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t. Co
hlear implants are devi
es that be
ome more and moresophisti
ated and adapted to the need of patients, but in the same timethey be
ome more and more di�
ult to tune. After a deaf patient hasbeen surgi
ally implanted, a spe
ialised medi
al pra
titioner has to spendhours during months to pre
isely �t the implant to the patient. This pro-
ess is a 
omplex one implying two intri
ated tasks: the pra
titioner hasto tune the parameters of the devi
e (optimisation) while the patient'sbrain needs to adapt to the new data he re
eives (learning). This paperpresents a study that intends to make the implant more adaptable to en-vironment (auditive e
ology) and to simplify the pro
ess of �tting. Realexperiments on volunteer implanted patients are presented, that showthe e�
ien
y of intera
tive evolution for this purpose.11 This work has partially been funded by the Fren
h ANR - RNTS HEVEA proje
t04T550



1 Introdu
tionCo
hlear Implants (CI) [Nih89℄ allow totally deaf people to hear again pro-vided their auditory nerve and 
o
hlear are still fun
tional: a 
omputer pro
essessounds pi
ked up from a mi
rophone, to stimulate dire
tly the auditory nervethrough several ele
trodes inserted inside the 
o
hlea (
f. �g. 1).As one 
an imagine, there are hundreds of parameters that 
an be tuned,and in the same time the patient has to learn to �hear� using new informationsprovided to his auditory nerve. The tuning of su
h a devi
e is thus extremely
omplex, and highly dependent on the patient. This pro
ess is 
urrently done�by hand� by medi
al pra
titioners, and looks like an optimisation pro
ess basedon �trial and error.� This pro
ess is so deli
ate that sometimes, no satisfa
tory�tting 
an be found for some patients.Hen
e, it seems interesting to use an intera
tive evolutionary algorithm (IEA)to help �nding the best values for implant parameters. This is the main topi
of the HEVEA proje
t, whi
h is a 
ollaboration between 
omputer s
ientists,signal pro
essing experts and medi
al resear
hers. The aim is a
tually twofold: tofa
ilitate the initial �tting of 
o
hlear implants, and to automatise the adaptationof 
o
hlear implants to various sound environments. A simple IEA was developedwith this in mind, and tested on a very basi
 feature, the range of intensitiesthat a spe
i�
 ele
trode 
an take when stimulating the auditory nerve. The IEAhas been implemented on a PDA and tests have been performed on volunteeringpatients with satisfying results.The paper is organised as follows: se
tion 2 presents 
o
hlear implants, andse
tion 3 des
ribes how they are 
urrently tuned by medi
al pra
titioners. Theapproa
h of the HEVEA proje
t is developed in se
tion 4, and a �rst implemen-tation of an IEA is detailed in se
tion 5. Experiments on several patients arereported in se
tion 6, yielding good results as well as important 
on
lusions onmanual �tting pro
edures. This �rst validation step is important: an analysisof the su

ess and failures raises new questions that are developed in se
tion 7,related to the well-known �user fatigue� problem of IEAs, and to the fa
t thatdi�erent sound environments have an important in�uen
e on implants �tting.Automati
 adaptation of the devi
e to sound has been investigated, based ona sound signal 
lassi�
ation s
heme, whi
h is detailed in se
tion 7. Con
lusionsand perspe
tives are des
ribed in se
tion 8.2 Co
hlear ImplantsA 
o
hlear implant is a surgi
ally implantable devi
e [GFM+98℄ that provideshearing sensations to individuals with severe to profound hearing loss, and 
an-not bene�t from hearing aids. In a normal ear, sound energy is 
onverted tome
hani
al energy by the middle ear, whi
h is then 
onverted to ele
tri
al im-pulses by the inner ear (see �gure 1). In order to perform this last stage, the
o
hlea (part of the inner ear) 
ontains a �uid whi
h is set into motion by theoval window whi
h is 
onne
ted to the middle ear. Within the 
o
hlea, sen-sory 
ells (inner and outer hair 
ells) are sensitive transdu
ers that 
onvert the



me
hani
al �uid motion into ele
tri
al impulses 
onveyed to the brains by theauditory nerve. Co
hlear implants are designed to be a substitute for the middleear, 
o
hlear me
hani
al motion, and sensory 
ells, transforming dire
tly soundenergy into ele
tri
al energy that will initiate impulses in the auditory nerve[B.C95℄, [Coh89℄ thanks to a digital signal pro
essor.

Fig. 1.All implant devi
es have the following features in 
ommon : sound is 
olle
ted bya mi
rophone (1) and sent to ele
troni
 
omponents within a spee
h pro
essor (2). Thespee
h pro
essor analyzes the input signal (sound) and 
onverts it into an ele
troni
signal (ele
tri
al). This 
ode travels along a 
able (3) to the transmitting 
oil (4) andis sent a
ross the skin via frequen
y modulated (FM) ele
tro-magneti
 waves to theimplant pa
kage (5). Based on 
hara
teristi
s of the 
ode transmitted to the internaldevi
e, ele
trode 
onta
ts within the 
o
hlea (6) provide ele
tri
al stimulation to thespiral ganglion 
ells and dendrites extending into the modiolus. Ele
tri
al impulsesthen travel along the auditory nerve (7), as
ending auditory pathways to the brain.Co
hlear implants have been very su

essful in restoring partial hearing toprofoundly deaf people [ALM95℄, [Osb97℄. In 2006, around 70 000 deaf peopleare implanted with su
h devi
es around the world. E�
ien
y is quite variable,ranging from totally deaf patients that have fully re
overed their audition andare 
apable to follow telephone 
onversations and enjoy musi
, to others whohear strange sounds they 
an't bene�t from, to a point where they prefer toswit
h o� the implant [COM94℄, [GTBVC01℄, [BTE04℄, [Rom98℄.For many people, it is still di�
ult to fully take advantage of the devi
ebe
ause it is not easy to tune the parameters of digital signal pro
essor andadjust them for the 
hara
teristi
s for ea
h patient, sin
e all patients are di�erent(
ause of deafness, number of years between total deafness and implantation, age,depth of ele
trode insertion,. . . ).Resear
h has been going on sin
e nearly 50 years ago on how to ele
tri
allystimulate the auditory nerve to give a totally deaf patient sound sensations



[LPD00,Loi01℄. Even though the early devi
es stimulated the auditory nervewith one ele
trode only, some lu
ky patients managed to hear again and evenunderstand spee
h. Nowadays, it is te
hnologi
ally possible to use more than oneele
trode, in order to stimulate more of the thousands of neurons the auditorynerve is made of [PCMF79℄ [CFML83℄. However, the more ele
trodes, the moreparameters to tune.The 
o
hlea is used to interfa
e ele
trodes and the auditory nerve. The
o
hlea is a biologi
al devi
e that mainly allows to map di�erent sound frequen-
ies onto di�erent neurons. It is shaped like a snail shell. Only long wavelengths(low frequen
y sounds) 
an rea
h the far end of the 
o
hlea, while short wave-lengths (high frequen
y sounds) are stopped at the entran
e of the 
o
hlea. Theidea is then for surgeons to use this frequen
y dis
riminator and insert into the
o
hlea a thin sili
on wire, bearing several ele
trodes.Stimulating an ele
trode on the far end of the wire will therefore make thepatient hear a low pit
h sound, while stimulating an ele
trode near the entran
eof the 
o
hlea will result in the patient hearing a high pit
h sound.3 Co
hlear Implant �tting3.1 Complexity of the problemBeing able to use more than one ele
trode to stimulate di�erent neuron areasis indeed a great improvement, but the number of parameters to tune in
reasesdrasti
ally. Con
erning ele
trodes only, many questions arise, among whi
h:� Whi
h frequen
ies should be mapped to whi
h ele
trodes ?� Whi
h range of intensities should be applied to whi
h ele
trodes ?� How many ele
trodes should be stimulated simultaneously ?� Should the pro
essor prohibit neighbour ele
trodes to be stimulated simul-taneously in order to avoid diaphony (
rosstalk between nearby ele
trodes) ?Finding good answers to these questions is a di�
ult optimisation problem.This not only due to the extremely large size of the sear
h spa
e but to severalother reasons. First of all, the quality of a �tting is a two stage pro
ess wheresubje
tivity plays a large role: the pra
titioner has to interpret the quality of the�tting (�rst subje
tive pro
ess) from the answers given by the patient (se
ondsubje
tive pro
ess). The disparity of patient behaviour with respe
t to languageand sensitivity to various thresholds, as well as the 
hara
ter of the pra
titionerdeeply in�uen
es the results. For example the well known psy
hologi
al �Pyg-malion� e�e
t biases answers of the patient, who often un
ons
iously tries tosatisfy the pra
titioner's expe
tations.The sound environment is another 
ause of variability of results, as the �ttingsession usually takes pla
e in a small room at hospital with the pra
titioner.However the 
o
hlear implant must also be used in real life, and a 
orre
t �ttingat hospital may reveal very un
omfortable or unuseful when in the street, or ina restaurant.



Fatigue and brain adaptation are also other sour
es of trouble: it is impossibleto test many possible parameter sets during a single session, so the pro
ess isvery long and needs sometimes weeks to obtain a satisfying result. In the sametime, a �tting that may not appear immediately as satisfying, may improve whentesting it on a longer period (brain has a plasti
ity that 
annot be negle
ted).There are many fa
tors that make this problem highly irregular. However,it has been proved that an a

eptable or even good �tting is rea
hable by amanual sear
h 
ondu
ted by an experien
ed pra
titioner. We des
ribe belowthis manual �tting te
hnique, whi
h is mainly a human-guided �trial and error�pro
ess, resembling a lo
al sear
h.3.2 Manual �ttingNowadays, depending on the manufa
turer, the number of ele
trodes varies be-tween 8 and 22. Co
hlear implant ��tting� is performed by an expert pra
titioner,who pro
eeds in the following way:� Right after the surgi
al intervention, the pra
titioner tries to determinewhi
h ele
trodes are fun
tional (an ele
trode is fun
tional if the patient hearsa sound when 
urrent is applied to the ele
trode).� For ea
h fun
tional ele
trode, the pra
titioner tries to determine the rangeof intensities that 
an be used. The lowest intensity above whi
h the patientper
eives a sound is 
alled T (for Threshold). The maximum 
onfortableintensity (loudest sound the patient 
an bear for a reasonable amount oftime) is 
alled C (for Comfort threshold).Determining the T and C values for ea
h ele
trode takes time (
ommuni-
ation with a deaf patient, a young 
hild, or with an old patient 
an bedi�
ult), and due to the in
reasing number of ele
trodes, some manufa
-turers now advise to determine T and C values for one every three or fourele
trodes, and extrapolate the values for the other ele
trodes. See [Rou01℄,[Hes02℄ for more informations on this topi
.Other manufa
turers even set average values for T and C, based on neuralresponse or even statisti
s.� Then, on
e the C − T range is maximised for all the ele
trodes, the �real��tting begins. The pra
titioner uses his expertise to map frequen
y bandslogarithmi
ally onto the di�erent fun
tional ele
trodes, and starts to tune thegain and sensitivity depending on sound frequen
ies, then tunes the numberof simultaneously a
tive ele
trodes,. . . while at the same time asking thepatient whether they understand better or worse, whether the sound qualityis 
omfortable or not, a.s.o.. In 
ertain 
ases, the pra
titioner will slightlyredu
e the C−T range for some ele
trodes, when he has the feeling that the�neurologi
� bandwidth is limited, and that the neurons fa
ing the ele
trodeare getting saturated at only moderate auditory levels.Results are variable, but often good. Usually, a �tting session starts with thepra
titioner asking whether the 
urrent �tting is better or worse than the previ-ous one. The best of the re
ent �ttings is taken as a basis that the pra
titionerwill try to improve, resulting in some sort of hill 
limbing pro
ess.



The patient tries to des
ribe the quality of his audition, and the pra
titionertries to modify some parameters to help solving the problems. Two or threeparameters 
an be 
hanged during a 30 to 90 minutes �tting session. Then, thepatient leaves with the new settings that he keeps for a 
ouple of months, beforehe 
omes ba
k for another �tting session. The whole pro
ess is therefore verylong (several years for problemati
 patients).4 Des
ription of the ProblemAs seen above, �tting 
o
hlear implants is done through a set of 
orrelated pa-rameters [LPD00℄, and per
eption and 
omfort thresholds are linked to histopatho-logi
al fa
tors spe
i�
 to the patient [KSC+98℄. In most 
ases, the �tting strategysimply 
onsists in maximising the number of ele
trodes and maximising their dy-nami
 range [BPG+92℄. This often gives good results, but for some patients thisapproa
h does not work. Moreover, the following observations have also beenreported:� Better results might be obtained by de
reasing the dynami
 range [FXP03℄.� Only using a subset of ele
trodes might improve spee
h re
ognition [ZCW97℄.� Holes in spe
tral representation 
an exist in tonotopi
 representation (map-ping of the sound frequen
ies on the ele
trodes) and spe
tral informationredistribution around the holes does not in
reases results [SGD02℄.Moreover:� Most of the patients do not use all the information given by the ele
trodes[Fis96℄.� All the ele
trodes are not ne
essary to obtain maximal spee
h per
eptionperforman
e in silent [DDML89,LWZF96,Fis96,KVR+00℄ and noisy environ-ments [FSBW01℄ (part of this 
ould be due to ele
tri
al intera
tion between
hannels [SLM+06℄).These published observations show that 
hoosing a good subset of ele
trodes
an have an in�uen
e on spee
h understanding, as well as the dynami
 rangeon the ele
trodes. Finally, taking into a

ount a real sound environment 
ouldin
rease spee
h understanding for some patients.The work presented in this paper will try to address both problems.5 Des
ription of the Intera
tive Evolutionary AlgorithmIt seems that many patients who are not satis�ed with their 
o
hlear implant arestu
k in a lo
al optimum: no modi�
ation proposed by the expert would bringany improvement.This triggered the idea to use evolutionary algorithms, that are both quitegood at optimising parameters and not easily trapped in lo
al optima. The ge-neti
 loop is the following: the EA �suggests� a set of parameters that are dire
tlyuploaded into the Co
hlear Implant's pro
essor, and waits for an evaluation.



Other works have been 
ondu
ted on intera
tively �tting hearing aids withevolutionary algorithms, [Dur02,Tak01,Tak02℄, but they 
on
ern only 
onven-tional hearing aids, with a relatively small number of parameters that 
an betuned. To our knowledge, nobody has tried to apply evolutionary algorithms toCo
hlear Implants �tting.5.1 Managing the runsIn an intera
tive evolutionary algorithm, a human user evaluates the di�erentindividuals proposed by the algorithm.Thomas Bä
k's results ([Bae05℄), suggest that an evolutionary algorithm maydo as well (if not better) than a human expert on a number of evaluations ofthe same order than the number of real parameters to optimise. Therefore, if theproblem has around 100 parameters to tune, performing only 100 evaluationsshould already allow to obtain interesting results. If it is possible to �nd anevaluation pro
edure that takes around 5mn, a run would last around 8 hours.However, it is also important to take psy
hology and human fatigue intoa

ount: a well tuned 
onvergen
e speed over 100 evaluations 
ould seem dis-
ouraging for a human patient, who may think that improvement is too slow.Besides, sin
e it is not possible to have an 8 hour run in one go, an elegantsolution 
onsists in fra
tioning the experimentation into several partial fast-
onverging runs, with a restart at the end of ea
h run [Jan02℄. Dividing the 8hour run into 5 makes for 5 1h30 runs, that are quite manageable.Rather than �nding ways to avoid premature 
onvergen
e, it is on the 
on-trary a very fast 
onvergen
e that is sought on these short runs of approximately20 runs. This is quite ni
e, sin
e evolutionary algorithms are known to 
onvergequite fast, if no 
ounter-measures are taken.This poli
y allows to use a very fast 
onverging algorithm trying to exploitlo
al minima, rather than a slow 
onverging algorithm trying to widely explorethe sear
h spa
e, looking for the global minimum. The 
onsequen
es of premature
onvergen
e are dealt with thanks to the periodi
al restarts. During the last run,one 
an restart the algorithm with the best individuals found in the 4 �rst runs,so as to bene�t from the results previously found.Population size and number of 
hildren per generation. For an identi
alnumber of evaluations, two possibilities exist: either many 
hildren per gener-ation and a small number of generations, or a small number of 
hildren pergeneration and many generations.Out of these two possibilities, it is the algorithm that maximises the numberof generations that will favour most 
onvergen
e. This suggests a SteadyState re-pla
ement poli
y, or a (µ+λ) with a very redu
ed λ (number of 
hildren) [Bae95℄.Then in order to not spend too many evaluations in the initial population, one
an also redu
e it as is done in mi
ro-GAs [Kri89℄.Extremely low values 
an be used, su
h as 3 to 6 individuals for the initialpopulation, with 1 to 3 
hildren per generation. For the �fth run, 4 individuals




ould be used for the initial population, taken from the best individuals of the4 previous runs.The algorithm 
hosen for this spe
i�
 intera
tive optimisation will thereforebe a modern evolutionary algorithm, in the sense that it does not take after anyof the four usual paradigms (Evolution Strategies, Geneti
 Algorithm, Geneti
Programming, Evolutionary Programming) [DJ05℄.A

ording to Bä
k [Bae05℄, using an Evolution Strategie paradigm for 100evaluations should allow to optimise up to 100 real variables. In Co
hlear Im-plants �tting, however, one 
an start with trying to �nd the best T and C valuesfor ea
h ele
trode. With the MXM 15 ele
trodes CI used for this experiment, thegenome is therefore an array of only 30 real values, meaning that the 
han
es to�nd a good �tting are mu
h higher.5.2 InitialisationOne hard 
onstraint needs to be respe
ted: the algorithm should not go beyondthe maximum intensity for ea
h of the ele
trodes for fear of destroying some ofthe patient's auditory neurons. Therefore, for ea
h new patient, a �rst sessionwith a pra
titioner is realised to determine the maximum admissible intensity forea
h ele
trode, that is 
alled a psy
hophysi
al test. In order to redu
e the sear
hspa
e, a minimal intensity below whi
h the patient does not hear anything isalso determined.The initialisation of ea
h individual therefore simply 
onsists, for ea
h ofthe 15 ele
trodes, to pi
k up two random values within the [min,max] intervaldetermined during the psy
hophysi
al test, and to take the lower value as a Tthreshold, and the higher value as a C threshold for the ea
h of the 15 ele
trodes.5.3 Sele
tion of the parentsParents sele
tion is di�erent from the repla
ement stage, in that it 
an sele
tan individual several times. Whenever a 
hild must be 
reated, two di�erentindividuals are sele
ted among the parent's population, that 
an be sele
tedagain to 
reate another 
hild.Sin
e the sele
tion pressure of proportional sele
tion depends on the �tnesslands
ape of the problem to be solved (whi
h is unknown), a sto
hasti
 tour-nament is sele
ted [BT97℄, with a 90% probability, that 
onsists in randomlysele
ting 2 individuals and to take the best of the two with a 90% probability.5.4 CrossoverThe genes are real values, whi
h 
ould have suggested some kind of bary
entri

rossover (su
h as used in Evolution Strategies), where ea
h gene of the 
hild isan average between the two genes of his parents. But sin
e it is intervals thatmust be evolved, this type of 
rossover would have led to redu
ing the intervalsprogressively.



The 
hosen 
rossover is that of geneti
 algorithms, whi
h ex
hange the par-ent's genes after a 
rossover point (lo
us) 
hosen randomly. A mono-point 
rossoverwas 
hosen, as a multiple 
rossover would have had a tenden
y to break e�
ientgenomes, and would have turned the 
rossover in a kind of ma
ro-mutation.In this same attempt to not break good 
on�gurations, the determinationof the lo
us is made ele
trode by ele
trode (the two T and C values are notseparated). Sin
e we are using a (µ+ λ) evolutionary engine, with a number of
hildren smaller than the size of the population, the 
rossover is 
alled to 
reateea
h 
hild (100% probability).5.5 MutationMutation is also 
alled with a 100% probability on ea
h 
reated 
hild. In theproposed algorithm, ea
h gene has a 10% probability to be mutated. Sin
e thereare 30 genes, ea
h 
hild undergoes 3 mutations in average. This may seem impor-tant, but due to the large epistasis, modifying a threshold on the global genomeonly has a limited in�uen
e on the global evaluation. This high mutation rateallow to keep a reasonable exploratory 
hara
ter to the algorithm, in spite of thevery small number of evaluations.5.6 Repla
ementA Steady State-like repla
ement is used, i.e. with a very small number of 
hildrenper generations, in order to promote a fast 
onvergen
e. During a stri
t SteadyState repla
ement, only one 
hild would be 
reated, that would repla
e the worstof both parents. Sin
e we de
ided to have several 
hildren per generation, itis a (µ + λ) repla
ement s
heme that is used, with only 2 or 3 
hildren pergeneration (where Evolution Strategies usually 
reate more 
hildren than thereare individuals in the population).5.7 EvaluationIt is possible to memorize 2 or 3 �ttings on modern 
o
hlear implant pro
essors(
alled P1, P2, P3). Until this resear
h was 
ondu
ted, the evaluation of thepatient's understanding was done by two di�erent ways. Either the patient wassent home with the new �tting on P1 and the previous �tting on P2, whi
hallowed him to 
ompare both �ttings in his environment, or an evaluation wasdone by an orthophonist with intensive tests during more than one hour.Even though an intera
tive evolutionary algorithm requires a redu
ed numberof evaluations [Tak98℄ none of these methods were suitable for an intera
tiveevolutionary algorithm, so various evaluation proto
ols have been devised andwill be des
ribed in details in se
tion 6.



5.8 Exe
utionThe evolutionary algorithm has been implemented both on a regular PersonalComputer and on a PDA so that it is possible for a patient to tune his 
o
hlearimplant in a real environment (in a train station, for instan
e, if the patientworks there and really needs a spe
i�
 �tting for this parti
ular environment).The graphi
al interfa
es are presented in �gures 2 and 3.

Fig. 2. Graphi
al Interfa
e on a standard PC 
omputer.The �rst versions have been implemented using the EASEA2 language [CLSL00℄in 
ombination with the GALib library [Wal℄. Later versions have been 
om-pletely re-implemented from s
rat
h in C++ be
ause apparently, the GALiblibrary did not use the �rst evaluations for the initial population, and for thisspe
i�
 appli
ation, ea
h evaluation 
ounts.6 ExperimentsThe �rst three sub-se
tions present results obtained with patient A, that were
ondu
ted by Claire Bourgeois-République, as part of her PhD. thesis of theUniversité de Bourgogne. These results have already been presented in severalpapers [BR04,BRVC05,BRFC05℄.The following experiments have been 
ondu
ted by Vin
ent Péan and Pierri
kLegrand within the RNTS HÉVÉA proje
t, funded by the Fren
h Ministry ofHealth.2 http://sour
eforge.net/proje
ts/easea orhttp://
omplex.inria.fr/
gi-bin/twiki/view/Complex/SoftwareEASEA



Fig. 3. Graphi
al Interfa
e for po
ket PC6.1 Presentation of Patient APatient A has re
eived an MXM 
o
hlear implant 10 years ago in 1994. Unfor-tunately, he has not re
overed a perfe
t audition (he understands some wordsquite well, but not others), although he is able to hold a 
onversation over thetelephone, whi
h is already quite a feat.He was initially given a waist pro
essor (
alled �boîtier�) to be 
arried at-ta
hed to his belt, until MXM re
ently 
ame up with a tiny �Behind The Ear�BTE pro
essor. In 2003, patient A has re
eived a BTE with the hope that newte
hnology would allow him to hear better.Unfortunately, this is not the 
ase. After many disappointing �tting sessionswith an expert pra
titioner, he still feels un
omfortable with the BTE and ap-parently 
annot follow a 
onversation with it. He therefore keeps the BTE in adrawer and uses the old Boîtier for every day life.The automati
 �tting algorithm des
ribed in this paper was developed withthe latest MXM te
hnology, i.e. BTEs. It was thought that Patient A 
ould bea ni
e patient to test the evolutionary algorithm, with the remote hope to �ndparameters that would allow him to hear with his state of the art BTE at leastas well as with his old Boîtier.To start with, Patient A 
ame to the hospital for yet another �tting sessionwith a pra
titioner, with the aim to determine the minimum and maximum(C and T) intensity values for ea
h of the ele
trodes for his BTE, to feed theevolutionary algorithm (
f. table 1).Ele
trodes 10 11 and 12 have C and T values of 0 be
ause the auditory neu-rons they fa
e have apparently been damaged (Patient A does not hear anythingwhatever intensity is applied to these ele
trodes).In order to be able to 
ompare �ttings, evaluations were done with the best�ttings on the Boîtier and the BTE. The results 
orresponded to his 
laims.With the 78%/22% evaluation des
ribed above:



Ele
trode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Min 6 6,5 6,5 9 9 9 8 8 8 0 0 0 7 6 5Max 9,5 13 13 18 20 21,5 21,5 18 16,5 0 0 0 12 10 9Table 1. Minimum and maximum intensity (C and T values) for ea
h ele
trode forPatient A.� The boîtier obtained an evaluation of 53/100 (slightly more than 50% of the78 words were understood).� The BTE obtained an evaluation of 48.5/100 (fewer words were understoodand the BTE is less 
onfortable).6.2 First set of experimentsEvaluation for the Patient A. A new evaluation proto
ol have been devised,using 
alibrated senten
es extra
ted from a list of �
o
hlear� senten
es elaboratedby Pr. Lafon [Laf64℄, that are supposed to 
ontain representative syllable of theFren
h language allowing to evaluate pathologi
al 
o
hlea. Ten senten
es weresele
ted, for a total of 78 words, that would give 78 points if all words were
orre
tly understood.A 
omfort mark between 0 and 10 
ompletes the evaluation, as an un
omfort-able �tting will not be used by the patient. The 
omfort mark is multiplied by2.2 so that the global evaluation is made of 78 points 
oming from the re
ognisedwords + 22 points 
oming from the 
omfort of the tested �tting.Tests have shown that this evaluation pro
edure takes slightly less than 4minutes. This is 
learly not enough to obtain a �ne evaluation of the auditionof the patient, but it allows to perform 100 evaluations in 6h40mn only (i.e.1h20mn per run if the 100 target evaluations are de
omposed in 5 runs). If thisredu
ed proto
ol is enough to guide the evolutionary algorithm and allow it toimprove the �tting over 100 su
h evaluation, the aim is rea
hed.Su
h an aim is di�erent from the aim of the 
omplete evaluation of a standardpra
titioner, be
ause due to the very small number of �ttings they 
an performin a year (about 10 �tting sessions per year and per patient), they need a verypre
ise evaluation pro
edure in order to test the quality of the audition of thepatient.Experiment 1 and results. For the �rst experiment with patient, the size ofthe population was limited to 3 individuals and the evolutionary algorithm wasasked to 
reate 3 
hildren per generation. Mutation rate was 0.1 and 
rossoverrate was 1.On the �rst evaluation (of a randomly 
reated individual) 42 words wereunderstood on a total of 78. Patient A gave an evaluation mark of only 1 (over10) be
ause even though he 
ould understand more than half of the words, the



BTE sound was resonating and feeling un
omfortable. The global evaluation wastherefore of 42+1×2.2=42.2.On this �rst experiment, 12 evaluations were performed, whi
h is a largenumber, knowing that preparation and evaluation of one �tting takes between15 and 20 mn for an experien
ed pra
titioner. With the evolutionary algorithm,only 4 mn were needed per �tting.The result of the evaluation is given in the table below :Fitting 1 2 3 4 5 6 7 8 9Evaluation 44,2 21,2 9,2 31,4 55,6 46,4 74,8 74,8 58,4Fitting 10 11 12Evaluation 81 81 79,8Table 2. Experiment 1 -patient AThe �rst three evaluations (44.2, 21.2, 9.2) 
orrespond to random individuals.Arti�
ial evolution starts on �tting number 4, with 3 
hildren per generation(generations are marked with a double verti
al bar).>From the 5th evaluation onwards, obtained results are better or equivalentto the best �tting performed by the medi
al pra
titioner (48.5).Fittings 7 and 8 are nearly identi
al, as well as �ttings 10, 11 and 12. Theseresults have never been approa
hed by the expert neither with the BTE nor withthe Boîtier.Patient A is enthusiasti
, and a se
ond experiment is started with 6 individ-uals, to avoid premature 
onvergen
e.Experiment 2 and results. The only 
hanges that have been made are apopulation size of 6 individuals and 4 
hildren per generation (generations aremarked with double verti
al bars).Fitting 1 2 3 4 5 6 7 8 9 10Evaluation 24 17 30 19 53.2 37.4 22.6 24 33.4 32Fitting 11 12 13 14 15 16 17 � � �Evaluation 9 27.4 34 34.5 12 27 32 � � �Table 3. Experiment 2 - patient AThe �rst four random individuals get poor results. Then, 
rossover and mu-tations have di�
ulties 
reating better individuals, with some really poor indi-viduals (�ttings 11 and 15).



Patient A gets tired and disappointed. The test is stopped after the 17th�tting.Experiment 3 and results. For the 3rd test, the population is redu
ed ba
k tothree individuals, but with 2 
hildren per generation. Mutation rate is in
reasedto 0.6 and roulette-wheel is used as a sele
tor in order to in
rease the sele
tivepressure when 
hoosing parents.Fitting 1 2 3 4 5 6 7 8 9 10 11Evaluation 54 33 26.5 48 52 51.6 54.6 62.8 59.6 65.6 60.1Fitting 12 13 14 15 16 17 18 19 20 21 22Evaluation 60 72 69.4 53.4 73 67 50.1 62 68.3 67.3 65Table 4. Experiment 3 - patient A
The three initial individuals obtain great values (54, 33 and 26.5). The se
ondgeneration obtains values near 50. Then evaluations in
rease towards 60s and 70swithout dropping below 50 again.Around generation 10 or 11 (�ttings 20, 21, 22), evaluations seem to stabilisenear 70 without beating value 73 of �tting 16.Experiment 4 and results. For the fourth experimentation, population size isset to four individuals and four 
hildren per generation. Mutation rate is broughtba
k to 0.1 and parents sele
tion is set ba
k to Tournament.Fitting 1 2 3 4 5 6 7 8 9 10 11 12Evaluation 59.4 62.2 57.3 58.9 57 62.3 65 73 75.3 65.2 83.1 68Fitting 13 14 15 16 17 18 19 20 21 22 23 24Evaluation 75.4 91 91.5Table 5. Experiment 4 - patient AIn average, the �rst four individuals present an average evaluation of 59.5and all subsequent values are above 56.5.Values of 91 and 91.5 are obtained at the end of generation 4. Patient A istired but extremely satis�ed and surprised by su
h results. He leaves for lun
hwith the BTE.



However, when he returns a 
ouple of hours later, he says that the �tting isnot very e�
ient in noisy environments, and feels like he still prefers his Boîtier,as it feels mu
h more 
omfortable to wear, as he has used it for the past 10 years.Experiment 5 and results. Population is now of 5 individuals, with two
hildren per generation, a tournament sele
tor and a mutation probability of0.1. Fitting 1 2 3 4 5 6 7 8 9 10 11Evaluation 18.6 53 70.1 9 71.9 58.4 60.3 58 51 57.3 48.2Fitting 12 13 14 15 16 17 18 19 20 21 22 23Evaluation 36 36.2 50 29 33.5 50.3 40.2 44.5 48.3 49.3 45.2 50Table 6. Experiment 5 - patient AAmong the �rst �ve random individuals, two show a surprising evaluation of70.1 and 71.9, whi
h raises questions on the original �tting of the expert for theBTE, whi
h only gets 48.5.However, evolution does not seem to �nd any better individuals.Dis
ussion on obtained resultsFitness evolution: The evolution of the best individual for the �ve runs Theevolution of the best individual for ea
h of the runs is shown �gure 4. Fitnessin
reases on all experiments but exp. 2, whi
h is a ni
e result for su
h a smallnumber of evaluations, meaning that the edu
ated guesses made on the IEAimplementation were probably good. It seems that the 
orre
t population size is3 or 4 individuals, with 2 to 4 
hildren per generation.Analysis of the best obtained individual: Analysis of the T/C values of the bestindividual is intriguing �gure 5: (Ele
trodes 10, 11 and 12 have been omittedas they are not fun
tional.) Sometimes, experts redu
e the C -T range for someele
trodes when they feel that the neural "bandwidth" is too narrow and thereis a possibility of saturation if the auditory information is too important. In the�tting found by the IEA, however, many of the C-T ranges are redu
ed downto 1.5, 1, 0.5 and even 0. In fa
t, only ele
trodes 1, 7 and 9 have signi�
antranges (over 2.5). Other good �ttings show wider ranges for ele
trodes 7 and 9and narrower ranges for the other ele
trodes, whi
h raises a hypothesis: Whatif, for this pre
ise patient, some ele
trodes had a negative in�uen
e on spee
hunderstanding ? If this were the 
ase, the 
urrent pra
ti
e (that has been goingon for many years) of maximising the range of as many ele
trodes as possiblewould also maximise the range of "wrong" ele
trodes that prevent the patient of



Fig. 4. Evolution of the best individuals per evaluations, for ea
h experimentation.under- standing spee
h. After this �rst evolutionary �tting session, the patientwent ba
k home with the original settings in his CI.

Fig. 5. Abs
issa: Ele
trodes, Ordinate: Intensity. Maximum allowed envelope and thebest obtained individual.This poses several questions:� Is minimising the T −C interval equivalent to shutting down an ele
trode ?� Could there be a diaphony problem (
rosstalk) between the ele
trodes ?� Could the problem be 
ombinatorial ?6.3 Se
ond set of experiments.A se
ond set of experiments has been 
ondu
ted in order to verify some hypothe-ses that arose after the �rst set of experiments. The tests have been 
ondu
ted



with the same patient and with the same evaluation proto
ol, but one monthlater. It is important to note that between the two sets of experiments, the pa-tient has used his old �boîtier,� meaning that neuronal plasti
ity 
annot havetaken pla
e. The evaluation basis are therefore 
omparable. In the text below,the �rst set of experiments is noted C1 while the se
ond set is noted C2.Experiment 7. Surprisingly enough, the best individual obtained during thefourth run was virtually using only three of the 12 fun
tional ele
trodes (ele
-trodes 1, 7 and 9), that 
ould be redu
ed to only 2, sin
e ele
trode 1 was mappedonto very low frequen
y sounds that are not dis
riminant for spee
h. In orderto 
on�rm this strange result, the �rst deterministi
 test maximises ele
trodes 7and 9 only (using the maximum C-T range of table 1), giving only a small rangeto ele
trode 1 �gure 7. For all the other ele
trodes, T and C values are set to 1and 1.5, i.e. mu
h below the The threshold, in order to 
an
el them totally. Thissetting obtains an evaluation of 82, whi
h is mu
h better than with all a
tivatedele
trodes (best �tting of 48.5 obtained by the expert). Nearly 90the words wereunderstood, and the �tting was rated as not very 
omfortable. This allows to
on
lude that for this patient, using only three ele
trodes out of 15 allows himto understand spee
h better than with all fun
tional ele
trodes set to nearlymaximum range.
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1 2 3 4 5 6 7 8 9 13 14 15Fig. 6. Expérimentation 7. Abs
issa: Ele
trodes, Ordinate: Intensity. Testing with ele
-trodes 1, 7 and 9 only. The bold 
urves represent the envelope (T and C) for ea
hele
trode.Experiment 8: on the in�uen
e of ele
trode 8. In the C1 set of exper-iments, the evolutionary algorithm seems to hesitate a bit on ele
trode 8. Inorder to test its real 
ontribution, the ele
trode 8 is added to the 1, 7 and 9ele
trodes, by maximising its C − T interval (using the values of table 1). Theobtained evaluation is 81, and the patient �nds that the �tting is slightly less
omfortable than the previous one. Spee
h understanding is 
omparable. Theele
trode 0 does not seem to have an important role in spee
h understanding.



Experiment 9: is there any diaphony between the ele
trodes ? In orderto explore this hypothesis, even ele
trodes are suppressed (by setting T and Cvalues below the T liminary values for the patient), and the odd ele
trodes aremaximised (using the values of table 1), so as to spa
e a
tive ele
trodes (
f.�gure 7).
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1 2 3 4 5 6 7 8 9 13 14 15Fig. 7. Experiment 9. Abs
issa: Ele
trodes, Ordinate: Intensity. Che
king for diaphony.This �tting obtains an evaluation of 78.8, and is judged less 
omfortableby the patient. The result is therefore not as good as those obtained duringexperiments 7 and 8. Adding other ele
trodes does not seem to add mu
h. Theresult is however still mu
h better than the one obtained by the pra
titionerwith the BTE (48.5).Experiment 10: spa
ing ele
trodes even more. This time, 2 ele
trodesout of 3 are 
an
eled, by setting their T and C values to 1 and 1.5 (
f. �gure8). Therefore, ele
trodes 1, 4, 7 are a
tivated. It was 
hosen to keep ele
trode 9a
tive, so as to keep a 
ommon 
omparison basis with the previous experiments.Finally, ele
trode 15 is maximised �gure 8. This �tting obtains an evaluation ofonly 58.5, i.e. 
learly not as good as the previous ones, and the patient rates itas quite un
omfortable. This is very surprising, as the only di�eren
e with the�rst test (that had obtained an evaluation of 82) is that ele
trodes 4 and 15have been added. Clearly, not only is there no diaphony problem (spa
ing a
tiveele
trodes did not improve evaluation), but it 
an be 
on
luded that for thispatient, ele
trodes 4 and 15 
ontribute negatively to spee
h understanding. Thefa
t that fun
tional ele
trodes 
an 
ontribute negatively to spee
h understandingis a totally new 
on
ept in the 
o
hlear implant medi
al �eld.Experiment 11 : evaluation of the best individual of C1. In order totest the evaluation pro
edure, the best individual of the set of experiments C1is tested again, one month later, and without telling anything to the patient.
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1 2 3 4 5 6 7 8 9 13 14 15Fig. 8. Experiment 10. Abs
issa: Ele
trodes, Ordinate: Intensity. Che
king for di-aphony by sele
ting only one every 3 ele
trodes, and keeping ele
trode 9.The spee
h understanding test is again very good (94% of the words areunderstood, whi
h is even better than one month before) but the 
omfort is notas good, resulting in a slightly lower evaluation of 86.2%. All in all, this value isslightly lower than the one obtained during C1, but it is the best value obtainedduring C2.Experiment 12 : evaluation of the pra
titioner's �tting. This time, it isthe pra
titioner's original �tting that is tested again (the one that more or lessmaximised all ele
trodes, and that had obtained 48.5 during C1).Here again, the number of re
ognised words is very low (only 33%) and
omfort gets a bad 4/10 evaluation. The global evaluation is 41.8, whi
h is alsoslightly worse than during C1.All in all, in one month, the best �tting found by the IEA went down from91.5 to 86.2, while at the same time, the pra
titioner's �tting also went downfrom 48.5 to 41.8. This suggests that the proposed qui
k 4mn evaluation is quitereliable, as the results seem to be reprodu
ible one month later, while the patientused his old �boîtier� in the meantime.Other tests. In order to verify that values obtained by the evolutionary algo-rithm are better than random ones, other experiments have been 
ondu
ted withrandom values for T and C for all ele
trodes. Evaluations range from average tobad, although often greater than those obtained by the pra
titioner (48.5). Thepatient �nds that these �ttings are not 
omfortable.6.4 Third set of experiments with others patientsTo verify the gain obtained with 
omputer-aided CI �tting, and develop its useat hospital, new experiments have been 
arried out with others patients. Thisset of experiments C3 is 
ondu
ted with 2 new patients: Patient B and patient



C. For these experiments, the parameters of the IEA are the following:Population 3Children 2Mutation rate 0.1Crossover rate 1The new population is obtained by taking the best individuals of the inter-mediate population 
onsisting of the 3 parents and the 2 
hildren (i.e. in thestyle of a (3+2)ES).Corpus and methodology. Patients have re
eived MXM 
o
hlear implantssome years ago, but they are not satis�ed with their devi
e and have no good re-sults (general evaluation by the pra
titioner is less than 50%). The IEA has beenused to try to determine optimal C (Comfortable) and T (Threshold intensity)values for ea
h of the ele
trodes of the CI.To start with, the patients 
ame to the hospital for a �tting session with apra
titioner, and minimum and maximum intensity values for ea
h ele
trodes oftheir BTE have been determined, to give boundaries to the evolutionary algo-rithm.For these 2 patients (B and C), the same pro
edure that was used for patientA (a set of 
alibrated senten
es) has been tested. Unfortunately, the results aredisappointing as patients B and C re
ognise but a few words, meaning that thistest is too hard for them.Therefore, a new evaluation pro
edure was set up, based on a weighted eval-uation of the results of:� A dis
rimination test (ASSE) on 7 items. The ASSE test 
onsists in emittinga sound n times (an [i℄ for instan
e), and within these o

uren
es, repla
ingone of the [i℄ with an [a℄ (for the following sequen
e: i i i i a i i). The patientneeds to dete
t that one of the sounds was di�erent. The ASSE test 
ountsfor 20% of the evaluation.� A VCV (Vowel/Consonant/Vowel) test ([APA℄, [ATA℄, . . . ), where the pa-tient must re
ognise the 
onsonant between the two vowels. In one VCV test,ea
h VCV is repeated 3 times, meaning that 48 VCVs are proposed to thepatient (be
ause in Fren
h, there are 16 di�erent phoneti
 
onsonants. Thistest 
ounts for 50% of the evaluation.� A 
omfort evaluation with a mark from 0 to 10, that 
ounts for 30% of theevaluation.Unfortunately, the 
omplete evaluation takes a long time (mu
h more than 4minutes), and the patients are less 
ompliant than patient A, so it is impossibleto get around 100 evaluations (as for patient A).After the �rst sessions, the P1 and P2 settings of the CI were loaded withrespe
tively the �tting obtained with the IEA, and the manual �tting of the



pra
titioner, after whi
h the patients were sent home with the instru
tion to usethe best �tting of P1 or P2.After two weeks, the patients 
ame ba
k for new tests:1. a dis
rimation test with P1 and with P2,2. a VCV re
ognition test with P2 and with P1,3. a senten
e re
ognition test with 10 senten
es using the P1 setting (IEA).Third set of experimentations with patients B and C� First session for Patient B (02/09/05):Eval Nb Manual 1 2 3 4 5 6ASE Result 4/7 5/7 5/7 5/7 6/7 5/7 7/7VCV Result 33% 31% 25% 18% 29% 31% 31% fatigueComfort 7/10 6/10 7/10 5/10 5.5/10 6/10 8/10Evaluation 5 5 4 5 5 6� Se
ond session for Patient B 3 days later (05/09/05):Setting Manual 1 2 3 4 5 6 7ASE Result 6/7 7/7 7/7 7/7 6/7 5/7 5/7VCV Result 35% 25% 27% 10% 18% 18% 20% 27% fatigueComfort 5/10 6/10 6/10 5/10 5/10 5/10 5/10Notation 4 5 4 4 4 4 4Best �tting loaded in memory P1 of the BTE: �tting N◦6 of 02/09/05.� First session for Patient C (15/09/05).A �rst set of independent random tests has been performed, to be 
omparedto the manual �tting results, in the table below:Setting Manual RandomASE Result 5/7 6/7 5/7 5/7 5/7 5/7 4/7 5/7 6/7 5/7VCV Result 45% 33% 29% 22% 39% 31% 18% 29% 39% 35%Comfort 4/10 5/10 5/10 5/10 5/10 4/10 5/10 5/10 5/10Notation 5 4 4 5 4 3 4 5 4Then the IEA is used, but only based on a VCV evaluation, to shorten thetime of evaluation.Setting 1 2 3 4 5 6 7VCV Result 35% 41% 39% 33% 20% 43% 37% FatigueNotation 4 4 4 3 2 4 4Patient C is sent ba
k home with �tting X of run Y in P1, and manual �ttingin P2.



After two weeks, patients B and C 
ome ba
k to hospital with the followingresults for patient B: Test ASE VCV Words/list ComfortAuto 3/7 33% 7 n/aManual 5/7 27% 10 n/aand for Patient C:Test ASE VCV Words/list ComfortAuto 3/7 52% 1 8/10Manual 4/7 37% 2 8/10Remarks:1. Both patients preferred to use the P1 �tting (IEA) !2. Random �tting 
an do really well, sometimes slightly better than what thepra
titioners do when they maximise the number of ele
trodes and theirdynami
.3. Ea
h evaluation is mu
h too long so the patients gets tired very rapidly.4. Comfort is too di�
ult to evaluate a

urately for the patients.These results again question the maximisation of the number of ele
trodesand the maximisation of their dynami
 range.Random tests also show that the ranges of possible parameters values iswell 
hosen, providing a sear
h spa
e having many �average good� solutions, butwith a rather ��at� sear
h lands
ape. In these 
onditions, and 
onsidering theparameter setting of the IEA (a (3+2)ES), time for 
onvergen
e is too shortto really obtain the beginning of a 
onvergen
e. On
e again, one blo
ks on theproblem of user fatigue. Additionally it 
an be argued that the evaluation is notenough dis
riminant to provide an e�
ient �tness lands
ape to the IEA.New tests have been designed, taking these results into a

ount.6.5 Fourth set of experimentsThe same patients (Patient B and C) were tested. The parameters of the IEAare the following: Population 4Children 3Mutation rate 0.8Crossover rate 1The new population is obtained by an elitist binary tournament between apopulation made by the parents + the 
hildren. The elitism is "soft," in thesense that it is the best individual of the 7 individuals that is taken to be partof the next generation (and not the best of the parents only). The three otherindividuals are sele
ted by a standard binary tournament.



Corpus and methodology. Ea
h trial was based on the results of a VCVre
ognition test with [APA℄, [ATA℄ . . . The patient has to re
ognise the 
onso-nant in the VCV. Ea
h VCV is proposed on
e, meaning that there are only 17items in a test. The result over the 17 VCV 
ounts for 100% of the evaluation.Experiments� Patient BResult of the previous IEA �tting: 2 of the 17 VCV were re
ognised.Result of the manual �tting: 2 of the 17 VCV were re
ognised.Evaluation 1 2 3 4 5 6 7 8 9 10VCV Result 2 3 3 2 3 4 3 4 4 31 hour break and restart.Evaluation 1 2 3 4 5 6 7 8 9VCV Result 4 2 3 2 4 2 2 3 3� Patient CResult of the previous IEA �tting: 8 of the 17 VCV were re
ognised.Evaluation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18VCV Result 6 5 5 5 4 7 5 7 7 8 7 4 6 4 4 7 5 4Lun
h break and restart of the algorithm with the initialisation of two indi-viduals to the IEA �tting the patient had been using for the previous week,and to the best �tting of the previous run (�tting 10).Evaluation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16VCV Result 3 5 6 6 7 8 7 7 6 3 5 8 6 6 6 4Break, and restart of the algorithm.Evaluation 1 2 3 4 5VCV Result 6 3 7 6 8



Con
lusions on the fourth set of experiments� The IEA was working �ne, although no real improvement 
ould be seen, evenduring the longest runs (like the �rst run of patient C, i.e. 18 evaluations,i.e. evolution during �ve generations). But� The probable explanation is that the 
hosen VCV evaluation is too di�
ultfor both patients, and the algorithm 
annot �nd any �tting leading to astable improvement of the audition of the patients.Guidelines for future experimentation have therefore been de�ned.7 A
tual work and perspe
tivesCon
erning the evolutionary runs, the evaluation fun
tion is very important. Iffor these patients, the VCV test is really too hard, the IEA will not be able to�nd any improvements (the �tness lands
ape is too �at to give a dire
tion forimprovement to the algorithm).It seems important to spend some time to set up an evaluation fun
tionspe
i�
 to ea
h patient, that 
an return an average value, neither too low, like3/17 or 5/17 (be
ause this would mean that the test is too di�
ult) or too high,like 15/17 or 16/17 (be
ause this would not leave any room for improvement).The evaluation fun
tion must be qui
k. If it is too slow, the patient will gettired before any signi�
ative number of evaluations are done (set of experiments3). Finally, until the IEA pro
edure is routinely giving good enough results, itmay be interesting to 
hoose �easier� patients, i.e. patients for whom the 
o
hlearimplantation works slightly better...

Fig. 9. Best �tting found by the pra
titioner for patient C: ea
h re
tangle representsthe [T, C] interval for ea
h ele
trode.



Even though the sets of experiments 3 and 4 have not been really satisfyingevolutionary-wise, the results are very interesting on a medi
al point of view,sin
e it has 
on�rmed that narrower intervals (or even removal of one or severalele
trodes) 
an lead to better spee
h understanding.In all tested patients (of whi
h A B C were a subset), it was possible to�nd �ttings that were working at least as well as manual �ttings maximisingthe dynami
s for all ele
trodes, and in many 
ases, these �ttings were simplyrandom �ttings !

Fig. 10. Best �tting found at random for patient C, that beats the best �tting foundby the pra
titioner: ea
h re
tangle represents the [T, C] interval for ea
h ele
trode.In order to have a visual example, �g. 9 shows the intervals for all the ele
-trodes of patient C on the best �tting found by the pra
titioner, while �g. 10shows the best �tting obtained. . . randomly, that give better results than thepra
titioner's. Please note the skinny intervals 
ompared to those of �g. 9. Insome 
ases, some ele
trodes are virtually 
an
eled (ele
trodes 5, 8, 11, 12 and13), whi
h goes against reason (and against what is advo
ated by the 
o
hlearimplants manufa
turers).7.1 Classi�
ation of sound environmentsMany users of 
o
hlear implants or hearing aids �nd that the parameter settingof their devi
e is not perfe
tly adapted to all situations of their everyday life:in restaurants, they �nd 
li
king 
utlery aggressive, and they have a hard timefollowing a 
onversation, in the street, some noises are nearly unbearable,. . .Some patients may need a setting for a quiet environment (su
h as home) butmay work in a noisy environment (metal industry, garage, . . . ) so there is nomira
le solution.



The aim of the HEVEA proje
t is to improve hearing with 
o
hlear implantsby several means. One is to help the expert �nd good �ttings using an intera
tiveevolutionary algorithm [BRC05℄, and another is to integrate into the pro
essora small signal analysis software that would be able to re
ognise the sound envi-ronment and automati
ally sele
t a �tting a

ordingly, among a set of available�ttings 
orresponding to di�erent situations.In order to a
hieve this se
ond task, several stages must be performed :1. The medi
al team must determine with the patient a number of 
ommonenvironments for whi
h the patient would need a spe
i�
 �tting, for instan
e:home, work, supermarket, 
inema, . . .The number of spe
i�
 environments should be limited, be
ause for ea
h ofthe spe
i�ed environments, a spe
ial set of parameters needs to be found forthe 
o
hlear implant, and �nding a good set of parameters 
an be a long anddi�
ult task (even with the help of an evolutionary algorithm).2. For ea
h of the spe
i�ed environments, the patient must take a number ofsound samples to bring ba
k to hospital.3. Spe
i�
 parameters must be found, to deal with ea
h of the spe
i�ed envi-ronments (possibly with the help of an intera
tive evolutionary algorithm).4. In parallel, the di�erent samples must be analysed to extra
t some 
om-mon features, so that a 
lassifying algorithm 
an determine them in whi
h
ategory falls the sound environment that is surrounding the patient.5. Finally, the 
hara
teristi
s and parameters for the di�erent environmentsmust be uploaded into the 
o
hlear implant pro
essor, along with a signalpro
essing program that will automati
ally 
hoose the 
orre
t parameters tomat
h the environment in whi
h the patient is evolving.The result is an �intelligent� 
o
hlear implant that 
an automati
ally swit
hbetween potentially di�erent sets of parameters, depending of the sound envi-ronment surrounding the patient.This se
tion presents the sound sampling, 
hara
terization and 
lassi�
ationstage. It starts with a des
ription of the spe
i�
 sound sampler developed forthis appli
ation, followed by a sub-se
tion re
alling the wavelet theory on whi
hthe s
ienti�
 work is based. Then, a third sub-se
tion des
ribes how the energy
ontent of a sample 
an 
hara
terise a sound environment. Finally, results arepresented on the 
lassi�
ation of di�erent environments using a standalone pie
eof software.Development of an a posteriori sound sampler. In this appli
ation, soundsampling is essential to provide a

urate data for two orthogonal needs:1. The sound environment must be a

urately re
orded so that it 
an be re
og-nised in the future by the pro
essor with su�
ient 
on�den
e to swit
hbetween di�erent sets of parameters.2. Parti
ularities must be also re
orded so that a spe
i�
 �tting 
an be foundthat will help to 
ope with the 
urrent environment.



This distin
tion must be made be
ause it is ne
essary to tune the Co
hlearImplant (CI) on possibly pun
tual noises that are not representative of thegeneral sound environment. For instan
e, one patient 
urrently swit
hes o� his
o
hlear implant whenever 
y
ling to work, be
ause the sound of a motorbikepassing by is too stressful to be bearable with his usual CI �tting. Choosing toswit
h o� his CI (and be
oming totally deaf) in a street environment is quiteradi
al, but shows how mu
h an adaptive and �intelligent� CI would be neededfor this patient.So it would be ne
essary for the adaptive CI to re
ognise a street environment,in order to 
hoose for a �tting that would allow to 
ope with passing motorbikes,although passing motorbikes are ex
eptional in a street. One must therefore �nda �tting adapted to an ex
eptional event, that should be sele
ted when a soundenvironment (that has nothing to do with the ex
eptional event) is dete
ted.Sampling the regular environment for 
hara
terization. The sampling must beas a

urate as possible, so that the pro
essor 
an sele
t the 
orre
t parameterswithout making any mistakes. Therefore, re
ording a sound environment on anold tape re
order may not be su�
ient. A small ja
k plug has been added to thepro
essor of the CI so that it 
ould output dire
tly the sound pi
ked up by themi
rophones of the CI to a digital sampler.Then, a sampling software has been developed on a PDA (Personal DigitalAssistant) that the patient plugs dire
tly onto the CI pro
essor in order to samplethe exa
t sound that is re
eived by the pro
essor (
f. �g. 11).

Fig. 11. A sampling software has been developed on a PDA that the patient plugsdire
tly onto the CI pro
essor in order to sample the exa
t sound that is re
eived bythe pro
essor.Sampling the ex
eptional event for CI �tting. Then, another problem arises:whenever an ex
eptional event o

urs for whi
h the CI should be tuned, it is often



too late (the unbearable motorbike sound has vanished before the patient 
ouldre
ord it, or in a 
rowded restaurant, the words that have not been understood
annot be repeated in exa
tly the same manner). A solution 
ould be to samplethe street (or the restaurant) for a long enough time, but here again, it is di�
ultdo predi
t when the right motorbike will appear (or when the waiter will speakin an unintelligible way), and this 
ould result in hours of re
ording, and hoursto replay the re
ords to �nd the relevant information.A spe
ial sampling software has therefore been developed that 
onstantlyre
ords the 
urrent sound for a period of n se
onds (When the patient hits there
ord button, whatever happened during the previous n se
onds is stored in a�le, for future use. 30 se
onds seems to be a 
orre
t duration, so that when thepatient uses the PDA to re
ord pre
ise sounds, he has 30 se
onds to press onthe button after he realised that some interesting sound has o

urred.These very pun
tual samples (motorbike) have a di�erent 
ontent than thesamples that are used to 
hara
terise the general environment (�standard� streetnoise).Chara
terisation of a sound environment. We distinguish two steps in theproblem of �sound environment 
lassi�
ation�. The �rst step is the extra
tion ofthe 
hara
teristi
s, in order to build the representation's spa
e. The se
ond stepis to �nd a 
lassi�
ation method whi
h allows to �t ea
h point of this spa
e witha probability of being in a spe
i�ed family. We 
an extra
t a lot of informationfrom a sound in order to make a 
lassi�
ation. For example, one 
an use thefrequential 
ontent, the 
epstral 
hara
teristi
s, the loudness, the pit
h...The 
hara
teristi
s motivated by the human per
eption su
h as the spe
tral
hara
teristi
s, the loudness or the pit
h 
an des
ribe all the kind of soundbe
ause the human brain use the same 
hara
teristi
s in our daily life.For this work we will analyse the frequential 
ontent at ea
h dyadi
 s
alebe
ause the implant perform the same kind of analysis. We will use a wavelettransform in order to perform a multis
ale analysis (see [Dau92℄ and [Mey90℄).We 
ould use a simple Fourier Transform but we prefer keep the possibility touse the time lo
alisation provided by the wavelet transform for a future work.In fa
t, Wavelet analysis allows to adjust the width of analysis windows, anda
hieves a perfe
t lo
alisation in time and frequen
y. Logi
ally, temporally ex-tended windows are used to study low frequen
ies, while narrower windows areused for higher frequen
ies. This lo
alisation property makes wavelet theory pre-dominant in several areas of signal pro
essing.Continuous Wavelet Transform (CWT). A wavelet is a �wave lo
alised in time.�More pre
isely, it is a fun
tion ψ ∈ L2(R) su
h that ∫R ψ(t)dt = 0. If ∫R ψ(t)2dt =
1, then we use normalized wavelets.The 
ontinuous wavelet transform of a signal f is given by:

CWT (a, b) =
1
√
a

∫

∞

−∞

f(t)ψ

(

t− b

a

)

dt



In this expression, a is a s
ale fa
tor and b is a translation parameter (tem-poral shift). Variable a represents the inverse of the frequen
y: the smaller a, the(temporally) narrower the wavelet (i.e. the analysing fun
tion).Therefore, one 
an see this expression as the proje
tion of the signal on afamily of analysing fun
tions:
ψa,b =

1
√
a
ψ

(

t− b

a

)
onstru
ted by widening + translation from the original ψ wavelet.Dis
rete Wavelet Transform. In this work we use a dis
rete wavelet transformwhi
h is faster than the 
ontinuous transform. The Dis
rete Wavelet Transform
an be obtained thanks to the dis
retization of the parameters of resolution (a)and position (b). Let a = am
0 with m an integer, a0 a resolution step greaterthan 1 and b = nb0a

m
0 with n an integer and b0 > 0.Furthermore, if a = 2 and b = 1, the transform is 
alled �dyadi
.� One thenhas:
Cj,k = 2−

j

2

∫

∞

−∞

f(t)ψ(2−jt− k)dtIf ψj,k = 2−
j

2ψ(2−jt − k) we get a tiling of the time-frequen
y spa
e 
alled adyadi
 grid (see �g 12).

Fig. 12. Dyadi
 grid. Abs
issa: Time, Ordinate: Frequen
y. At the bottom, ea
h pointis a point of the signal. The mat
hing dis
ret wavelet 
oe�
ients are the 
ir
le inthe grid. At low frequen
ies, the 
omputation of the wavelet 
oe�
ient uses largewindows in time, then we only have few 
oe�
ients. Oppositely, at high frequen
iesthe 
omputation uses small windows.Energy of a signal. For a given s
ale, if we use a normalized wavelet, the energyof the signal 
an be obtained from the 
ontinuous wavelet transform. More pre-
isely: one 
an 
ompute the energy of the a s
ale by adding the squares of thewavelet 
oe�
ients of the 
ontinuous transform at this s
ale:



Ea2 =

∫

[CWT (a, b)]2db (1)where Ea2 is the energy at s
ale a. If we use the dis
rete wavelet transform, weget:
Ej2 =

2
j−1

∑

k=1

[C(j, k)]2 (2)where Ej2 is the energy at s
ale j.Chara
terisation of a 
lass by its energy 
ontent. As said above, we'll 
hara
-terise a 
lass by its energy 
ontent. Let us 
onsider a sound environment S1.The patient re
ords a 
olle
tion of *.wav �les, that are 
hopped into a familyof n1 subsignals of 214 points (almost 3 se
onds for ea
h subsignal). If one 
om-putes the dis
rete wavelet transform of theses signals and the energy of ea
h ofthe obtained frequen
y bands during multi-resolution analysis, one then gets n1ve
tors of 14 
oordinates. We 
hoose to 
hara
terize a 
lass by the mean valueof these ve
tors. We obtain for ea
h 
lass a value at ea
h dyadi
 bandwidthfrequen
y (see �g 13).Classi�
ation of sound environments. The aim is to 
reate a 
lass for aspe
i�
 environment, by using a 
olle
tion of .wav �les as input.When the patient is in a new environment, he uses the sound sampler andre
ords a sample of this environment. A .wav �le is imported and 
hoppedinto 214 mi
ro-samples. When 
li
king on 
ompute, ea
h of the mini-samples isasso
iated with the family that mat
hes the sample best.A ratio is then displayed, that presents the number of samples that 
orre-sponded to ea
h family, and the results are displayed in a bar-
hart. The bar-
hart provides us the mat
hing family with a 
ertain 
on�den
e. For example if80% of the mi
ro-sample are 
lassi�ed in the 
lass S1, then the sample will be
lassi�ed in the 
lass S1 with a 
on�den
e of 80%.Results. For ea
h family, available .wav �les have been 
hopped into mini-samples of 214 points. 66% of the mini-samples 
hosen randomly are used for thelearning set, and 33% for the test set. The results are presented in the followingtable: Family Learning set Test set mat
hing family Con�den
eCar-radio 16 8 Car-radio 100%Cross-roads 24 13 Crossroads 84 %Birds 12 7 Birds 100%S
hool-yard 22 11 S
hool-yard 100%Supermarket 35 15 Supermarket 100%Lawn-mower 10 5 Lawn-mower 80%
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hool-yard" environment . Right down:"Lawn mower" environment. Set of values of the energy for ea
h frequen
y (�ne lines),enveloppe and mean 
riterion (thi
k lines).



Fig. 14. Graphi
al Interfa
e for the 
lassi�
ation toolbox.All samples have been 
orre
tly 
lassi�ed. For Car-radio, Bird, S
hool-yard,and Supermarket environments we have 100% of 
on�den
e. The worst resultsare for the Crossroad and Lawn-mower environments, the sample have been
orre
tly 
lassi�ed with a 
on�den
e of respe
tively 84% and 80% (on the 13Crossroad test samples, one is identi�ed as a Supermarket environment andanother one as a lawn-mower, and on the lawn-mower, one out of 5 samples is
lassi�ed as being a 
rossroad).Future work. What needs now to be done for the s
heme to be fully fun
tionalis to 
onne
t the PDA to the 
o
hlear implant, so that if the PDA is ableto 
lassify an environment with a 
on�den
e rate greater than 50%, it sele
tsautomati
ally the 
orresponding CI �tting adapted to this sound environmentand it uploads it into the CI.If, on the 
ontrary, the 
on�den
e rate is less than 50%, the sound environ-ment is sampled and memorized, so that it 
an be 
lassi�ed later on (whi
h mayrequire to 
reate a new sound 
lass).8 Con
lusionThe problem of 
o
hlear implants �tting belongs to a 
lass of very di�
ultproblems, impossible to solve in a deterministi
 way in a limited time, for atleast two reasons:� The fun
tion to be optimised 
annot be modeled. It is extremely variable,be
ause it is dependent on the patient and linked to a subje
tive evaluationof his auditive sensations.� The sear
h spa
e is very large, therefore, stri
t optimality is out of rea
h.



The work presented in this paper des
ribes an approa
h of this problem,based on an intera
tive evolutionary algorithmwith a mi
ro-population. The �rstresults with patient A are promising: evolution has taken pla
e (as the 
urvesshow in �g. 4) and the obtained results were far better than those obtained byan expert pra
titioner.However, this experiment showed that it was possible to obtain good �ttingsby simply sele
ting values at random, whi
h questions the usual aim, that is tomaximise the number and range of ele
trodes to improve audition and 
ompre-hension. A number of other experiments has been 
ondu
ted that shows thatindeed, the strategy advo
ated by CI manufa
turers may not be the best, whi
his a new result in the medi
al �eld.But this work is obviously a preliminar one, that needs to be 
on�rmedwith additional experimental analysis on other patients, having various pro�les.Moreover, the aim of this proje
t is to make 
o
hlear implants more adaptiveto patients and to their environments: The adaptation to audio environmentthat has been sket
hed in se
tion 7, needs now to be tested by patients in realenvironments.Other points of improvements are more te
hni
al and relate to the heartof the intera
tive optimisation method. The real experiments presented in thispaper a
tually prove the importan
e of user fatigue, whi
h is a general problemin IEAs. But in the 
ase of audio intera
tion this problem is even more 
ru
ial,for two reasons: only one signal 
an be evaluated at on
e (on the 
ontrary tovisual evaluations), and the attention needed to 
orre
tly evaluate a �tting isextremely demanding for implanted patients.Usually, one 
opes with user fatigue in three ways: [PC97,Tak98,Ban97℄ :� redu
e the size of the population and the number of generations,� 
hoose spe
i�
 models to 
onstrain the resear
h in a priori �interesting� areasof the sear
h spa
e,� perform an automati
 learning (based on a limited number of 
hara
teristi
quantities) in order to assist the user and only present to him the mostinteresting individuals of the population, with respe
t to previous votes ofthe user.In this paper we have used the �rst item, i.e. a mi
ro-EA. The experimentalanalysis that has been presented proves the ne
essity to try other strategies.A

ording to the third item above, experiments have been 
ondu
ted on anotherappli
ation (image denoising) with a �tness map te
hnique [LPLV05℄, where the�tness rating has been extended to individuals of a larger population via theanalysis of the user judgment on a small sample of individuals. Future workon 
o
hlear implants 
ould use a similar strategy, in order to evolve a largerpopulation of parameter settings while keeping a low number of user evaluations.Additionally, other strategies to better exploit the user intera
tions shouldbe 
onsidered, su
h as using partial evaluations (shorter audio tests), and re�ne-ments of audition, understanding and 
omfort evaluations only on areas of thesear
h spa
e that have been identi�ed as promising by the IEA.
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