound frequen-
cies onto different neurons. It is shaped like a snail shell. Only long wavelengths
(low frequency sounds) can reach the far end of the cochlea, while short wave-
lengths (high frequency sounds) are stopped at the entrance of the cochlea. The
idea is then for surgeons to use this frequency discriminator and insert into the
cochlea a thin silicon wire, bearing several electrodes.

Stimulating an electrode on the far end of the wire will therefore make the
patient hear a low pitch sound, while stimulating an electrode near the entrance
of the cochlea will result in the patient hearing a high pitch sound.

3 Cochlear Implant fitting

3.1 Complexity of the problem

Being able to use more than one electrode to stimulate different neuron areas
is indeed a great improvement, but the number of parameters to tune increases
drastically. Concerning electrodes only, many questions arise, among which:

Which frequencies should be mapped to which electrodes ?

Which range of intensities should be applied to which electrodes ?

— How many electrodes should be stimulated simultaneously 7

— Should the processor prohibit neighbour electrodes to be stimulated simul-
taneously in order to avoid diaphony (crosstalk between nearby electrodes) ?

Finding good answers to these questions is a difficult optimisation problem.
This not only due to the extremely large size of the search space but to several
other reasons. First of all, the quality of a fitting is a two stage process where
subjectivity plays a large role: the practitioner has to interpret the quality of the
fitting (first subjective process) from the answers given by the patient (second
subjective process). The disparity of patient behaviour with respect to language
and sensitivity to various thresholds, as well as the character of the practitioner
deeply influences the results. For example the well known psychological “Pyg-
malion” effect biases answers of the patient, who often unconsciously tries to
satisfy the practitioner’s expectations.

The sound environment is another cause of variability of results, as the fitting
session usually takes place in a small room at hospital with the practitioner.
However the cochlear implant must also be used in real life, and a correct fitting
at hospital may reveal very uncomfortable or unuseful when in the street, or in
a restaurant.



Fatigue and brain adaptation are also other sources of trouble: it is impossible
to test many possible parameter sets during a single session, so the process is
very long and needs sometimes weeks to obtain a satisfying result. In the same
time, a fitting that may not appear immediately as satisfying, may improve when
testing it on a longer period (brain has a plasticity that cannot be neglected).

There are many factors that make this problem highly irregular. However,
it has been proved that an acceptable or even good fitting is reachable by a
manual search conducted by an experienced practitioner. We describe below
this manual fitting technique, which is mainly a human-guided “trial and error”
process, resembling a local search.

3.2 Manual fitting

Nowadays, depending on the manufacturer, the number of electrodes varies be-
tween 8 and 22. Cochlear implant “fitting” is performed by an expert practitioner,
who proceeds in the following way:

— Right after the surgical intervention, the practitioner tries to determine
which electrodes are functional (an electrode is functional if the patient hears
a sound when current is applied to the electrode).

— For each functional electrode, the practitioner tries to determine the range
of intensities that can be used. The lowest intensity above which the patient
perceives a sound is called T (for Threshold). The maximum confortable
intensity (loudest sound the patient can bear for a reasonable amount of
time) is called C' (for Comfort threshold).

Determining the 7' and C' values for each electrode takes time (communi-
cation with a deaf patient, a young child, or with an old patient can be
difficult), and due to the increasing number of electrodes, some manufac-
turers now advise to determine 7" and C values for one every three or four
electrodes, and extrapolate the values for the other electrodes. See [Rou01],
[Hes02] for more informations on this topic.

Other manufacturers even set average values for 7" and C, based on neural
response or even statistics.

— Then, once the C' — T range is maximised for all the electrodes, the “real”
fitting begins. The practitioner uses his expertise to map frequency bands
logarithmically onto the different functional electrodes, and starts to tune the
gain and sensitivity depending on sound frequencies, then tunes the number
of simultaneously active electrodes,... while at the same time asking the
patient whether they understand better or worse, whether the sound quality
is comfortable or not, a.s.o.. In certain cases, the practitioner will slightly
reduce the C'— T range for some electrodes, when he has the feeling that the
“neurologic” bandwidth is limited, and that the neurons facing the electrode
are getting saturated at only moderate auditory levels.

Results are variable, but often good. Usually, a fitting session starts with the
practitioner asking whether the current fitting is better or worse than the previ-
ous one. The best of the recent fittings is taken as a basis that the practitioner
will try to improve, resulting in some sort of hill climbing process.



The patient tries to describe the quality of his audition, and the practitioner
tries to modify some parameters to help solving the problems. Two or three
parameters can be changed during a 30 to 90 minutes fitting session. Then, the
patient leaves with the new settings that he keeps for a couple of months, before
he comes back for another fitting session. The whole process is therefore very
long (several years for problematic patients).

4 Description of the Problem

As seen above, fitting cochlear implants is done through a set of correlated pa-
rameters [LPD00], and perception and comfort thresholds are linked to histopatho-
logical factors specific to the patient [KSC198|. In most cases, the fitting strategy
simply consists in maximising the number of electrodes and maximising their dy-
namic range [BPG192|. This often gives good results, but for some patients this
approach does not work. Moreover, the following observations have also been
reported:

— Better results might be obtained by decreasing the dynamic range [FXP03].

— Only using a subset of electrodes might improve speech recognition [ZCW97].

— Holes in spectral representation can exist in tonotopic representation (map-
ping of the sound frequencies on the electrodes) and spectral information
redistribution around the holes does not increases results [SGD02].

Moreover:

— Most of the patients do not use all the information given by the electrodes
[Fis96].

— All the electrodes are not necessary to obtain maximal speech perception
performance in silent [DDML89,LWZF96,Fis96, K VR *00] and noisy environ-
ments [FSBWO1] (part of this could be due to electrical interaction between
channels [SLMT06]).

These published observations show that choosing a good subset of electrodes
can have an influence on speech understanding, as well as the dynamic range
on the electrodes. Finally, taking into account a real sound environment could
increase speech understanding for some patients.

The work presented in this paper will try to address both problems.

5 Description of the Interactive Evolutionary Algorithm

It seems that many patients who are not satisfied with their cochlear implant are
stuck in a local optimum: no modification proposed by the expert would bring
any improvement.

This triggered the idea to use evolutionary algorithms, that are both quite
good at optimising parameters and not easily trapped in local optima. The ge-
netic loop is the following: the EA “suggests” a set of parameters that are directly
uploaded into the Cochlear Implant’s processor, and waits for an evaluation.



Other works have been conducted on interactively fitting hearing aids with
evolutionary algorithms, [Dur02,Tak01,Tak02], but they concern only conven-
tional hearing aids, with a relatively small number of parameters that can be
tuned. To our knowledge, nobody has tried to apply evolutionary algorithms to
Cochlear Implants fitting.

5.1 Managing the runs

In an interactive evolutionary algorithm, a human user evaluates the different
individuals proposed by the algorithm.

Thomas Béck’s results ([Bae05]), suggest that an evolutionary algorithm may
do as well (if not better) than a human expert on a number of evaluations of
the same order than the number of real parameters to optimise. Therefore, if the
problem has around 100 parameters to tune, performing only 100 evaluations
should already allow to obtain interesting results. If it is possible to find an
evaluation procedure that takes around 5mn, a run would last around 8 hours.

However, it is also important to take psychology and human fatigue into
account: a well tuned convergence speed over 100 evaluations could seem dis-
couraging for a human patient, who may think that improvement is too slow.
Besides, since it is not possible to have an 8 hour run in one go, an elegant
solution consists in fractioning the experimentation into several partial fast-
converging runs, with a restart at the end of each run [Jan02|. Dividing the 8
hour run into 5 makes for 5 1h30 runs, that are quite manageable.

Rather than finding ways to avoid premature convergence, it is on the con-
trary a very fast convergence that is sought on these short runs of approximately
20 runs. This is quite nice, since evolutionary algorithms are known to converge
quite fast, if no counter-measures are taken.

This policy allows to use a very fast converging algorithm trying to exploit
local minima, rather than a slow converging algorithm trying to widely explore
the search space, looking for the global minimum. The consequences of premature
convergence are dealt with thanks to the periodical restarts. During the last run,
one can restart the algorithm with the best individuals found in the 4 first runs,
so as to benefit from the results previously found.

Population size and number of children per generation. For an identical
number of evaluations, two possibilities exist: either many children per gener-
ation and a small number of generations, or a small number of children per
generation and many generations.

Out of these two possibilities, it is the algorithm that maximises the number
of generations that will favour most convergence. This suggests a SteadyState re-
placement policy, or a (u+ ) with a very reduced A (number of children) |[Bae95.
Then in order to not spend too many evaluations in the initial population, one
can also reduce it as is done in micro-GAs [Kri89).

Extremely low values can be used, such as 3 to 6 individuals for the initial
population, with 1 to 3 children per generation. For the fifth run, 4 individuals



could be used for the initial population, taken from the best individuals of the
4 previous runs.

The algorithm chosen for this specific interactive optimisation will therefore
be a modern evolutionary algorithm, in the sense that it does not take after any
of the four usual paradigms (Evolution Strategies, Genetic Algorithm, Genetic
Programming, Evolutionary Programming) [DJ05|.

According to Béck [Bae05], using an Evolution Strategie paradigm for 100
evaluations should allow to optimise up to 100 real variables. In Cochlear Im-
plants fitting, however, one can start with trying to find the best T and C values
for each electrode. With the MXM 15 electrodes CI used for this experiment, the
genome is therefore an array of only 30 real values, meaning that the chances to
find a good fitting are much higher.

5.2 Initialisation

One hard constraint needs to be respected: the algorithm should not go beyond
the maximum intensity for each of the electrodes for fear of destroying some of
the patient’s auditory neurons. Therefore, for each new patient, a first session
with a practitioner is realised to determine the maximum admissible intensity for
each electrode, that is called a psychophysical test. In order to reduce the search
space, a minimal intensity below which the patient does not hear anything is
also determined.

The initialisation of each individual therefore simply consists, for each of
the 15 electrodes, to pick up two random values within the [min, maz] interval
determined during the psychophysical test, and to take the lower value as a T’
threshold, and the higher value as a C' threshold for the each of the 15 electrodes.

5.3 Selection of the parents

Parents selection is different from the replacement stage, in that it can select
an individual several times. Whenever a child must be created, two different
individuals are selected among the parent’s population, that can be selected
again to create another child.

Since the selection pressure of proportional selection depends on the fitness
landscape of the problem to be solved (which is unknown), a stochastic tour-
nament is selected [BT97], with a 90% probability, that consists in randomly
selecting 2 individuals and to take the best of the two with a 90% probability.

5.4 Crossover

The genes are real values, which could have suggested some kind of barycentric
crossover (such as used in Evolution Strategies), where each gene of the child is
an average between the two genes of his parents. But since it is intervals that
must be evolved, this type of crossover would have led to reducing the intervals
progressively.



The chosen crossover is that of genetic algorithms, which exchange the par-
ent’s genes after a crossover point (locus) chosen randomly. A mono-point crossover
was chosen, as a multiple crossover would have had a tendency to break efficient
genomes, and would have turned the crossover in a kind of macro-mutation.

In this same attempt to not break good configurations, the determination
of the locus is made electrode by electrode (the two T and C' values are not
separated). Since we are using a (i + \) evolutionary engine, with a number of
children smaller than the size of the population, the crossover is called to create
each child (100% probability).

5.5 Mutation

Mutation is also called with a 100% probability on each created child. In the
proposed algorithm, each gene has a 10% probability to be mutated. Since there
are 30 genes, each child undergoes 3 mutations in average. This may seem impor-
tant, but due to the large epistasis, modifying a threshold on the global genome
only has a limited influence on the global evaluation. This high mutation rate
allow to keep a reasonable exploratory character to the algorithm, in spite of the
very small number of evaluations.

5.6 Replacement

A Steady State-like replacement is used, i.e. with a very small number of children
per generations, in order to promote a fast convergence. During a strict Steady
State replacement, only one child would be created, that would replace the worst
of both parents. Since we decided to have several children per generation, it
is a (1 + A) replacement scheme that is used, with only 2 or 3 children per
generation (where Evolution Strategies usually create more children than there
are individuals in the population).

5.7 Evaluation

It is possible to memorize 2 or 3 fittings on modern cochlear implant processors
(called P1,P2,P3). Until this research was conducted, the evaluation of the
patient’s understanding was done by two different ways. Either the patient was
sent home with the new fitting on P1 and the previous fitting on P2, which
allowed him to compare both fittings in his environment, or an evaluation was
done by an orthophonist with intensive tests during more than one hour.

Even though an interactive evolutionary algorithm requires a reduced number
of evaluations [Tak98| none of these methods were suitable for an interactive
evolutionary algorithm, so various evaluation protocols have been devised and
will be described in details in section 6.



5.8 Execution

The evolutionary algorithm has been implemented both on a regular Personal
Computer and on a PDA so that it is possible for a patient to tune his cochlear
implant in a real environment (in a train station, for instance, if the patient
works there and really needs a specific fitting for this particular environment).
The graphical interfaces are presented in figures 2 and 3.

Projet HEVEA control panel

Fig. 2. Graphical Interface on a standard PC computer.

The first versions have been implemented using the EASEA? language [CLSLO0]
in combination with the GALib library [Wal]. Later versions have been com-
pletely re-implemented from scratch in C++ because apparently, the GALib
library did not use the first evaluations for the initial population, and for this
specific application, each evaluation counts.

6 Experiments

The first three sub-sections present results obtained with patient A, that were
conducted by Claire Bourgeois-République, as part of her PhD. thesis of the
Université de Bourgogne. These results have already been presented in several
papers [BR04,BRVC05,BRFCO05|.

The following experiments have been conducted by Vincent Péan and Pierrick
Legrand within the RNTS HEVEA project, funded by the French Ministry of
Health.

% http://sourceforge.net /projects/easea or
http://complex.inria.fr/cgi-bin /twiki/view /Complex/Software EASEA
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Fig. 3. Graphical Interface for pocket PC

6.1 Presentation of Patient A

Patient A has received an MXM cochlear implant 10 years ago in 1994. Unfor-
tunately, he has not recovered a perfect audition (he understands some words
quite well, but not others), although he is able to hold a conversation over the
telephone, which is already quite a feat.

He was initially given a waist processor (called “boitier”) to be carried at-
tached to his belt, until MXM recently came up with a tiny “Behind The Ear”
BTE processor. In 2003, patient A has received a BTE with the hope that new
technology would allow him to hear better.

Unfortunately, this is not the case. After many disappointing fitting sessions
with an expert practitioner, he still feels uncomfortable with the BTE and ap-
parently cannot follow a conversation with it. He therefore keeps the BTE in a
drawer and uses the old Boitier for every day life.

The automatic fitting algorithm described in this paper was developed with
the latest MXM technology, i.e. BTEs. It was thought that Patient A could be
a nice patient to test the evolutionary algorithm, with the remote hope to find
parameters that would allow him to hear with his state of the art BTE at least
as well as with his old Boitier.

To start with, Patient A came to the hospital for yet another fitting session
with a practitioner, with the aim to determine the minimum and maximum
(C and T) intensity values for each of the electrodes for his BTE, to feed the
evolutionary algorithm (cf. table 1).

Electrodes 10 11 and 12 have C and T values of 0 because the auditory neu-
rons they face have apparently been damaged (Patient A does not hear anything
whatever intensity is applied to these electrodes).

In order to be able to compare fittings, evaluations were done with the best
fittings on the Boitier and the BTE. The results corresponded to his claims.
With the 78%/22% evaluation described above:



|Electrode] 1 [2 [3[4[5] 6 | 7 [8] 9 [10[11]12[13[14[15]
Min 6 6,5]6,5]99] 9 [ 8 [8] 8 [0J0J0[7]6]5
Max 9,5/13]13]18[20[21,5[21,5[18[16,5[ 0 [ 0 [ 0 [12[10] 9

Table 1. Minimum and maximum intensity (C and T values) for each electrode for
Patient A.

— The boitier obtained an evaluation of 53/100 (slightly more than 50% of the
78 words were understood).

— The BTE obtained an evaluation of 48.5/100 (fewer words were understood
and the BTE is less confortable).

6.2 First set of experiments

Evaluation for the Patient A. A new evaluation protocol have been devised,
using calibrated sentences extracted from a list of “cochlear” sentences elaborated
by Pr. Lafon [Laf64], that are supposed to contain representative syllable of the
French language allowing to evaluate pathological cochlea. Ten sentences were
selected, for a total of 78 words, that would give 78 points if all words were
correctly understood.

A comfort mark between 0 and 10 completes the evaluation, as an uncomfort-
able fitting will not be used by the patient. The comfort mark is multiplied by
2.2 so that the global evaluation is made of 78 points coming from the recognised
words + 22 points coming from the comfort of the tested fitting.

Tests have shown that this evaluation procedure takes slightly less than 4
minutes. This is clearly not enough to obtain a fine evaluation of the audition
of the patient, but it allows to perform 100 evaluations in 6h40mn ounly (i.e.
1h20mn per run if the 100 target evaluations are decomposed in 5 runs). If this
reduced protocol is enough to guide the evolutionary algorithm and allow it to
improve the fitting over 100 such evaluation, the aim is reached.

Such an aim is different from the aim of the complete evaluation of a standard
practitioner, because due to the very small number of fittings they can perform
in a year (about 10 fitting sessions per year and per patient), they need a very
precise evaluation procedure in order to test the quality of the audition of the
patient.

Experiment 1 and results. For the first experiment with patient, the size of
the population was limited to 3 individuals and the evolutionary algorithm was
asked to create 3 children per generation. Mutation rate was 0.1 and crossover
rate was 1.

On the first evaluation (of a randomly created individual) 42 words were
understood on a total of 78. Patient A gave an evaluation mark of only 1 (over
10) because even though he could understand more than half of the words, the



BTE sound was resonating and feeling uncomfortable. The global evaluation was
therefore of 42+1x2.2=42.2.

On this first experiment, 12 evaluations were performed, which is a large
number, knowing that preparation and evaluation of one fitting takes between
15 and 20 mn for an experienced practitioner. With the evolutionary algorithm,
only 4 mn were needed per fitting.

The result of the evaluation is given in the table below :

Fitting 112 |3 4 | 5|6 71819

Evaluation|44,2(21,2| 9,2 (|31,4|55,6(46,4|/74,8|74,8|58,4
Fitting 10 | 11 | 12
Evaluation| 81 | 81 |79,8

Table 2. Experiment 1 -patient A

The first three evaluations (44.2, 21.2, 9.2) correspond to random individuals.
Artificial evolution starts on fitting number 4, with 3 children per generation
(generations are marked with a double vertical bar).

>From the 5th evaluation onwards, obtained results are better or equivalent
to the best fitting performed by the medical practitioner (48.5).

Fittings 7 and 8 are nearly identical, as well as fittings 10, 11 and 12. These
results have never been approached by the expert neither with the BTE nor with
the Boitier.

Patient A is enthusiastic, and a second experiment is started with 6 individ-
uals, to avoid premature convergence.

Experiment 2 and results. The only changes that have been made are a
population size of 6 individuals and 4 children per generation (generations are
marked with double vertical bars).

Fitting 112 |34 |5 |6 7 18] 9 |10
Evaluation|24| 17 |30| 19 |53.2|37.4(|22.6|24|33.4|32
Fitting 111 12 (13| 14 (|15 | 16 | 17 |- - |-
Evaluation|| 9 (27.4]34(34.5]| 12 | 27 | 32 |—|| — | —

Table 3. Experiment 2 - patient A

The first four random individuals get poor results. Then, crossover and mu-
tations have difficulties creating better individuals, with some really poor indi-
viduals (fittings 11 and 15).



Patient A gets tired and disappointed. The test is stopped after the 17th
fitting.

Experiment 3 and results. For the 3rd test, the population is reduced back to
three individuals, but with 2 children per generation. Mutation rate is increased
to 0.6 and roulette-wheel is used as a selector in order to increase the selective
pressure when choosing parents.

Fitting 112 3 4 15| 6 7 81 9 ||10]11
Evaluation|54|33|26.5|| 48 |52|51.6|54.6 ||62.8|59.6||65.6|60.1
Fitting 12(13) 14 | 15 ||16] 17 || 18 | 19 || 20 | 21 || 22
Evaluation|60|72|/69.4|53.4(|73| 67 ||50.1| 62 ||68.3|67.3]|| 65

Table 4. Experiment 3 - patient A

The three initial individuals obtain great values (54, 33 and 26.5). The second
generation obtains values near 50. Then evaluations increase towards 60s and 70s
without dropping below 50 again.

Around generation 10 or 11 (fittings 20, 21, 22), evaluations seem to stabilise
near 70 without beating value 73 of fitting 16.

Experiment 4 and results. For the fourth experimentation, population size is
set to four individuals and four children per generation. Mutation rate is brought
back to 0.1 and parents selection is set back to Tournament.

Fitting 1 2 3 4 (|51 6 |78 9 |10 |11 |12
Evaluation|59.4|62.2(57.3|58.9|(57|62.3|65|73||75.3|65.2(83.1|68
Fitting 13 | 14 | 15 | 16 ||17] 18 (19|20 21 | 22 | 23 |24
Evaluation|75.4| 91 |91.5

Table 5. Experiment 4 - patient A

In average, the first four individuals present an average evaluation of 59.5
and all subsequent values are above 56.5.

Values of 91 and 91.5 are obtained at the end of generation 4. Patient A is
tired but extremely satisfied and surprised by such results. He leaves for lunch
with the BTE.



However, when he returns a couple of hours later, he says that the fitting is
not very efficient in noisy environments, and feels like he still prefers his Boitier,
as it feels much more comfortable to wear, as he has used it for the past 10 years.

Experiment 5 and results. Population is now of 5 individuals, with two
children per generation, a tournament selector and a mutation probability of
0.1.

Fitting 1123 (4] 5 6 | 7 81 9 |10 11
Evaluation|18.6| 53 |70.1] 9 |71.9(|58.4/60.3| 58 | 51 [|57.3|48.2
Fitting 12 | 13 || 14 (15| 16 | 17 || 18 | 19 || 20 | 21 || 22 |23
Evaluation| 36 |36.2| 50 |29(|33.5|50.3 ||40.2{44.5(|48.3|49.3 ||45.2|50

Table 6. Experiment 5 - patient A

Among the first five random individuals, two show a surprising evaluation of
70.1 and 71.9, which raises questions on the original fitting of the expert for the
BTE, which only gets 48.5.

However, evolution does not seem to find any better individuals.

Discussion on obtained results

Fitness evolution: The evolution of the best individual for the five runs The
evolution of the best individual for each of the runs is shown figure 4. Fitness
increases on all experiments but exp. 2, which is a nice result for such a small
number of evaluations, meaning that the educated guesses made on the IEA
implementation were probably good. It seems that the correct population size is
3 or 4 individuals, with 2 to 4 children per generation.

Analysis of the best obtained individual: Analysis of the T/C values of the best
individual is intriguing figure 5: (Electrodes 10, 11 and 12 have been omitted
as they are not functional.) Sometimes, experts reduce the C -T range for some
electrodes when they feel that the neural "bandwidth" is too narrow and there
is a possibility of saturation if the auditory information is too important. In the
fitting found by the IEA, however, many of the C-T ranges are reduced down
to 1.5, 1, 0.5 and even 0. In fact, only electrodes 1, 7 and 9 have significant
ranges (over 2.5). Other good fittings show wider ranges for electrodes 7 and 9
and narrower ranges for the other electrodes, which raises a hypothesis: What
if, for this precise patient, some electrodes had a negative influence on speech
understanding ? If this were the case, the current practice (that has been going
on for many years) of maximising the range of as many electrodes as possible
would also maximise the range of "wrong" electrodes that prevent the patient of
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Fig. 4. Evolution of the best individuals per evaluations, for each experimentation.

under- standing speech. After this first evolutionary fitting session, the patient
went back home with the original settings in his CI.

Fig. 5. Abscissa: Electrodes, Ordinate: Intensity. Maximum allowed envelope and the
best obtained individual.

This poses several questions:

— Is minimising the 7' — C' interval equivalent to shutting down an electrode ?
— Could there be a diaphony problem (crosstalk) between the electrodes ?
— Could the problem be combinatorial ?

6.3 Second set of experiments.

A second set of experiments has been conducted in order to verify some hypothe-
ses that arose after the first set of experiments. The tests have been conducted



with the same patient and with the same evaluation protocol, but one month
later. It is important to note that between the two sets of experiments, the pa-
tient has used his old “boitier,” meaning that neuronal plasticity cannot have
taken place. The evaluation basis are therefore comparable. In the text below,
the first set of experiments is noted C7 while the second set is noted CS.

Experiment 7. Surprisingly enough, the best individual obtained during the
fourth run was virtually using only three of the 12 functional electrodes (elec-
trodes 1, 7 and 9), that could be reduced to only 2, since electrode 1 was mapped
onto very low frequency sounds that are not discriminant for speech. In order
to confirm this strange result, the first deterministic test maximises electrodes 7
and 9 only (using the maximum C-T range of table 1), giving only a small range
to electrode 1 figure 7. For all the other electrodes, T and C values are set to 1
and 1.5, i.e. much below the The threshold, in order to cancel them totally. This
setting obtains an evaluation of 82, which is much better than with all activated
electrodes (best fitting of 48.5 obtained by the expert). Nearly 90the words were
understood, and the fitting was rated as not very comfortable. This allows to
conclude that for this patient, using only three electrodes out of 15 allows him
to understand speech better than with all functional electrodes set to nearly
maximum range.
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Fig. 6. Expérimentation 7. Abscissa: Electrodes, Ordinate: Intensity. Testing with elec-
trodes 1, 7 and 9 only. The bold curves represent the envelope (T and C) for each
electrode.

Experiment 8: on the influence of electrode 8. In the ' set of exper-
iments, the evolutionary algorithm seems to hesitate a bit on electrode 8. In
order to test its real contribution, the electrode 8 is added to the 1, 7 and 9
electrodes, by maximising its C' — T interval (using the values of table 1). The
obtained evaluation is 81, and the patient finds that the fitting is slightly less
comfortable than the previous one. Speech understanding is comparable. The
electrode 0 does not seem to have an important role in speech understanding.



Experiment 9: is there any diaphony between the electrodes ? In order
to explore this hypothesis, even electrodes are suppressed (by setting 7" and C
values below the T' liminary values for the patient), and the odd electrodes are
maximised (using the values of table 1), so as to space active electrodes (cf.
figure 7).

Fig. 7. Experiment 9. Abscissa: Electrodes, Ordinate: Intensity. Checking for diaphony.

This fitting obtains an evaluation of 78.8, and is judged less comfortable
by the patient. The result is therefore not as good as those obtained during
experiments 7 and 8. Adding other electrodes does not seem to add much. The
result is however still much better than the one obtained by the practitioner
with the BTE (48.5).

Experiment 10: spacing electrodes even more. This time, 2 electrodes
out of 3 are canceled, by setting their T and C values to 1 and 1.5 (cf. figure
8). Therefore, electrodes 1, 4, 7 are activated. It was chosen to keep electrode 9
active, so as to keep a common comparison basis with the previous experiments.
Finally, electrode 15 is maximised figure 8. This fitting obtains an evaluation of
only 58.5, i.e. clearly not as good as the previous ones, and the patient rates it
as quite uncomfortable. This is very surprising, as the only difference with the
first test (that had obtained an evaluation of 82) is that electrodes 4 and 15
have been added. Clearly, not only is there no diaphony problem (spacing active
electrodes did not improve evaluation), but it can be concluded that for this
patient, electrodes 4 and 15 contribute negatively to speech understanding. The
fact that functional electrodes can contribute negatively to speech understanding
is a totally new concept in the cochlear implant medical field.

Experiment 11 : evaluation of the best individual of C;. In order to
test the evaluation procedure, the best individual of the set of experiments C1
is tested again, one month later, and without telling anything to the patient.
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Fig. 8. Experiment 10. Abscissa: Electrodes, Ordinate: Intensity. Checking for di-
aphony by selecting only one every 3 electrodes, and keeping electrode 9.

The speech understanding test is again very good (94% of the words are
understood, which is even better than one month before) but the comfort is not
as good, resulting in a slightly lower evaluation of 86.2%. All in all, this value is
slightly lower than the one obtained during C4, but it is the best value obtained
during Cs.

Experiment 12 : evaluation of the practitioner’s fitting. This time, it is
the practitioner’s original fitting that is tested again (the one that more or less
maximised all electrodes, and that had obtained 48.5 during C1).

Here again, the number of recognised words is very low (only 33%) and
comfort gets a bad 4/10 evaluation. The global evaluation is 41.8, which is also
slightly worse than during C.

All in all, in one month, the best fitting found by the IEA went down from
91.5 to 86.2, while at the same time, the practitioner’s fitting also went down
from 48.5 to 41.8. This suggests that the proposed quick 4mn evaluation is quite
reliable, as the results seem to be reproducible one month later, while the patient
used his old “boitier” in the meantime.

Other tests. In order to verify that values obtained by the evolutionary algo-
rithm are better than random ones, other experiments have been conducted with
random values for T" and C for all electrodes. Evaluations range from average to
bad, although often greater than those obtained by the practitioner (48.5). The
patient finds that these fittings are not comfortable.

6.4 Third set of experiments with others patients

To verify the gain obtained with computer-aided CI fitting, and develop its use
at hospital, new experiments have been carried out with others patients. This
set of experiments C3 is conducted with 2 new patients: Patient B and patient



C. For these experiments, the parameters of the IEA are the following:

Population 3
Children 2
Mutation rate|0.1
Crossover rate| 1

The new population is obtained by taking the best individuals of the inter-
mediate population consisting of the 3 parents and the 2 children (i.e. in the
style of a (3+2)ES).

Corpus and methodology. Patients have received MXM cochlear implants
some years ago, but they are not satisfied with their device and have no good re-
sults (general evaluation by the practitioner is less than 50%). The IEA has been
used to try to determine optimal C (Comfortable) and T (Threshold intensity)
values for each of the electrodes of the CI.

To start with, the patients came to the hospital for a fitting session with a
practitioner, and minimum and maximum intensity values for each electrodes of
their BTE have been determined, to give boundaries to the evolutionary algo-
rithm.

For these 2 patients (B and C), the same procedure that was used for patient
A (a set of calibrated sentences) has been tested. Unfortunately, the results are
disappointing as patients B and C recognise but a few words, meaning that this
test is too hard for them.

Therefore, a new evaluation procedure was set up, based on a weighted eval-
uation of the results of:

— A discrimination test (ASSE) on 7 items. The ASSE test consists in emitting
a sound n times (an [i] for instance), and within these occurences, replacing
one of the [i] with an [a] (for the following sequence: iiiiaii). The patient
needs to detect that one of the sounds was different. The ASSE test counts
for 20% of the evaluation.

— A VCV (Vowel/Consonant/Vowel) test (JAPA], [ATA], ...), where the pa-
tient must recognise the consonant between the two vowels. In one VCV test,
each VCV is repeated 3 times, meaning that 48 VCVs are proposed to the
patient (because in French, there are 16 different phonetic consonants. This
test counts for 50% of the evaluation.

— A comfort evaluation with a mark from 0 to 10, that counts for 30% of the
evaluation.

Unfortunately, the complete evaluation takes a long time (much more than 4
minutes), and the patients are less compliant than patient A, so it is impossible
to get around 100 evaluations (as for patient A).

After the first sessions, the P1 and P2 settings of the CI were loaded with
respectively the fitting obtained with the IEA, and the manual fitting of the



practitioner, after which the patients were sent home with the instruction to use
the best fitting of P1 or P2.
After two weeks, the patients came back for new tests:

1. a discrimation test with P1 and with P2,
2. a VCV recognition test with P2 and with P1,
3. a sentence recognition test with 10 sentences using the P1 setting (IEA).

Third set of experimentations with patients B and C

— First session for Patient B (02/09/05):

Eval Nb |Manual| 1 2 3 4 ) 6
ASE Result| 4/7 |5/7|5/7|5/7| 6/7 |5/7|7/7
VCV Result| 33% [31%(25%|18%| 29% |31%|31% |fatigue

Comfort, 7/10 |6/10|7/10(5/10(5.5/10(|6/10(8/10
Evaluation 5 5 4 5 5 6

— Second session for Patient B 3 days later (05/09/05):

Setting |Manual| 1 2134|5167
ASE Result 6/7|7/7\7)T|7/T|6/T|5/T|5/7
VCV Result| 35% [25%(27%|10%|18%|18% |20% |27% |fatigue

Comfort 5/10(6,/10(6/10(5/10|5/10(5/10(5/10

Notation 4 ) 4 4 4 4 4

Best fitting loaded in memory P1 of the BTE: fitting N°6 of 02/09/05.

— First session for Patient C (15/09/05).
A first set of independent random tests has been performed, to be compared
to the manual fitting results, in the table below:

Setting |Manual Random
ASE Result| 5/7 |6/7|5/7|5/7|5/7|5/7|4/7|5/7|6/7|5/7
VCV Result| 45% [33%(29% |22%|39%|31% |18% |29%|39% |35%
Comfort 4/10(5/10|5/10]|5/10|5/10(4/10|5/10|5/10|5/10
Notation 5 4 4 5 4 3 4 5 4

Then the IEA is used, but only based on a VCV evaluation, to shorten the
time of evaluation.

Setting 1123|4567
VCV Result|35%|41%|39%(33%|20%|43%|37%|Fatigue
Notation | 4 | 4 | 4 | 3 | 2| 4 | 4

Patient C is sent back home with fitting X of run Y in P1, and manual fitting
in P2.



After two weeks, patients B and C come back to hospital with the following
results for patient B:

Test |ASE|VCV|Words/ list|Comfort
Auto |3/7(33% 7 n/a
Manual| 5/7 | 27% 10 n/a

and for Patient C:

Test |ASE|VCV|Words/list|Comfort
Auto |3/7]52%| 1 8/10
Manual| 4/7 [37%| 2 8/10

Remarks:

1. Both patients preferred to use the P1 fitting (IEA) !

2. Random fitting can do really well, sometimes slightly better than what the
practitioners do when they maximise the number of electrodes and their
dynamic.

3. Each evaluation is much too long so the patients gets tired very rapidly.

4. Comfort is too difficult to evaluate accurately for the patients.

These results again question the maximisation of the number of electrodes
and the maximisation of their dynamic range.

Random tests also show that the ranges of possible parameters values is
well chosen, providing a search space having many “average good” solutions, but
with a rather “flat” search landscape. In these conditions, and considering the
parameter setting of the IEA (a (3+2)ES), time for convergence is too short
to really obtain the beginning of a convergence. Once again, one blocks on the
problem of user fatigue. Additionally it can be argued that the evaluation is not
enough discriminant to provide an efficient fitness landscape to the IEA.

New tests have been designed, taking these results into account.

6.5 Fourth set of experiments

The same patients (Patient B and C) were tested. The parameters of the IEA
are the following:

Population 4
Children 3
Mutation rate|0.8
Crossover rate| 1

The new population is obtained by an elitist binary tournament between a
population made by the parents + the children. The elitism is "soft," in the
sense that it is the best individual of the 7 individuals that is taken to be part
of the next generation (and not the best of the parents only). The three other
individuals are selected by a standard binary tournament.



Corpus and methodology. Each trial was based on the results of a VCV
recognition test with [APA], [ATA] ... The patient has to recognise the conso-
nant in the VCV. Each VCV is proposed once, meaning that there are only 17
items in a test. The result over the 17 VCV counts for 100% of the evaluation.

Experiments

— Patient B

Result of the previous IEA fitting: 2 of the 17 VCV were recognised.
Result of the manual fitting: 2 of the 17 VCV were recognised.

—
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1 hour break and restart.

— Patient C
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Result of the previous IEA fitting: 8 of the 17 VCV were recognised.

Evaluation

—_

5

14

15

-~

18]

VCV Result

4

~

4

4

4]

Lunch break and restart of the algorithm with the initialisation of two indi-
viduals to the IEA fitting the patient had been using for the previous week,
and to the best fitting of the previous run (fitting 10).
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Conclusions on the fourth set of experiments

— The IEA was working fine, although no real improvement could be seen, even
during the longest runs (like the first run of patient C, i.e. 18 evaluations,
i.e. evolution during five generations). But

— The probable explanation is that the chosen VCV evaluation is too difficult
for both patients, and the algorithm cannot find any fitting leading to a
stable improvement of the audition of the patients.

Guidelines for future experimentation have therefore been defined.

7 Actual work and perspectives

Concerning the evolutionary runs, the evaluation function is very important. If
for these patients, the VCV test is really too hard, the IEA will not be able to
find any improvements (the fitness landscape is too flat to give a direction for
improvement to the algorithm).

It seems important to spend some time to set up an evaluation function
specific to each patient, that can return an average value, neither too low, like
3/17 or 5/17 (because this would mean that the test is too difficult) or too high,
like 15/17 or 16/17 (because this would not leave any room for improvement).

The evaluation function must be quick. If it is too slow, the patient will get
tired before any significative number of evaluations are done (set of experiments

Finally, until the IEA procedure is routinely giving good enough results, it
may be interesting to choose “easier” patients, i.e. patients for whom the cochlear
implantation works slightly better...
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Fig. 9. Best fitting found by the practitioner for patient C: each rectangle represents
the [T, C] interval for each electrode.



Even though the sets of experiments 3 and 4 have not been really satisfying
evolutionary-wise, the results are very interesting on a medical point of view,
since it has confirmed that narrower intervals (or even removal of one or several
electrodes) can lead to better speech understanding.

In all tested patients (of which A B C were a subset), it was possible to
find fittings that were working at least as well as manual fittings maximising
the dynamics for all electrodes, and in many cases, these fittings were simply
random fittings !
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Fig. 10. Best fitting found at random for patient C, that beats the best fitting found
by the practitioner: each rectangle represents the [T, C| interval for each electrode.

In order to have a visual example, fig. 9 shows the intervals for all the elec-
trodes of patient C on the best fitting found by the practitioner, while fig. 10
shows the best fitting obtained... randomly, that give better results than the
practitioner’s. Please note the skinny intervals compared to those of fig. 9. In
some cases, some electrodes are virtually canceled (electrodes 5, 8, 11, 12 and
13), which goes against reason (and against what is advocated by the cochlear
implants manufacturers).

7.1 Classification of sound environments

Many users of cochlear implants or hearing aids find that the parameter setting
of their device is not perfectly adapted to all situations of their everyday life:
in restaurants, they find clicking cutlery aggressive, and they have a hard time
following a conversation, in the street, some noises are nearly unbearable,. ..
Some patients may need a setting for a quiet environment (such as home) but
may work in a noisy environment (metal industry, garage, ...) so there is no
miracle solution.



The aim of the HEVEA project is to improve hearing with cochlear implants
by several means. One is to help the expert find good fittings using an interactive
evolutionary algorithm [BRCO05|, and another is to integrate into the processor
a small signal analysis software that would be able to recognise the sound envi-
ronment and automatically select a fitting accordingly, among a set of available
fittings corresponding to different situations.

In order to achieve this second task, several stages must be performed :

1. The medical team must determine with the patient a number of common

environments for which the patient would need a specific fitting, for instance:
home, work, supermarket, cinema, ...
The number of specific environments should be limited, because for each of
the specified environments, a special set of parameters needs to be found for
the cochlear implant, and finding a good set of parameters can be a long and
difficult task (even with the help of an evolutionary algorithm).

2. For each of the specified environments, the patient must take a number of
sound samples to bring back to hospital.

3. Specific parameters must be found, to deal with each of the specified envi-
ronments (possibly with the help of an interactive evolutionary algorithm).

4. In parallel, the different samples must be analysed to extract some com-
mon features, so that a classifying algorithm can determine them in which
category falls the sound environment that is surrounding the patient.

5. Finally, the characteristics and parameters for the different environments
must be uploaded into the cochlear implant processor, along with a signal
processing program that will automatically choose the correct parameters to
match the environment in which the patient is evolving.

The result is an “intelligent” cochlear implant that can automatically switch
between potentially different sets of parameters, depending of the sound envi-
ronment surrounding the patient.

This section presents the sound sampling, characterization and classification
stage. It starts with a description of the specific sound sampler developed for
this application, followed by a sub-section recalling the wavelet theory on which
the scientific work is based. Then, a third sub-section describes how the energy
content of a sample can characterise a sound environment. Finally, results are
presented on the classification of different environments using a standalone piece
of software.

Development of an a posteriori sound sampler. In this application, sound
sampling is essential to provide accurate data for two orthogonal needs:

1. The sound environment must be accurately recorded so that it can be recog-
nised in the future by the processor with sufficient confidence to switch
between different sets of parameters.

2. Particularities must be also recorded so that a specific fitting can be found
that will help to cope with the current environment.



This distinction must be made because it is necessary to tune the Cochlear
Implant (CI) on possibly punctual noises that are not representative of the
general sound environment. For instance, one patient currently switches off his
cochlear implant whenever cycling to work, because the sound of a motorbike
passing by is too stressful to be bearable with his usual CI fitting. Choosing to
switch off his CI (and becoming totally deaf) in a street environment is quite
radical, but shows how much an adaptive and “intelligent” CI would be needed
for this patient.

So it would be necessary for the adaptive CI to recognise a street environment,
in order to choose for a fitting that would allow to cope with passing motorbikes,
although passing motorbikes are exceptional in a street. One must therefore find
a fitting adapted to an exceptional event, that should be selected when a sound
environment (that has nothing to do with the exceptional event) is detected.

Sampling the regular environment for characterization. The sampling must be
as accurate as possible, so that the processor can select the correct parameters
without making any mistakes. Therefore, recording a sound environment on an
old tape recorder may not be sufficient. A small jack plug has been added to the
processor of the CI so that it could output directly the sound picked up by the
microphones of the CI to a digital sampler.

Then, a sampling software has been developed on a PDA (Personal Digital
Assistant) that the patient plugs directly onto the CI processor in order to sample
the exact sound that is received by the processor (cf. fig. 11).

Fig.11. A sampling software has been developed on a PDA that the patient plugs
directly onto the CI processor in order to sample the exact sound that is received by
the processor.

Sampling the exceptional event for CI fitting. Then, another problem arises:
whenever an exceptional event occurs for which the CI should be tuned, it is often



too late (the unbearable motorbike sound has vanished before the patient could
record it, or in a crowded restaurant, the words that have not been understood
cannot be repeated in exactly the same manner). A solution could be to sample
the street (or the restaurant) for a long enough time, but here again, it is difficult
do predict when the right motorbike will appear (or when the waiter will speak
in an unintelligible way), and this could result in hours of recording, and hours
to replay the records to find the relevant information.

A special sampling software has therefore been developed that constantly
records the current sound for a period of n seconds (When the patient hits the
record button, whatever happened during the previous n seconds is stored in a
file, for future use. 30 seconds seems to be a correct duration, so that when the
patient uses the PDA to record precise sounds, he has 30 seconds to press on
the button after he realised that some interesting sound has occurred.

These very punctual samples (motorbike) have a different content than the
samples that are used to characterise the general environment (“standard” street
noise).

Characterisation of a sound environment. We distinguish two steps in the
problem of “sound environment classification”. The first step is the extraction of
the characteristics, in order to build the representation’s space. The second step
is to find a classification method which allows to fit each point of this space with
a probability of being in a specified family. We can extract a lot of information
from a sound in order to make a classification. For example, one can use the
frequential content, the cepstral characteristics, the loudness, the pitch...

The characteristics motivated by the human perception such as the spectral
characteristics, the loudness or the pitch can describe all the kind of sound
because the human brain use the same characteristics in our daily life.

For this work we will analyse the frequential content at each dyadic scale
because the implant perform the same kind of analysis. We will use a wavelet
transform in order to perform a multiscale analysis (see [Dau92] and [Mey90]).
We could use a simple Fourier Transform but we prefer keep the possibility to
use the time localisation provided by the wavelet transform for a future work.
In fact, Wavelet analysis allows to adjust the width of analysis windows, and
achieves a perfect localisation in time and frequency. Logically, temporally ex-
tended windows are used to study low frequencies, while narrower windows are
used for higher frequencies. This localisation property makes wavelet theory pre-
dominant in several areas of signal processing.

Continuous Wavelet Transform (CWT). A wavelet is a “wave localised in time.”
More precisely, it is a function ¢ € L2(R) such that [g ¥(t)dt = 0.If [g ¥(t)2dt =
1, then we use normalized wavelets.

The continuous wavelet transform of a signal f is given by:

CWT(a,b) = % /Z Flty <¥) dt



In this expression, a is a scale factor and b is a translation parameter (tem-
poral shift). Variable a represents the inverse of the frequency: the smaller a, the
(temporally) narrower the wavelet (i.e. the analysing function).

Therefore, one can see this expression as the projection of the signal on a
family of analysing functions:
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constructed by widening + translation from the original ¢ wavelet.

Discrete Wavelet Transform. In this work we use a discrete wavelet transform
which is faster than the continuous transform. The Discrete Wavelet Transform
can be obtained thanks to the discretization of the parameters of resolution (a)
and position (b). Let a = af' with m an integer, ap a resolution step greater
than 1 and b = nbyagy® with n an integer and by > 0.

Furthermore, if « = 2 and b = 1, the transform is called “dyadic.” One then
has:

Cre=27% [ et —Rar

If o, = 2_%@[1(2_jt — k) we get a tiling of the time-frequency space called a
dyadic grid (see fig 12).
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Fig. 12. Dyadic grid. Abscissa: Time, Ordinate: Frequency. At the bottom, each point
is a point of the signal. The matching discret wavelet coefficients are the circle in
the grid. At low frequencies, the computation of the wavelet coefficient uses large
windows in time, then we only have few coefficients. Oppositely, at high frequencies
the computation uses small windows.

Energy of a signal. For a given scale, if we use a normalized wavelet, the energy
of the signal can be obtained from the continuous wavelet transform. More pre-
cisely: one can compute the energy of the a scale by adding the squares of the
wavelet coefficients of the continuous transform at this scale:



B2 — / [CWT(a, b)]2db (1)

where E,2 is the energy at scale a. If we use the discrete wavelet transform, we
get:
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k=1

where F;2 is the energy at scale j.

Characterisation of a class by its energy content. As said above, we’ll charac-
terise a class by its energy content. Let us consider a sound environment S1.
The patient records a collection of *.wav files, that are chopped into a family
of ny subsignals of 2! points (almost 3 seconds for each subsignal). If one com-
putes the discrete wavelet transform of theses signals and the energy of each of
the obtained frequency bands during multi-resolution analysis, one then gets n,
vectors of 14 coordinates. We choose to characterize a class by the mean value
of these vectors. We obtain for each class a value at each dyadic bandwidth
frequency (see fig 13).

Classification of sound environments. The aim is to create a class for a
specific environment, by using a collection of .wav files as input.

When the patient is in a new environment, he uses the sound sampler and
records a sample of this environment. A .wav file is imported and chopped
into 2'* micro-samples. When clicking on compute, each of the mini-samples is
associated with the family that matches the sample best.

A ratio is then displayed, that presents the number of samples that corre-
sponded to each family, and the results are displayed in a bar-chart. The bar-
chart provides us the matching family with a certain confidence. For example if
80% of the micro-sample are classified in the class S1, then the sample will be
classified in the class S1 with a confidence of 80%.

Results. For each family, available .wav files have been chopped into mini-
samples of 2!% points. 66% of the mini-samples chosen randomly are used for the
learning set, and 33% for the test set. The results are presented in the following
table:

Family |Learning set|Test set|matching family|Confidence
Car-radio 16 8 Car-radio 100%
Cross-roads 24 13 Crossroads 84 %
Birds 12 7 Birds 100%
School-yard 22 11 School-yard 100%
Supermarket 35 15 Supermarket 100%
Lawn-mower 10 5 Lawn-mower 80%




Fig.13. Abscissa: frequency, Ordinate: Energy. Left up: "Car-radio" environment.
Right up: "Birds" environment. Left middle: "Supermarket" environment. Right mid-
dle : "road corner" environment. Left down: "School-yard" environment . Right down:
"Lawn mower" environment. Set of values of the energy for each frequency (fine lines),
enveloppe and mean criterion (thick lines).
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Fig. 14. Graphical Interface for the classification toolbox.

All samples have been correctly classified. For Car-radio, Bird, School-yard,
and Supermarket environments we have 100% of confidence. The worst results
are for the Crossroad and Lawn-mower environments, the sample have been
correctly classified with a confidence of respectively 84% and 80% (on the 13
Crossroad test samples, one is identified as a Supermarket environment and
another one as a lawn-mower, and on the lawn-mower, one out of 5 samples is
classified as being a crossroad).

Future work. What needs now to be done for the scheme to be fully functional
is to connect the PDA to the cochlear implant, so that if the PDA is able
to classify an environment with a confidence rate greater than 50%, it selects
automatically the corresponding CI fitting adapted to this sound environment
and it uploads it into the CI.

If, on the contrary, the confidence rate is less than 50%, the sound environ-
ment is sampled and memorized, so that it can be classified later on (which may
require to create a new sound class).

8 Conclusion

The problem of cochlear implants fitting belongs to a class of very difficult
problems, impossible to solve in a deterministic way in a limited time, for at
least two reasons:

— The function to be optimised cannot be modeled. It is extremely variable,
because it is dependent on the patient and linked to a subjective evaluation
of his auditive sensations.

— The search space is very large, therefore, strict optimality is out of reach.



The work presented in this paper describes an approach of this problem,
based on an interactive evolutionary algorithm with a micro-population. The first
results with patient A are promising: evolution has taken place (as the curves
show in fig. 4) and the obtained results were far better than those obtained by
an expert practitioner.

However, this experiment showed that it was possible to obtain good fittings
by simply selecting values at random, which questions the usual aim, that is to
maximise the number and range of electrodes to improve audition and compre-
hension. A number of other experiments has been conducted that shows that
indeed, the strategy advocated by CI manufacturers may not be the best, which
is a new result in the medical field.

But this work is obviously a preliminar one, that needs to be confirmed
with additional experimental analysis on other patients, having various profiles.
Moreover, the aim of this project is to make cochlear implants more adaptive
to patients and to their environments: The adaptation to audio environment
that has been sketched in section 7, needs now to be tested by patients in real
environments.

Other points of improvements are more technical and relate to the heart
of the interactive optimisation method. The real experiments presented in this
paper actually prove the importance of user fatigue, which is a general problem
in IEAs. But in the case of audio interaction this problem is even more crucial,
for two reasons: only one signal can be evaluated at once (on the contrary to
visual evaluations), and the attention needed to correctly evaluate a fitting is
extremely demanding for implanted patients.

Usually, one copes with user fatigue in three ways: [PC97,Tak98,Ban97] :

— reduce the size of the population and the number of generations,

— choose specific models to constrain the research in a priori “interesting” areas
of the search space,

— perform an automatic learning (based on a limited number of characteristic
quantities) in order to assist the user and only present to him the most
interesting individuals of the population, with respect to previous votes of
the user.

In this paper we have used the first item, i.e. a micro-EA. The experimental
analysis that has been presented proves the necessity to try other strategies.
According to the third item above, experiments have been conducted on another
application (image denoising) with a fitness map technique [LPLV05], where the
fitness rating has been extended to individuals of a larger population via the
analysis of the user judgment on a small sample of individuals. Future work
on cochlear implants could use a similar strategy, in order to evolve a larger
population of parameter settings while keeping a low number of user evaluations.

Additionally, other strategies to better exploit the user interactions should
be considered, such as using partial evaluations (shorter audio tests), and refine-
ments of audition, understanding and comfort evaluations only on areas of the
search space that have been identified as promising by the IEA.
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