
Genetic Programming and Evolvable Machines
Accepted DOI 10.1007/s10710-016-9273-9

Genetic Improvement of GPU Software

William B. Langdon ·
Brian Yee Hong Lam · Marc Modat ·
Justyna Petke · Mark Harman

2 August 2016

Abstract We survey Genetic Improvement (GI) of general purpose comput-
ing on graphics cards. We summarise several experiments which demonstrate
four themes. Experiments with the gzip program show that genetic program-
ming (GP) can automatically port sequential C code to parallel code. Ex-
periments with the StereoCamera program show that GI can upgrade legacy
parallel code for new hardware and software. Experiments with NiftyReg and
BarraCUDA show that GI can make substantial improvements to current par-
allel CUDA applications. Finally, experiments with the pknotsRG program
show that with semi-automated approaches, enormous speed ups can some-
times be had by growing and grafting new code with genetic programming in
combination with human input.

Keywords Genetic Programming · SBSE · GI-GPGPU · metaprogramming ·
Grammar Based Genetic Programming · nVidia CUDA · parallel computing ·
Dynamic Programming · GPGPU · GGGP

PACS Computer science and technology, 89.20.Ff · Computer vision,
42.30.Tz · computed tomography, 87.57.Q- · magnetic resonance imaging,
87.61.-c · nuclear medicine imaging, 87.57.U- · biomolecules, 87.15.A-

W. B. Langdon, J. Petke, H. Harman
Department of Computer Science, University College London
E-mail: W.Langdon@cs.ucl.ac.uk

B. Y. H. Lam
University of Cambridge Metabolic Research Laboratories, Addenbrooke’s Hospital

M. Modat
Leonard Wolfson Experimental Neurology Centre, University College London

http://dx.doi.org/doi:10.1007/s10710-016-9273-9

2 William B. Langdon et al.

1 Introduction

Since the effective end of the doubling of CPU processor clock speeds in 2004
with the launch of Intel’s 3 GHz Pentium, the use of parallel graphics hard-
ware (GPUs) for main stream computing has become increasingly common.
Although general purpose computing on GPUs [Owens et al., 2008] was orig-
inally introduced to take advantage of low cost hardware developed for con-
sumer games market, today GPGPU software may be found on GPUs costing
less than $50 to super computers with budgets of $325 million. Indeed (as of
Dec 2015) two of the top ten fastest computers on the planet are substantially
composed of nVidia GPUs (Tesla K20, see Table 2 page 22).

Despite the continued exponential rise in parallel processing power (see
Figure 1), sequential programs continue to dominate. This is because parallel
programming is hard for people. Indeed the non-standard Single Instruction
Multiple Data (SIMD) heavily multiple threaded programming required by
GPUs (see Figure 2) is especially difficult for people to program efficiently.
To compound the double difficulty of “parallel programming” and the SIMD
(or SIMT1) programming model, until recently GPGPU programming support
tools were poor. Recent versions of nVidia’s CUDA include a usable perfor-
mance profiler and C/C++ debugger and there are a few other commercial
tools to support GPGPU software development. Probably the best approach,
where possible, e.g. for matrix intensive code, is to avoid writing programs for
the GPU but instead rely on pre-existing library routines and call them from
sequential code running on the host (i.e. the PC or server to which the GPU
is attached, see top of Figure 3). Some languages (such as Matlab and R) can
automatically exploit GPU hardware for matrix operations.

nVidia provides help for GPGPU programming on its hardware, e.g. via
extensive documentation, online forums, a large number of C/C++ examples
and domain specific packages, such as nvBio for Bioinformatics applications.
A notable open source GPGPU package is Thrust. Both nvBio and Thrust
make heavy use of C++ templates, which tends to make them hard to un-
derstand. Also it appears that Thrust is sometimes difficult to integrate with
other code which accesses the same GPU, and nvBio has some bugs. GPGPU
programming has been and still remains hard. This is probably why there are
still relatively few GPU Bioinformatics applications [Langdon and Harrison,
2008]. Unfortunately GPGPU applications will not become wide spread whilst
GPGPU programming remains an uber-geek activity.

Our approach to deskilling GPGPU software development is different.
Largely we take the approach of hoping the existing commercial and open
source high level libraries and packages will be successful at easing the path to
the development of correct code but rely on the machine to transform correct
code into efficient parallel code. Indeed we show (Sections 5–7) that Genetic
Improvement can automatically tailor C source code to get high performance
specific to each different GPU.

1 Single Instruction Multiple Threads, SIMT

Genetic Improvement of GPU Software 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 2008 2009 2010 2011 2012 2013 2014

P
e
a

k
 B

ill
io

n
s
 o

f
F

lo
a
ti
n

g
 P

o
in

t
O

p
e
ra

ti
o
n
s
 p

e
r

S
e
c
o

n
d

nVidia GPU
 x86 CPU

Fig. 1 Exponential growth in peak processing power. Data from nVidia

SP

SP

SP

SP

SP

SP

SP

SP

direction

reflected light

Light

and intensity

Program to

calculate

Fig. 2 An example of SIMD parallel processing. The stream processors (SP) simultaneously
run the same program on different data and produce different answers. This program has
two inputs. One describes a triangle (orientation, position, colour, how shiny or matt its
surface is). The second input refers to a common light source and so all stream processors
use the same value. Each stream processor calculates the apparent colour of its individual
triangle. Notice, here, each output is independent of all the others and so they can all be
calculated in parallel.

4 William B. Langdon et al.

L2 CACHE

Off chip memory

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP SP

"constant" Read Only

Texture/RO 48KB cache

shared + L1 cache 64KB

64K 32−bit registers

PCI Express

PC

Giga Thread Engine

Fig. 3 A Tesla K40 contains a PCI Express interface to the host personal computer (PC),
thread handling logic, 15 SMX multiprocessors, and 12 Gigabytes of on board memory. Each
SMX contains 192 stream processors (total 2880). See also Table 2 page 22.

2 Genetic Improvement for GPGPU

Genetic Improvement is an up and coming topic with a growing range of ap-
plications [Langdon, 2015b; Langdon, 2015a]. Whilst [Brady et al., 2014] used
genetic programming to automatically create better than the state-of-the art
reflectance functions these are for use with GPUs in traditional computer
graphics, rather than general purpose computation on GPUs (GPGPU). Simi-
larly [Sitthi-amorn et al., 2011] used GP to improve existing graphics shaders,
but again this is using graphics hardware for graphics applications rather than
GPGPU. (Although Section 5 deals with images, its slightly different in that
it extracts implicit rather than explicit information from multiple images.)
Also in [Langdon, 2010] we used GPUs but this was purely to speed genetic
programming itself. So far there are five substantial genetic improvement ex-
periments which deal with general computing on GPUs:

1. Section 4 describes evolving a replacement to the most computationally
demanding part of the popular Unix compression utility gzip [Langdon
and Harman, 2010].

2. Section 5 discusses evolving changes to code written by nVidia’s vision
processing expert which several years later enabled it to be used on modern
hardware and software. In addition to the speed ups given by the more
powerful GPUs now available, the GI software gave up to a seven fold
speed up on real stereo image pairs [Langdon and Harman, 2014b]. See
Figures 19 (page 21) and 20 (page 23).

3. In Section 6 genetic improvement is applied to the most computationally
intensive code used when performing registration of images of the human
brain. The NiftyReg package [Modat et al., 2010] contains many such GPU

Genetic Improvement of GPU Software 5

kernels. So far it has proved impractical to update and tune them all by
hand for every software update and for new graphics hardware. The GI
approach [Langdon et al., 2014] shows one way in which it may be plausible
to attempt to do this automatically.

4. Section 7 discusses the first application of Genetic Improvement in use.
BarraCUDA [Klus et al., 2012] is a state of the art C++ program which
maps short DNA fragments against a reference genome. Aligning (i.e. map-
ping) short DNA sequences is the first step to assembling a complete DNA
sequence for the organism. (Typically a human patient but the process
and indeed the software, applies to any living organism. E.g. bacteria, fly
or cabbage). Once aligned interesting variations (mutations) in the indi-
vidual can be found.

BarraCUDA was initially created by a team of nVidia, GPGPU and
Bioinformatics experts who ported the popular BWA [Li and Durbin, 2010]

tool to run on GPU hardware. Nevertheless, Section 7 will show that genetic
programming in combination with manual effort was able to give more
than a 100 fold improvement in a critical component. Naturally the overall
improvement is more pedestrian but still more than sufficient to convince
the owners of BarraCUDA to accept the GI version of the code and make it
available2. (The GI version has been downloaded more than a 1000 times.)
The GI version has been fully integrated, including applying fixes (e.g. to
bugs inherited from BWA).

The old and new releases of BarraCUDA have been run against BWA
and Bowtie2 [Langdon and Lam, 2015]. Even a £50 GPU running Barra-
CUDA can be faster than BWA on a twelve core CPU. With a top end
nVidia Tesla GPU, BarraCUDA can be more than ten times faster than
BWA on a 12 core CPU.

5. Section 8 summarises the first use of the grow and graft GP approach to
evolving better GPU code [Langdon and Harman, 2015a]. RNA is an im-
portant biological polymer related to DNA. As with many other molecules,
RNA’s chemical activity is largely dictated by its shape. Unlike proteins,
the shape, indeed the range of shapes, into which RNA folds can be pre-
dicted by computer models using Dynamic Programming.

Dynamic Programming is essentially a matrix method and so should
prove easily parallelisable. However pknotsRG [Steffen and Giegerich, 2006;
Reeder and Giegerich, 2004] gave very poor performance. This is because
typically RNA molecules used in computational experiments are quite short
and this limits the degree of parallelism available in the Dynamic Program-
ming matrix, however a modern GPU can readily process many thousands
of such matrices. By telling evolution where to evolve new code and using
the existing code as a harness, grow and graft GP was able to evolve correct
code which ran at up to ten thousand times faster for the shortest RNA
molecules. See Figure 28 (page 30).

2 BarraCUDA is on SourceForge http://sourceforge.net/projects/seqbarracuda/

http://sourceforge.net/projects/seqbarracuda/

6 William B. Langdon et al.

The next section recaps the Genetic Improvement process, including why we
use grammar based Genetic Programming, the genetic operations and the use
of the existing software and test suite as a test oracle to specify the required
functionality. After Sections 4 to 8 (see above), Section 9 puts these results into
the wider context and Section 10 concludes. (Appendix A gives the internet
locations of various Genetic Improvement tools.)

3 Genetic Improvement of Software

By starting from an existing program GI has several advantages. The first is
the existing code becomes a de facto specification. (In the case of automatic
bug repair it is assumed that the buggy program is almost correct and only a
small part of the existing functionality needs changing [Weimer et al., 2010].)
Every new version of the program produced by GI can be compared against
the original. Typically test cases are used both 1) to see if the GI mutant still
retains the functionality of the original and 2) to see if it is in some measurable
way better than the original.

3.1 Combining Man and Evolution

In non-GPU work we have investigated the active combination of human cod-
ing and evolution. For example in [Harman et al., 2014] we showed that given
strong manual hints (e.g., adding the Google translate API to the function
set) GP could evolve an international bi-translation feature. Again giving hints
(such as a target routine) GP could graft the newly evolved code into a social
media package of more than 200 000 lines of C code. More recently this “grow
and graft” approach has been used to add a Python citation service based on
Google Scholar to a sizeable existing web server [Jia et al., 2015].

As mentioned in Section 1, GPU programming remains difficult. Various
approaches have been advanced to move programmers to a higher level. For
example, [Merrill et al., 2012] advocates the use of C++ high level templates.
However, from personal experience, such indirection seems to place additional
load on the human programmer. Unfortunately the current GI approach is still
very much research in progress, but it too has the goal of allowing the machine
to do more of the heavy lifting work of getting the code to work efficiently,
whilst leaving the role of specifying what needs to be done to the programmer.

The first part of the GI approach to CUDA programming is to use sim-
ple optimisation on key CUDA parameters, such as block size. Where there
are one or even two such parameters, it may be feasible to try all reasonable
values (exhaustive search) before evolving the code. Typically these key pa-
rameters are also re-optimised after evolution. As the number of parameters
increases, the number of options increases, typically exponentially. For exam-
ple in Section 7, the number of configuration options is 213×7×37 = 2 121 728.

Genetic Improvement of GPU Software 7

Therefore the chromosome was expanded to explicitly include these parame-
ters (see Section 3.4). Effectively the GI becomes a co-evolution of a grammar
based GP evolving code changes and a GA evolving the parameter changes.

In the case of StereoCamera Section 5, NiftyReg Section 6 and BarraCUDA
Section 7, heavy use was made of conditionally compiled man-made code (see
#ifdef etc. in grammar fragment in Figure 7 page 12). The conditional compi-
lation switches become additional fixed parameters, whilst the new code, like
the original code, is subject to change by the grammar based GP. The idea
being, there are multiple ways of coding CUDA functionality. It is impossible
for the novice (and very hard even for an expert CUDA GPU programmer) to
know in advance which will be the most efficient. What is worse, code tuned
for a particular user load and/or particular GPU may be less efficient with ei-
ther different load or on a different GPU. For example, in the case of NiftyReg
(Section 6), there are many hand written kernels and it has proved impossible
in practice to re-work them by hand for more modern GPUs.

A common choice is where and in what format to store data. The GPU
offers choices such as: on the host (via “zero copy”), on board global mem-
ory, on chip shared memory, texture memory, the texture’s read-only cache,
constant memory and registers. Each of these have different GPU dependent
performance and limitations. The choice of array-of-structures or structure-
of-arrays is well known but there may be other choices, such as should the
programmer use bytes or words, or in the case of DNA strings, is it worth
compressing the data into two bits for each base pair. The implications of any
of these choices (which are forced onto the human programmer) are far from
obvious. By the use of conventional coding practises, e.g. (inlined) functions
and macros, and conditional compilation these choices can be deferred to the
machine (in the form of evolution). Also when circumstances change (e.g. the
introduction of global memory caches) we can automatically undo customisa-
tion for one GPU and re-optimise for another. As well as code mutations, the
conditional compilation switches become parameters to be chosen by GI.

For example, the original version of BarraCUDA included a software level
cache for the last 8 DNA bases. As with all caches, the goal was to produce
better code with the same functionality. By wrapping the code to implement
the cache inside conditional compilation under GI control, it was discovered
that on modern Tesla-class GPUs, the hardware caches were sufficient and
actually the software cache was now slowing down the kernel and could be
removed.

3.2 The GI Fitness Function

In evolutionary computation the role of the fitness function is to guide the
search. In these experiments, to reduce run-time only a small subset of the
available tests need be run to decide which members of the current population
will have descendants. To avoid the GI population becoming over specialised,
which test cases are used is frequently changed (see also [Langdon, 1998;

8 William B. Langdon et al.

graphics card

CUDA kernel on

Evolved moduleModule to be replaced

Record data flows

Instrumented gzip

Fig. 4 The original code (left) is instrumented to record the input and output data (arrows)
of the target function (red) every time it is called. These become the fitness function and
test suite for the automatically evolved replacement module running on the GPU. In the
context of gzip, the CUDA code (Figure 6) generated by GP is functionally identical to the
C code inside gzip [Langdon and Harman, 2010].

Teller and Andre, 1997; Gathercole and Ross, 1994; Foster, 2001]). Only after
evolution does the goal change to validating the evolved code. In validation it
is common to use a large number of tests including, to check for over-fitting,
tests that were not used during evolution. Indeed it may be feasible (as with
gzip, Section 4) to operate the new GI system back-to-back with the original
and verify they produce the same, or at least compatible, answers. (For ex-
ample, the GI CUDA gzip code was run and compared with the original more
than a million times and no difference was ever seen.)

Figure 4 shows GI being applied to part of an existing system. The orig-
inal system is run to gather information about the data used by the module
of interest. (In this case the function which uses most of the CPU time.) The
function’s inputs and corresponding outputs are recorded. These become the
definition of the new CUDA kernel. I.e. given these inputs, the old code pro-
duced these answers, so the new code should produce the same answers. In
floating point code we would allow certain tolerance between the old and the
new. Indeed with noisy data or imprecise algorithms, we can imagine the fit-
ness function allowing a bigger discrepancy between the two if there is some
possible advantage, such as more quickly calculating a less accurate answer.

Here typically better is defined by the fitness function to mean faster but it
could, for example, mean uses less memory [Risco-Martin et al., 2010; Wu et
al., 2015], less energy [Schulte et al., 2014a; Bruce, 2015; Burles et al., 2015a]

or gives a better tradeoff between speed and quality of the answers [Langdon
and Harman, 2015b]. Indeed presenting the user with a range of options which
tradeoff multiple axes of improvement may be an avenue to early adoption of
GI [Harman et al., 2012a].

In Figure 5 fitness testing is followed by selection. Since the goal is to
generate programs which are better than the original, we typically run the
original code on the current test cases to establish its performance as a baseline.
To be eligible to have children each mutant has to be better than the baseline.

Genetic Improvement of GPU Software 9

Improved exact_match

and device code

Pop modifications

Pop modifications

Fitness

Select

Test case
159444 DNA sequences
of 100 bases

Mutation and Crossover

Grammar

1000 unique
CUDA kernels

source code

Manually
written

Thousand Genomes Project

Fig. 5 Major components of Genetic Improvement (GI). Left: system to be improved and its
test suite. Right: genetic programming optimises patches which originate from a grammar
that describes the original system line by line. (Shown for BarraCUDA Section 7.) Each
generation mutation and crossover create new patches. Each patch’s fitness is evaluated by
applying it to the grammar and then reversing the grammar to get a patched version of
the system. Each patched system is tested on a small randomised subset of the test suite
and its answers and resource consumption compared to that of the original system. Patches
responsible for better systems procreate into the next generation.

In multi-objective problems, we typically take a relaxed definition of better and
only demand the mutant exceed the original’s performance in one objective. At
present, with a noisy fitness, we use a tolerance to ensure the mutant is truly
better. However, one could imagine other systems successfully using selection
schemes with more relaxed definitions of what it means to be better than
the original code. We use weak selection in the form of binary rank selection,
which means each member of the top half of the population produces two
children. Again it is possible that schemes with a higher selection pressure,
e.g. tournament selection, could be used [Langdon and Poli, 2002].

3.2.1 Ensuring for Loop Termination

Although in recent years GPUs and their software have become more sophisti-
cated, running a kernel that loops indefinitely may require manual intervention
to restore control. Hence our evolutionary system always ensures loops termi-
nate. Typically loops are aborted after a predetermined number of iterations
and the misbehaving kernel given a poor fitness value. In the CUDA code
shown in Figure 6, this is implemented by the macro ok. Each time ok is in-
voked, it increments a hidden per-thread counter; after the counter exceeds a
generous limit, ok returns false and the thread terminates. The grammar which
constrains GP (see Section 3.3) is constructed to ensure evolution cannot avoid
calling ok and cannot affect the counter.

10 William B. Langdon et al.

__device__ int kernel978(const uch *g_idata, const int strstart1, const int strstart2)

{

int thid = 0;

int pout = 0;

int pin = 0 ;

int offset = 0;

int num_elements = 258;

for (offset = 1 ; G_idata(strstart1+ pin) == G_idata(strstart2+ pin) ;offset ++)

{

if(!ok()) break;

thid = G_idata(strstart2+ thid) ;

pin = offset ;

}

return pin ;

}

Fig. 6 C++ code of the gzip CUDA kernel automatically generated by GI.

3.2.2 Protecting Array Indexes

As with all C code, there is no defined behaviour for when an index goes
out of the bounds of the corresponding array. Modern GPU and more recent
software tend to be well behaved. However, since not being defined includes
the possibility that the GPU locks up until manually rebooted, in practise GP
systems usually ensure array indexes are well-behaved:

– Figure 6 shows the use of the wrapper function G idata, which allows
evolved code to access array elements safely by forcing its input to lie in
the valid index range of the array. The array bounds are known. Any index
outside the valid range is masked into the valid range, without fitness
penalty. The grammar is written to ensure G idata is the only way to
access the array.

– GPUs also provide specialist arrays called textures. Although primarily
intended to allow arrays storing images to be read via specialised GPU
hardware, they can be configured to give defined (and safe) behaviour on
index out of bounds errors. However, details of texture caches are not
documented and may vary between GPUs. Also caches are always limited.
Therefore, replacing an array with a texture may affect performance in
unexpected ways.

– In the case of recent GPUs and modern versions of CUDA, it is possi-
ble to run the kernels under the protection of the CUDA memcheck tool.
memcheck can be used to detect and report addressing errors. However, it
imposes a considerable and unpredictable overhead, necessitating well be-
haved kernels be run again without memcheck to get accurate performance
data. The advantage of this approach is that, in the second run, the kernel
does not incur the overhead of using G idata or require the use of textures.

Genetic Improvement of GPU Software 11

Often the fitness function will penalise code whose indexes go out of range
and so prevent the evolution of extreme cases, which might exceed the GPU’s
hardware protection or memcheck’s abilities.

3.3 Evolving via a Grammar

Figure 5 shows how GI adapts the traditional evolutionary algorithms search
technique. The first (off-line) step is to automatically generate a grammar
which describes the target program and legal modifications of it. (See Fig-
ure 7. Although in BNF format, the grammar is entirely dedicated to this
one program and is not general like, for example, the grammar describing
the C programming language.) By operating at the CUDA source code level,
the grammar approach gives the great advantage of rendering everything, in-
cluding the GP itself, visible. However, this comes with the disadvantage that
(in many computer languages) the GI modified code must be compiled. There-
fore, the compiler must be run many times and becomes a significant overhead.
(There are ways of reducing this overhead, see Section 3.3.1.)

In the main evolutionary loop, GI evolves not complete programs but
changes to the original program. In the grammar based approach, these are
represented in plain text as variable length lists of mutations. These are applied
to the grammar, which is then effectively reversed to generate new source code.
(The grammar is written in plain text, e.g. Figure 7. It describes the source
code and source code can be generated from it. Hence modified source code
can be generated from the modified grammar.) The modified source code is
compiled and the resulting program subject to fitness testing (see Section 3.2).

The grammar ensures the mutated code is syntactically correct (e.g. all the
brackets match, there are semi-colons where there should be). However, there
may be other, semantic errors, which cause the compilation to fail. Almost all
compilation errors are caused by moving a variable out of scope. In some cases,
see Section 3.7, the genetic operations can be limited to ensure all mutants
compile. GP individuals (patch lists) which cause the code to fail to compile
are not permitted to enter the breeding pool of parents of the next generation.

3.3.1 Reducing or avoiding the Cost of Compilation

The major overhead in GI (as with all non-trivial evolutionary programming
applications) is the fitness function. In GI the fitness overhead is usually domi-
nated by 1) the compiler overhead and 2) running the program to be improved.
There are several ways which might reduce the compiler overhead, some of
which have already been demonstrated:

– Use a faster compiler. E.g. replace gcc with tcc.
– Remove (or reduce) compiler optimisation switches, e.g. -O.
– Compile only code which GI has changed (c.f. the Unix make tool).
– Pre-compile code which cannot be changed, e.g. C .h include files.
– Compile more than one mutation together in the same file, see Figure 8.

12 William B. Langdon et al.

<KStereo.cuh_53> ::= "OUTYPE *" <optrestrict_KStereo.cuh_52> "disparityPixel,\n"

<KStereo.cuh_78> ::= "#ifdef LOCAL_disparityPixel\n"

<KStereo.cuh_79> ::= "float disparityPixel_L[ROWSperTHREAD];\n"

<KStereo.cuh_80> ::= "#endif /*LOCAL_disparityPixel*/\n"

<KStereo.cuh_85> ::= "#ifdef SHARED_disparityPixel\n"

<KStereo.cuh_86> ::= <optvolatile_KStereo.cuh_86> "extern __shared__ OUTYPE disparityPixel_S[];\n"

<optvolatile_KStereo.cuh_86> ::= " volatile "

<KStereo.cuh_88> ::= <optvolatile_KStereo.cuh_86>

"int* const disparityMinSSD = (int*)&disparityPixel_S[ROWSperTHREAD*BLOCK_W];\n"

<KStereo.cuh_89> ::= <optvolatile_KStereo.cuh_86>

"int* const col_ssd = &disparityMinSSD[ROWSperTHREAD*BLOCK_W];\n"

<KStereo.cuh_93> ::= "#else /*SHARED_disparityPixel */\n"

<KStereo.cuh_95> ::= <optvolatile_KStereo.cuh_86>

"extern __shared__ int disparityMinSSD[];\n"

<KStereo.cuh_96> ::= <optvolatile_KStereo.cuh_86>

"int* const col_ssd = &disparityMinSSD[ROWSperTHREAD*BLOCK_W];\n"

<KStereo.cuh_100> ::= "#endif /*SHARED_disparityPixel */\n"

<KStereo.cuh_153> ::= "#ifdef DPER\n"

<KStereo.cuh_154> ::= " if" <IF_KStereo.cuh_154> " \n"

<IF_KStereo.cuh_154> ::= "(dblockIdx==0)"

<KStereo.cuh_155> ::= "#endif /* DPER */\n"

<pragma_K3> ::= "#pragma unroll 3\n"

<pragma_K11> ::= "#pragma unroll 11\n"

<_KStereo.cuh_160> ::= "init_disparityPixel(X,Y,i);"

<KStereo.cuh_161> ::= "" <_KStereo.cuh_161> "\n"

<_KStereo.cuh_161> ::= "init_disparityMinSSD(X,Y,i);"

<KStereo.cuh_224> ::= "" <_KStereo.cuh_224> "\n"

<_KStereo.cuh_224> ::= "ssd += col_ssd[i+threadIdx.x];"

<KStereo.cuh_262> ::= <pragma_KStereo.cuh_262>

"for(" <for1_KStereo.cuh_262> ";"

"OK()&&" <for2_KStereo.cuh_262> ";"

<for3_KStereo.cuh_262> ") \n"

<pragma_KStereo.cuh_262> ::= ""

<for1_KStereo.cuh_262> ::= "row = 1"

<for2_KStereo.cuh_262> ::= "row < ROWSperTHREAD && (row+Y < (height+RADIUS_V))"

<for3_KStereo.cuh_262> ::= "row++"

<KStereo.cuh_326> ::= " if" <IF_KStereo.cuh_326> " \n"

<IF_KStereo.cuh_326> ::= "(X < width && Y < height)"

<KStereo.cuh_348> ::= "" <_KStereo.cuh_348> "\n"

<_KStereo.cuh_348> ::= "__syncthreads();"

Fig. 7 Fragments of grammar created from stereoKernel (Section 5). Total 423 rules. The
type of a rule is given by the part of its name between the < and KStereo.cuh. Untyped
rules (e.g. <KStereo.cuh 53>) cannot be directly changed by GI. (However OUTYPE, like
LOCAL disparityPixel, SHARED disparityPixel, ROWSperTHREAD, BLOCK W, DPER, etc., is a
macro which is controlled by a GI parameter, see Section 3.4.) Mutation respects these
types. Thus mutation <IF KStereo.cuh 326><IF KStereo.cuh 154> replaces the contents of
the if on line 326 with the contents of the if on line 154. (The evolved solution is given in
Section 5, page 23 onwards and Figure 22 page 24.)

Genetic Improvement of GPU Software 13

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 1000 10000 100000

li
n

e
s
/s

e
c
o

n
d

Lines of CUDA Kernel code

300 Kernels

1400 lines 86000 lines

2.66GHz Intel dual core 4GB

Fig. 8 As expected [Harris, 1997], compiling multiple kernels together is faster than com-
piling them separately. For the nvcc CUDA compiler (version 5.0 V0.2.1221) and NiftyReg
the peak is when compiling 300 kernels together, which is 19.3 times faster than running
the compiler once for each. Note log horizontal scale.

– Distribute the compilation across multiple host computers [Harding and
Banzhaf, 2009].

– Mutate at lower levels than the source code. E.g. Java byte code [Schuler
and Zeller, 2009] or machine code [Schulte et al., 2014b; Schulte et al.,
2015].

– Pre-embed every single mutation to the source code, compile once to cre-
ate one binary executable which has run-time switches to selectively en-
able/disable each mutation. In mutation analysis (mutation testing) this
super mutant [Langdon et al., 2010] is known as a “mutation schemata”
[Untch et al., 1993].

Bug repair schemes tend to operate not on the source code but on the pro-
gram’s abstract syntax tree (AST) [Weimer et al., 2010]. By performing only
legal changes to the AST the program can be modified quickly in a way that
is guaranteed to be syntactically correct. However, like our grammar based
approach, most errors are caused by moving variables out of scope (but see
Section 3.7).

3.4 Genetic Operations

The genetic operations (i.e. mutation and crossover) act via each program’s
grammar on its source code (see Section 3.3 and Figure 7). While AST based

14 William B. Langdon et al.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 64 128 192 256 320 384 448 512 576 640

M
ill

is
e

c
o
n
d

s

block size

 poor

 best

Tesla C2050 1,658,972 activeVoxels

Fig. 9 Ruggedness of performance landscape. Time taken by NiftyReg kernel for different
settings of one parameter. Mean of five runs at each parameter setting. GPU timings are
highly reproducible. On average (median) the observed standard deviation is 0.01% of the
mean, and in more than 90% of cases it is less than 0.1%.

<359>#3 <288><257>volatile <186>+<247><IF154><IF281> <IF358><IF307>

<168>#5 <284>+<194> <261>+<166>

Fig. 10 Extended chromosome. (Used, for example with BarraCUDA, Section 7.) A fixed
number of parameters in blue (left). Followed by a variable length list of grammar patches
separated by spaces. There is no limit to the number of patches, so the search space is
infinite. (To save space in the figure shown on two lines but actually all on a single line.)

approaches [Weimer et al., 2010] typically work at the statement level, gram-
mar based GI modifies lines of code. (Depending on the human programmer,
lines of code and C statements are typically similar.) GI can only manipu-
late the existing code. It does not invent new code. The basic operations are:
delete a line of code, replace a line of code with another from elsewhere in the
program and insert a copy of another line. Each code change is represented in
plain text using source file names and line numbers. A GI individual is then a
list of changes, again represented as a simple text string.

In the case of CUDA some control parameters make a huge difference
to performance (e.g. see Figure 9, but see also Section 3.5). Therefore, as
mentioned on page 7, in some cases, these and various conditional compilation
flags are made explicit targets for optimisation. This is done by including in
the chromosome a fixed part (like a genetic algorithm) with its own point
mutation and uniform crossover operations (see Figures 10, 11, 12 and 13).

Genetic Improvement of GPU Software 15

volitile<284>+<194> <247><186><180><231><358><154><174>+<176>

<284>+<194> volitile <288>+<161><247><186><180><231><358><154><174>+<176>

Fig. 11 Example of mutation to the variable length part of a GI individual. Patch
<288>+<161> is appended to parent (top) extending the child (bottom). This causes
a copy of source line 161 to be inserted before line 288 in the kernel source code. (For clarity
the fixed part omitted and full grammar rule names simplified to just their line numbers.)

1 SHARED Float_ Linear Clamp Float_ 1 LOCAL cgNone Variable number of code patches

1 LOCAL Float_ Linear Clamp Float_ 1 LOCAL cgNone Variable number of code patches

Fig. 12 Example of mutation to the configuration part at the start of a GI individual.
In this example and in Figure 13 (all from StereoCamera Section 5) the usual GI variable
length patch list is augmented by a binary GA like fixed list of parameters represented in
plain text. Top: parent Bottom: offspring.

3.4.1 Mutation

Where configuration parameters are used, half of mutations are made to them.
In which case one is chosen uniformly at random and its current value is
replaced by another of its possible values again chosen uniformly at random,
see Figure 12. The other half of the mutations are made to the code. In which
case the mutation operator appends an additional code patch to the parent
(see Figure 11).

3.4.2 Crossover

Crossover creates a new GP individual from two different members of the bet-
ter half (Section 3.2) of the current population. Where fixed parameters are
used, the child inherits each of them at random from either parent (uniform
crossover [Syswerda, 1989], see Figure 13). Whereas in [Langdon and Harman,
2015b] we used append crossover which deliberately increases the size of the
offspring, here, on the variable length part of the genome, we use an analogue
of Koza’s tree GP crossover [Koza, 1992]. Two crossover points are chosen
uniformly at random. The part between the two crossover points of the first
parent is replaced by the patches between the two crossover points of the sec-
ond parent to give a single child. (Cf. two point or double crossover [Cavicchio,
Jr, 1970].) On average, this gives no net change in length.

3.5 Software is Not Fragile

Whilst in Section 3.4 we showed the GI (particularly the GI-GPU) search
space is in some parts rugged, here we present more evidence why modern
search based optimisation can still make progress.

It is often assumed that computer programs are fragile and that any single
change will destroy them totally. Figure 14, and also [Schulte et al., 2014b],
show this is not true. Even though our mutation operators (Section 3.4.1)

16 William B. Langdon et al.

<IF307>
<IF358>

<IF307>
<IF358>

1 SHARED Linear 1SharedFloat_ Clamp float_ GLOBAL cg

1 SHARED Linear 1EqualFloat_ Mirror int_ GLOBAL cv

1 SHARED Linear 1EqualFloat_ Clamp float_ GLOBAL cg

<300>+<240> <359>#3 volatile <212>+<273><158>#11 <224><176><261>+<166>

<300>+<240>

<284>+<194><261>+<166> volatile <186>+<247><168>#5 <288><257><359>#3

<261>+<166> <212>+<273><158>#11volatile <224><176><for3_158>
<for3_307>

<262>#11
<IF307>
<IF358>

<IF154>
<IF281>

<359>#3

Fig. 13 Example of crossover between GI parents. Parts of two above median parents (top
and middle) recombined to yield a child (bottom). (For clarity variable code mutation part
shown underneath fixed mutation part and some of the code patches shown stacked to save
horizontal space.)

no change
 0.001

 0.01
 0.1

 1
 10

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

count

Faster

Slower

Increase in error

Increase in time (1% bins)

count

Fig. 14 Impact of all (7079) one change mutations on StereoCamera kernel [Langdon and
Harman, 2014b] running on an nVidia GeForce GT 730 graphics card. 2336 (33%) ran but
made errors (+). Nine mutants failed to compile due to a bug in the nVidia CUDA 6.0.1
compiler (fixed in CUDA 7.0). 16 caused infinite loops, 318 others failed at run-time. 4400
(62%) mutants do not change the output at all (“no change”), indeed at least 41 of them
are faster (×). Note log scales.

are like changes a human programmer might make, Figure 14 shows that
about 5 in 8 random changes do not change StereoCamera’s (Section 5) CUDA
kernel’s output on a randomly chosen test image pair. This test means that all
76 800 pixel values are identical. (Cf. equivalent mutants [Yao et al., 2014]).

Figure 15 shows the evolution of the effect of our mutation and crossover
operations. Notice we see similar effects: whilst some programs which were
working are broken by source code changes, a substantial proportion continue
to work.

3.6 Continuing Evolution Despite Compilation Errors

Although apparently tedious, in the case of compiling populations of CUDA
kernels it turns out to be relatively easy to ensure the failure of one member of
the population to compile does not influence the compilation of others. (This

Genetic Improvement of GPU Software 17

 10

 20

 30

 40

 50 150 200 250 300 350 400 450 500 550

 0

 10

 20

 30

 40

 50

 60

 70

Number in population

Working kernels
3rd Quartile

Generation

 Millions of activeVoxel per second

Number in population

Fig. 15 Evolution of NiftyReg (Section 6) population (300) on GTX 295. (Histogram per
generation, million voxel/sec bins). After generation 10, on average 58% of the population
process more than half a billion voxels per second. The fraction of the population that
produce wrong answers is 48% in the random initial generation, but only 30% on average
afterwards (not plotted).

could be done by compiling each member of the population independently
but this incurs the overheads mentioned in Section 3.3.1.) A simple script
can process the compilation error messages and from the line number where
the error is reported infer which GI individual(s) failed to compile. These are
excluded from the population and the compilation re-tried.

Typically the compiler will report many errors before stopping and so sev-
eral failing GI individuals can be excluded at once. However, the GCC com-
piler has a limit of 100 reported errors, after which it gives up. Therefore, it
is necessary each time the population is compiled to check in case there are
compilation errors which were present before but were not previously reported.
Although repeatedly running the compiler suggests a large overhead, this is
not so in practise, as typical errors are reported by the compiler early in its
operation. This causes the compiler to stop before it gets to its more expen-
sive operations, like machine code generation. That is, for example, the source
code will have to be parsed more than once, but parsing and error checking,
are relatively cheap compiler operations.

3.7 Avoiding out of Scope Compilation Errors

Again although apparently tedious, it turns out to be relatively easy when
converting CUDA code to a grammar to 1) keep a track of the scope of each
variable and 2) use this to provide a list of line numbers where lines of code
containing variables may be inserted without those variables violating their
scope limitations. This analysis is done once before evolution starts.

18 William B. Langdon et al.

In Section 7 the scope analysis is made slightly more complex by the use of
conditional compilation #if symbols, which cut across C scope. Nevertheless
in practice it is entirely feasible to restrict mutations by line number ranges
and thus ensure most mutated code compiles.

3.8 Post Evolution Clean up

Evolution’s tendency to create overly large solutions has been remarked many
times [Tackett, 1994; Angeline, 1994]. Whilst tree based GP has specific geo-
metric reasons for it [Poli et al., 2007] it appears to be inherent in evolution of
variable length structures [Langdon and Poli, 1997b; Banzhaf and Langdon,
2002; Soule and Heckendorn, 2002] and as expected bloat also arises in GI
patch lists. As with Weimer’s bug repair, we include an explicit post evolution
phase to remove unnecessary changes.

Typically the best GI individual in the last generation is minimised by
starting at its beginning and progressively temporarily removing each indi-
vidual mutation and comparing the performance of the new kernel with the
evolved one. Unless the new kernel is worse the mutation is excluded perma-
nently. Often to encourage removal of mutations with little impact, those that
make only a small difference to the kernel timing are also removed.

4 CUDA gzip

The purpose of the gzip experiment is to show evolution can evolve desired
functionality using test cases gleaned from existing (human written) code. We
chose the longest match C function from the well known gzip Unix compres-
sion tool. gzip was written when Unix was young. It works by scanning the
file to be compressed for sequences of bytes which occur multiple times and
replacing them in the compressed file by a shorter code. The longer the re-
placed repeated sequences are the better the compression. longest match is
given a string of bytes and scans forward up to 64 Kbytes in the file to be
compressed looking for the longest sequence of bytes which match its input.
longest match is the most computationally demanding part of gzip and in
current releases of Unix it is replaced with assembler code. In this first exam-
ple, a BNF grammar based upon nVidia’s own CUDA examples was created
by hand and test cases where taken from the Software-artefact Infrastruc-
ture Repository (SIR) [Hutchins et al., 1994]. The grammar ensures code that
looks like an appropriate CUDA kernel with the right number of inputs is
created, whilst the fitness function ensured a replacement for longest match

was evolved.
The crosses (+) in Figure 16 show that the distribution of inputs to

longest match is highly non-uniform. If our goal was just to optimise the
code, it might make sense to concentrate upon the few cases which occur fre-
quently. (Possibly leaving the infrequent cases to be processed by unmodified

Genetic Improvement of GPU Software 19

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128 256 512 1024

N
u
m

b
e
r

o
f

lo
n
g

e
s
t_

m
a

tc
h
()

 c
a
lls

Searches per call

gzip SIR test suite
29314 GP training data

Fig. 16 Distribution of number of strings that gzip searches for each byte compressed.
211 tests from SIR. Total 1 599 028 calls of longest match. Note log scales.

code.) However, the new code must deal correctly with all inputs. (Here we
evolve correct but naive kernels that do not provide any speed up.) To avoid
evolution excessively concentrating upon the short popular test cases, these
occur less frequently in the test cases used by the fitness function. By avoiding
excessive duplication 1 599 028 tests were reduced to 29 315 more uniformly
spread examples (line in Figure 16). In each generation 100 of these were ran-
domly chosen and used to assess the fitness of every evolved CUDA kernel in
the population.

In gzip a complete grammar was created by hand from example code sup-
plied by nVidia. The BNF grammar is coded so that each rule either has no
alternatives or there are exactly two alternative productions. Which alterna-
tive is to be used is given by the genotype (see Figures 17 and 18).

The right hand side of Figure 18 uses [Daida et al., 2005]’s circular lattice
tree format on the final population to illustrate the gzip grammar based GP
population converging from the root like tree based GP [Langdon and Poli,
1997a; McPhee and Hopper, 1999; Soule and Heckendorn, 2002; Burke et al.,
2004]. (See also http://www.cs.ucl.ac.uk/staff/W.Langdon/gypse/ and
supplementary data.)

In the later experiments, Sections 5 to 8, evolution works by mutating the
grammar, rather than deciding which option to take. Hence those grammars
are simply a list of rules and productions which, after applying the list of
patches, Section 3.3, are expanded in order without the possibility of alterna-
tives.

http://www.cs.ucl.ac.uk/staff/W.Langdon/gypse/

20 William B. Langdon et al.

<start>

<line2> <line3> <line5> <line10-20> <line21>

<line6> <line7.0> <line71> <line72>

<line10-18a> <line20.1>

<line11> <line18>

<line10e1>

<foruchcomp>

<foruchexpr2> <foruchexpr2>

<uchexprT> <uchexprT>

<line12-17b>

<line15-17b> <line12-13a>

<line17.0>

<3var>

<uchexpr1.2>

<uchexprT>

<line13.2.1>

Fig. 17 Path through the grammar taken by GI to create the gzip CUDA kernel evolved in
generation 55. Figure 6 (page 10) gave the resulting C++ program. Ovals indicate binary
decision rules. With shaded ovals the second option was used.

5 StereoCamera

StereoCamera was written by nVidia’s image processing expert to demonstrate
the first version of CUDA and nVidia hardware could process stereo image
pairs in real time [Stam, 2008]. Nonetheless, as we shall see, it is possible to
evolve substantial improvements starting from Stam’s code. (In the animation
http://www.cs.ucl.ac.uk/staff/W.Langdon/egp2014/AC k20c video.gif

the inferred distance, z, is shown using false colours for the stereo video record-
ing used to train the GI. AC k20c video.gif is also in the supplementary
data.) Figure 19 explains StereoCamera’s algorithm using as an example a
holdout stereo image pair. With correct positioning of the page before your
eyes, it is just about possible to get a three-dimensional effect.

Table 1 gives the speed up for six types of GPUs. In the case of Stereo-
Camera, two key algorithm specific parameters, ROWSperTHREAD and BLOCK W,

http://www.cs.ucl.ac.uk/staff/W.Langdon/egp2014/AC_k20c_video.gif

Genetic Improvement of GPU Software 21

<line2>
<line3>

<line5>

<line8e>
<line21>

<line6>
<intconst1.1>

<line71>

<line72>

<line11> <line18>

<line10.1.1>

<strstart>

<intvar2>

<compare01>

<strstart>

<intvar2>

<intmod>

<line15e>

<3var><modassign>

<strstart>

<thidexpr>

<line12.2>

<intvar2>

<intvar2>

Generation 100

1 tree
2 trees
3 trees

4-9 trees
10-19 trees

100-999 trees
1000 trees

Fig. 18 Left: Grammar expansion for an evolved gzip CUDA C++ kernel. Identical to
Figure 17 but displayed as a circular lattice [Poli et al., 2008, p 136] [Daida et al., 2005].
The last rule in each branch of the BNF grammar tree is labelled. Right: Aligning all 1000
trees in the GP population at their roots (red) stresses much of trees near their roots are
identical. Unique parts (light) are only far from root.

Fig. 19 Schematic of stereo disparity calculation. Top: left and right stereo images. Bottom:
output. For each pixel stereoKernel calculates the sum of squared differences (SSD) between
11× 11 regions centred on the pixel in the left image and the same pixel in the right hand
image (blue, not to scale). This is the SSD for zero disparity. The right hand 11× 11 region
is moved one place to the left and new SSD is calculated (SSD for 1 pixel of disparity).
This is repeated 50 times. Each time a smaller SSD is found, it is saved. Thus each output
pixel’s final value is the distance between left and right images which gives the maximum
similarity between them (across an 11 × 11 region). Real time performance is obtained by
parallel processing and reducing repeated calculations.

22 William B. Langdon et al.

Table 1 Mean speed across all 2516 I2I 320×240 stereo image pairs. ± is standard de-
viation. Times in microseconds. Tuning NVS 290 increases ROWSperTHREAD from 40 to 120,
otherwise pretuning reduces it to 5. Post evolution tuning leaves ROWSperTHREAD as 5, except
C2050 (14) and GTX 580 (15).

GPU name Original Pretuned Ratio GI Speedup

Quadro NVS 290 27402±116 26019±152 1.053±0.01
GeForce GTX 295 5448± 14 1518± 4 3.589±0.01
Tesla T10 5256± 12 1436± 3 3.661±0.01 1359±38 3.861±0.11
Tesla C2050 4632± 25 3017± 15 1.535±0.01 1130± 5 4.099±0.02
GeForce GTX 580 3077± 21 1650± 6 1.865±0.01 722±29 4.248±0.17
Tesla K20c 4362± 21 1839± 18 2.373±0.03 638± 1 6.837±0.04

Table 2 GPU Hardware. Year each was announced by nVidia in column 2. Third column
is CUDA compute capability level. Each GPU chip contains a number of identical and more
or less independent multiprocessors (column 4). Each MP contains a number of stream
processors (cores, column 5) whose speed is given in column 7. Size of on board memory
(column 8) is followed by the measured data rate (ECC on) between the GPU and its on
board memory in last column. GTX 295 and Tesla K80 are a dual GPUs, performance
figures given for one half.

Name Announced MP × cores Clock Caches On board memory
GHz L1 KB L2 MB GB GB/s

Quadro NVS 290 2007 1.1 2 × 8 = 16 0.92 none 0.25 4
GeForce GTX 295 2009 1.3 30 × 8 = 240 1.24 none 0.87 92
Tesla T10 2009 1.3 30 × 8 = 240 1.30 none 4.00 72
Tesla C2050 2010 2.0 14 × 32 = 448 1.15 16/48 0.75 2.62 101
GeForce GTX 580 2010 2.0 16 × 32 = 512 1.54 16/48 0.75 1.50 161
Tesla K20 2012 3.5 13 × 192 = 2496 0.71 16/32/48 1.25 5.00 140
Tesla K40 2013 3.5 15 × 192 = 2880 0.88 16/32/48 1.50 11.00 180
Tesla K80 2014 3.7 13 × 192 = 2496 0.82 16/32/48 1.50 11.00 138
GT 730 2014 2.1 2 × 48 = 96 1.40 16/32/48 0.12 4.00 23

were pre-tuned. By reducing ROWSperTHREAD from the original 40 to 5, pretun-
ing itself gave considerable speed ups (columns 4-5 in Table 1). Whereas for
the NVS 290, tuning ROWSperTHREAD increased it from 40 to 120, which gave a
small improvement (last columns in Table 1). nVidia’s value for BLOCK W (64)
proved to be optimal for all six GPUs.

Even using memcheck, but without explicit array index protection, such
as using G idata (Section 3.2.2), the older NVS 290 and GTX 295 hardware
(Table 2 column 2) would always lock-up before the end a GP run. In Table 1
the “GI” columns for the NVS 290 and GTX 295 rows are blank and the
last column refers to the speed up achieved by tuning ROWSperTHREAD and
BLOCK W.

With the four more modern GPUs, the best individual from the last gen-
eration (50) was minimised to remove unneeded mutations, which contributed
little to its overall performance, and retuned. Typically this reduced the num-
ber of changes needed by about half (T10 31→14, C2050 17→10, GTX580
26→13 and K20 29→10). The speeds of the re-tuned kernels are given in Ta-
ble 1 under heading “GI”. In each case this gave a significant speed up (last

Genetic Improvement of GPU Software 23

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

S
p
e

e
d

 u
p

 o
f
s
te

re
o
K

e
rn

e
l
T

e
s
la

 K
2
0

I2I Database

Training

 240x320

 Chairs 640x480

Toys 500x140

Plant

 Book 506x380

320x240
240x320
640x480

Fig. 20 Performance of GI improved K20 Tesla kernel on all 3010 stereo pairs in Microsoft’s
I2I database relative to original kernel on the same image pair on the same GPU. Fifty of
first 200 pairs used in training. The evolved kernel always gives the same answer and is
always much better, especially on images of the same size and shape as it was trained on.

DPER=1 STORE disparityMinSSD=SHARED XHALO=1 STORE disparityPixel=SHARED

<pragma KStereo.cuh 359><pragma K3> < KStereo.cuh 161>+< KStereo.cuh 224>

< KStereo.cuh 348> <optvolatile KStereo.cuh 86> <pragma KStereo.cuh 262><pragma K11>

<IF KStereo.cuh 326><IF KStereo.cuh 154>

Fig. 21 Best stereoKernel individual in generation 50 of K20 Tesla run after minimising,
Section 3.8, removed less useful components. (Auto-tuning made no further improvements.)
Some of the grammar rules are given in Figure 7 (page 12).

column of Table 1) compared to both the original kernel and the original ker-
nel with the best ROWSperTHREAD setting. The speedup of the improved K20
kernel on all of the I2I stereo images is given in Figure 20. The speed up for
the other five GPUs varies in a similar way to the K20. Across images of the
same size and shape as the training data performance is very consistent.

The rest of this section describes in detail the evolved code changes. (The
busy reader may skip to Section 6.) For brevity we describe in detail only one
of the evolved CUDA K20 stereo kernels. The best of generation 50 individ-
ual changes 6 of the 12 fixed configuration parameters [Langdon and Harman,
2014b, Tab. 2] and includes 23 grammar rule changes. (Parts of the grammar
were given in Figure 7 page 12.) After removing less useful components (Sec-
tion 3.8) four configuration parameters were changed and there were six code
changes. See Figures 21 and 22.

The four configuration changes are: 1) DPER is enabled. (Thus the new
kernel calculates two disparity values in parallel.) 2) disparityPixel and 3) dis-
parityMinSSD are now stored in fast on chip shared memory. 4) XHALO is

24 William B. Langdon et al.

Original code New code
int * __restrict__ disparityMinSSD, kernel argument disparityMinSSD deleted

volatile extern attribute ((shared))

int col ssd[];

extern attribute ((shared))

int col ssd[];

volatile int* const reduce ssd =

&col ssd[(64)*2 -64];

int* const reduce ssd =

&col ssd[(64)*2 -64];

line inserted #pragma unroll 11

if(X < width &&’ Y < height) if(dblockIdx==0)

syncthreads(); line deleted

line inserted #pragma unroll 3

Fig. 22 Evolved changes to K20 Tesla StereoKernel. (Produced by GI grammar changes
in Figure 21). For brevity, except for the kernel’s arguments, disparityPixel and disparity-
MinSSD changes from global to shared memory are omitted.

enabled, meaning the code spreads the work more uniformly over more parallel
threads.

The final code changes, Figure 22, are:

– disable volatile, potentially allowing more compilation optimisations.
– insert #pragma unroll 11 before for loop on line 262.
– insert #pragma unroll 3 before another for loop on line 359.
– Mutation < KStereo.cuh 161>+< KStereo.cuh 224> causes line 224 to be

inserted before line 161.
– Mutation <IF_KStereo.cuh_326><IF_KStereo.cuh_154> replaces

X < width && Y < height by dblockIdx==0. This replaces a complicated
expression by a simpler (and so presumably faster) expression, which it-
self has no effect on the logic since both are always true. In fact, given
the way if(dblockIdx==0) is nested inside another if, the compiler may
optimise it away entirely. I.e. evolution has found a way of improving the
GPU kernel by removing a redundant expression.
The original purpose of if(X < width && Y < height) was to guard against
reading outside array bounds when calculating SSD. However, the array
index is also guarded by i < blockDim.x

– delete syncthreads() on line 348. syncthreads() forces all threads
to stop and wait until all reach it. Line 348 is at the end of code which
may update (with the smaller of two disparities values) shared variables
disparityPixel and disparityMinSSD. In effect evolution has discovered it
is safe to let other threads proceed since they will not use the same shared
variables before meeting other syncthreads() elsewhere in the code.
Removing synchronisation calls potentially allows greater overlapping of
computation and I/O leading to an overall saving.

Genetic Improvement of GPU Software 25

 1

 10

 100

 1000

 10000

CPU NVS 290 GTX 295 T10 C2050 GTX 580 K20c

M
ill

io
n

s
 o

f
a
c
ti
v
e

V
o
x
e

l
p
e

r
s
e
c
o

n
d

Optimised NiftyReg
Released (2013) NiftyReg

CPU 3.07 GHz

Fig. 23 Performance of modified NiftyReg 3D registration CUDA kernel reg spline get

DeformationField3D after optimisation by evolution, bloat removal and with optimal block
size and -arch. (GPU speeds for 10 holdout images lie almost exactly on top of each other.)
Note log vertical scale.

6 Three Dimensional Medical Imaging

NiftyReg [Modat et al., 2010] is a comprehensive 2D and 3D medical imaging
package. A common requirement is to match patient images either initially
against a reference image or during or following treatment against earlier im-
ages for the same patient. This matching process is known as image registra-
tion and NiftyReg provides sophisticated algorithms for doing this. In order to
demonstrate GI we chose a computationally demanding task of registering 3D
NMR brain scans. At typical millimetre resolution, each scan contains about
10 million voxels arranged in a cube spanning the patient’s head, although
only about 10–15% cover the brain. For offline analysis parallel cloud or clus-
ter computing can be considered, however, they are unsuitable for clinical use,
whereas GPUs offer the possibility of in-theatre use since they can be installed
close to the brain surgeon and have excellent real-time stable response char-
acteristics. With this in mind NiftyReg had been ported to CUDA, the GPU
giving up to a 15 fold speed up (depending on GPU, see data plotted with ×
in Figure 23).

Since the CUDA kernel is used as part of an iterative gradient method each
active voxel must be calculated exactly. That is, there is no scope for trading
precision for speed. In the GI approach, the values calculated for each voxel
by the mutated CUDA code is compared with the answer produced by the
existing serial code. Despite the computational power of the GPU, the hand
optimised CUDA kernel could still take up to 70% of the elapsed time.

26 William B. Langdon et al.

The expertly optimised 3D registration CUDA kernel was used as the feed-
stock by GI, which was run on six different GPUs. Their performance on
holdout images (i.e. not used during training) is shown in Figure 23 (note log
y-axis). In each case GI, using evolution and manually coded options, was able
to improve the expert hand written code by more than an order of magnitude
[Langdon et al., 2014].

7 Improving BarraCUDA DNA Alignment

BarraCUDA [Klus et al., 2012] is a state of the art C++ program which maps
short DNA fragments against a reference genome. Aligning (i.e. mapping)
short DNA sequences is the first step to assembling a complete DNA sequence
for the organism. (Typically a human patient but the process and indeed the
software, applies to any living organism. E.g. bacteria, fly or cabbage). Once
aligned interesting variations (mutations) in the individual can be found.

High end next generation sequence (NextGen, NGS) DNA scanners can
produce in the region of billions of short DNA sequences per day. This is
almost as fast as the alignment software can process them and typically parallel
processing is essential to keep up.

We use DNA strings generated by The 1000 Genomes Project [Durbin and
others, 2010], which has mapped all common human genetic variation, and
alignment against the human reference genome [International Human Genome
Sequencing Consortium, 2001] to train an improved version of BarraCUDA
[Langdon et al., 2015].

We concentrate upon the “aln” operation in BarraCUDA, which is used to
align short DNA sequences (see Figure 24). BarraCUDA’s speed comes from
the GPU’s ability to process hundreds of thousand of DNA queries in parallel.
Typically a buffer full (16 MBytes) of query strings are processed in parallel
and written to the default output stream stdout before the next group are
read from disk.

Off-line BarraCUDA is used to convert the reference genome stored as plain
text strings into a prefix table. A prefix table gives the location of every string
in the reference which starts with a particular series of DNA characters. If the
query sequence is short it may occur many times. Longer strings tend to occur
less frequently. Some (even modest length) queries do not occur anywhere in
the reference. This happens frequently with real DNA queries due to either
1) mutations which are not in the reference genome and 2) noise. Although
long (64 bit) addresses are used to record match locations the prefix table still
gives some compression as many strings are repeated many times in natural
genomes.

The previous version of BarraCUDA divided the DNA query strings into
substrings of at least 32 bytes. So a typical query of 100 base pairs would be
split into three roughly equal substrings. These (depending upon the results
of the last query) are processed sequentially by the split inexact match

caller CUDA kernel (see Figure 24).

Genetic Improvement of GPU Software 27

process parts of
noisy/inexact

strings

code
common

genome
Human

prefix tree
4GBytes

split_inexact
match_caller

exact match

159744 strings

unique match?

GPUHost 8000 lines C 696 lines CUDA

200 lines CUDA

location(s) in human genomestdout

85%15%

Fig. 24 BarraCUDA reads the compressed reference genome from disk and stores it in
the GPU’s on board memory. Up to 159 744 DNA query strings are processed in parallel
by the exact match kernel on the GPU. The ≈ 15% that do not match uniquely are passed
to the original split inexact match caller kernel. The principal manual change is to call
exact match kernel. exact match and common routines are optimised by evolution.

split inexact match caller is complicated both internally and exter-
nally. The external complication is dealt with by sequential BarraCUDA code
on the host, which must keep track of all the multiple potential matches found
for the earlier sections of each DNA query sequence (or indeed when no po-
tential matches were found). Where multiple potential matches are reported
by split inexact match caller the host code must decide which are worth
exploring further. As in split inexact match caller itself, there are com-
plicated heuristics to trade quality of partial matches against both run-time
and the size of data structures used to store them.

Internally every parallel thread in split inexact match caller has to
keep track of multiple potential matches. split inexact match caller uses
a depth first strategy so that the thread keeps exploring the current matches
until either it reaches the end of the query sequence or it can find no exact
matches in the prefix table. If a thread is told its query string does not exist
in the reference genome, it backtracks (again using heuristics) to a suitable
branch point and where it tries the next of the three other possible DNA bases
and scans forwards again. Note the heavy use of the forward scan operation
(part of the “common code” in Figure 24) and that although initially in step,
each thread acts independently and may quickly diverge from the operation
of its neighbours. (SIMT, Section 1, does not permit threads to do different
things simultaneously. Thus divergence forces some threads to be inactive until
all those in the current “warp” resynchronise.)

28 William B. Langdon et al.

 62

 63

 64

 65

 66

 67

 0 5 10 15 20 25

1.80

1.78

1.76

1.74

1.72

1.70

K
2

0
 K

e
rn

e
l
ru

n
 t

im
e

 (
m

ill
io

n
s
 o

f
ti
c
s
)

M
ill

io
n

s
 1

0
0

b
p

 D
N

A
 s

e
q

u
e

n
c
e

 p
e

r
s
e

c
o
n

d

Number of mutations (Generation 50)

fastest
Identical answers

Equivalent answers

Fig. 25 Distribution of speed and number of changes in top 500 correct Tesla K20
cuda find exact matches kernels in final BarraCUDA GP population.

Although the quality of the data is variable, typically about 85% of DNA
queries match exactly once in the reference genome. In the GI version of
BarraCUDA the exact match kernel is used. It is much simpler than split

inexact match caller in that it does not attempt to back track (and so cause
threads to diverge) and it is used to process the whole of each query string
(rather than chunks of about 32). The remaining 15% of strings are dealt with
by the previous code. Note split inexact match caller also benefits from
the GI optimisations to the common code.

After optimisation a single Tesla K20 can process almost two million DNA
queries per second, Figure 25. This is more than 100 times faster than the
BarraCUDA’s original speed but this rate excludes slow host and split

inexact match caller operations. Since each base in each DNA string must
be looked up in the prefix table and this will require reading at least 64 bytes
of global memory (half a K20 cache line) the fastest kernel (Figure 25) is read-
ing at least 1.8 106 × 100 × 64 = 1.152 1010 bytes per second (11GB/sec).
This compares poorly with the K20’s maximum bandwidth, 140GB/sec, see
Table 2, suggesting there is still scope for improvement.

8 RNA Binding Energy, CUDA Dynamic Programming

RNA folding is one of several Bioinformatics problems that can be solved
using Dynamic Programming [Liu et al., 2006; Manavski and Valle, 2008;
Luo et al., 2013]. RNA is a linear biological polymer whose monomer compo-

Genetic Improvement of GPU Software 29

Fig. 26 A fold of RNA sequence CGACAGAUCCAUAAGGUCACUCAGUGAUGAACCUGGGGACU

nents bind tightly along the polymer’s chain but also bind weakly with each
other sideways, see Figure 26. How a RNA molecule folds up can be predicted
by calculating the maximum self interaction energy. In the Dynamic Program-
ming approach the total energy is the sum of local interactions, i.e. the interac-
tion between chain link i and another link j. The folding configuration which
gives the strongest self-binding is the physical shape of the RNA molecule. A
symmetric n + 1× n + 1 square matrix is used to keep track of energy calcu-
lations, see Figure 27. n is the length of the RNA molecule, typically between
20 and 1000. (In the CompaRNA version of RNAstrand3 the most popular
length is 76 and the median 280 [Langdon and Harman, 2015a, Fig. 2]). Dy-
namic Programming starts in a corner of the matrix and then expands in a
diagonal fashion. Thus in the second step, two elements of the matrix are cal-
culated. These are independent and so can be done in parallel. At the third
step, three elements of the matrix can be processed in parallel. And so on.
Thus potentially Dynamic Programming is well suited to parallel computation
such as provided by GPUs. However, the performance of the CUDA version
of pknotsRG [Reeder et al., 2007] was disappointing, simply because the Dy-
namic Programming matrices (and hence the degree of parallelism) is far too
small to keep a GPU busy.

The original version of pknotsRG calculates the shape of one RNA molecule
at a time. As a proof of concept a Grow and Graft Genetic Programming
(GGGP) [Harman et al., 2014; Jia et al., 2015] approach was taken whereby
the host code was manually changed to request the GPU process all the RNA
molecules in parallel. See right hand side of Figure 27. Evolution automatically
grew a small bit of CUDA code which was inserted into the existing kernel.
This graft transformed the kernel so that instead of dealing with one Dynamic
Programming matrix at a time it could process (depending upon n) hundreds
of thousands of Dynamic Programming matrices in parallel. In the best case
this gave a speed up on 10 000 fold, Figure 28.

3 http://iimcb.genesilico.pl/comparna/site media/entire datasets/rnastrand.zip

163.3MB down loaded 3 Apr 2015

http://iimcb.genesilico.pl/comparna/site_media/entire_datasets/rnastrand.zip

30 William B. Langdon et al.

Fig. 27 Left: (n + 1) × (n + 1) Dynamic Programming matrix. Only lower half is used.
Active front can be calculated in parallel using from 1 to n+ 1 threads. (n is length of RNA
molecule.) Right: GPU allows many Dynamic Programming matrices to be calculated in
parallel.

 10

 100

 1000

 10000

 35 40 80 100 200 300 400

G
G

G
P

 S
p
e
e
d
u
p

Number of bases in RNA sequences

nVidia Tesla K40

Fig. 28 Ratio between original speed of CUDA version of pknotsRG and CUDA version
after grow and graft change to allow processing multiple sequences in parallel for different
RNA lengths. Note log scales.

Potentially this transforms computational modelling of RNA. Instead of
dealing with RNA molecules one at a time, complete populations of millions
of RNA molecules might be simulated.

Genetic Improvement of GPU Software 31

9 Discussion

9.1 Controlling Mutations via Grammar v. AST and other Representations

In Sections 4 to 8 a BNF grammar was used to describe the program code
being modified and the possible mutations to it. The grammar approach has
been widely adopted both for GPU and non-GPU work (e.g. [Langdon and
Harman, 2015b; Petke et al., 2014b; Bruce et al., 2015]).

In some earlier work which evolved small programs from scratch Koza
GP Lisp like S-expression trees were used, e.g. [White et al., 2008]. In the
case of Java [Orlov and Sipper, 2011, Section II.B] argue strongly against
a grammar approach and instead suggest that since the Java compiler has
already taken care of many syntactic and semantic constraints by the time it
generates the Java byte code, it makes sense to evolve the byte code directly
(see also [Lukschandl et al., 1998; Klahold et al., 1998; Harvey et al., 1998]).

Genetic Improvement work at the machine code level has considered Intel x86,
ARM [Schulte et al., 2013] and MIPS RISC [Schulte et al., 2015] hardware.
Typically genetic operations (delete, insert, swap and crossover) only make
use of knowledge about the lengths of machine code instructions. For exam-
ple, where mutated machine op-codes have different lengths single byte nops
are used to minimise disruption. E.g. to avoiding changing the addresses of the
targets of jumps. Where this is unavoidable, [Schulte et al., 2013, page 320]

says the mutants typically have reduced fitness. This problem is avoided with
MIPS, since the reduced instruction set computing op-codes are all exactly
one word long [Schulte et al., 2015].

Much of the GI work on automatic bug repair, like our grammar approach,
works at the source-level [Le Goues et al., 2012b]. Rather than representing
the program via a grammar, typically CIL is used to analyse the source code
and represent it as an Abstract Syntax Tree (AST). GP then operates on
the AST at the statement level to evolve a list of changes to the AST. Fault
localisation heuristics are used to concentrate changes where they are likely
to be effective. To evaluate a GP individual’s fitness the patch list is applied
to the original program’s AST and the modified AST is then converted to
source code, compiled and the resulting program run on a few (typically less
than five) test cases. Alternatively the LLVM compiler may be used to convert
source code into its intermediate representation (IR) which is then evolved like
the AST produced by CIL [Schulte et al., 2015].

Since the AST approach inspired our grammar approach, it is natural they
should be similar. Notice both manipulate existing human code. Although
possible in both, in neither case has it proved necessary to add the ability to
generate entirely new code. In both cases almost all failures to compile are
caused by variables being out of scope. [Le Goues et al., 2012b, page 961]

suggests using semantic checks to avoid such compilation errors. This appears
to be similar to the scoping checks described in Section 3.7. The bug fixing
work typically operates at the statement level, whereas the grammar approach
modifies lines of code. Due to the way C programmers code, these are often the

32 William B. Langdon et al.

same. Since human programmers care a great deal about the layout of their
source code, it is conceivable that working with their layout might possibly
sometimes give an advantage. In Sections 4 to 8 additional heuristics were not
used to direct genetic operations [Langdon, 1995], however performance pro-
filing has been used elsewhere, e.g. [Langdon and Harman, 2015b]. Although
the CIL approach is apparently more elegant, the grammar approach has the
pragmatic advantage of working with plain text files, rather than binary data
structures, thus all operations, including genetic operations, are readily visible.

9.2 Application of Genetic Improvement outside GPGPU

We have concentrated upon using evolution to improve manually written gen-
eral purpose GPU software. It is clear that evolutionary computing can be very
widely applied to software engineering [Harman et al., 2012b]. In particular
genetic improvement [Langdon and Petke, 2016] has been applied to sequen-
tial C/C++ code and in some cases substantial speed ups have been found
[Langdon and Harman, 2015b] and in other cases better programs [Petke et
al., 2014b] 4 or programs that take less energy [Bruce et al., 2015] or less mem-
ory [Wu et al., 2015] have been evolved. In addition to the foundational work
on bug fixing (e.g. [Le Goues et al., 2012a]), genetic improvement has been
used whilst automatically transplanting code from one application to another
[Barr et al., 2015], it can reduce the amount of code [Landsborough et al.,
2015] and has been demonstrated in embedded systems [Schulte et al., 2015;
Yeboah-Antwi and Baudry, 2015; Burles et al., 2015b]. Future areas might in-
clude improving software product lines [Lopez-Herrejon and Linsbauer, 2015]

or approximate computing [Mrazek et al., 2015]. These different authors have
made different design choices. It is a strength of evolutionary computing that
such diverse approaches are successful, however it cannot claim to be optimal.
Indeed it seems that the GI representation, operators and selection parameters
made in the previous sections are unlikely to be optimal.

9.3 Manual Effort

Our research has shown the automatic evolution of improved code. It is difficult
to quantify precisely how much manual effort was needed, particularly to give
the exact balance between coding and research. However, in the first three
experiments, gzip, StereoCamera and NiftyReg (Sections 4, 5 and 6), genetic
programming was used with little manual intervention. For example, only in
the first, the evolution of the CUDA version of gzip, was the grammar hand
made. In the later sections on BarraCUDA (Section 7) and particularly on
the 10 000 fold speed up found with grow and graft GP (Section 8), evolution
was used to both tune manually inserted hooks as well the original code, or to
evolve code at manually designated places. It is difficult to predict how large

4 [Petke et al., 2014b] was subsequently judged human competitive [Petke et al., 2014a].

Genetic Improvement of GPU Software 33

an improvement might be evolved. Obviously it depends upon the existing
software but also on the existing or future hardware. As well as fully automatic
evolution, we also have great hopes for the man with machine synergy [Harman
et al., 2012a], as Section 8 starts to demonstrate.

9.4 Using Genetic Improvement with other Optimization Techniques

Although genetic improvement has been demonstrated at lower levels (i.e. ma-
chine code, assembly code and Java byte code) a potential advantage of evolv-
ing the source code is access to high level tools, particularly the compiler but
also other automated optimising tools. For example, the GI version of Bowtie2
[Langdon and Harman, 2015b] was compiled with -O2. In all of the GPU pro-
grams we have used nVidia’s optimising compiler, nvcc. In principle, other
techniques, including commercial tools, could be used inconjunction with ge-
netic improvement. Whilst such tools could be used as the population evolves,
they may be computationally expensive. Therefore, for practical reasons it
may be that their use is deferred until after the evolution has finished, when
they might be just applied to the best of run individual, perhaps after it has
been cleaned up and unessential mutations removed (Section 3.8).

9.5 Applying GI to a new GPU Application

If we are starting from a CPU program, the first issue is does a GPU version
make sense. Is it possible that any GPU version would be practical? Is there
enough parallelism in the task to make it possible to split it into hundreds of
thousands of threads? Will those threads be more or less independent? How
much data will need to be placed on the GPU? Does your GPU have space
for it? How long will it take to transfer it between the host computer and the
GPU? At what speed will that data be needed by the GPU processing cores?
[Langdon, 2012]. Arithmetic intensity is the ratio of instructions performed
per data item moved. Typically it is measured in floating point operations,
(FLOPs) per byte, F/B. If F/B is much less than one then using GPUs can
still make sense but the GPU code may be bandwidth limited and so you will
not get close to the GPUs’ peak performance.

If starting with GPU code, are there key parameters which can be op-
timised without coding changes? Typically the first one to consider is the
number of threads per block. Figure 9 gives an example where all possible
values were tried. However typically it is sufficient to try just multiples and
sub-multiples of 32. The best value can depend on the GPU used. With more
than one parameter the number of sensible options to try rapidly explodes
and so you should start to consider using a heuristic search, i.e. to use GI on
the parameters. (For example Table 1 shows the effect of tuning both CUDA
block size and the algorithm specific ROWSperTHREAD parameter.) Figure 9
shows the parameter space may be rugged and we would expect interactions

34 William B. Langdon et al.

between key parameters, suggesting simple hill climbing may not be an effec-
tive search strategy. This lead us to try a genetic algorithm approach with
GI (see Figure 10). Although potentially not giving the full advantages of GI,
GPU parameter changes may be easier to integrate into existing systems and
may need less testing and be more readily accepted.

A halfway house is to hand code alternatives and let evolution choose be-
tween them. For example, in Section 7, a cache of recently used bytes had been
implemented. You might allow different sizes for this cache and then request
evolution to find the best one. (In this case evolution discovered it could dis-
pense with the cache all together, Section 3.1.) On a GPU data and threads
interact in surprising ways. Optimising one part of the code can interact with
other parts, leading its performance to degrade. Even with just a few optimi-
sation targets, these interactions can mean optimisation by hand can rapidly
lead to confusion and disappointment.

9.6 General Lessons

The previous sections have shown that the general GI finding that existing
code can be used as its own de-facto specification can also be applied to GPU
code. Section 4 showed, at least for modest, but non-trivial, amounts of code it
may be possible to use tradition serial (i.e. non-GPU) code as the specification
for GPU code and to use it to evolve suitable new GPU code. Sections 5 to 8
used running existing GPU code to define via test cases both what the evolved
GPU code should do and set a minimum performance level it should exceed. In
principle, an unlimited number of test cases can be generated and the results
of running the new GPU code on them can be automatically compared with
the results of running the original code (either GPU or serial) on them.

The message on testing is mixed. When inducing functionality from test
cases, it seems a small number of frequently replaced tests which cover the
desired functionality of the new code may be sufficient. In general using fewer
tests will reduce fitness testing effort and so speed evolution. In the absence
of regularisation, rapid changing of test cases may avoid overfitting. Rapid
random turn over appears to be effective and more sophisticated techniques,
such as [Gathercole and Ross, 1994; Foster, 2001], may not be needed. Whereas
to optimise code it may be better to have many test cases which emulate the
expected operational load. The natural distribution of test cases may be highly
non-uniform and so may not be suitable for learning all the functionality. That
is, there is a tension between learning and doing well on common cases. One
can even imagine a GI system, a bit like Section 7, which was optimised for the
common cases but left the remaining low frequency exceptions to the original
(i.e. unoptimised) code.

Although the NiftyReg package contains many kernels, Section 6 concen-
trates upon one, albeit a computationally demanding one. In future it would
be good to show GI being applied in bulk. That is, mass production still needs
to be demonstrated.

Genetic Improvement of GPU Software 35

In BarraCUDA, Section 7, we have the first use of GI optimised code. It
could also serve as a platform for further experiments. BarraCUDA and BWA’s
code contains many hand-coded heuristics which curtail the search for match-
ing sections of the human genome or direct it in specific directions. These are
complex. They were originally developed for BWA running on serial computers.
It may be they need to be retuned for traditional CPUs, CPU vector instruc-
tions or for modern GPUs. Also, with the advent of higher speed computers
and higher speed DNA scanners, the original compromises between speed and
quality of solution may need adjusting [Harman et al., 2012a]. There might be
scope for using GI on them. Potentially GI could be used as a hyperheuristics
to re-train these hand-coded embedded heuristics.

The 10000 fold speed up of pknotsRG found in Section 8, makes it possible
to consider the conformations of millions of short RNA molecules. This should
have enabled the GPU version to become the dominant implementation of
RNA folding tools. However the base code is no longer supported and is not
compatible with more recent implementations.

10 Conclusions

It has been known for sometime that Genetic Programming can automati-
cally create small but non-trivial programs and functions. E.g. good hash-
ing algorithms [Hussain and Malliaris, 2000], cache management [Paterson
and Livesey, 1997], garbage collection [Risco-Martin et al., 2010] and pseudo
random numbers [White et al., 2008]. Indeed large systems can be evolved
from components, for example, via web service composition [Rodriguez-Mier
et al., 2010] or selectively linking object files [Foster and Somayaji, 2010].
With the advent of Genetic Improvement [White et al., 2011; Langdon, 2015b]

we have seen that it can automatically repair bugs [Arcuri and Yao, 2008;
Weimer et al., 2009] and find considerable performance advantages [Langdon
and Harman, 2015b] in substantial programs. GI is now being demonstrated
to improve functional [Petke et al., 2014b] and non-functional properties of ex-
isting applications, including reduced energy consumption [Bruce, 2015] and
reduced memory use [Wu et al., 2015].

As we showed in Section 3.5, software is not fragile in the sense that any
change will break it entirely. Rather although there may be some such fatal
changes but if we are prepared to take a population approach, some of the mu-
tated population will continue to work and indeed substantial improvements
may evolve.

Effective programming of parallel computers has long been recognised as
being hard for people. The economic approach has traditionally been to bal-
ance scare expert programmers’ time against the cost of the hardware. GPGPU
programming suffers twice over under this rule. Firstly GPGPU is rightly re-
garded as hard and there are few expert CUDA programmers. And secondly,
the rational for GPGPU was the falling cost of GPU hardware. Consequently
the economic thing is to knock up a quick CUDA kernel which calculates the

36 William B. Langdon et al.

right answer but not spend programmer time optimising it. It is now becoming
more common to leave discovery of the best setting for a key CUDA parameter
to automated optimisation [Reguly and Giles, 2012]. Using modern SBSE [Har-
man and Jones, 2001] techniques, such as Genetic Programming, this can be
readily expanded to optimise multiple parameters. However key choices such
as data location and layout are usually burnt into the source code and thus not
subject to optimisation. Although [Sitthi-amorn et al., 2011] have shown reg-
ular elements in the source code, such as for loops, may be optimised. Here, as
well as undirected automatic code modification, we have used manual coding
to expose many more aspects of the source code (e.g. data type, data width,
data location, texture and cache configuration) to automated optimisation.
Notice the goal of the manual code is only that the kernel calculates correct
answers, we leave the problem of efficient coding to Genetic Improvement. In-
deed we have shown GI can efficiently tune CUDA source code dedicated to a
wide range of diverse GPUs.

In Sections 4 to 8 we concentrated upon evolving improvements to ex-
isting GPGPU applications. Firstly demonstrating porting sequential legacy
code to GPGPU, and secondly obtaining speedups in some cases from 7 times
to 104 fold. Whilst initially we showed GP working in a traditional high A-to-I
ratio mode with no human help, in the later sections, GI is used with man-
ual coding. This culminated in Section 8, where we demonstrate the GGGP
approach, in which evolution was directed to where changes might be needed
and achieved a speedup of up to ten thousand fold. Whilst BarraCUDA, de-
scribed in Section 7, has been downloaded more than a thousand times, has
been incorporated into BioBuilds by Lab7 and has been ported by IBM to
their power 8 super computer range.

Acknowledgements I would like to thank Yue Jia and txbob.

Teslas donated by nVidia.

A FTP kits

A.1 StereoCamera

The grammar-based genetic programming system is available via ftp.cs.ucl.ac.uk file
genetic/gp-code/StereoCamera 1 1.tar.gz and training images are in StereoImages.tar.gz

The GI version of StereoCamera is in StereoCamera v1 1c.zip [Langdon and Harman,
2014a].

A.2 NiftyReg

Code etc. in http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/niftycuda.tar.gz

The improved NiftyReg code is in http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/

gp-code/nifty reg-1.3.9 patch.tar.gz [Langdon et al., 2014].

https://biobuilds.org/downloads/
http://www.nvidia.com
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_1_1.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoImages.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_v1_1c.zip
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/niftycuda.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/nifty_reg-1.3.9_patch.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/nifty_reg-1.3.9_patch.tar.gz

Genetic Improvement of GPU Software 37

A.3 BarraCUDA

GI tools for BarraCUDA are available via FTP and http://www.cs.ucl.ac.uk/staff/

W.Langdon/ftp/gp-code/barracuda gp.tar.gz

The latest release of BarraCUDA can be downloaded from http://sourceforge.net/

projects/seqbarracuda/?source=typ redirect [Langdon et al., 2015].

A.4 pknotsRG

The Genetic Improvement system which evolved the better version of pknotsRG is available
via http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/pknotsGI.tar.gz [Langdon
and Harman, 2015a].

A.5 Drawing Trees in a Circular Lattice (like Figure 18)

http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html gives some code to display trees
as circular lattices [Daida et al., 2005].

A.6 GenProg

Le Goues’ bug fixing system (Section 3) is available at http://genprog.cs.virginia.edu/
[Weimer et al., 2010].

References

[Angeline, 1994] Peter John Angeline. Genetic programming and emergent intelligence. In
Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages
75–98. MIT Press, 1994.

[Arcuri and Yao, 2008] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to
automatic software bug fixing. In Jun Wang, editor, 2008 IEEE World Congress on Com-
putational Intelligence, pages 162–168, Hong Kong, 1-6 June 2008. IEEE Computational
Intelligence Society, IEEE Press.

[Banzhaf and Langdon, 2002] W. Banzhaf and W. B. Langdon. Some considerations on the
reason for bloat. Genetic Programming and Evolvable Machines, 3(1):81–91, March 2002.

[Barr et al., 2015] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna
Petke. Automated software transplantation. In Tao Xie and Michal Young, editors,
International Symposium on Software Testing and Analysis, ISSTA 2015, pages 257–
269, Baltimore, Maryland, USA, 14-17 July 2015. ACM. ACM SIGSOFT Distinguished
Paper Award.

[Brady et al., 2014] Adam Brady, Jason Lawrence, Pieter Peers, and Westley Weimer. gen-
BRDF: discovering new analytic BRDFs with genetic programming. ACM Transactions
on Graphics, 33(4):114:1–114:11, July 2014.

[Bruce et al., 2015] Bobby R. Bruce, Justyna Petke, and Mark Harman. Reducing energy
consumption using genetic improvement. In Sara Silva et al., editors, GECCO ’15: Pro-
ceedings of the 2015 on Genetic and Evolutionary Computation Conference, pages 1327–
1334, Madrid, Spain, 11-15 July 2015. ACM, ACM.

[Bruce, 2015] Bobby R. Bruce. Energy optimisation via genetic improvement A SBSE tech-
nique for a new era in software development. In William B. Langdon et al., editors,
Genetic Improvement 2015 Workshop, pages 819–820, Madrid, 11-15 July 2015. ACM.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/barracuda_gp.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/barracuda_gp.tar.gz
http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect
http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/pknotsGI.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html
http://genprog.cs.virginia.edu/
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/kinnear_angeline.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri_2008_cec.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/banzhaf_2000_genpletter.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Barr_2015_ISSTA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Barr_2015_ISSTA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Brady_2014_acmTG.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bruce2015reducing.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Bruce_2015_gi.html

38 William B. Langdon et al.

[Burke et al., 2004] Edmund K. Burke, Steven Gustafson, and Graham Kendall. Diversity
in genetic programming: An analysis of measures and correlation with fitness. IEEE
Transactions on Evolutionary Computation, 8(1):47–62, February 2004.

[Burles et al., 2015a] Nathan Burles, Edward Bowles, Bobby R. Bruce, and Komsan Sriv-
isut. Specialising Guava’s cache to reduce energy consumption. In Yvan Labiche and
Marcio Barros, editors, SSBSE, volume 9275 of LNCS, pages 276–281, Bergamo, Italy,
September 5-7 2015. Springer.

[Burles et al., 2015b] Nathan Burles, Jerry Swan, Edward Bowles, Alexander E. I. Brown-
lee, Zoltan A. Kocsis, and Nadarajen Veerapen. Embedded dynamic improvement. In
William B. Langdon et al., editors, Genetic Improvement 2015 Workshop, pages 831–832,
Madrid, 11-15 July 2015. ACM.

[Cavicchio, Jr, 1970] Daniel Joseph Cavicchio, Jr. Adaptive search using simulated evolu-
tion. PhD thesis, Dept. of Computer and Communication Sciences, University of Michi-
gan, Ann Arbor, August 1970.

[Daida et al., 2005] Jason M. Daida, Adam M. Hilss, David J. Ward, and Stephen L. Long.
Visualizing tree structures in genetic programming. Genetic Programming and Evolvable
Machines, 6(1):79–110, March 2005.

[Durbin and others, 2010] Richard M. Durbin et al. A map of human genome variation
from population-scale sequencing. Nature, 467(7319):1061–1073, 28 Oct 2010.

[Foster and Somayaji, 2010] Blair Foster and Anil Somayaji. Object-level recombination of
commodity applications. In Juergen Branke et al., editors, GECCO ’10: Proceedings of
the 12th annual conference on Genetic and evolutionary computation, pages 957–964,
Portland, Oregon, USA, 7-11 July 2010. ACM.

[Foster, 2001] James A. Foster. Review: Discipulus: A commercial genetic programming
system. Genetic Programming and Evolvable Machines, 2(2):201–203, June 2001.

[Gathercole and Ross, 1994] Chris Gathercole and Peter Ross. Dynamic training subset
selection for supervised learning in genetic programming. In Yuval Davidor et al., editors,
Parallel Problem Solving from Nature III, volume 866 of LNCS, pages 312–321, Jerusalem,
9-14 October 1994. Springer-Verlag.

[Harding and Banzhaf, 2009] Simon L. Harding and Wolfgang Banzhaf. Distributed genetic
programming on GPUs using CUDA. In Ignacio Hidalgo et al., editors, Workshop on
Parallel Architectures and Bioinspired Algorithms, pages 1–10, Raleigh, NC, USA, 13
September 2009. Universidad Complutense de Madrid.

[Harman and Jones, 2001] Mark Harman and Bryan F. Jones. Search based software engi-
neering. Information and Software Technology, 43(14):833–839, December 2001.

[Harman et al., 2012a] Mark Harman, William B. Langdon, Yue Jia, David R. White, An-
drea Arcuri, and John A. Clark. The GISMOE challenge: Constructing the Pareto pro-
gram surface using genetic programming to find better programs. In The 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE 12), pages 1–14, Es-
sen, Germany, September 3-7 2012. ACM.

[Harman et al., 2012b] Mark Harman, Afshin Mansouri, and Yuanyuan Zhang. Search
based software engineering: Trends, techniques and applications. ACM Computing Sur-
veys, 45(1):11:1–11:61, November 2012.

[Harman et al., 2014] Mark Harman, Yue Jia, and William B. Langdon. Babel pidgin: SBSE
can grow and graft entirely new functionality into a real world system. In Claire Le Goues
and Shin Yoo, editors, Proceedings of the 6th International Symposium, on Search-Based
Software Engineering, SSBSE 2014, volume 8636 of LNCS, pages 247–252, Fortaleza,
Brazil, 26-29 August 2014. Springer. Winner SSBSE 2014 Challange Track.

[Harris, 1997] Christopher Harris. An investigation into the Application of Genetic Pro-
gramming techniques to Signal Analysis and Feature Detection. PhD thesis, University
College, London, UK, 26 September 1997.

[Harvey et al., 1998] Brad Harvey, James A. Foster, and Deborah Frincke. Byte code genetic
programming. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming
1998 Conference, pages 59–63, University of Wisconsin, Madison, Wisconsin, USA, 22-25
July 1998. Stanford University Bookstore.

[Hussain and Malliaris, 2000] Daniar Hussain and Steven Malliaris. Evolutionary tech-
niques applied to hashing: An efficient data retrieval method. In Darrell Whitley et al.,
editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2000), page 760, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/gustafson_2004_IEEE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burles_2015_SSBSEa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burles_2015_SSBSEa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Swan_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Swan_2015_gi.html
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/4042/bab9712.0001.001.pdf?sequence=5&isAllowed=y
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/daida_2005_GPEM.html
http://dx.doi.org/10.1038/nature09534
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Foster_2010_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/foster_2001_discipulus.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ga94aGathercole.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/hardinggpem2009.html
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://dx.doi.org/10.1145/2379776.2379787
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/harris_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/harvey_1998_bcGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hussain_2000_GECCO.html

Genetic Improvement of GPU Software 39

[Hutchins et al., 1994] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on
the effectiveness of dataflow- and control-flow-based test adequacy criteria. In Proceedings
of 16th International Conference on Software Engineering, ICSE-16, pages 191–200, May
1994.

[International Human Genome Sequencing Consortium, 2001] International Human
Genome Sequencing Consortium. Initial sequencing and analysis of the human genome.
Nature, 409(6822):860–921, 15 Feb 2001.

[Jia et al., 2015] Yue Jia, Mark Harman, William B. Langdon, and Alexandru Marginean.
Grow and serve: Growing Django citation services using SBSE. In Shin Yoo and Leandro
Minku, editors, SSBSE 2015 Challenge Track, volume 9275 of LNCS, pages 269–275,
Bergamo, Italy, 5-7 September 2015.

[Klahold et al., 1998] Stefan Klahold, Steffen Frank, Robert E. Keller, and Wolfgang
Banzhaf. Exploring the possibilites and restrictions of genetic programming in Java byte-
code. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998
Conference, pages 120–124, University of Wisconsin, Madison, Wisconsin, USA, 22-25
July 1998. Stanford University Bookstore.

[Klus et al., 2012] Petr Klus, Simon Lam, Dag Lyberg, Ming Sin Cheung, Graham Pullan,
Ian McFarlane, Giles S. H. Yeo, and Brian Y. H. Lam. BarraCUDA - a fast short read
sequence aligner using graphics processing units. BMC Research Notes, 5(27), 2012.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[Landsborough et al., 2015] Jason Landsborough, Stephen Harding, and Sunny Fugate. Re-
moving the kitchen sink from software. In William B. Langdon et al., editors, Genetic
Improvement 2015 Workshop, pages 833–838, Madrid, 11-15 July 2015. ACM.

[Langdon and Harman, 2010] W. B. Langdon and M. Harman. Evolving a CUDA kernel
from an nVidia template. In Pilar Sobrevilla, editor, 2010 IEEE World Congress on
Computational Intelligence, pages 2376–2383, Barcelona, 18-23 July 2010. IEEE.

[Langdon and Harman, 2014a] W. B. Langdon and M. Harman. Genetically improved
CUDA kernels for stereocamera. Research Note RN/14/02, Department of Computer
Science, University College London, Gower Street, London WC1E 6BT, UK, 20 February
2014.

[Langdon and Harman, 2014b] William B. Langdon and Mark Harman. Genetically im-
proved CUDA C++ software. In Miguel Nicolau et al., editors, 17th European Con-
ference on Genetic Programming, volume 8599 of LNCS, pages 87–99, Granada, Spain,
23-25 April 2014. Springer.

[Langdon and Harman, 2015a] William B. Langdon and Mark Harman. Grow and graft
a better CUDA pknotsRG for RNA pseudoknot free energy calculation. In William B.
Langdon et al., editors, Genetic Improvement 2015 Workshop, pages 805–810, Madrid,
11-15 July 2015. ACM.

[Langdon and Harman, 2015b] William B. Langdon and Mark Harman. Optimising existing
software with genetic programming. IEEE Transactions on Evolutionary Computation,
19(1):118–135, February 2015.

[Langdon and Harrison, 2008] W. B. Langdon and A. P. Harrison. GP on SPMD parallel
graphics hardware for mega bioinformatics data mining. Soft Computing, 12(12):1169–
1183, October 2008. Special Issue on Distributed Bioinspired Algorithms.

[Langdon and Lam, 2015] W. B. Langdon and Brian Yee Hong Lam. Genetically improved
barraCUDA. Research Note RN/15/03, Department of Computer Science, University
College London, Gower Street, London WC1E 6BT, UK, 28 May 2015.

[Langdon and Petke, 2016] William B. Langdon and Justyna Petke. Genetic improvement.
IEEE Software Blog, February 3 2016.

[Langdon and Poli, 1997a] W. B. Langdon and R. Poli. An analysis of the MAX problem
in genetic programming. In John R. Koza et al., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 222–230, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann.

[Langdon and Poli, 1997b] W. B. Langdon and R. Poli. Fitness causes bloat. In P. K.
Chawdhry et al., editors, Soft Computing in Engineering Design and Manufacturing,
pages 13–22. Springer-Verlag London, 23-27 June 1997.

[Langdon and Poli, 2002] W. B. Langdon and Riccardo Poli. Foundations of Genetic Pro-
gramming. Springer-Verlag, 2002.

http://dx.doi.org/10.1109/ICSE.1994.296778
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1038/35057062
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/klahold_1998_eprGPJb.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/klahold_1998_eprGPJb.html
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1186/1756-0500-5-27
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Landsborough_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_RN1402.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_SC.html
http://arxiv.org/abs/arXiv:1505.07855
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2016_ieeeblog.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1997_MAX.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_1997_bloatWSC2.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_fogp.html

40 William B. Langdon et al.

[Langdon et al., 2010] William B. Langdon, Mark Harman, and Yue Jia. Efficient multi-
objective higher order mutation testing with genetic programming. Journal of Systems
and Software, 83(12):2416–2430, December 2010.

[Langdon et al., 2014] William B. Langdon, Marc Modat, Justyna Petke, and Mark Har-
man. Improving 3D medical image registration CUDA software with genetic program-
ming. In Christian Igel et al., editors, GECCO ’14: Proceeding of the sixteenth annual
conference on genetic and evolutionary computation conference, pages 951–958, Vancou-
ver, BC, Canada, 12-15 July 2014. ACM.

[Langdon et al., 2015] William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark
Harman. Improving CUDA DNA analysis software with genetic programming. In Sara
Silva et al., editors, GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary
Computation Conference, pages 1063–1070, Madrid, 11-15 July 2015. ACM.

[Langdon, 1995] W. B. Langdon. Directed crossover within genetic programming. Research
Note RN/95/71, University College London, Gower Street, London WC1E 6BT, UK,
September 1995.

[Langdon, 1998] William B. Langdon. Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming!, volume 1 of Genetic Pro-
gramming. Kluwer, Boston, 1998.

[Langdon, 2010] W. B. Langdon. A many threaded CUDA interpreter for genetic program-
ming. In Anna Isabel Esparcia-Alcazar et al., editors, Proceedings of the 13th European
Conference on Genetic Programming, EuroGP 2010, volume 6021 of LNCS, pages 146–
158, Istanbul, 7-9 April 2010. Springer.

[Langdon, 2012] W.B. Langdon. Creating and debugging performance CUDA C. In Fran-
cisco Fernandez de Vega et al., editors, Parallel Architectures and Bioinspired Algorithms,
volume 415 of Studies in Computational Intelligence, chapter 1, pages 7–50. Springer,
2012.

[Langdon, 2015a] W. B. Langdon. Genetic improvement of software for multiple objectives.
In Yvan Labiche and Marcio Barros, editors, SSBSE, volume 9275 of LNCS, pages 12–28,
Bergamo, Italy, September 5-7 2015. Springer. Invited keynote.

[Langdon, 2015b] William B. Langdon. Genetically improved software. In Amir H. Gandomi
et al., editors, Handbook of Genetic Programming Applications, chapter 8, pages 181–220.
Springer, 2015.

[Le Goues et al., 2012a] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and
Westley Weimer. A systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each. In Martin Glinz, editor, 34th International Conference on Software
Engineering (ICSE 2012), pages 3–13, Zurich, June 2-9 2012.

[Le Goues et al., 2012b] Claire Le Goues, Westley Weimer, and Stephanie Forrest. Repre-
sentations and operators for improving evolutionary software repair. In Terry Soule et al.,
editors, GECCO ’12: Proceedings of the fourteenth international conference on Genetic
and evolutionary computation conference, pages 959–966, Philadelphia, Pennsylvania,
USA, 7-11 July 2012. ACM.

[Li and Durbin, 2010] Heng Li and Richard Durbin. Fast and accurate long-read alignment
with Burrows-Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[Liu et al., 2006] Weiguo Liu, Bertil Schmidt, Geritt Voss, Andre Schroder, and Wolfgang
Muller-Wittig. Bio-sequence database scanning on a GPU. In 20th International Parallel
and Distributed Processing Symposium, IPDPS 2006, Rhodes, Greece, 25-29 April 2006.
IEEE Press.

[Lopez-Herrejon and Linsbauer, 2015] Roberto E. Lopez-Herrejon and Lukas Linsbauer.
Genetic improvement for software product lines: An overview and a roadmap. In
William B. Langdon et al., editors, Genetic Improvement 2015 Workshop, pages 823–
830, Madrid, 11-15 July 2015. ACM.

[Lukschandl et al., 1998] Eduard Lukschandl, Magus Holmlund, and Eirk Moden. Auto-
matic evolution of Java bytecode: First experience with the Java virtual machine. In
Riccardo Poli et al., editors, Late Breaking Papers at EuroGP’98: the First European
Workshop on Genetic Programming, pages 14–16, Paris, France, 14-15 April 1998. CSRP-
98-10, The University of Birmingham, UK.

[Luo et al., 2013] Ruibang Luo, Thomas Wong, Jianqiao Zhu, Chi-Man Liu, Xiaoqian Zhu,
Edward Wu, Lap-Kei Lee, Haoxiang Lin, Wenjuan Zhu, David W. Cheung, Hing-Fung

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1995_dc.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_eurogp.html
http://dx.doi.org/10.1007/978-3-642-28789-3_2
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_GECCO.html
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1109/IPDPS.2006.1639531
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Lopez-Herrejon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lukschandl_1998_1java.html
http://dx.doi.org/10.1371/journal.pone.0065632
http://dx.doi.org/10.1371/journal.pone.0065632

Genetic Improvement of GPU Software 41

Ting, Siu-Ming Yiu, Shaoliang Peng, Chang Yu, Yingrui Li, Ruiqiang Li, and Tak-Wah
Lam. SOAP3-dp: Fast, accurate and sensitive GPU-based short read aligner. PLoS ONE,
8(5):e65632, 2013.

[Manavski and Valle, 2008] Svetlin Manavski and Giorgio Valle. CUDA compatible GPU
cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC
Bioinformatics, 9(Suppl 2):S10, 2008.

[McPhee and Hopper, 1999] Nicholas Freitag McPhee and Nicholas J. Hopper. Analysis
of genetic diversity through population history. In Wolfgang Banzhaf et al., editors,
Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages
1112–1120, Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[Merrill et al., 2012] Duane Merrill, Michael Garland, and Andrew Grimshaw. Policy-based
tuning for performance portability and library co-optimization. In Innovative Parallel
Computing (InPar), 2012. IEEE, May 2012.

[Modat et al., 2010] Marc Modat, Gerard R. Ridgway, Zeike A. Taylor, Manja Lehmann,
Josephine Barnes, David J. Hawkes, Nick C. Fox, and Seybastien Ourselin. Fast free-
form deformation using graphics processing units. Computer Methods and Programs in
Biomedicine, 98(3):278–284, 2010.

[Mrazek et al., 2015] Vojtech Mrazek, Zdenek Vasicek, and Lukas Sekanina. Evolutionary
approximation of software for embedded systems: Median function. In William B. Lang-
don et al., editors, Genetic Improvement 2015 Workshop, pages 795–801, Madrid, 11-15
July 2015. ACM.

[Orlov and Sipper, 2011] Michael Orlov and Moshe Sipper. Flight of the FINCH through
the Java wilderness. IEEE Transactions on Evolutionary Computation, 15(2):166–182,
April 2011.

[Owens et al., 2008] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899,
May 2008. Invited paper.

[Paterson and Livesey, 1997] Norman Paterson and Mike Livesey. Evolving caching algo-
rithms in C by genetic programming. In John R. Koza et al., editors, Genetic Pro-
gramming 1997: Proceedings of the Second Annual Conference, pages 262–267, Stanford
University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Petke et al., 2014a] Justyna Petke, Mark Harman, William B. Langdon, and Westley
Weimer. Using genetic improvement & code transplants to specialise a C++ program to
a problem class. 11th Annual Humies Awards 2014, 14 July 2014. Winner Silver.

[Petke et al., 2014b] Justyna Petke, Mark Harman, William B. Langdon, and Westley
Weimer. Using genetic improvement and code transplants to specialise a C++ program to
a problem class. In Miguel Nicolau et al., editors, 17th European Conference on Genetic
Programming, volume 8599 of LNCS, pages 137–149, Granada, Spain, 23-25 April 2014.
Springer.

[Poli et al., 2007] Riccardo Poli, William B. Langdon, and Stephen Dignum. On the limiting
distribution of program sizes in tree-based genetic programming. In Marc Ebner et al.,
editors, Proceedings of the 10th European Conference on Genetic Programming, volume
4445 of Lecture Notes in Computer Science, pages 193–204, Valencia, Spain, 11-13 April
2007. Springer.

[Poli et al., 2008] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A
field guide to genetic programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[Reeder and Giegerich, 2004] Jens Reeder and Robert Giegerich. Design, implementation
and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
BMC Bioinformatics, 5(1):104, 2004.

[Reeder et al., 2007] Jens Reeder, Peter Steffen, and Robert Giegerich. pknotsRG: RNA
pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids
Research, 35(suppl 2):W320–W324, 2007.

[Reguly and Giles, 2012] Istvan Reguly and Mike Giles. Efficient sparse matrix-vector mul-
tiplication on cache-based GPUs. In Innovative Parallel Computing (InPar), 2012, pages
230–241, San Jose, USA, 13-14 May 2012. IEEE.

[Risco-Martin et al., 2010] Jose L. Risco-Martin, David Atienza, J. Manuel Colmenar, and
Oscar Garnica. A parallel evolutionary algorithm to optimize dynamic memory managers

http://dx.doi.org/10.1186/1471-2105-9-S2-S10
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/mcphee_1999_A.html
http://dx.doi.org/10.1109/InPar.2012.6339597
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mrazek_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Paterson_1997_ecacGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_humie.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_humie.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_2007_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://dx.doi.org/10.1186/1471-2105-5-104
http://dx.doi.org/10.1093/nar/gkm258
http://dx.doi.org/10.1109/InPar.2012.6339602
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin2010572.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin2010572.html

42 William B. Langdon et al.

in embedded systems. Parallel Computing, 36(10-11):572–590, 2010. Parallel Architec-
tures and Bioinspired Algorithms.

[Rodriguez-Mier et al., 2010] Pablo Rodriguez-Mier, Manuel Mucientes, Manuel Lama, and
Miguel I. Couto. Composition of web services through genetic programming. Evolutionary
Intelligence, 3(3-4):171–186, 2010.

[Schuler and Zeller, 2009] David Schuler and Andreas Zeller. Javalanche: efficient mutation
testing for java. In Hans van Vliet and Valérie Issarny, editors, ESEC/SIGSOFT FSE,
pages 297–298, Amsterdam, Netherlands, 24-28 August 2009. ACM.

[Schulte et al., 2013] Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie
Forrest. Automated repair of binary and assembly programs for cooperating embedded
devices. In Proceedings of the eighteenth international conference on Architectural sup-
port for programming languages and operating systems, ASPLOS 2013, pages 317–328,
Houston, Texas, USA, March 16-20 2013. ACM.

[Schulte et al., 2014a] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest,
and Westley Weimer. Post-compiler software optimization for reducing energy. In Pro-
ceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’14, pages 639–652, Salt Lake City, Utah,
USA, 1-5 March 2014. ACM.

[Schulte et al., 2014b] Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and
Stephanie Forrest. Software mutational robustness. Genetic Programming and Evolv-
able Machines, 15(3):281–312, September 2014.

[Schulte et al., 2015] Eric Schulte, Westley Weimer, and Stephanie Forrest. Repairing
COTS router firmware without access to source code or test suites: A case study in evo-
lutionary software repair. In William B. Langdon et al., editors, Genetic Improvement
2015 Workshop, pages 847–854, Madrid, 11-15 July 2015. ACM. Best Paper.

[Sitthi-amorn et al., 2011] Pitchaya Sitthi-amorn, Nicholas Modly, Westley Weimer, and
Jason Lawrence. Genetic programming for shader simplification. ACM Transactions on
Graphics, 30(6):article:152, December 2011. Proceedings of ACM SIGGRAPH Asia 2011.

[Soule and Heckendorn, 2002] Terence Soule and Robert B. Heckendorn. An analysis of
the causes of code growth in genetic programming. Genetic Programming and Evolvable
Machines, 3(3):283–309, September 2002.

[Stam, 2008] Joe Stam. Stereo imaging with CUDA. Technical report, nVidia, V 0.2 3 Jan
2008. StereoImaging.pdf distributed with StereoCamera_v1_1c.zip.

[Steffen and Giegerich, 2006] Peter Steffen and Robert Giegerich. Table design in dynamic
programming. Information and Computation, 204(9):1325–1345, 2006.

[Syswerda, 1989] Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David
Schaffer, editor, Proceedings of the third international conference on Genetic Algorithms,
pages 2–9, George Mason University, 4-7 June 1989. Morgan Kaufmann.

[Tackett, 1994] Walter Alden Tackett. Recombination, Selection, and the Genetic Construc-
tion of Computer Programs. PhD thesis, University of Southern California, Department
of Electrical Engineering Systems, USA, 1994.

[Teller and Andre, 1997] Astro Teller and David Andre. Automatically choosing the num-
ber of fitness cases: The rational allocation of trials. In John R. Koza et al., editors,
Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 321–
328, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Untch et al., 1993] Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. Mu-
tation analysis using mutant schemata. In Proceedings of the 1993 ACM SIGSOFT
international symposium on Software testing and analysis, pages 139–148, Cambridge,
Massachusetts, 1993.

[Weimer et al., 2009] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In Stephen Fickas,
editor, International Conference on Software Engineering (ICSE) 2009, pages 364–374,
Vancouver, May 16-24 2009.

[Weimer et al., 2010] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu
Nguyen. Automatic program repair with evolutionary computation. Communications of
the ACM, 53(5):109–116, June 2010.

[White et al., 2008] David R. White, John Clark, Jeremy Jacob, and Simon M. Poulding.
Searching for resource-efficient programs: low-power pseudorandom number generators.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.st.cs.uni-saarland.de/publications/files/schuler-fse-2009.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/soule_2002_GPEM.html
http://dx.doi.org/10.1016/j.ic.2006.02.006
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Tackett_1994_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Teller_1997_acnfc.html
http://dx.doi.org/10.1145/154183.154265
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White2_2008_gecco.html

Genetic Improvement of GPU Software 43

In Maarten Keijzer et al., editors, GECCO ’08: Proceedings of the 10th annual conference
on Genetic and evolutionary computation, pages 1775–1782, Atlanta, GA, USA, 12-16
July 2008. ACM.

[White et al., 2011] David R. White, Andrea Arcuri, and John A. Clark. Evolutionary
improvement of programs. IEEE Transactions on Evolutionary Computation, 15(4):515–
538, August 2011.

[Wu et al., 2015] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. Deep
parameter optimisation. In Sara Silva et al., editors, GECCO ’15: Proceedings of the
2015 on Genetic and Evolutionary Computation Conference, pages 1375–1382, Madrid,
11-15 July 2015. ACM.

[Yao et al., 2014] Xiangjuan Yao, Mark Harman, and Yue Jia. A study of equivalent and
stubborn mutation operators using human analysis of equivalence. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014, pages 919–930,
Hyderabad, India, 2014. ACM.

[Yeboah-Antwi and Baudry, 2015] Kwaku Yeboah-Antwi and Benoit Baudry. Embedding
adaptivity in software systems using the ECSELR framework. In William B. Langdon
et al., editors, Genetic Improvement 2015 Workshop, pages 839–844, Madrid, 11-15 July
2015. ACM.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://dx.doi.org/10.1145/2568225.2568265
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yeboah-Antwi_2015_gi.html

	Introduction
	Genetic Improvement for GPGPU
	Genetic Improvement of Software
	CUDA gzip
	StereoCamera
	Three Dimensional Medical Imaging
	Improving BarraCUDA DNA Alignment
	RNA Binding Energy, CUDA Dynamic Programming
	Discussion
	Conclusions
	FTP kits

