
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2020) 21:269–272
https://doi.org/10.1007/s10710-019-09367-z

1 3

SOFT WARE REVIEW

Inspyred: Bio‑inspired algorithms in Python

Alberto Tonda1

Published online: 2 November 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Inspyred 1.0 is an open-source, freely available Python module developed by Dr. 
Aaron Garrett of Wofford College, Spartanburg, South Carolina, USA (https​://aaron​
garre​tt.githu​b.io/woffo​rd-webs/). The project is under active development, with the 
latest updates released in January 2019.

Inspyred provides Python implementations for some of the most commonly used 
Evolutionary Algorithms (Genetic Algorithms, Evolutionary Strategies, Differential 
Evolution, Pareto Archived Evolutionary Strategy, and NSGA-II) and other bio-
inspired optimization techniques (ant colony optimization, particle swarm optimiza-
tion, simulated annealing, and swarm intelligence).

While Inspyred’s tools can be used as out-of-the-box optimization resources, its 
most commendable feature is its design methodology for EAs, explicitly “inspired” 
(pun intended) by De Jong’s 2006 book Evolutionary Computation: A Unified 
Approach. Inspyred implements a generic Evolutionary Computation as a series of 
components/Python functions:
Problem-specific components

1.	 A generator that defines how solutions are created
2.	 An evaluator that defines how fitness values are calculated for solutions

Algorithm-specific evolutionary operators

1.	 An observer that defines how the user can monitor the state of the evolution
2.	 A terminator that determines whether the evolution should end
3.	 A selector that determines which individuals should become parents
4.	 A variator that determines how offspring are created from existing individuals
5.	 A replacer that determines which individuals should survive into the next genera-

tion
6.	 A migrator that defines how solutions are transferred among different populations

 *	 Alberto Tonda 
	 alberto.tonda@inra.fr

1	 UMR 782 GMPA, INRA, Université Paris-Saclay, Thiverval‑Grignon, France

https://aarongarrett.github.io/wofford-webs/
https://aarongarrett.github.io/wofford-webs/
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-019-09367-z&domain=pdf


270	 Genetic Programming and Evolvable Machines (2020) 21:269–272

1 3

7.	 An archiver that defines how existing solutions are stored outside of the current 
population

What makes Inspyred particularly useful for both students and practitioners of 
Evolutionary Algorithms is the possibility of easily replacing any of these compo-
nents with either an existing solution provided by Inspyred or a custom user-writ-
ten Python function. This allows users to mix and match techniques, easily experi-
ment with new ways of (for example) performing individual selection, variation or 
replacement, and develop custom evolutionary algorithms with relatively little cod-
ing effort. For example, you could create a version of NSGA-II that evolves indi-
viduals with non-fixed genome size, by just replacing the generator, evaluator, and 
variator, and keeping the rest of the Inspyred functions as they are.

Several popular functions/components are already provided: for example, among 
the possible selectors we can find roulette wheel, tournament, rank, truncation and 
uniform selection. The variators include the “usual suspects” among genetic opera-
tors. These range from n-point crossover to Gaussian mutation, for both genomes 
with continuous floating point and discrete (Boolean/int) values. The replacers 
decide how populations are updated from one generation to the next. Several popu-
lar strategies are provided, including the basic “comma”, where parents are replaced 
by offspring (also known as generational) and “plus” strategies, in which parents 
and offspring compete with each other. Observers are basically functions called at 
the end of each generation. They can be used to save the current state of the algo-
rithm (for example by writing all individuals in the population to a file), or to visual-
ize information on the screen (Fig. 1). 

When compared to other Evolutionary Algorithms Python packages, such as 
DEAP [1] this structure makes Inspyred more elegant and easier to modify for a 
specific purpose.

The documentation (https​://pytho​nhost​ed.org/inspy​red/) is well written. It 
includes several tutorials that show how different components can be replaced by 
user supplied functions and examples that show how to develop custom components 
for a specific application. Finally, a few “recipes”, in the form of snippets of code, 
show how to tweak Inspyred to introduce advanced concepts, such as lexicographic 
ordering for comparing individuals, or a migrator of individuals between islands 
deployed on parallel machines connected by a network.

One of the most useful features of Inspyred is the ease of passing custom argu-
ments between the components. When calling the evolve method of any instance 
of the Evolutionary Computation object, all arguments passed to the method that 
are not listed among its standard arguments will be added as accessible entries in 
a Python dictionary called args. (args is passed to all functions/components.) This 
means if your evaluation function needs access to an extra data structure, you can 
just pass it as additional argument, e.g. my_structure, when you call evolve. Then 
all functions and components will be able to access the data structure as args[“my_
structure”]. A useful, but not well-documented feature, is that args[“_ec”] stores a 
reference to the instance of the currently running evolutionary algorithm, so that all 
of its parameters can be accessed from inside user-defined functions.

https://pythonhosted.org/inspyred/


271

1 3

Genetic Programming and Evolvable Machines (2020) 21:269–272	

While Inspyred natively supports concurrent evaluation of the individuals 
through multiple processes (fork()), it does not support multithreading: this could 
be an issue when evaluations require storing large data structures. However, it is 
always possible to write a custom multi-threaded “evaluator” for your problem, 
and manage the threads using the threading Python module (Inspyred does not 
specifically support either SIMD or GPUs).

Inspyred can be easily installed through pip (sudo pip install inspyred), or 
cloned from its GitHub repository. On Windows, it can be installed through Ana-
conda/Anaconda Cloud distributions.

At the moment Inspyred does not support genetic programming. Whereas 
genetic programming is fully supported in DEAP, its main competitor among 
Python modules.

Using Inspyred requires basic competence in Python. A general understand-
ing of object-oriented programming is helpful, but not strictly necessary. I would 
recommend Inspyred both as a tool for fast deployment and testing of ideas for 
researchers, and for introducing graduate and undergraduate students to Evolu-
tionary Algorithms, even if they had no previous experience with EAs. I person-
ally used it for both purposes, with good results.

Fig. 1   Example of code snippet using Inspyred. The components “my_generator”, “my_evaluator” and 
“my_observer” are defined by the user, written as functions in the same file



272	 Genetic Programming and Evolvable Machines (2020) 21:269–272

1 3

GitHub repository: https​://githu​b.com/inspy​red/inspy​red.
Documentation (including tutorials): https​://pytho​nhost​ed.org/inspy​red/.
Google groups discussion board: https​://group​s.googl​e.com/forum​/#!forum​/inspy​red.

Reference

	 1.	 J. Kim, S. Yoo, Software review: DEAP (Distributed Evolutionary Algorithm in Python) library. 
Genet. Program Evolvable Mach. 20, 139 (2019). https​://doi.org/10.1007/s1071​0-018-9341-4

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://github.com/inspyred/inspyred
https://pythonhosted.org/inspyred/
https://groups.google.com/forum/#!forum/inspyred
https://doi.org/10.1007/s10710-018-9341-4

	Inspyred: Bio-inspired algorithms in Python
	References




