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Abstract
Reversible Cellular Automata (RCA) are a particular kind of shift-invariant trans-
formations characterized by dynamics composed only of disjoint cycles. They have 
many applications in the simulation of physical systems, cryptography, and revers-
ible computing. In this work, we formulate the search of a specific class of RCA 
– namely, those whose local update rules are defined by conserved landscapes – as 
an optimization problem to be tackled with Genetic Algorithms (GA) and Genetic 
Programming (GP). In particular, our experimental investigation revolves around 
three different research questions, which we address through a single-objective, a 
multi-objective, and a lexicographic approach. In the single-objective approach, we 
observe that GP can already find an optimal solution in the initial population. This 
indicates that evolutionary algorithms are not needed when evolving only the revers-
ibility of such CA, and a more efficient method is to generate at random syntactic 
trees that define the local update rule. On the other hand, GA and GP proved to be 
quite effective in the multi-objective and lexicographic approach to (1) discover a 
trade-off between the reversibility and the Hamming weight of conserved landscape 
rules, and (2) observe that conserved landscape CA cannot be used in symmetric 
cryptography because their Hamming weight (and thus their nonlinearity) is too low.

Keywords  Shift-invariant transformations · Cellular automata · Reversibility · 
Genetic programming · Genetic algorithms

1  Introduction

The shift-invariance property is important when studying and modeling several 
types of discrete dynamical systems. The property states that any translation of the 
input state results in the same translation of the output state in a system governed by 
a shift-invariant transformation. When a finite array describes the state of the system, 
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shift-invariant transformations correspond to cellular automata (CA), i.e., functions 
defined by a local update rule uniformly applied at all sites of the array [15]. In 
fact, in this case, the dependency neighborhood that a cell uses to update its state 
is upper bounded by the size of the finite array itself, while over infinite arrays, one 
could have shift-invariant transformation where each coordinate depends on cells 
that are arbitrarily far. CA have been thoroughly studied both as models for simulat-
ing discrete dynamical systems in physics [2, 14, 40], biology [8, 9, 37], ecology 
[1, 12, 11] and other fields, as well as to design computational devices, for example 
in symmetric cryptography [13, 25, 35] and fault-tolerant computing [26, 27, 42]. 
Reversible shift-invariant transformations, particularly Reversible CA (RCA), have 
the additional characteristic of preserving information. As such, the dynamics of an 
RCA can be reversed backward in time starting from any state, and the inverse map-
ping is itself a CA. This characteristic makes RCA especially interesting for design-
ing energy-efficient computing devices, as stated by Landauer’s principle [20]. In 
fact, any irreversible logical operation implemented in hardware leads to heat dissi-
pation, which entails a physical lower bound on the miniaturization of devices based 
on irreversible gates. One more interesting domain for RCA is cryptography, where 
they can be used to design encryption and decryption algorithms [25].

Unfortunately, while RCA are characterized by simple combinatorial rules, 
designing them is a difficult problem when considering additional properties as 
required by specific applications. This is because there are only a few known classes 
of RCA [15] and an exhaustive search of all possible RCA is unfeasible for large 
local rule sizes. Considering these difficulties and the limited number of available 
theoretical results, heuristics – and, more precisely, evolutionary algorithms (EA) 
– represent an interesting option for designing RCA.

An interesting class of CA that include reversible ones are marker CA, where the 
local update rule flips the state of a cell if its neighbors take on a set of patterns (also 
called flipping landscapes) that are conserved by the resulting shift-invariant trans-
formation [40]. Evolutionary algorithms like genetic algorithms (GA) and genetic 
programming (GP) intuitively represent a good fit to evolve the local rules of marker 
CA since they have a simple description through their generating functions. In par-
ticular, the output of a marker CA rule corresponds to the XOR of the cell in the 
origin of the neighborhood and its generating function evaluated on the neighbor-
ing cells. As such, it becomes rather straightforward to formulate the optimization 
objective for the reversibility property by minimizing the number of compatible flip-
ping landscapes defined by the generating function. An optimal solution, in this con-
text, is a marker CA rule whose flipping landscapes are mutually incompatible, or 
equivalently a conserved landscape rule.

Additionally, the Hamming weight of a generating function in a marker CA rep-
resents a good indicator of its nonlinearity [3, 39], which is a relevant property of 
Boolean functions used in domains like sequences [28], telecommunications [29], 
and cryptography [25]. Consequently, maximizing the Hamming weight of the 
generating function can be considered an additional optimization objective and 
also motivates the use of multi-objective evolutionary algorithms to investigate the 
resulting Pareto fronts.
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Our research investigates how difficult it is for evolutionary algorithms to find 
conserved landscape CA rules, considering their small number as compared to 
the corresponding search space size. Further, we explore the evolution of rules 
of larger diameter (i.e., larger neighborhood size), as such rules are relevant from 
the practical perspective. Finally, we investigate the trade-offs between the revers-
ibility of a marker CA rules and the Hamming weight.

This paper is an extended version of the work “An Evolutionary View on 
Reversible Shift-Invariant Transformations” [19] presented at EuroGP 2020. 
With respect to that work, here: 

1.	 We consider one additional evolutionary algorithm in our experiments, namely the 
lexicographic genetic algorithm. By doing so, we allow a more detailed analysis 
of the lexicographic paradigm for the evolution of conserved landscape CA.

2.	 We conduct an extensive tuning phase for all algorithms on the problem instance 
with diameter d equal to 10. This represents a much larger and more difficult 
problem than the one considered in [19], where the diameter for tuning was set 
to 7, thus allowing more meaningful tuning results.

3.	 We consider more problem instances: while the original paper considered diam-
eter sizes d from 8 to 13, this work investigates diameter sizes ranging from 7 to 
15.

4.	 While in the original paper we allowed the offset � to be of size d − 1 , here we set 
� equal to 3 for all experiments. By doing so, we aim to explore a more difficult 
optimization problem, as there will be fewer solutions fulfilling the criteria.

5.	 Finally, we provide a more detailed experimental analysis by considering Ham-
ming weight distributions and algorithms’ convergence.

Besides confirming the observations from [19], the new set of experiments 
allowed us to discover two additional findings:

•	 We show that GP manages to find optimal solutions already in the initial pop-
ulation. This indicates that although decreasing � limits the total number of 
optimal solutions, it still allows GP to “easily” guess some of those solutions. 
Thus, having smaller � makes the problem simpler for GP, but not for GA, 
where we observed a trend of increasing difficulty similar to the one reported 
in [19]. Overall, these findings indicate that evolutionary algorithms are not 
needed to construct conserved landscape CA: a simpler and more effective 
way is to generate at random Boolean trees until one that maps to a conserved 
landscape rule is obtained.

•	 The Pareto fronts obtained with the multi-objective optimization approach 
indicate not only that the Hamming weight of an optimal solution must neces-
sarily be low concerning the length of its truth table, but also that balanced 
generating functions are the farthest possible from giving reversible rules. 
This, in turn, allows us to further explain why for GA, it is extremely unlikely 
to guess an optimal solution by chance in the initial population, while it is 
easy for GP.
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The rest of this paper is organized as follows. In Sect. 2, we discuss some types of 
cellular automata, and we provide some relevant definitions and notations. Section 3 
presents related works. In Sect. 4, we discuss how to optimize the reversibility of 
CA, presenting an approach based on conserved landscape rules. Section 5 first pre-
sents the result of a preliminary exhaustive search and then provides details on our 
experimental setting and parameter tuning phase. In Sect. 6 we present the results of 
our evolutionary experiments, while in Sect. 7 we discuss them with respect to the 
stated research questions. Finally, Sect. 8 concludes the paper and offers potential 
directions for future research.

2 � Cellular automata (CA)

This section covers background definitions and notions on reversible cellular autom-
ata, upon which the rest of the paper is based. We start with some general defini-
tions, followed by discussions on reversible CA and marker CA.

2.1 � Basic definitions

Let us denote by Aℤ the set of all bi-infinite strings over the finite alphabet A. In the 
field of symbolic dynamics [21], the set Aℤ is usually equipped with the shift opera-
tor � , which shifts by one place to the left each coordinate of a bi-infinite string. For 
this reason, Aℤ is also called the full-shift space. A mapping F ∶ Aℤ

→ Aℤ is called 
shift-invariant if it commutes with, that is,

for all bi-infinite strings x ∈ Aℤ.
Cellular Automata (CA) are a particular class of shift-invariant transformations 

whose output is determined by the parallel application of a single local update rule 
over all components (or cells) of a bi-infinite string. Such a rule depends only on a 
finite number of neighboring cells, also called the diameter. The Curtis-Hedlund-
Lyndon (CHL) Theorem characterizes CA as those mappings F ∶ Aℤ

→ Aℤ that are 
both shift-invariant and uniformly continuous concerning the Cantor distance [10]. 
When considering finite arrays with periodic boundary conditions (i.e., where the 
array can be seen as a “ring” in which the first cell follows the last one), instead of 
bi-infinite strings, the continuity requirement of the CHL theorem can be dropped. 
In other words, a mapping F ∶ An

→ An is a CA if and only if F is shift-invariant. 
The only difference is that the shift operator in this context is applied cyclically. 
Thus the first cell will be shifted to the last one when � is applied. Clearly, finite CA 
represent the most interesting case for practical applications, and we focus exclu-
sively on them in the rest of this paper. Therefore, in what follows, we use the term 
CA and shift-invariant transformation interchangeably.

Various CA models can be defined depending on the dimension of the cellular 
array, the alphabet of the cells, and the boundary conditions. In this work, we focus 
on one-dimensional periodic Boolean CA, defined as follows:

F(�(x)) = �(F(x)), for all x ∈ {0, 1}ℤ,
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Definition 1  A one-dimensional periodic Boolean CA (PBCA) of length n, diameter 
d, offset � , and local rule f ∶ {0, 1}d → {0, 1} , is defined as a vectorial function 
F ∶ {0, 1}n → {0, 1}n where for every vector x ∈ {0, 1}n and all 0 ≤ i ≤ n − 1 , the 
i-th component of the output vector is given by:

with all indices being computed modulo n. Function F is also called the global rule 
of the CA.

Thus, a PBCA is composed of a one-dimensional vector of n cells that can be 
either in state 0 or 1, where each cell simultaneously updates its state by applying 
the local rule f on the neighborhood formed by itself, the � cells on its left and the 
d − 1 − � cells on its right. Here, “periodic” refers to the fact that all indices are 
computed modulo n: in this way, the leftmost � cells and the rightmost d − 1 − � 
ones respectively have enough left and right neighboring cells to apply the local 
rule. Unless ambiguities arise, in what follows we refer to PBCA simply as CA, as 
the former is the main CA model considered in this work. The orbit of a PBCA start-
ing from x is the sequence of vectors {x(t)}t∈ℕ where x(0) = x ∈ �

n
2
 and x(t) = Ft(x) 

for all t > 0 (remark that Ft denotes the iteration of the CA global rule F for t times).
Since the cells of a CA take binary values, the local rule can be seen as a Boolean 

function f ∶ �
d
2
→ �2 of d variables where �2 = {0, 1} is the finite field of two ele-

ments, and thus it can be represented by its truth table, which specifies for each 
of the possible 2d input vectors x ∈ �

d
2

 the corresponding output value f (x) ∈ �2 . 
Assuming that the input vectors of � d

2
 are sorted lexicographically (i.e., x ≤ y if and 

only if xi ≤ yi where i is the first index such that xi and yi differ), one can encode the 
truth table as a single binary string �f ∈ �

2d

2
 , which is the output column of the table. 

In the CA literature, the decimal encoding of �f  is also called the Wolfram code of 
the local rule f [43]. Figure 1 reports an example of CA with n = 6 cells, diameter 
d = 3 , offset � = 1 , and local rule defined as f (xi−1, xi, xi+1) = xi−1 ⊕ xi ⊕ xi+1 , cor-
responding to Wolfram code 150. Hence, each cell looks at itself and its left and 
right neighbors to compute its next state through rule 150. The two shaded cells in 
Fig. 1b represent “copies” respectively of the first and the last cell to help visual-
ize the neighborhoods of the cells at the boundaries. As mentioned above, one can 

(1)F(x)i = f (x[i−�,i−�+d−1]) = f (xi−�, xi−�+1,⋯ , xi,⋯ , xi−�+d−1)

0

f(1, 1, 0) = 1⊕ 1⊕ 0

1

Local view

10 0 0

on the blue cell.

1 0 0 1 0 0

⇓Parallel update Global rule F

10 0 1

Global view

1 1 0 1

(a) Local application of the local rule (b)Global application of the rule with
periodic boundary conditions.

Fig. 1   An example of CA with n = 6 cells, diameter d = 3 , offset � = 1 , and local rule defined as 
f (xi−1, xi, xi+1) = xi−1 ⊕ xi ⊕ xi+1 , corresponding to Wolfram code 150
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effectively think of the CA array as a ring, bending it so that the leftmost and right-
most cells come close to each other.

As an example, Table 1 reports the truth table associated to the CA F with local 
rule 150.

2.2 � Reversible CA

The property of reversibility is of particular importance in the field of dynamical 
systems. Stated informally, the orbits of the states of a reversible system are disjoint 
cycles without transient parts or pre-periods. Consequently, the dynamics of such 
systems can also be run backward in time since each state has exactly one predeces-
sor, and the inverse system is analogous to the original one. In the context of infinite 
cellular automata, this property translates to the fact that the global rule F must be 
bijective to ensure that each global state of the cellular array has exactly one pre-
decessor, and the inverse global mapping must also be a CA, that is, F−1 has to be 
defined by a local rule. If these two requirements are fulfilled, then the correspond-
ing infinite CA is called reversible.

Hedlund [10] and Richardson [33] independently proved that an infinite CA is 
reversible if and only if its global rule is bijective. In other words, bijectivity in a CA 
is sufficient to grant the property that the inverse global rule F−1 is both shift-invari-
ant and continuous. However, this result does not give constructive proof to find the 
inverse global rule F. Indeed, even characterizing the diameter of the inverse local 
rule in a reversible CA is still an open problem, as shown by Czeizler and Kari [6].

The relationship between bijectivity and reversibility is less straightforward in the 
case of finite CA. If we start from a local rule f that generates a reversible infinite 
CA, then we can conclude that the same rule will give rise to a reversible PBCA for 
any length n ∈ ℕ of the cellular array. This is because the set of spatially periodic 
configurations is a proper subset of the full-shift space Aℤ , and it is exactly the sub-
set where PBCA act upon. Conversely, if we know that a local rule f induces a bijec-
tive global rule on a PBCA of a certain length n ∈ ℕ , then the inverse global rule 
is not necessarily defined by a local rule, nor is it the case that the global rule stays 
bijective for different lengths of the PBCA under the same local rule.

Table 1   Truth table 
representation of local rule 150

x1 x2 x3 f (x1, x2, x3)

0 0 0 0
1 0 0 1
0 1 0 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 1
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Local rules that generate bijective global rules only for certain lengths n ∈ ℕ of 
the CA array and whose inverses cannot be described by local rules are also called 
globally invertible. An example is the � transformation used in the Keccak sponge 
construction for hash functions [7], which corresponds to a CA of length n = 5 and 
is defined by the local rule of diameter d = 3 with the Wolfram code 210. The offset 
of this CA is � = 0 , meaning that each cell applies rule 210 over itself and the two 
cells to its right to update its state. The algebraic expression of � is:

In other words, the cell in position 1 flips its state if and only if the logical AND of 
x2 and the complement of x3 is true. Daemen [13] showed that rule 210 is globally 
invertible since it induces a bijective global rule only for odd lengths of the cellular 
array. In particular, the inverse mapping can be specified by a sequential algorithm 
that takes as input a vector of odd length and a “seed” value, which is basically a 
single component of the preimage. Then, the other components of the preimage are 
determined by “leaps” of length two by going leftwards with respect to the seed. 
Since the vector has an odd length and periodic boundary conditions, each of the 
remaining components can be determined using a single seed. The fact that a preim-
age seed can always be found for any configuration of odd length shows why the 
resulting CA is reversible. More details about the inversion procedure with seeds 
and leaps for rule � can be found in [13].

On the other hand, a local rule that induces a bijective global function for all 
finite lengths n ∈ ℕ of the cellular array is called locally invertible. Using a topo-
logical argument that relies on the compactness of the full shift space [15], it can 
be shown that locally invertible rules induce bijective global functions also on infi-
nite CA. Hence, from the discussion above, it follows that locally invertible rules 
are exactly those defining reversible CA, where the inverse global rule F−1 is deter-
mined by a local rule for all lengths n ∈ ℕ of the cellular array. In what follows, we 
consider searching for locally invertible rules as an optimization problem, focusing 
on the class of marker CA.

2.3 � Marker CA

Up to now, only a few classes of reversible CA are known in the literature (see, e.g., 
[15]). These classes are usually defined in terms of particular properties of the local 
rule so that a subset of the rules satisfying them can generate a reversible CA. In this 
section, we describe the class of marker CA that are the focus of the main contribu-
tions of this paper in later sections.

A marker CA (also known as a complementing landscape CA [40]) can be defined 
as a CA having a local rule that always flips the bit of the cell in position � (i.e., the 
one whose state is being updated) whenever the cells in its neighborhood take on a 
particular pattern, or marker. Otherwise, the cell stays in its current state. The set of 
patterns defining a local rule of a marker CA can be formalized through the concept 
of a landscape:

(2)𝜒(x1, x2, x3) = x1 ⊕ (x2(1⊕ x3)).
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Definition 2  Let d,� ∈ ℕ with 𝜔 < d . A landscape of width d and center � is a 
string L = l0l1 ⋯ l𝜔−1 ⋆ l𝜔+1 ⋯ ld−1 where li ∈ {0, 1,−} for all i ≠ �.

The ⋆ symbol in a landscape L indicates the origin of the neighborhood in the 
local rule (i.e., the cell whose state is being updated), and consequently, occur-
ring at position � . The − symbol represents a “don’t care”, meaning that the cor-
responding cell can be either in the state 0 or 1. Thus, landscapes can be considered 
as a restricted form of regular expressions over the binary alphabet {0, 1} , where 
the “don’t care” symbol stands for the regular expression (0 + 1) (i.e., both 0 and 1 
match).

A local rule of a marker CA is described by one or more landscapes, all having 
the same width d and center � . In the multiple landscape case, a cell is flipped if its 
neighborhood partakes on any of the patterns included in the union 

⋃k

i=1
Li of the 

landscapes L1,⋯ , Lk defining the local rule. For example, observe that the transfor-
mation � used in Keccak, whose definition is recalled in Eq. (2), is a marker rule. 
Indeed, it can be seen that the cell x1 flips its state if and only if x2 and x3 are equal to 
1 and 0, respectively. Therefore, rule � is defined by the single landscape ⋆10.

It is possible to define a partial order ≤C over the set of landscapes. Namely, 
given two landscapes L = l0 ⋯ ld−1 and M = m0 ⋯md−1 with the same width d and 
center � , we define

for all 0 ≤ i ≤ d − 1 . Intuitively, this partial order describes the “generality” of a 
landscape: the more “don’t care” symbols it has, the more patterns it contains. The 
bottom of this partial order is the trivial landscape ⋆ , which corresponds to the iden-
tity rule (i.e., each cell copies its state without looking at its neighbors). Above this 
minimal element are the atomic landscapes, which do not contain any “don’t care” 
symbols, describing only single patterns. Finally, the top element is the landscape 
composed only of “don’t care” symbols, which includes all possible patterns; the 
corresponding rule coincides with the complement of the identity, that is, the rule 
where each cell flips its state no matter what pattern its neighbors partake on. In 
what follows, we refer to ≤C as the compatibility partial order relation. In particu-
lar, we call two landscapes L1, L2 with the same width d and center � compatible 
if L1 ≤C L2 or L2 ≤C L1 . Otherwise, if L1 and L2 are not comparable with respect 
to ≤C , we say that they are incompatible. As an example, Fig. 2 reports the diagram 
of the compatibility relation for d = 3 and � = 0.

The compatibility order relation can be used to characterize a subset of reversible 
marker CA, namely those of the conserved landscape type. In such CA, a cell that 
is in a particular landscape L defined by the local rule will still be in the same land-
scape upon application of the global rule. This property can be formalized by requir-
ing that the cells in the neighborhood are in landscapes that are incompatible with L, 
as shown in the following result proved in [40]:

Lemma 1  Let f ∶ �
d
2
→ �2 be a local rule of a marker CA defined by a set of 

k landscapes L1,⋯ , Lk of width d and center � . Further, for all i ∈ {1,⋯ , k} let 

(3)L ≤C M ⇔ li = mi or li ∈ {0, 1} and mi = −
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Mi,0,⋯ ,Mi,�−1,Mi,�+1,⋯ ,Mi,d−1 be the set of d − 1 landscapes associated to the 
neighborhood of Li . Then, if Mi,j is incompatible with all landscapes L1,⋯ , Lk for 
all i ∈ {1,⋯ , k} and j ∈ {0,⋯ ,� − 1,� + 1,⋯ , d − 1} , rule f induces a locally 
invertible marker CA.

When the conditions of Lemma 1 are fulfilled, f is named a conserved landscape 
rule. Toffoli and Margolus noted that a conserved landscape local rule induces an 
involution, i.e., the global rule of the resulting marker CA is its inverse [40]. This is 
because any cell being in one of the marker landscapes will still be in the same land-
scape after applying the local rule. Therefore, after a further application of the local 
rule, the cell will return to its initial state.

Conserved landscape rules define a particular type of reversible CA since all 
cycles have a length of 2. Daemen argued that such CA could be useful in those 
cryptographic applications where both the encryption and decryption functions are 
implemented in hardware [13]. It is also possible to relax the conditions of Lemma 1 
by allowing the landscapes of the local rule to partially overlap one another [40]. 
In this case, a cell in a landscape defined by the local rule will be in any other land-
scape defined by the local rule after applying the global rule. As a consequence, the 
resulting marker CA can exhibit more complex behaviors with longer cycle lengths.

To better illustrate the idea, we provide an example of the only single conserved 
landscape rule of diameter d = 4 (up to complement and reflection of the input), 
originally discovered by Patt [30]:

Example 1  Let d = 4 and � = 1 , and let f ∶ �
4

2
→ �2 be the local rule defined by the 

single landscape L = 0 ⋆ 10 . The tabulation depicted in Fig. 3a shows that all three 
landscapes of the neighboring cells are incompatible with L. In particular, when xi is 
in landscape L, then: 

1.	 Cell xi−1 is in landscape − ⋆ −1 , which is incompatible with 0 ⋆ 10 as there is a 
mismatch in position 3.

2.	 Cell xi+1 is in landscape − ⋆ 0− , which is incompatible with 0 ⋆ 10 as there is a 
mismatch in position 2.

3.	 Cell xi+2 is in landscape 1 ⋆ −− , which is incompatible with 0 ⋆ 10 as there is a 
mismatch in position 0.

Fig. 2   Hasse diagram for the 
compatibility poset (partially 
ordered set) with d = 3 and 
� = 0 . The landscape ⋆10 
defines the rule � introduced 
in [13]

�−−

�− 0 �0− �1− �− 1

�00 �10 �01 �11

�
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3 � Related works

As far as we are aware, our work is the first one exploring the application of evo-
lutionary algorithms to evolve reversible CA. Therefore, in this section, we briefly 
discuss related works related to the use of EA to evolve shift-invariant transforma-
tions and related objects for other tasks, such as random number generation. For a 
somewhat outdated but very detailed overview of works using GA to evolve CA, we 
refer interested readers to [22].

Bäck and Breukelaar used genetic algorithms to evolve behavior in CA and 
explored different neighborhood shapes [38]. The authors showed that their approach 
works for different topologies and neighborhood shapes. Sipper and Tomassini [23] 
proposed a cellular programming algorithm to co-evolve the rule map of non-uni-
form CA for designing random number generators. With their approach, the authors 
managed to evolve good generators that exhibit behaviors similar to those from the 
previously described CAs. Additionally, the authors reported advantages stemming 
from a “tunable” algorithm for obtaining random number generators.

Picek et al. demonstrated that GP could be used to evolve CA rules suitable to 
produce S-boxes (nonlinear elements used in block ciphers) with good crypto-
graphic properties [34]. This approach allowed finding optimal S-boxes for several 
sizes of practical importance. Interestingly, this is the first time that EA has man-
aged to obtain optimal S-boxes for larger sizes. Next, Picek et al. used genetic pro-
gramming to demonstrate that the S-boxes obtained from the CA rules could have 
good implementation properties [35]. The authors concentrated on two S-box sizes, 
4 × 4 and 5 × 5 , and managed to find S-boxes with good latency, area, and power 
consumption. Subsequently, Mariot et al. conducted a more detailed analysis of the 
S-boxes based on CA, and they proved the best possible values for relevant crypto-
graphic properties when CA rules of a certain size are used [25]. The authors also 
used GP to experimentally validate their findings and reverse engineer a CA rule 
from a given S-box.

Mariot et al. used EA to construct orthogonal Latin squares built from CA [18]. 
The authors reported that GP could always generate orthogonal Latin squares, where 
the optimal solutions were mostly linear. On the other hand, when using GA, the 
results were significantly worse than GP in evolving orthogonal Latin squares, but 

�0 1 0

�− − 1

�− 0 −

�1 − −

xi

xi−1

xi+1

xi+2

(a) Landscape tabulation for rule 0 � 10.

0 1 1 0 0 1

0 0 1 0 1 1

(b) Example of cycle of length 2.

Fig. 3   A locally invertible CA defined by the single landscape 0 ⋆ 10 . Fig. 3b displays an example of a 
cycle starting from the initial state 011001. The two cells in blue are in the landscape 0 ⋆ 10
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the corresponding Boolean functions were always nonlinear. Finally, Mariot et  al. 
investigated the possibility of evolving Reversible Cellular Automata (RCA). The 
authors considered three optimization strategies and obtained good results [19].

We note that the evolution of CA rules for cryptographic purposes is connected 
with the evolution of Boolean functions with good cryptographic properties. This 
direction is rather well-explored, and there are multiple works considering various 
evolutionary approaches, see, e.g., [41, 17, 31].

4 � Optimizing the reversibility of CA

This section cast the search of reversible CA as an optimization problem that can be 
tackled with evolutionary algorithms, focusing on the class of conserved landscape 
rules.

Lemma 1 tells us that to find a marker CA that is locally invertible, we need to 
define a set of landscapes L1,⋯ , Lk , in such a way that their associated neighbor-
hood landscapes are incompatible with them. This suggests the following idea to 
turn the search of conserved landscape rules into an optimization problem: given 
the landscape specification of a local rule, count the number of compatible land-
scape pairs, and minimize it. Using the partial order relationship that we defined 
in Sect. 2.3, this is equivalent to minimize the number of comparable pairs of land-
scapes. An optimal solution is a set of landscapes that are all mutually incompatible 
(including the neighborhood landscapes), or equivalently an antichain of elements 
in the poset induced by ≤C . These observations lead to the following optimization 
problem:

Problem 1  Let d,� ∈ ℕ with 0 < 𝜔 < d − 1 . Find a set of landscapes L1,⋯ , Lk of 
width d and center � , such that for all i ∈ {1,⋯ , k} and for all j ∈ {0,⋯ , d − 1} , 
the neighborhood landscape Mi,j associated to Li is incompatible with all other land-
scapes L1,⋯ , Lk , that is Mi,j ≰C Lt and Lt ≰C Mi,j for all t ∈ {1,⋯ , k}.

In the rest of this section, we will first address how to obtain the landscape repre-
sentation of a local rule from its truth table, and then we will define the fitness func-
tion to be minimized for Problem 1.

4.1 � Genotype representation for marker CA

The first question arising from Problem 1 is how to represent local rules of marker 
CA so that they can be evolved by the variation operators of GA and GP. In particu-
lar, GA usually works on a bitstring encoding of the candidate solutions of an opti-
mization problem, while GP relies on a tree representation. Hence, directly using 
the landscape specification of a marker CA rule does not seem a natural choice for 
encoding the genotype.

Recall from Eq. (2) that the � rule was defined as the XOR of the leftmost cell 
(which also coincides with the cell being updated) with the AND between the second 
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cell and the complement of the third cell. This observation can be generalized to any 
local rule of marker CA as follows. Let L1,⋯ , Lk be a set of landscapes of diameter 
d and center � defining a local rule f ∶ �

d
2
→ �2 . Additionally, let L =

⋃k

i=1
Li be 

the union of the landscapes. Then, a cell xi in a marker CA equipped with rule f will 
flip its state if and only if the neighborhood xi−𝜔 ⋯ xi−1⋆xi+1 ⋯ xi+d−1−𝜔 belongs to 
L . Excluding the origin ⋆ of the neighborhood, we obtain a vector of d − 1 variables 
that describes the states of the cells surrounding xi . Consider now all 2d−1 possible 
assignments to this vector, and let g ∶ �

d−1
2

→ �2 be the Boolean function defined as:

for all xi−� ⋯ xi−1xi+1 ⋯ xi+d−1−� ∈ �
d−1
2

 . In other words, function g outputs 1 if and 
only if the configuration featured by the cells surrounding xi belongs to the union of 
landscapes L , when the origin ⋆ is inserted at position � . Then, it follows that the 
local rule f can be expressed as

for all configurations of xi−� ⋯ xi−1xixi+1 ⋯ xi+d−1−� ∈ �
d
2

 . Hence, the algebraic 
form of the local rule of a marker CA can be expressed as the XOR of the cell in the 
origin with the generating function g computed on the surrounding cells. Indeed, g 
evaluates to 1 if and only if the neighborhood takes on any of the landscapes in L , 
and in this case xi will flip its state.

Consequently, we can reduce the representation of the local rule f of a marker CA 
to its generating function g, since we can compute f by simply XORing the output of 
g with the value of xi . Since g can be any Boolean function of d − 1 variables, it fol-
lows that we can represent the genotype of a candidate solution to our optimization 
problem with the commonly used Boolean genotype encodings for GA and GP. In 
particular:

•	 For GA, the genotype of a candidate solution is a bitstring of length 2d−1 , repre-
senting the output of the truth table of g.

•	 For GP, the genotype is a tree where the terminal nodes represent the input vari-
ables of g (i.e., the state of the cells surrounding the origin of the neighborhood), 
while the internal nodes are Boolean operators combining the values received 
from their child nodes and propagating their output to their parent node. The out-
put of the root node will be the output of the whole generating function g.

4.2 � Fitness functions

At the beginning of this section, we informally introduced the idea to steer the 
search of conserved landscape rules by counting the number of compatible pairs of 
landscapes. However, given that the genotype handled by GA and GP is an encod-
ing of the generating function g, we first need to translate this representation to the 
landscape specification.

(4)g(xi−𝜔 ⋯ xi−1xi+1 ⋯ xi+d−1−𝜔) =

{
1, if xi−𝜔 ⋯ xi−1⋆xi+1 ⋯ xi+d−1−𝜔 ∈ L

0, otherwise ,

(5)f (xi−𝜔 ⋯ xi−1xixi+1 ⋯ xi+d−1−𝜔) = xi ⊕ g(xi−𝜔 ⋯ xi−1xi+1 ⋯ xi+d−1−𝜔) ,
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Suppose that we have the truth table of the generating function g. In the GA case, 
this corresponds exactly to the genotype of an individual. For GP, we can easily 
recover it by evaluating the Boolean tree of an individual over all possible input 
vectors x ∈ �

d−1
2

 . Let supp(g) = {x ∈ �
d−1
2

∶ g(x) ≠ 0} be the support of g, i.e., the 
set of input vectors over which g evaluates to 1. By construction, the elements of 
supp(g) coincide with all the patterns that the cells surrounding the origin must fea-
ture to flip the state of the central cell. Thus, to obtain the list of atomic landscapes, 
it suffices to insert the origin symbol ⋆ in position � to each vector of the support. 
Of course, some of these patterns could be described in a more “compact” way 
with more general landscapes that also use the “don’t care” symbol. For example, if 
supp(g) = {101, 111} and the center is � = 1 , then the two atomic landscapes 1⋆01 
and 1⋆11 can be described by the single landscape 1⋆−1 , where we substituted the 
central variable with a “don’t care” symbol1.

However, the set of atomic landscapes obtained from the support suffices to check 
if a rule is of the conserved landscape type or not. It is not difficult to see that two 
landscapes containing “don’t care” symbols are incompatible if and only if all the 
atomic landscapes that they describe are incompatible between themselves. This 
means that we can directly use the support of the generating function to count the 
number of pairs of compatible landscapes. Given that we want to minimize such a 
number in order to get a conserved landscape rule, we define the following objective 
function:

Definition 3  Let g ∶ �
d−1
2

→ �2 be a generating function of a marker CA rule 
f ∶ �

d
2
→ �2 of diameter d and offset � , and let supp(g) be its support. Further, 

let L1,⋯ , Lk be the set of atomic landscapes obtained by adding the origin sym-
bol ⋆ in position � to each vector in supp(g), and for each i ∈ {1,⋯ , k} let 
Mi,0,⋯ ,Mi,�−1,Mi,�+1,⋯ ,Mi,d−1 be the set of neighborhood landscapes associated 
to Li , obtained through the tabulation procedure. Then, the fitness function value of 
g is defined as follows:

where [k] = {1,⋯ , k} , [d − 1]� = {0,⋯ ,� − 1,� + 1,⋯ , d − 1} , and the function 
comp(⋅, ⋅) returns 1 if the two landscapes passed as arguments are compatible, and 0 
otherwise.

Hence, the objective function loops over all neighborhood landscapes Mi,j 
induced by each atomic landscape Li , compares each of these neighborhood land-
scapes with all atomic landscapes L1,⋯ , Lk through the function comp(⋅, ⋅) , and 

(6)obj1(g) =
∑

i∈[k],j∈[d−1]�

∑

t∈[k]

comp(Mi,j, Lt) ,

1  This method can be generalized using the following greedy procedure. Let supp(g) be the support of 
the generating function, and remove x, y ∈ supp(g) such that their Hamming distance is 1. Then, insert in 
supp(g) the landscape L that has the same symbols as x and y, except for the single position in which they 
differ, where L has a “don’t care” symbol −. Repeat this procedure until no further replacements can be 
performed (i.e., all pairs of landscapes in supp(g) are at Hamming distance higher than 1).
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adds 1 whenever a compatible pair is found. Therefore, the function obj1 measures 
the degree of compatibility of a set of atomic landscapes induced by the support 
of a generating function g. The optimization objective is thus to minimize obj1 , 
with obj1(g) = 0 corresponding to an optimal solution where all neighborhood 
landscapes are incompatible with the atomic landscapes, and thus the latter define 
a conserved landscape rule.

Secondly, a good indicator of the complexity of the dynamical behavior of a 
marker CA is the Hamming weight of its generating function g, i.e., the cardi-
nality of its support. This metric can also be used as a proxy for the utility of a 
marker CA in cryptography since it is related to the nonlinearity of the resulting 
vectorial Boolean function [3, 39]. Given a generating function g, we thus define 
a second optimization objective function as follows:

In the optimization of these objectives, we experimented using three optimization 
scenarios. The first one, which we denote as the single-objective scenario, included 
only the minimization of the reversibility objective. The fitness function for the first 
scenario is then simply defined as:

where the optimization goal is minimization.
As it became apparent quite early in our experiments that this goal is very eas-

ily attainable with both representations, we modified the fitness function so the 
evolution could generate more distinct solutions with different Hamming weights. 
This is made possible simply by maximizing the Hamming weight value, but only 
for solutions that already obtained a conserved landscape solution, i.e., those for 
which the first objective is already minimized. At the same time, whenever an 
algorithm reaches a solution with a higher Hamming weight, every such individ-
ual is added to a set of distinct solutions reported at the end of each run.

Therefore, in the second scenario, which is denoted as lexicographic optimiza-
tion, we are interested in maximizing the Hamming weight while retaining an 
optimal value of obj1 . For this reason, we define a second fitness function for this 
particular case as follows:

Stated otherwise, with the second fitness function, we still minimize obj1 until we 
reach a reversible rule, and after that, we minimize the opposite of the Hamming 
weight (thus, equivalently, we are maximizing obj2).

Finally, we included a multi-objective approach to investigate the interaction 
between the reversibility of a marker CA rule and the Hamming weight of its 
generating function. In the multi-objective scenario, we minimized the revers-
ibility objective obj1 and maximized the Hamming weight as defined by obj2 in 
Equation (7).

(7)obj2(g) = |supp(g)|.

(8)fit1(g) = obj1(g),

(9)fit2(g) =

{
obj1 , if obj1 > 0,

−obj2 , if obj1 = 0.



443

1 3

Genetic Programming and Evolvable Machines (2021) 22:429–461	

5 � Experimental evaluation

In this section, we present the experimental setting and results obtained by applying 
GA and GP on Problem 1. We start by performing an exhaustive exploration of all 
conserved landscape rules up to diameter d = 6 , which is still computationally feasi-
ble. Next, we use the findings obtained from the exhaustive search to formulate our 
research questions and lay down our experimental settings. Finally, we present the 
results of our parameter tuning and discuss them in light of our research questions.

5.1 � Preliminary exhaustive search

As noted in Sect. 4.1, the local rule of a marker CA of diameter d can be identi-
fied with its generating function g of d − 1 variables, computed on the neighbor-
hood cells surrounding the origin since the state of the central cell is XORed with 
the result of g. Given a diameter d ∈ ℕ , this means that we can define the pheno-
type space as the set P(d) = {g ∶ �

d−1
2

→ �2} of all Boolean functions of d − 1 vari-
ables. The genotype space, on the other hand, will correspond to the set of all binary 
strings of length 2d−1 specifying the truth tables �g of the generating functions in 
P(d) . For GP, it will be the space of all Boolean trees whose terminals represent the 
d − 1 input variables, and the internal nodes represent Boolean operators.

Since the number of Boolean functions of d − 1 variables is 22d−1 , the phenotype 
space P(d) can be exhaustively searched for reversible marker CA rules up to diame-
ter d = 6 , since there are at most 232 ≈ 4.3 ⋅ 109 generating functions to check for the 
conserved landscape property. As far as we know, an exhaustive search of reversible 
marker CA rules has been carried out only by Patt [30], who considered diameters 
up to d = 4 . For completeness, Table 2 reports the numbers of conserved-landscape 
rules we found by exhaustively searching the sets of generating functions up to d = 6 
for each possible value of � , along with the length of the truth table ( 2d−1 ), the size 
of the phenotype space (#P(d) ), and the observed Hamming weights. Recall that the 
Hamming weight of the generating function corresponds to the number of atomic 
landscapes over which a cell flips its state. We excluded from the count the identity 
rule, which copies the state of the central cell since it is trivially reversible for any 
diameter. Further, we halved the numbers of the remaining rules since, if a rule is of 
the conserved landscape type, then its complement is too. As a general remark, one 
can see from Table 2 that the number of conserved landscape rules is much smaller 
than the size of the whole generating function set for any offset � . Another interest-
ing observation is that the highest numbers of conserved landscape rules are always 
found when � corresponds to the center of the neighborhood or its immediate left 
or right (if d is even). Indeed, the extreme cases are � = 0 and � = d , where no 
conserved landscape rules exist. As noted in [13], if the offset is on either the left-
most or rightmost cell of the neighborhood, then any landscape is always compatible 
with at least another one. Also, the fact that the distributions of conserved landscape 
rules are symmetrical to the center of the neighborhood is backed by the results 
proved in [40], where reversible marker rules in different offsets are shown to be 
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symmetric under rotations and reflection. Further, the number of the observed Ham-
ming weights is quite limited since, for the largest considered instance of diameter 
d = 6 , we only found reversible rules defined by at most three landscapes, which are 
thus not very useful for cryptographic and reversible computing purposes. Finally, a 
remark on time required to span the space of marker rules completely is in order. We 
carried out exhaustive search experiments on a Linux machine with an AMD Ryzen 
7 1800X Eight-Core Processor running at a base clock of 3.6 GHz. As reported in 
the last column of Table 2, the time required to enumerate all conserved landscape 
rules grows very rapidly, starting from only 0.1 seconds for diameter d = 4 up to 
more than two days for d = 6 . This completely rules out the possibility to perform 
an exhaustive search for larger diameters, since, for d = 7 , the corresponding search 
space is already composed of 264 ≈ 1.84 ⋅ 1019 rules. Even taking into account that 
the invertibility of a single rule of diameter d = 7 can be checked in about 10−5 sec-
onds (based on our current implementation), it would still take several million years 
to exhaustively visit the search space. Thus, in this case, not even a massive paral-
lelization of the enumeration algorithm would help.

5.2 � Research questions

The empirical observations obtained from the exhaustive search experiments pre-
sented in the previous section prompted us with three research questions:

•	 RQ1: Does the limited number of conserved landscape rules with respect to the 
search space size imply a difficulty for evolutionary algorithms to find them?

Table 2   Numbers of conserved 
landscape rules found by 
exhaustive search, up to 
equivalence by complement and 
excluding the trivial identity 
rule. Last column reports the 
approximate time (in seconds) 
needed to span the entire search 
space for each �

d 2d−1 #P(d) � #REV Weights Time

4 8 256 0 0 − ∼0.1s
1 1 1
2 1 1
3 0 −

5 16 65 536 0 0 − ∼120s
1 2 1
2 5 1, 2
3 2 1
4 0 −

6 32 4.3 ⋅ 109 0 0 − ∼ 2.3 ⋅ 105s
1 8 1, 2
2 23 1, 2, 3
3 23 1, 2, 3
4 8 1, 2
5 0 −
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•	 RQ2: Do there exist conserved landscape rules of a larger diameter that are use-
ful for cryptographic and reversible computing applications, i.e., having larger 
Hamming weights with respect to the size of the generating function truth table?

•	 RQ3: Is there a trade-off between the reversibility of a marker CA rule (as meas-
ured by the objective function obj1 defined in Sect. 4.2) and its Hamming weight 
(as defined by the second objective obj2)?

Although these research questions are inherited from the conference version of this 
work [19], we emphasize that here they are explored from a different perspective, 
especially concerning the first two. In particular, in our previous conference paper, 
the offset � was fixed to the neighborhood center, i.e., � = ⌊(d − 1)∕2⌋ . The reason 
for that choice was that, as shown in Table 2, most of the reversible rules are found 
when the offset is closer to the center.

On the other hand, in this work, we consider the situation where the offset is fixed 
to � = 3 for the experiments described in the next sections. The reason is twofold: 
first, by keeping the offset to a fixed value, one could reasonably expect that the dif-
ficulty for evolutionary algorithms to converge to an optimal solution increases even 
more by considering larger diameters than by placing � near to the center. Indeed, 
increasing the diameter while keeping � fixed means that the origin of the land-
scape rules gets farther from the center. Consequently, as experimentally observed 
through an exhaustive search, the number of optimal solutions becomes smaller, and 
this, in turn, likely affects the answers to RQ1 and RQ2 as discussed in our confer-
ence paper [19]. Further, in principle, one may assume that the trade-off between 
the compatibility fitness and the Hamming weight could change by considering an 
offset far from the center of the neighborhood, potentially affecting the answer to 
RQ3. Finally, the second reason for choosing a fixed � in our investigation is more 
of a practical nature: in this way, we can adopt a more uniform experimental setting, 
especially concerning the parameter tuning phase described in Sect. 5.4.

5.3 � Experimental settings

We utilized a genetic algorithm with truth table encoding and genetic programming 
with a tree-based representation to investigate the stated research questions. Both 
representations use the same selection scheme, a steady-state elimination tourna-
ment; in each iteration, three individuals are randomly selected from the popula-
tion. A new solution is generated by applying crossover to the best two individuals 
from the tournament. The new individual undergoes mutation, subject to a prede-
fined individual mutation rate, which is an algorithm parameter. Finally, the new 
individual replaces the worst one from the tournament, and the process is repeated. 
Each iteration produces one new individual and performs a single fitness evalua-
tion. Apart from the described method, we also experimented with an evolutionary 
strategy-based scheme, in which a number of offspring is generated using mutation 
only; however, preliminary experiments showed that this selection method produced 
inferior results for both representations. In the multi-objective approach, we used the 
well-known NSGA-II algorithm [4].
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For the truth table binary representation (GA), we employed one-point, two-point, 
and uniform crossover operators selected at random at each iteration. The mutation 
operator was a single bit-flip on a randomly selected position. Five crossover opera-
tors are used at random in the tree-based representation (GP): simple subtree crosso-
ver, uniform crossover, size fair, one-point, and context preserving crossover. As in 
the GA case, a single mutation type was used, the subtree mutation, with a fixed 
mutation probability of 0.5 [32].

The function set used in the tree-based encoding included the binary operators 
AND, OR, XOR, XNOR, AND with the second input complemented, and the unary 
operator NOT. Additionally, we included the ternary function IF, which returns the 
second argument if the first one is true and the third one otherwise. We performed a 
tuning phase to investigate which subset of these functions provides the best results.

For each considered optimization scenario (single-objective where fit1 is mini-
mized, multi-objective where obj1 and obj2 are respectively minimized and maxi-
mized, and lexicographic optimization where fit2 is minimized) we performed our 
experiments on the spaces of marker CA rules with diameter 7 ≤ d ≤ 15 . Therefore, 
with respect to our previous results reported in [19], we extended our investigation 
with two additional diameter values. Each experiment was repeated for 50 independ-
ent runs to obtain statistically reliable results, and each run was given a budget of 
500 000 evaluations, which is the same as adopted in [19]. Indeed, as it will be clear 
in the next sections, such a budget proved to be more than sufficient to investigate 
our research questions, and we deemed unnecessary a larger one.

5.4 � Parameter tuning

To set up the different parameters of the evolutionary algorithms employed for 
our experiments, we performed a tuning phase on the instance of marker CA rules 
with diameter d = 10 and � = 3 . Recall, in our previous experiments presented in 
[19], we carried out this phase on d = 7 and � = 3 . While we already elaborated in 
Sect. 5.2 why we chose an asymmetric offset for all our experiments, we tuned our 
evolutionary algorithms on a larger problem instance mainly for robustness reasons. 
Indeed, d = 7 is the smallest instance where it makes sense to tune an evolution-
ary algorithm for this problem since, for smaller values, the search space is limited 
enough that the problem can be easily solved by exhaustive search, as discussed in 
Sect. 5.1. Moreover, in this case, � = 3 corresponds to the center of the neighbor-
hood. Hence, we selected d = 10 as a sufficiently representative instance of our new 
experimental setting since the offset is far enough from the peak of the distribution 
of optimal solutions occurring in the center.

We tuned the population size p and the mutation probability � in the GA case. In 
particular, the population size ranged among the values {100, 200, 500} , while the 
mutation probability was in the range {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

For GP, besides the population size in the same range as GA, we tuned the maxi-
mum depth of the trees, considering the values in {5, 7, 9, 11} . The motivation is that 
in our experiments in [19] we always set the maximum depth equal to d − 1 , mainly 
following a heuristic adopted in previous works on the optimization of Boolean 



447

1 3

Genetic Programming and Evolvable Machines (2021) 22:429–461	

functions [41, 17, 31]. However, one could argue that if using these methods for 
large diameters such as d ≥ 10 , one could end up with very large trees, eventually 
making the investigation of the evolved solutions for interpretability more difficult. 
Likewise, one could also argue that a larger maximum depth could be beneficial 
to converge more rapidly on an optimal solution. For this reason, we experimented 
with both smaller and greater maximum depth with respect to the initial value d − 1.

Finally, the third parameter that we tuned for GP is the set of Boolean operators 
used in the internal nodes of the trees. In [19], we used a function set composed of 
four binary operators (AND, OR, XOR, and XNOR), one unary operator (NOT), 
and one ternary operator (IF). Again, the motivation for this choice was the pre-
vious experience with optimization problems related to Boolean functions solved 
using GP [41, 17, 31]. However, as remarked by one of the reviewers of [19], such 
a set could easily induce the GP trees to bloat since, for example, XNOR is equiva-
lent to the composition of NOT and XOR. Although bloat was already controlled in 
our previous experiments by adopting the maximum depth parameter, we decided to 
investigate this question more thoroughly by tuning the set of GP operators. Remark 
that a composition of operators equivalent to the identity function is not the only 
source of bloat in GP. Several theories about the origins of bloat have been proposed 
during the past decades, most of which are not directly related to the underlying set 
of terminals and functionals (see e.g. [36] for a review of them). However, it is rea-
sonable to assume that having a redundant set of operators could contribute further 
to the bloat of evolved individuals. Hence it makes sense to search for a minimal set 
that still gives good results.

To this end, we started with a minimal set of operators such that a combination of 
them can express any Boolean function, i.e., AND, OR, and NOT. Then, we added 
to this minimal set the combinations of XOR, XNOR, AND with the second input 
complemented, and IF, retaining only the combinations that significantly improved 
the results.

For both GA and GP tuning, each parameter combination was tuned with a fitness 
budget of 100 000 evaluations, repeated in 30 independent runs for statistical sig-
nificance purposes. In particular, we used a smaller budget of fitness evaluations and 
independent runs than in the main experimental evaluations presented in the next 
section, since here, we are considering only the tuning of the parameter. After each 
run, the fitness value of the best individual was recorded, thus obtaining a sample of 
30 observations that approximated the distribution of the best fitness for a particular 
parameter combination. Moreover, to select the parameter combinations to be used 
in our subsequent experiments, we performed a two-stage statistical analysis with 
non-parametric tests. First, we used the Kruskal-Wallis test [16] to compare a group 
of parameter combinations all at once, using a significance level of � = 0.05 . If no 
significant differences were observed, then another criterion for selecting the param-
eter combination to be used among those in the group was adopted (i.e., highest 
median). On the other hand, if the distributions were detected to be significantly dif-
ferent, we employed the Mann-Whitney U test [24] to perform pairwise comparisons 
and determine the best parameter combination. In particular, the null hypothesis for 
the test was that the random variable of the fitness represented by the first distribu-
tion was better than that of the second distribution. Here, the definition of “better” 
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depends on the context: when we performed the tuning for the single-objective ver-
sions of our algorithms where only the reversibility fitness function is used, then 
better corresponds to lower fitness values. On the other hand, for the lexicographic 
optimization approach, the objective is to maximize the Hamming weight while 
retaining reversibility. Hence, in this case, it better corresponds to the higher Ham-
ming weight values. The significance level was again set to � = 0.05 , applying Bon-
ferroni correction [5] since we performed multiple comparisons.

5.4.1 � GA tuning

For the GA tuning, we performed a complete sweep across all 3 × 7 = 21 param-
eter combinations for population size and mutation rate, considering both the sin-
gle-objective case (SOGA), where only fit1 is minimized, and the lexicographic 
optimization approach (LEXGA), where fit2 is minimized. Concerning SOGA, no 
differences were detected during the parameter sweep: indeed, for each considered 
parameter combination, the best solution always reached an optimal fitness in all 30 
experimental runs. For this reason, we focused only on the lexicographic optimiza-
tion approach, adopting the same parameter combination selected for LEXGA also 
for SOGA.

Figure 4 depicts the heatmap of the median best fitness obtained by LEXGA 
across all 21 parameter combinations of population size and mutation prob-
ability. We only show the Hamming weight being maximized as the second 
objective since the first objective was optimal in every case. The color gradi-
ent already indicates an advantage in using large populations and high mutation 
rates. Indeed, after performing the Kruskal-Wallis test for all 21 distributions, 
significant differences were detected. For this reason, we proceeded by perform-
ing pairwise comparisons through the Mann-Whitney U test. As a criterion to 
select the best parameter combination, we used a ranked tournament: each distri-
bution was compared against all others, and if the Mann-Whitney U test rejected 
the null hypothesis (that is, the obtained p-value was below the corrected signifi-
cance level), then a +1 was scored by the distribution, and the distribution scor-
ing the highest number of points was then selected as a winner. This resulted 

Fig. 4   Heatmap for the tuning phase of LEXGA. The numbers inside the cells refer to the median fitness 
obtained by the best individual across all experimental runs
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in the combination p = 500 and � = 0.9 , since it achieved 20 points (i.e., it had 
significant differences against all other combinations), while the second-best 
ones reached a consistently lower score equal to 7. Incidentally, this analysis 
also confirmed the result suggested by the heatmap, although only the median 
best fitness was considered there. Therefore, both for LEXGA and SOGA, we 
selected a population size of 500 individuals and a mutation probability of 0.9.

5.4.2 � GP tuning

The number of parameter values to test for GP was 3 for the population size, 
4 for the maximum depth, and 7 for the subsets of operators. Checking all 84 
parameters combinations resulting from a grid search, as in the case of GA, 
would have implied a too large computational effort. Therefore, we decided to 
opt for a lexicographic tuning approach: first, we determined the best maximum 
depth among {5, 7, 9, 11} by keeping the population size fixed to 100 individuals 
and using the minimal operators set of AND, OR, NOT. Then, we used the best 
maximum depth values and the same set of operators to tune the population size. 
Finally, we tuned the operators set by using the selected best population size and 
maximum depth.

Similar to the GA tuning, in the single-objective scenario (SOGP), no dif-
ferences were observed since, in all the configurations, GP always obtained the 
optimal solution in every algorithm run. Therefore, we used the lexicographic 
scenario (LEXGP) to estimate the appropriate set of parameters.

Concerning the first phase (maximum depth tuning), significant differ-
ences were detected with the Kruskal-Wallis test on the set {5, 7, 9, 11} . Using 
the Mann-Whitney U test with a ranked tournament as in the case of LEXGA, 
the best values for this parameter were 7 and 9, with no significant differences 
between them. For this reason, we kept them both for the next phase, where 
we analyzed all combinations of parameters for maximum depth in {7, 9} and 
population size in {100, 200, 500} . Once again, significant differences resulted 
from applying the Kruskal-Wallis tests on such distributions. Using the ranked 
tournament approach for the pairwise comparisons with the Mann-Whitney U 
test, we obtained 4 remaining combinations, each achieving the same score. 
Among these 4 remaining combinations, we selected the one with the highest 
median best fitness, i.e., 500 individuals for the population size and maximum 
depth of 9. Finally, for the last phase, where the tuning was performed by adding 
operators to the minimal set, no significant differences arose from the Kruskal-
Wallis test. Hence, we again selected the combination with the highest median 
fitness. The final parameters combination selected for both LEXGP and SOGP 
was p = 500 , d = 9 and operator set including AND, OR, NOT, and AND with 
second input complemented. In particular, since the selected maximum depth 
turned out to be equal to 9 while the tuning diameter was 10, we kept d − 1 as a 
maximum depth for all other instances in the subsequent experiments, as done in 
our previous work [19].
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6 � Results

In this section, we present the results emerging from our experimental evaluation. 
First, we discuss the results for single-objective optimization, followed by those 
on multi-objective and lexicographic optimization. Finally, we analyze the diver-
sity of the CA rules obtained in our experiments by using several metrics related 
to the number of unique solutions and the different Hamming weights.

6.1 � Single‑objective optimization results

Figure 5 gives results for the single-objective GA and GP considering the number 
of evaluations needed to reach the optimal value. For GP, we reach optimal fit-
ness value for each dimension already in the initial population, making the results 
less interesting. A possible reason GP shows such a behavior is that it is easier 
to guess a generating function that results in a reversible marker CA rule with a 
random algebraic expression than with a random string of bits, as in the case of 
GA. Still, we require somewhat more evaluations for larger dimensions, indicat-
ing that it becomes slightly more difficult to guess optimal solutions randomly. 
We address this phenomenon and its consequences more in detail in Sect. 7.

For GA, we observe an exponential increase in the number of required fitness 
evaluations concerning the diameter sizes (remark that the fitness evaluations axis 
in the plot is in logarithmic scale). This indicates that larger problem instances 
are more difficult, but there should be no reason why GA would not work well 
on even larger diameters. A similar trend was also observed in our previous 

Fig. 5   Comparison of fitness evaluations performed by SOGA and SOGP, in logarithmic scale. The error 
bands represent the standard deviation
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investigation [19], although there, a much smaller population was used. Indeed, 
the number of fitness evaluations required with our current setting is consistently 
smaller than in our previous one, requiring less than 100 000 fitness evaluations 
to converge for d = 13 . This seems to indicate that using a larger population is 
beneficial for GA.

Next, in Fig. 6, we display the convergence plots for the GA and GP single-objec-
tive optimization algorithms. We plot the median best fitness results, focusing only 
on diameter size d from 12 to 15, as smaller sizes show similar trends, but the opti-
mization process becomes easier. Notice that for GP, all cases show that the ran-
dom initial population contains optimal solutions. On the other hand, GA starts with 
large fitness values but continuously improves them and reaches the optimal value 
after using around 70% of the fitness evaluation budget allowed.

6.2 � Multi‑objective optimization results

Figure  7 depicts the Pareto fronts approximated by MOEA when minimizing the 
compatibility score (i.e., obj1 ) and maximizing the Hamming weight (i.e., obj2 ). For 
the sake of readability, we only report the fronts for d = 9, 10, 11 . The scale differ-
ence on the Hamming weight axis between one diameter size d and the next one is 
so large that displaying all fronts between d = 7 and d = 15 would only make the 
larger ones visible, rendering indiscernible the smaller ones. However, this is not 

(a) (b)

(c) (d)

Fig. 6   Single-objective convergence plots
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a serious issue since all fronts obtained in our experiments follow similar shapes. 
Hence, the three fronts reported in the figure are enough to draw conclusions about 
RQ2 and RQ3.

The curves in Fig. 7 corroborate the previous findings reported in [19]: the closer 
a CA marker rule is to be of the conserved landscape type, the lower the Hamming 
weight of its generating function must be. The first extreme case occurs when the 
rule achieves an optimal compatibility score of 0 (i.e., the rule is reversible), with 
very small Hamming weights observed (see also Sect. 7 for an overview of the pos-
sible Hamming weights when adopting a lexicographic optimization approach). On 
the other side, one can see that the compatibility fitness reaches its highest values 
when the Hamming weight is maximal, and in particular, it is about half the length 
of the generating function truth table. Hence, this indicates that marker CA rules 
with balanced generating functions (whose truth tables are composed of an equal 
number of 0s and 1s) are the farthest possible from being reversible under the con-
served landscape definition.

6.3 � Lexicographic optimization results

In Fig. 8, we depict convergence plots for the lexicographic optimization approach. 
As before, we depict the median of the best fitness value obtained over all exper-
imental runs. Recall that in this case, the optimization objective is the minimiza-
tion of fit2 , where the compatibility objective is first minimized to get a reversible 
rule, and then the opposite of obj2 is minimized in order to maximize the Ham-
ming weight of the generating function. Notice also that we cut off the fitness val-
ues larger than 100 as GA starts with very large fitness values while GP starts with 
values close to 0, making the final differences between GA and GP not noticeable. 
Considering GA, we observe around the same percentage of the evaluation required 

Fig. 7   Pareto fronts for 9 ≤ d ≤ 11 approximated by MOEA
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to reach fitness 0 as for the single-objective case. Afterward, it manages to optimize 
further the Hamming weight making the results comparable with GP. On the other 
hand, GP again starts with solutions around 0 and slowly improves the fitness value 
by maximizing the Hamming weight. For sizes up to 14, GA finds better final solu-
tions than GP, where the difference is especially noticeable for d = 14 . Interestingly, 
for d = 15 , GP finds better final solutions but shows no improvement after around 
40% of the fitness budget is used. On the other hand, GA improves the fitness values 
consistently throughout the evolution process, indicating that GA could probably 
reach the performance level of GP with more evaluations.

6.4 � Diversity analysis

In Table 3, we provide various diversity metrics for the results obtained for all con-
sidered problem instances and algorithms, excluding MOEA. We used the multi-
objective optimization approach to investigate a different research question not 
related to the diversity of the solutions. In particular, for each of the four algorithms 
(SOGA, SOGP, LEXGA, and LEXGP) and diameter 7 ≤ d ≤ 15 , we report the 
number of unique Hamming weights found (UHW), the minimum and maximum 
Hamming weights observed (respectively mHW and MHW), and the number of 
unique solutions found (USol). The numbers in bold are the highest values across all 
methods for each considered diversity metric and diameter.

(a) (b)

(c) (d)

Fig. 8   Lexicographical optimization convergence plots
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Considering the single-objective algorithms, notice that GP finds more unique 
Hamming weights, where the differences are small for smaller diameter sizes but 
become even an order of magnitude larger for greater diameters. The minimal Ham-
ming weight equals 1 for both algorithms and all diameter sizes, which is not sur-
prising as single-objective algorithms do not aim to maximize the Hamming weight. 
The maximal Hamming weights are slightly larger for GP, especially for larger sizes. 
Again, this is not unexpected as GP finds optimal solutions already in the initial 
population, while GA required a significant number of evaluations to reach that per-
formance level. On the other hand, if we consider the number of unique solutions 
found, we observe that GA works better (i.e., it found more diverse solutions). This 
result is aligned with our previous discussion as GP finds optimal solutions from the 
beginning, but then it is intuitive that some of those solutions could repeat. Indeed, 
syntactically different GP trees could map to the same truth table, thus giving rise to 
the same reversible rule. Going to larger diameter sizes gives good diversity results 
for GP too, since then, more solutions are optimal.

Next, considering the lexicographic optimization, the number of unique Ham-
ming weights is similar for both GA and GP. The minimal Hamming weight for 
larger diameters is smaller for GP than GA and similar for smaller diameters. This 
indicates that the evolution process works better on average for GA, as a larger part 
of the population exhibits good behavior. For the maximal Hamming weights, we 
see that GP reaches better results for large diameters, but this is to be expected. 
Indeed, as GP has solutions with fitness equal to 0 already in the initial population, 
it can “use” the whole evolution process to optimize the Hamming weights. On the 
other hand, GA requires more than half of evaluations to reach a compatibility score 

Table 3   Diversity metrics 
for the solutions produced 
by all optimization methods 
(excluding MOEA) over all 
considered diameters

Algorithm Metric d

7 8 9 10 11 12 13 14 15

SOGA UHW 5 4 4 6 6 6 6 7 2
mHW 1 1 1 1 1 1 1 1 1
MHW 5 4 4 6 6 6 6 8 3
USol 37 46 50 50 50 50 50 49 39

SOGP UHW 5 6 9 8 8 7 9 15 13
mHW 1 1 1 1 1 1 1 1 1
MHW 5 8 10 12 16 12 16 19 32
USol 31 34 46 47 49 49 50 50 50

LEXGA UHW 2 5 10 16 19 26 33 15 21
mHW 6 8 10 15 25 37 65 126 206
MHW 7 12 19 30 45 74 116 191 313
USol 23 34 46 50 50 50 50 50 50

LEXGP UHW 2 4 5 12 16 19 34 28 27
mHW 6 8 16 16 24 32 32 48 95
MHW 7 12 25 30 48 68 128 170 344
USol 45 50 50 50 50 50 50 50 49
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of 0, which means it has much fewer evaluations available to maximize the Ham-
ming weights. Still, the convergence plots indicate that GA progresses well through-
out the evolution process. Possibly, adding more evaluations would allow GA to (at 
least) reach the Hamming weight values obtained with GP.

Finally, Fig. 9 presents the Hamming weight distributions for all considered algo-
rithms and diameter sizes. First, we can recognize two natural groupings of the dis-
tributions, i.e., those related to single-objective optimization and lexicographic opti-
mization. Since in the single-objective optimization, the goal is to reach a fitness 
value of 0 (i.e., we do not try to maximize the Hamming weight), we can observe 
that both GA and GP perform similarly and the increase in the Hamming weight 
value happens only due to a larger diameter (and thus, problem instance). On the 
other hand, GP performs better on smaller sizes for the lexicographic optimization 
scenario, which is expected as the initial population already reaches fitness equal to 
0, and the obtainable Hamming weight values are relatively close to 0. Considering 
larger diameters, GA shows slightly better behavior on average. Still, considering 
the extreme values, we notice that GP performs better for sizes 13 and 15. Again, 
this is not surprising as GP has a better “starting position”, so a greater portion of 
the evolution process can be used to maximize the Hamming weight. We believe 
adding more evaluations would resolve this problem and make GA a better perform-
ing algorithm, considering the best-obtained values.

7 � Discussion

We now discuss the results obtained from our experimental evaluation applied on 
Problem 1 concerning the three research questions stated in Sect. 5.2.

Concerning RQ1, our experiments in the single-objective optimization scenario 
give somewhat counterintuitive results. In fact, despite the exiguous number of con-
served landscape rules compared to the huge size of the search space, both GA and 
GP always converged to an optimal solution. This remark is in line with the previous 

Fig. 9   Hamming weight distributions across all compared algorithms and diameters
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finding reported in [19]. However, notice that here we are dealing with an even 
smaller optimal set in our current setting than the one adopted in [19], since we set 
� = 3 instead of � = ⌊d − 1⌋∕2 . Nevertheless, this choice made the problem easier 
for GA and GP, rather than harder as we expected in our hypotheses.

There is, moreover, an important distinction to observe on this statement. While 
the difficulty for GA to find a reversible rule increases as the diameter gets bigger, 
GP almost always finds an optimal solution already in the initial population, without 
even needing to start the evolution process. As mentioned in Sect.  6.1, the likely 
reason for this substantial difference in performances lies in the underlying genotype 
representations. Arguably, the chances of guessing at random a bitstring of length 
2d−1 that maps to a conserved landscape rule of diameter d are quite low due to 
the very small number of such rules observed in our exhaustive search experiments. 
Since the GA population is initialized exactly in this way, it is thus very unlikely 
that the initial population will already include an optimal individual. Moreover, a 
random bitstring will likely have the Hamming weight close to half of its length, 
or equivalently it will be close to being balanced. As we remarked in Sect. 6.2, bal-
anced bitstrings occur on the top right limit of the Pareto front. Hence they always 
have the highest possible value concerning the compatibility fitness that one seeks to 
minimize.

Contrarily, the maximum depth allowed for the trees evolved by GP is linear in 
the diameter of the local rule, so it is much smaller than the length of the corre-
sponding truth table, which is instead exponential in the diameter. Consequently, it 
seems reasonable that a random GP tree will map to a truth table with a small Ham-
ming weight. A further explanation of this phenomenon is that we did not use the 
XOR and XNOR in our experiments since they were filtered out during the tuning 
phase. This reduces the probability that the truth table obtained from the evaluation 
of a GP tree will be balanced, and thus that it will have a large Hamming weight.

Considering the arguments above, we can finally conclude that there is no need 
to use evolutionary algorithms to construct conserved landscape reversible CA. 
Indeed, the fact that an optimal solution is almost always found by GP already in the 
initial population suggests that a more efficient way to obtain a conserved landscape 
CA rule is the following: 

1.	 Set the diameter d of the local rule f and d − 1 as the number of variables of the 
generating function g

2.	 While a conserved landscape rule has not been found do: 

(a)	 Generate at random a Boolean tree T with operator set {AND, OR, NOT, 
AND2}, where AND2 represents the AND with the second input comple-
mented, and with maximum depth d − 1

(b)	 Evaluate the truth table of g generated by T
(c)	 Construct the local rule f as: 

(d)	 Check if f is a conserved landscape rule.

f (x1, x2, x3,⋯ , xd) = x3 ⊕ g(x1, x2, x4,⋯ , xd) .
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3.	 Return f.

From our experiments in the single-objective optimization approach, the random 
generation method described above should likely succeed in the first few hundred 
guesses.

Regarding RQ2, our results obtained with the lexicographic optimization 
approach are also in line with our findings presented in [19]. Although LEXGA and 
LEXGP could find higher Hamming weights than in our previous experiments, they 
are nonetheless too low to be of any use for cryptographic applications. In particu-
lar, we can say something more precise in this respect: as mentioned in Sect. 1, the 
Hamming weight is a good proxy for the nonlinearity of a Boolean function, which 
is a measure of its distance from the set of affine functions. Ideally, Boolean func-
tions of d variables used in stream and block ciphers should have a nonlinearity as 
high as possible, in the order of 2d−1 (we refer the reader to [3] for the reason why 
this is the case). Moreover, Cusick [39] showed that the nonlinearity of a d-varia-
ble Boolean function coincides with its Hamming weight if the latter is sufficiently 
small, namely if it is less than 2d−2 . In our case, all generating functions evolved by 
GA and GP have a Hamming weight which is significantly below 2d−2 , so their non-
linearity corresponds to their weight. Therefore, our results rule out the possibility 
of using conserved landscape CA in the design of symmetric ciphers components 
such as filter functions or S-boxes.

Finally, concerning RQ3, the results obtained by our multi-objective optimization 
experiments further corroborate our previous findings in [19]. In particular, in the 
case of a fixed offset � far from the center of the neighborhood, the Pareto fronts 
approximated by MOEA show a clear trade-off between the reversibility of a marker 
CA rule under the conserved landscape definition and its Hamming weight. Moreo-
ver, the shapes of the fronts are quite similar to those obtained in [19] where the 
offset was placed at the center. This further suggests that the relationship between 
the compatibility objective function and the Hamming weight is independent of the 
cell’s position that gets updated in the neighborhood.

8 � Conclusions and future works

This paper considered the search of locally invertible cellular automata defined 
by conserved landscape rules as a combinatorial optimization problem, using GA 
and GP to solve it. We based our experimental investigation around three research 
questions stemming from exhaustive search experiments. We adopted three optimi-
zation approaches to investigate them – a single-objective, a multi-objective, and a 
lexicographic optimization approach. After performing a thorough parameter tun-
ing phase, we evaluated the spaces of marker CA rules with diameters between 7 
and 15, therefore expanding the experiments presented in [19] with three additional 
problem instances. In general, the results obtained from this new set of experiments 
corroborate the findings of our previous work. In particular, in this new set of exper-
iments, the main new finding is that we fixed the rule offset � to 3 for all prob-
lem instances instead of setting it at the center of the neighborhood. Contrary to our 
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initial assumption, where we hypothesized that this choice would make the optimi-
zation problem harder, it turned out to be simpler, especially in the GP case. On the 
other hand, similar trends of increasing difficulty were observed for GA, although 
with smaller magnitudes than in the results presented in [19]. As argued in Sect. 7, 
this difference is most likely caused by the different genotype representations used 
by GA and GP. The main conclusion that we can draw from these results is that 
evolutionary algorithms are not needed to construct conserved landscape CA when 
other properties such as the Hamming weight are not considered. Rather, a more 
efficient way is to generate random Boolean trees until an optimal solution is found. 
Further, the Pareto fronts obtained through our multi-objective optimization experi-
ments not only confirm that the closer a marker CA rule is to be of the conserved 
landscape type, the lower its Hamming weight must be, but also the converse. Bal-
anced generating functions with maximal Hamming weight are also the farthest pos-
sible from inducing a reversible rule. This gave us an additional insight because GP 
finds an optimal solution already in the initial population since the maximum depth 
enforced on the GP trees is sufficiently small that the resulting truth table will likely 
have a small Hamming weight.

Several avenues for future research remain to be explored on this subject. 
Regarding the first research question, the fact that the number of fitness evaluations 
required for GA to find a conserved landscape rule increases exponentially in the 
diameter seems to indicate that the difficulty of Problem 1 can be easily tuned for 
optimization algorithms with a bitstring-based representation. This could have, in 
turn, potential interesting applications for benchmark purposes. Further, it would be 
interesting to study this problem from the perspective of runtime analysis. Possibly, 
one could derive upper bounds on the number of fitness evaluations necessary for a 
simple evolutionary algorithm to converge on a conserved landscape rule. Likewise, 
although optimizing only the reversibility property is a trivial problem for GP, it 
could still be interesting to formally investigate the probability of guessing a tree at 
random that maps to an optimal solution from a theoretical point of view.

For the second research question, our new findings corroborate that the utility of 
conserved landscape CA for cryptography and reversible computing is quite limited 
since their Hamming weights are too low concerning the truth table size of their 
generating functions. Nonetheless, as remarked in Sect. 2.3, one can easily relax the 
definition of conserved landscape rules by allowing partial overlapping of the land-
scapes and obtain a larger class of reversible CA with more complex behaviors. A 
possible idea worth exploring in this direction would be to adapt the fitness func-
tion fit1 to allow for this partial overlapping and use GP to investigate the Hamming 
weights of the resulting reversible CA, particularly with the lexicographic optimiza-
tion method that proved to be the best performing one.

Finally, for the third research question, as discussed above, the Pareto fronts 
approximated by MOEA showed a clear trade-off between the reversibility of 
marker CA rules and the Hamming weights of their generating functions. As far as 
we know, there are no results in the CA literature addressing this aspect of conserved 
landscape CA. It would thus be interesting to exploit our experimental observation 
for formally proving an upper bound on the Hamming weight that a conserved land-
scape CA can achieve.
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