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Abstract
In some situations, the interpretability of the machine learning models
plays a role as important as the model accuracy. Interpretability comes
from the need to trust the prediction model, verify some of its prop-
erties, or even enforce them to improve fairness. Many model-agnostic
explanatory methods exists to provide explanations for black-box models.
In the regression task, the practitioner can use white-boxes or gray-
boxes models to achieve more interpretable results, which is the case
of symbolic regression. When using an explanatory method, and since
interpretability lacks a rigorous definition, there is a need to evaluate
and compare the quality and different explainers. This paper pro-
poses a benchmark scheme to evaluate explanatory methods to explain
regression models, mainly symbolic regression models. Experiments were
performed using 100 physics equations with different interpretable and
non-interpretable regression methods and popular explanation meth-
ods, evaluating the performance of the explainers performance with
several explanation measures. In addition, we further analyzed four
benchmarks from the GP community. The results have shown that
Symbolic Regression models can be an interesting alternative to white-
box and black-box models that is capable of returning accurate models
with appropriate explanations. Regarding the explainers, we observed
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that Partial Effects and SHAP were the most robust explanation mod-
els, with Integrated Gradients being unstable only with tree-based
models. This benchmark is publicly available for further experiments.

Keywords: Symbolic Regression; Explanatory Methods; Feature Importance
Attribution; Benchmark.

1 Introduction
The large diffusion of Artificial Intelligence and, more specifically, Machine
Learning (ML), has become a reality over the last decades. ML has been seen
as a promising application across multiple fields, such as judicial system [1],
healthcare [2], scientific discovery in natural sciences [3], and credit lending [4].
Many state-of-the-art methods can achieve better performance than experts
of the field with high dimensional and non-linear models [5–9]. Although ML
can present high accuracy in several applications, it is arguable that many ML
methods generate models that are incomprehensible for a human practitioner.
These difficult-to-understand models, also called black-box models, may have
undesirable consequences when applied in real-world applications.

The main motivations for explaining predictions and understanding the
models are the trust (or lack of) that the model predictions will not lead to
catastrophic results; to ensure fairness in the decision process, and to better
understand the phenomena under study. The field that studies interpretability
is known as eXplainable Artificial Intelligence (XAI), where interpretability
plays a central role. The recent focus of XAI works was on either improving
the accuracy of innate interpretable models or extracting explanations from
black-box models.

The motivation for using black-box models is that their accuracy is usually
higher than simpler and interpretable models [10]. One way to extract expla-
nations from these kinds of models is to use an explanatory method [11–13].
These explanatory methods highlight certain aspects of the model with strate-
gies such as a visual guide of the decision process, human-readable explanation,
counterfactual explanation, perceived importance of each feature, among oth-
ers. Particularly regarding feature importance, an explanatory method can
return the aggregated importance of each feature to the decision process, the
importance of the features for a single prediction, and the behavior of the
feature importance as a function of its own value.

Alternatively to using black-box models and explaining them with explana-
tory methods, we can use more interpretable models that still provide accurate
predictions. One such example is the Symbolic Regression (SR) [14], a regres-
sion method that searches for analytical models that best fit the training data.
SR is a well-established field that presents competitive performance when com-
pared to state-of-the-art regression algorithms, especially in some domains
where a mathematical expression can describe the studied phenomena (i.e.,



Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 3

natural science domain). The downside is that sometimes SR is performed with
a higher computational cost than traditional regression techniques [15, 16].

Therefore, SR can be further explored in the XAI field when considering
the regression task. Previous works studied the application of SR in XAI tasks,
such as [14], where the authors introduce a model-specific explainer for Sym-
bolic Regression models, exploiting the fact that it returns an analytical model.
Another benefit of working with analytical models is the possibility of enforcing
certain properties to the generated model, such as monotonicity, convexity, or
symmetry [17]. Different methods have been proposed to improve performance
and interpretability of the SR results [18], and SR has a potential of obtaining
easier-to-interpret equations [18–23]. In the interpretability context, there are
works that uses Symbolic Regression as an explanatory method, being used to
generate simpler models to explain black-box predictions [20, 24].

One problem with SR is that, while some authors claim it as being
more interpretable than black-box approaches, the interpretability is usually
measured as the size of the generated expressions [25], a vague notion of
interpretability that only suits methods that return mathematical expressions.
Because of that, there is still a gap between the promising application of SR
in contexts where interpretability plays a central role. Thus, the explanatory
methods could be more explored.

This paper attempts to provide insights and to investigate the quality of
interpretability in the context of Symbolic Regression, extending the work
in [14]. The main objective is to investigate the interpretability of Symbolic
Regression models when compared with other regression methods by using
different feature importance explanatory methods.

For this purpose, we evaluate two different Symbolic Regression algorithms
and compare them to other regression methods in the interpretability spectrum
— from a white-box linear regression to a black-box Multi-Layer Perceptron
Neural Network — with multiple explanatory methods. We created synthetic
data sets from known physical equations as a proxy to train and evaluate the
ML and explanatory methods. Several measures in the literature are revisited
and adapted to measure interpretability quality in the experiments. As a by-
product, we make all the source code available in the form of a python module
called iirsBenchmark1.

The iirsBenchmark creates a unified experimental design to generate
results to compare interpretability measures with different regression methods.
We expect to achieve the following objectives:

O1 Provide an evaluation method to assess the performance of different
explanatory methods for the regression task through defining and evaluating
different quality measures;
O2 Compare two different symbolic regression methods against many popular
regression methods that range from the white-box to the black-box spectrum
of interpretability.

1Open source module available at https://github.com/gAldeia/iirsBenchmark.

https://github.com/gAldeia/iirsBenchmark
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In summary, our contributions to the scientific community are i) the iirs-
Benchmark, an open-source framework to measure explanations quality that
unifies the interface of many popular explanatory methods; ii) the revision and
proposal of measures to quantitatively evaluate the quality and robustness of
explanations; iii) a robust background to lay the groundwork of interpretabil-
ity in the symbolic regression context; and iv) an extensive comparative study
of explanatory methods, using several regression methods and two hand-picked
symbolic regression methods. We expect our work to highlight the benefits of
using symbolic regression as an alternative to black-box methods, providing a
framework to evaluate explanatory methods with special attention in the sym-
bolic regression context. We discuss the evaluation of explanatory methods
and propose a framework expected to help researchers present new and more
robust methods by providing new perspectives when evaluating, reporting, and
analyzing the results.

The remainder of this paper is organized as follows. Section 2 presents a
revision focusing on benchmarking symbolic regression and explanatory meth-
ods. Section 3 presents the theoretical background to the interpretability field
in symbolic regression. Section 4 presents popular feature importance explana-
tory methods for the regression task. Section 5 presents measures to evaluate
the quality and robustness of explanations. Section 6 presents the experimen-
tal methods and the python package used in this paper. Section 7 reports the
results, which are discussed in Section 8. Finally, Section 9 revisits the objec-
tives and concludes the work, summarizing the findings and pointing out new
directions.

2 Related work

The term black-box model is widely adopted to describe ML models that are
complex and lack transparency. There are different definitions for what a black-
box model is: a component that does not reveal anything from its inner design,
structure or implementation [13] (or it reveals the structure, but is too complex
to understand [25]); a model derived purely from data with no knowledge
about its inner working [26]; a model that is not inherently interpretable (i.e.
they need post-hoc explanatory methods); or a model that is incomprehensible
to humans or proprietary [27, 28]. All different definitions relate to how well
it is possible to understand the resulting model without additional tools (is it
"transparent" enough to let us see inside? Do its individual components make
sense? Can a human simulate the decision process of the model, or be able to
predict its output by looking at it?). In contrast, white-box models are defined
as a: model that can be decomposed into individual parts with an explicit
meaning on the problem domain [29, 30]; or a model that does not need any
external processes to determine the meaning of its decision process [24, 27].

However, why do we need to understand high-performance ML models?
Understanding its behavior can help detect wrong assumptions derived from
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biased data, understand the decision process, and gain insights into the domain
problem. For example, in [31] the authors discuss a judicial system that associ-
ated a higher likelihood of black people committing future crimes; and in [32]
the authors proposed automated experiments to detect biased models, which
helped them find a biased behavior in a job recommender system, that sug-
gested lower-paying roles to women. Many other examples were reported in [25]
showing unfair and discriminatory models against minorities and women.

A debate has started about the relevance of understanding the underly-
ing process guiding the decisions of black-box models, both in the scientific
community as well as in the public setting [13].

Nevertheless, the term interpretability still lacks a formal definition, even
though the intuitive definition can be reasonable. In [33] the authors noticed
that in many works, the terms are used without specifying their meaning.
Some authors adopt interpretability and explainability interchangeably [34].
Interpretability is seen as: a passive characteristic of a model, in the sense of
how much it makes sense to a human [35]; the ability to explain or present
in comprehensible ways the model to a human [27, 36]; a domain-specific
notion, where an interpretable model is useful to someone or obeys domain
knowledge [28]; the description of the inner functioning of the system in a com-
prehensible way to humans [37]; or the ability to explain or provide meaning
without the necessity of additional information [25].

To improve interpretability, one can opt to use white-box models, those
considered intrinsically interpretable. Examples are linear models, decision
trees, and decision rules [28]. The downside of using simple and interpretable
methods is that they sometimes present a less accurate model when compared
to black-box models [10]. Between the white-box and black-box endpoints of
the interpretability spectrum, several models cannot be classified as either of
those, also called gray-box models, sometimes seen as a compromise between
high accuracy and more interpretable models — although some authors, for
example, in [28], argue that there is not necessarily a trade-off between them.
There is also a belief that complex models are more accurate, which does not
hold in every situation. The use of more interpretable models should be pre-
ferred when interpretability is a concern. Notice that a white/gray/black-box
classification is sometimes subjective, and any white-box model can become
gray or black-box depending on the situation, for example, a linear model with
many features or a decision tree for a regression problem.

Another possibility is to use a post-hoc Explanatory Method, that returns
an explainer model used to generate explanations to help understanding an
ML model. The explanation can be a feature importance attribution, visual,
prototype, or counterfactual explanation. The explanation is used to work
around the lack of transparency of the model. One popular explanation is
the feature importance which usually returns a vector with numerical values
indicating how much each feature contributes to the model prediction. Despite
its popularity, it is still an open question how to validate the performance of
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feature importance explanatory methods since interpretability lacks a rigorous
definition [33].

While interpretability is an important concern and an active field of study,
we also notice that some authors argue otherwise. In [38], the authors ques-
tions if interpretability in the healthcare context is necessary, then designed,
proposed, and evaluated an ML tool that had other mechanisms besides inter-
pretability to provide a trustable and accountable system. In [39] the authors
criticize the quality of the current explanatory methods. They argue that evi-
dence already shows existing biases toward over-trusting computer systems —
a system that provides explanations can increase the confidence in it, thus
leading to decreased vigilance and auditing of these systems.

Even though there are many explanatory methods proposed recently, some
works in the literature report results showing that explanatory approaches
do not provide a better understanding of the problem. In [40], the authors
try to explain deep learning models using explanatory methods, which point
to all regions of the image and relies on non-trivial proxies, being unable to
explain the model behavior. To obtain more robust explanatory methods, we
first need to provide a proper evaluation methodology, which is considered an
open question in the field. Although many feature importance methods were
proposed and widely adopted, literature reports several problems on using
some of the state-of-the-art interpretability methods, as stated in many recent
works [28, 41–47]. To cite some, in [44], experiments have shown that explainers
are prone to select non-important features as the most important feature.
In [45] the authors compared different explanatory methods, finding that state-
of-the-art explainers are sensitive to irrelevant variations in the input data,
resulting in very different explanations. Authors in [46] made criticisms to a
class of explanatory methods based on permutations, showing that complex
ML methods learn correlation structures that are disrupted when permuting
values. Permutation-based methods break the relationship of the features on
the black-box model, presenting wrong explanations. In [47] the authors have
shown that different feature importance explanatory methods return different
and opposing explanations for similar inputs.

Wrong explanations can have multiple causes, such as a misprediction of
the black-box model (we must assume that the prediction model is not perfect),
an inaccurate explainer (due to lack of data around a specific point), among
others. This means that evaluation of explanations must consider that poor
performance is not necessarily related to the explainer but also the explained
model. In [43], the authors argue that the explanatory methods can rely on
learned artifacts from the black-box model instead of actual knowledge learned
from the data. Even if the explanatory method is able to generate flawless
explanations, we notice that the prediction model can use non-rational cor-
relations. For example, in [48] authors inspected an interpretable rule-based
algorithm for predicting pneumonia death risk and found that their model
presented a high correlation between patients with asthma having a more
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negligible death risk, and, after some investigation, they found a causal rela-
tionship between the medicine used by asthma patients and the lower risk of
death. Authors in [47] show that classification accuracy positively correlates
with explanation accuracy. Many other works [46, 47, 49] have shown that
learned interactions of the black-box model could not be correctly handled by
the explainers, leading to wrong explanations.

It is still considered an open question how to validate the faithfulness of
the explanations concerning the explained model [44]. In addition, the lack
of data with available ground-truth makes it hard to quantitatively measure
explanation quality [14, 42, 50], making experiments prone to experimenter
biases. In order to evaluate the correctness of explanations, having a ground-
truth is essential. Several works in the literature explores and proposes different
ways of generating synthetic data sets to evaluate explanations [14, 41, 46,
47, 49, 51]. When working with real-world data [42–45, 50, 52], the ground-
truth is established heuristically. Another important view of this issue is that,
since explanations are meant to be used by humans, there should be a human-
centered evaluation for such explanations. Some research groups argue that the
XAI field should actively work together with Human-Computer Interface and
Social Science fields to move towards intelligible interpretations of prediction
models [53].

Regarding symbolic regression methods, prior works [54, 55] raised differ-
ent questions concerning the evaluation of symbolic regression in the literature,
pointing out problems such as the usage of toy data sets; lack of reproducibility;
and poor experimentation, statistics, and reporting. In [54] the authors sur-
veyed the Genetic Programming (GP) community and presented some points
to consider when designing symbolic regression benchmarks. Apart from that,
one of the promising applications of symbolic regression is discovering new
physics equations and describing systems by finding appropriate expressions.
Introduced recently in [56] and further investigated in [57], the Feynman bench-
mark comprehends 100 problems that can be explored by symbolic regression,
which has been proven to be a complex task to solve these problems by finding
the exact expression without domain-specific improvements to current algo-
rithms, providing a challenging task such as the other GP problems, but with
real-world physics equations.

3 Symbolic Regression

Regression Analysis is the task of estimating the expected value of a depen-
dent feature Y , also known as target-value or outcome, conditioned to a set of
independent features [58]. The main goal is to understand the structural rela-
tionships between the dependent and the independent features. It is based on
the assumption that an unknown function f(X) = Y describes the relationship
between the independent and dependent features. From a modeling perspec-
tive, many regression algorithms parts from some assumptions about this
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relationship and chooses an appropriate model f̂(X, β), where β is adjusted
to minimize the approximation error of the model[59].

A simple and well-known model is the linear regression, that predicts an
outcome with the linear function:

f̂(X, β) = β0 +XTβ. (1)
The interpretation of this model can be straightforward in the context of

feature importance: we can say that by increasingXi in one unit, the prediction
will increase in βi units; or that the i-th feature contributed with βiXi to the
outcome from the reference prediction β0.

Despite the straightforward interpretation, the linearity assumption limits
the achievable accuracy of this model for many data sets. This can be alleviated
with manual feature engineering by adding feature interaction and non-
linearity. Another possibility is to use one of the linear model generalizations
such as Generalized Linear Models and Generalized Additive Models.

Symbolic Regression (SR) is another alternative to generating a regression
model. It usually starts from a randomly initialized free-form mathematical
expression and performs the search and optimization of both model struc-
ture and its inner coefficients [60]. The search space of SR is constrained by
how the mathematical expressions are represented and the primitive set of
mathematical structures [19]. This approach has more potential to find inter-
pretable solutions than black-box approaches, as argued by many authors of
the field [18–20, 24].

The most common representation is the expression tree, where each node
is either a leaf node, holding a constant value or feature symbol; or an inner
node, representing an n-ary function f , followed by n child nodes. For a given
observation X, the terminal symbols are evaluated as the constant value it
holds, or as the value that a feature Xi assumes on X. The inner nodes are
evaluated as the application of the f function over its m children t1, t2, . . . , tm,
returning f(t1, t2, . . . , tm).

Symbolic Regression can be seen as an optimization problem in which we
want to find the sub-optimal expression g∗ that minimizes a cost function from
the set G of all representable mathematical expressions.

3.1 Genetic Programming for Symbolic Regression

Genetic Programming is an evolutionary algorithm commonly used for
Symbolic Regression [61]. The search for the sub-optimal expression starts with
a random population of expression trees, created using a primitive set with
functions nodes f and constant nodes c, with tree depth limited by constraints
Γ. While a stop criteria (e.g. a fixed number of generations) is not met, the
algorithm creates the next generation as children from the current population
that will compete to replace the previous individuals with probabilities taken
from their fitness evaluated over the training data. When the stop criteria is
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Algorithm 1 Canonical Symbolic Regression
Input: Function set f , constant set c, tree constraints Γ, stop criteria Ω,

population size p, train data (X = {(x1, x2, . . . , xd)i}ni=1,Y = {yi}ni=1)

Output: Symbolic expression f̂
1: pop ← [ generate_random_tree(f , c, Γ) for _ ∈ [1, 2, ...,p] ];
2: while Criteria Ω is not meet do
3: parents ← [ select_N_parents(pop) for _ ∈ [1, 2, ..., p] ];
4: children ← [ crossover(p1, p2, . . .) for (p1, p2, . . .) ∈ parents ];
5: mutants ← [ mutate(c) for c ∈ children ];
6: pop ← replace(pop ++ mutants, X , Y);
7: end while
8: return arg max [ fitness(p, X , Y) for p ∈ pop ];

met, then it returns the best expression of the last existing generation. The
whole process is summarized in Algorithm 1.

In this approach, both the function structure and the free parameters are
created and adjusted by the simulated evolutionary process. In the original SR
implementation, by Koza [61], the algorithm finds values for the free param-
eters using two different strategies: the Ephemeral Random Constant (ERC),
which creates constants by taking values at random from a pre-defined inter-
val; or by using pre-defined constant values (such as π, Euler’s constant or
arbitrary numerical values).

Several free parameter adjustment methods were proposed later, with
approaches based on gradient descent or hill-climbing optimization methods,
as identified by the literature review in [62].

3.2 State-of-the-Art Symbolic Regression

In [63], the authors proposed an extension to the original GP, an algorithm
named GP-NLS. In this extension, the authors added two additional steps
right before evaluating the fitness of an expression. This implementation is
currently available in the Operon C++ Framework [64].

In [16], the authors compared different regression algorithms with other
contemporary symbolic regression methods in a large set of benchmark prob-
lems, including the Feynman data sets presented in [56].Overall, the Operon
GP-NLS was the best-ranked algorithm, indicating that it provides the best
average performance for different problems.

The first step expands every individual in the population by adding an
offset and a scaling node at the root of the tree, also adding a coefficient to
every feature node. The second step adjusts the newly added free parameters
by solving a non-linear least-squares problem, using the Levenberg–Marquardt
algorithm, adjusting the values of all free parameters. Fig. 1 shows an expres-
sion tree before and after the expansion. Notice that this modification does
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log(·)

log((X1/X2) + 51.5)

+
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X1 X2
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(a) Example of a SR tree.

+

w0 + a · log((w1X1/w2X2) + w3)

w0 ·

a log(·)

+

/ w3

·

w1 X1

·

w2 X2

(b) Operon GP-NLS expanded tree.

Fig. 1: Operon GP-NLS expanded tree (new nodes in gray, original tree nodes
in a lighter color). The offset node w0 is summed with the original tree, now
scaled with the scale node a. Every feature has a coefficient associated with it
(w1, w2). The original coefficient — a fixed value — is transformed into a free
parameter w3. The Levenberg-Marquardt algorithm will find optimal values
for all free parameters in the expression tree ({w0, a, w1, w2, w3})

.

not persist during the crossover and mutation — the evolutionary operators
are applied only to the original tree.

We represent an Operon tree by Mg,θ, where g is the differentiable function
of the expanded tree T ′n and θ is the vector of free parameters to be optimized
in T ′. Let H : Rp → Rn be a function that evaluates the parameter θ and
returns the difference between the output of the model Mg,θ and the real value
for observations X :

H(θ) = G(Mg,θ,X )−Y, (2)
with G : Rn×d → Rn being a function that evaluates the prediction of the
model Mg,θ for the observations in X .

The optimal coefficients can be found using the Jacobian matrix of H,
through an interactive process of gradient descent, in which each interaction
uses a step ∆θ obtained by the linearization H(θ + ∆θ) ≈ H(θ) + J(θ)∆θ.
This process can be seen as a non-linear optimization problem.

The Operon GP-NLS algorithm follows the same steps as in Alg. 1, with the
addition of creating and adjusting the free parameters. The initial population
is created using the PTC2 initialization method [65], which allows controlling
both depth and number of nodes in the generated trees while favoring balanced
trees.
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3.3 Interaction-Transformation representation

One way to improve the simplicity of the models found by SR algorithms
is to constrain the search space to function forms, thus excluding complex
structures such as function chaining. The Interaction-Transformation(IT) rep-
resentation [19] was proposed to constrain the search space to an affine
combination of non-linear transformations applied to interaction terms.

For a problem with d input features X = (X1, X2, · · · , Xd) the IT
representation is any regression model of the form:

f̂(X, β) = β0 +

t∑
j=1

βj · gj(pj(X,kj)), (3)

where βj ∈ R is the coefficient of the j-th term, and β0 is the expression
intercept. The function gj : R→ R is any unary function, called transformation
function, and pj is the interaction function, defined as:

pj(X,k) =

d∏
i=1

Xki
i , (4)

with k = {k1, k2, . . . , kd} ∈ Zd is the strength of interaction for the feature Xi

in the interaction function index j.
In [21] the authors proposed the Interaction-Transformation Evolutionary

Algorithm (ITEA) to search for the IT expression that best fits the data. The
ITEA searches for transformation functions gj and strengths kij for each j.
Ordinary least squares can determine the values of β. ITEA follows a similar
evolutionary process as in Alg. 1 but applies only the mutation operator to
create the children expressions. The mutation operators can expand, shrink,
or make local adjustments to an IT expression:

• Expand: mutations that add a new pair (gi,kj) to the expression. The new
IT term can be a random one or can be the positive/negative element-wise
combination of two existing terms on the expression;

• Shrinkage: performs the removal of a random existing pair (gi,kj) of the
expression;

• Local modification: randomly changes one value in the interaction
strengths kj for a random j without adding or removing any new structures.

4 Explanatory Methods

Explanatory methods can alleviate the lack of transparency of black-box
models when an explanation of the decision process is required. They are called
post-hoc explanatory method since they are created after fitting the ML model.
These methods can also be useful for white-box models in situations where
the model becomes unintelligible due to an a priori feature engineering or
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Training data 

Machine
Learning
Method

Feature Importance
Explanation Method

Prediction model

Local explanation Local explainer

Global explanationGlobal explainer

Final user

PredictionObservation

Fig. 2: Diagram illustrating the relationships between the black-box with its
predictions and the explainer with its explanations. The ML prediction model
is used as an input together with the training data. Then, it generates feature
importance explainers to help understand the model. Adapted from [66].

due to the high dimensionality of a data set. The explanatory method usually
returns an explainer model capable of providing explanations on demand for
new examples or summarizing the behavior of the ML model.

One popular strategy for explaining a model is the feature importance
explanation. It generates an explanatory function that inputs the predictor
and the training data. Then, the function provides explanations by creating
a vector assigning a numerical value for each feature, indicating their relative
importance to the prediction. This explanation can be local when the explainer
is used for single observations, or global when the behavior of the predictor is
summarized as the expected importance of each feature.

Definition 1 (Local and Global feature Importance Explanations) Given a regressor
f̂ : Rd → R trained with a data set (X = {(x1, x2, . . . , xd)i}ni=1,Y = {yi}ni=1),
a local explainer is a model ψ : Rd → Rd that returns a d-dimensional vector
where the i-th position contains a value with the importance of the i-th feature to a
particular observation x ∈ Rd. Similarly, a global explainer is a model ϕ : Rn×d →
Rd that, given a data set X it returns a d-dimensional vector with the aggregated
importance of each feature.

Fig. 2 shows a diagram expressing the relationship between the black-box
model, the explanatory method, and their respective outputs. The explanatory
model is generated using the training data and the black-box model.

The remaining of this section will present popular explanatory methods for
feature importance.
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4.1 Permutation Importance

The Permutation Importance method was first described by Breiman when
introducing the Random Forests algorithm [67]. This method measures how
much the coefficient of determination (R2) of the model reduces when we
permute the values of a feature on the training data. This permutation is
repeated several times to measure the expected variation of R2. The main idea
is that the random permutation simulates the removal of this feature and how
much that impacts the prediction model.

Definition 2 (Permutation Importance – Global Importance Explanation) Let s be
the R2 score of the prediction model f̂ . The importance of a feature j is calculated as:

ϕj(f̂ ,X ) = s− 1

K

K∑
k=1

R2(f̂(X̃k,j),Y), (5)

where the R2 of f̂ is evaluated over X̃k,j , a copy of the matrix of problem features
for all observations X with the j-th column randomly shuffled, and K is the number
of iterations where the matrix X̃k,j was recreated.

4.1.1 Local Interpretable Model-agnostic Explanations
(LIME)

LIME [68] provides a local explanation for a single observation by fitting
a linear model using random samples generated within the neighborhood of
the observation. The linear model is used to obtain the feature importance.
A mathematical formulation of LIME was presented in [12]. This method
approximates the black-box predictions using an interpretable model and only
supports local explanations in the original version.

Definition 3 (LIME – Local Importance Explanation) Given an observation x and
a predictor f̂ , LIME generates a neighborhood with normal distribution Nx and fits
a local linear model for a number of r sampled observations D′ = {(x′

i, f̂(x
′)i)}ri=1.

The feature importances are calculated by minimizing the objective function:

ψ(f̂ ,x) = arg min
g∈G

L(f̂ , g, πNX
) + Ω(g), (6)

where L(f̂ , g, πNx
) is a loss function that evaluates how good f̂ is locally approx-

imated by g in the local neighborhood of x, πNx
being a kernel that weights the

neighborhood with its distance from the original point, G is the set of interpretable
linear models, and Ω is a penalty function measuring the model complexity. The
local explanation

−→
ψ is the vector of coefficients from the local linear model ξ.
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4.1.2 Explain by Local Approximation (ELA)

ELA [69] is a local explainer based on LIME and was first introduced using
a symbolic regression as the regression model. This method also uses a linear
model to obtain local explanations for a regressor but, different from LIME,
it does not create new samples with a normal distribution around the given
observation. Instead, it uses the k-nearest neighbors to create the model. While
this has the advantage of using real-world data instead of artificially created
points, it assumes that we have representative training data. The authors also
propose a global explanatory method in the original paper, but it is a visual
explanation; thus, it is not considered in this work.

Definition 4 (ELA – Local Importance Explanation) Given an observation x and a
predictor f̂ , ELA generates a subset Nk of the available data X by collecting the k-
nearest neighbors of x using the euclidean distance to fit a local linear model. If the
model has an intrinsic feature selection property, the euclidean distance is calculated
only with the features selected by the regression model. As in LIME, the coefficients
of this linear model represent the importance of each feature.

4.1.3 SHapley Additive exPlanations (SHAP)

SHAP [12] is an algorithm that estimates the Shapley values as a fea-
ture importance measure, based on coalition game theory, where players can
contribute positively or negatively to a result of a game. To find the total con-
tribution of each player, and since players can interact between themselves,
the Shapley values represent the overall contribution that the player presents,
based on all possible coalition of teams. The Shapley value indicates how much
a feature contributes to the current prediction w.r.t. the average prediction.

Definition 5 (SHAP – Local Importance Explanation) Let F be the set of all
features, and S ⊆ F a subset of the features, and x an observation of interest. For
each feature j, the difference in prediction with and without this feature is evaluated.
This is computed for all possible subsets S ⊆ F \ {j}. Finally, the weighted mean
between all possible coalitions is computed, returning the Shapley Value interpreted
as the feature importance:

ψj(f̂ ,x) =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |! [f̂S∪{j}(xS∪{j})− f̂S(xS)]. (7)

In the original SHAP framework implementation, the authors calculate
the global explanation as the mean of absolute local explanations for all
observations in the training data.
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Definition 6 (SHAP – Global Importance Explanation) Let X be the training data
of the predictor. The global importance for a feature j is the mean of absolute local
importance for all observations in D:

ϕj(f̂ ,X ) =
1

n

n∑
i=1

|ψj(f̂ ,Xi)|. (8)

4.1.4 Shapley Additive Global importancE (SAGE)

In [70] the authors proposed the SAGE explainer, an extension to SHAP
for a global explanation. SAGE values measure the uncertainty reduction when
incorporating a certain Xj in different subsets of features XS to the model,
and are interpreted as follows:

• The total sum of the values results in the predictive power of the model;
• An feature j will have zero effect if Xj is conditionally independent of f̂(X)

given all possible subsets of features in X;
• The SAGE values represent the weighted average of uncertainty reduction

for the predictions when a feature Xj is considered in the model.

Definition 7 (SAGE global explanation) Let a regressor be f̂ : Rd → R trained
with a data set D = {(Xi, Yi)}ni=1, and X the matrix of the d problem features for all
the n observations. Also, let F be the set of all features in the problem, and S ⊆ F
a subset of the features. The SAGE value is calculated the same way as the Shapley
values but using the mutual information I of predictions instead of the prediction
model:

ϕj(f̂ ,X ) =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |! [vf (S ∪ {j},X )− vf (S,X )], (9)

where vf is a function that evaluates the predictive power of the subset of features
S by comparing the average prediction (absence of all features) with the prediction
considering the subset S:

vf (S,X ) = E
[
I(f∅(X∗,∅),Y)

]︸ ︷︷ ︸
Average prediction

− E
[
I(fS(X∗,S),Y)

]︸ ︷︷ ︸
Prediction considering S

, (10)

where I is the mutual information of a model fS using the features in S and the
target values of the training set.

Both SHAP and SAGE perform expensive computations to estimate the
original SHAP value, which is hard to compute thus requires approximations
to alleviate the computational burden since the number of permutations grows
exponentially with the dimensionality and are estimated by various methods.

4.1.5 Morris Sensitivity
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The Morris Sensitivity [71] calculates the importance of each feature based
on their elementary effect (EE) – a measurement of how much the output
changes with a slight change in the feature value. The values globally represent
how sensitive the method is to variations in each feature. This explainer is
implemented in InterpretML framework [72].

Definition 8 (Morris Sensitivity – Global Feature Explanation) Let the Elementary
effect be calculated as:

EEj =
f̂(X1, X2, . . . , Xj +∆, . . . , Xn)− f̂(X1, X2, . . . , Xn)

∆
, (11)

where ∆ is the step size, picked in a way that Xj + ∆ is still within the features
domain.

The Morris Sensitivity global importance performs k random paths through the
parameter grid, from different starting points in the data set, modifying the features
one at a time, computing the mean EE from all trajectories of the feature of interest:

ϕj(f̂ ,X ) =
1

kj

kj∑
r=1

EEr
k, (12)

where kj is the number of steps where Xj has changed.

4.1.6 Integrated Gradients

Integrated Gradients [73] is a local explainer created to calculate an attri-
bution mask for image predictions made by Deep Learning models. The
importance of each feature is calculated using the Aumann-Shapley [74] value
that extends the Shapley value for infinitely many players. This method also
requires that the user specifies a reference point x′ instead of assuming the
average prediction. This has the advantage of generating a better explana-
tion for continuous features and using a realistic reference point. On the other
hand, it requires calculating the gradient of the model w.r.t. its features.

Definition 9 (Integrated Gradients – Local Feature Explanation) The Integrated
Gradient of the j-th feature for a given observation x is:

ψj(f̂ ,x) = (xj − x′j)
∫ 1

α=0

∂f̂(x′ + α(x− x′))
∂Xi

dα (13)

where x′ is the baseline point, and α represents a continuous path between the point
being explained and the reference.

A Riemman trapezoidal sum approximates the integral, and the derivatives
can be obtained numerically by a finite difference method. The values represent
the gradients along the path for the predictor to go from the mean prediction
(when x′ = X is the mean vector for each feature) to the final prediction.
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4.1.7 Partial Effects

The econometric and social science fields commonly use the concept of partial
derivatives to investigate the behavior of the independent features and their
interactions. There are many works that proposes its usage as an interpretabil-
ity framework in the context of regression analysis, such as [75–79], to name a
few.

The Partial Effect (PE)2 measures how an infinitesimal change (or a dis-
crete change of one unit, for discrete features) in an independent feature affects
the dependent feature when its co-features are fixed on specific values [78],
expressing the magnitude of the associations between an independent and a
dependent feature, having an intuitive interpretation of its value [81].

Although not a new technique, the Partial Effect could be more explored in
symbolic regression as a model-specific explanatory method since it is possible
to automatically differentiate symbolic regression models, assuming all the
functions from the primitive set are differentiable. In [14] the authors proposed
the usage of Partial Effects as a model-specific explainer.

Definition 10 (Partial Effects – Local Feature Explanation) The local Partial Effect
importance for a given observation x is given by the gradient of the model evaluated
at x:

ψj(f̂ ,x) =
∂

∂Xj
f̂(x), (14)

where f̂ is a regression analysis model.

Similar to SHAP, we can calculate the Global explanations as the average
of the absolute importance. The global importance of a feature Xs is made by
marginalizing its co-features to a representative value and evaluating the mean
of all partial derivatives with values that Xs can assume in the given data.

Definition 11 (Partial Effects Global Feature Explanation) The global explanation
for a feature j is obtained by marginalizing all co-features and taking the mean
absolute value of the local partial effects:

ϕj(f̂ ,X ) =
1

n

n∑
i=1

∣∣∣∣ ∂

∂Xj
f̂(Xi,j ,Xi,C)

∣∣∣∣, (15)

where Xi,C is the co-features marginalized.

5 Measuring explanations quality

2Also called Marginal Effects in the literature, but this term can be misleading, as mentioned
in [80].
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Measuring the quality of the explanations is an open question [42, 44, 50]
as the definition of interpretability lacks mathematical rigor [27]. One possibil-
ity is to include humans in the loop to measure their perception of the quality
of the explanations. Nevertheless, the results can be prone to biases due to the
experimental design, leading the experimenters to consider multiple additional
factors. Also, working with humans can limit the scalability of the framework,
compromising the number of results needed for large-scale performance vali-
dation. Including humans in the loop of development and deployment of ML
systems also requires proper ways of inspecting and analyzing the models, thus
needing better benchmarks to validate the proposed explanatory methods.

In the literature, there are few measures proposed to evaluate the quality of
the explanations focused on their robustness [82–85]. These measures are based
on the principle that a high-quality explanation should not have noticeable
variation caused by subtle perturbations in the explained point.

Another possibility explored in this work is to measure the quality of the
explanation given an imperfect regression model. For this purpose, we can
apply the explainers to a ground-truth model and compare how much the
explanations differ when applied to different regression models. The following
subsections will explain each of the measures considered in this work.

5.1 Robustness of explanations
Robustness measures evaluate explainers in how subtle perturbations in the
observations affect the explanations and are suited to evaluate local explainers
only. It is based on the desiderata that a good-quality explanation should not
vary with a small perturbation on the explained observation.

5.1.1 Stability

The stability measure [83] is the degree to which the local explanation changes
for a given point compared to its neighbors. A significant value implies that
when the feature being explained changes in a small proportion, the feature
importance responds in a more significant proportion, indicating that the
explainer is not reliable since it is not locally stable.

Definition 12 (Stability measure) The stability of an explanatory model for an
observation x is calculated by:

S(f̂ , ψ,x) = Ex′∼Nx

[
||ψ(f̂ ,x)− ψ(f̂ ,x′)||22

]
, (16)

with Nx being the neighborhood of x.

The stability evaluates the mean distance between the explanation for the
original observation and for the explanation of all sampled neighbors. In [82]
the authors uses a normal distribution to generate the neighborhood Nx =
N (x, σ) with a previously defined value for σ.
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The problem when using a normal distribution is that the neighborhood
can have a different distribution from the training data, especially in a high-
dimensional case. As such, we propose two modifications for this measure:

1. The neighborhood should be generated using a multivariate normal distri-
bution Nd(µ,Σ). This should make the neighborhood more representative
to the training data. This requires a variance-covariance matrix Σ, esti-
mated using the training data.

2. The neighborhood spread should use the mean vector of each feature, mul-
tiplied by a neighborhood-range parameter λ as the value of σ since a fixed
value is too conservative.

To summarize, we propose the neighborhood to be calculated by:

Nx = Nd(x, λ · cov(X )), (17)
where X is the training matrix where each line is an observation and each
column is a feature, x ∈ Rd is the observation of interest, and cov(X ) is the
variance-covariance matrix evaluated over the training data. The parameter λ
controls the size of the neighborhood and can be found experimentally, set to
a fixed value, or calculated over the training data.

5.1.2 (in)fidelity

Taking the subset of most relevant features for an observation x, it is expected
that the explanation will attribute high values for those features rather than
the others when subtle changes occur in x. The idea of infidelity [84] is to
measure the difference between two terms:

i. The dot product between a significant perturbation p ∈ Rd to a given
observation x we are trying to explain and its corresponding explanation,
and

ii. The difference in the prediction between the perturbed and original
observations.

Definition 13 (Infidelity measure)

INFD(f̂ , ψ,x) = Ep∈µp


pTψ(f̂ ,x)︸ ︷︷ ︸

i

− (f̂(x)− f̂(x− p))︸ ︷︷ ︸
ii


2 (18)

where ψ is an importance attribution explainer, f̂ is a black-box model, and p is a
random feature representing perturbations around the point of interest x generated
by a probability measure µp.

A good explanation should be robust to changes in the prediction in
response to significant perturbations. This measure is helpful to evaluate if the
explanation is robust to miss-specifications or noise in the given observation.
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A significant value of infidelity means that the explainer changes more
abruptly when small changes in the observation occur, resulting in very dif-
ferent feature importance vector, and thus is not reliable. In this paper, we
sample p with µp ∼ x−Nd(x, λ · cov(X )).

5.1.3 Jaccard Stability

The Jaccard Index was used in [85] to measure the stability of their proposed
explainer called S-LIME. The Jaccard Index is often used as a similarity metric
between two sets, and it is defined as the size of the intersection between the
sets by the size of the union of these sets. If they are both equal, the Jaccard
Index will have a value of 1. To use this metric for stability, we verify whether
the set of the k most important features, measured by the magnitude of their
importance, changes within a neighborhood.

Definition 14 (Jaccard Stability) Let x be a observation being explained, and let
ψ̃(x)k denote the subset of k most important features for x. The Jaccard Stability
measure is calculated by:

J(f̂ , ψ,x) = Ex′∼Nx

[
|ψ̃(x)k ∩ ψ̃(x′)k|
|ψ̃(x)k ∪ ψ̃(x′)k|

]
, (19)

with Nx being the neighborhood of x, and k being the size of the subset.

5.2 Quality of explanations with imperfect predictions
Different explanatory methods have different interpretations of the importance
values. For example, a Shapley value ψi of a feature means how much it con-
tributed to the difference in prediction from the average prediction. On the
other hand, for Partial Effects, it means how the prediction will change if we
make a slight variation to the input value. We cannot compare two explana-
tory methods directly since there is no guarantee of correspondence between
explanations.

Nevertheless, since explanations are generated from regression models that
are usually an imperfect approximation of the true model, we can measure
how much information is lost when trying to explain these imperfect models.
For this purpose, we assume the existence of a ground-truth explanation that
we can use to compare the i) error in direction (whether the importance is
negative or positive) and the ii) magnitude of the explanation extracted from
the regression models; given that we have access to the ground-truth function
that generated the data set.

When used to measure global quality, only one explanation vector is com-
pared. When measuring local quality, each observation in the test data is
evaluated with the quality measureand the average quality is reported.
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5.2.1 Cosine Similarity

The cosine similarity, first used in [51] to measure the quality of an expla-
nation, returns a value between −1 and 1 representing if the explanations
are in opposed or same directions. A cosine similarity of 0 means that the
explanations are orthogonal.

Definition 15 (Cosine Similarity between two explanations) Let
−→
ϕ be a vector of

feature importance generated by a global explanatory method ϕ (or, similarly, let
−→
ψ

be a vector of local importance for an observation x generated by a local explanatory
method) for a regression model f̂ , and let −→e be the correct explanation generated
from applying one of the explanation methods to the ground-truth model. The cosine
similarity is calculated by:

cos(−→e ,
−→
ψ ) =

−→e ·
−→
ψ

∥−→e ∥∥
−→
ψ ∥

. (20)

5.3 Normalized Mean Squared Error
The Normalized Mean Squared Error measures the squared difference between
the ground-truth explanation and the evaluated explanation normalized by the
true explanation variance. This captures whether the explanations differ not
only in direction but also in magnitude.

Definition 16 (Normalized Mean Squared Error) Let
−→
ϕ be a feature importance

vector generated by a global explanatory method ϕ (or, similarly, let
−→
ψ be a vector

of local importance for an observation x generated by a local explanatory method)
for a regression model f̂ : Rd → R, and let −→e be an expected explanation (ground-
truth). The Normalized Mean Squared Error (NMSE) is the MSE divided by the
variance of −→e :

NMSE(−→e ,
−→
ϕ ) =

∑d
i=1(ei − ϕi)

2∑d
i=1(ei − e)2

, (21)

where e is the average of the feature importance values in −→e .

6 Methodology

The experiments will follow the methodology illustrated in Fig. 3. In short,
we will follow three steps.

First, we use the generating functions to create: i) a predictor using the
original equation as the prediction function, ii) a training data set with 1000
observations, and iii) a test data set with 30 observations generated using
the Latin Hypercube Sampling [86] method based on the training data. Both
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Fig. 3: Scheme of the whole benchmark process to generate the results. The
Feynman equations are used to generate the train and test data. Then the
regression methods are fine-adjusted through a gridsearch process to finally be
trained and used as input to feature importance methods.

train and test data do not contain any noise to prevent adding artifacts to the
results.

The second step uses the training data to tune each regressor with a grid-
search using 3-fold cross-validation for each data set. The grid-search optimizes
the configuration that maximizes the R2 score.

Finally, the third step executes the benchmark experiments using the
optimal configurations obtained for each regression method. The models are
generated using the training data and explained using different explanatory
methods. Whenever the regression algorithm is stochastic, we repeat this
procedure 30 times for every data set.

We will analyze the results by measuring the prediction error of each regres-
sion model, followed by the quality measures of the explainer models. For local
explanations, we will use the robustness measure and the quality measure and,
for global explanations, we will only report the quality measure as the robust-
ness measures require a local neighborhood. We will report heatmaps of the
results for different combinations of regression and explanatory models.

The neighborhood-range factor used for the local explanations was 0.001,
and the number of top features for the Jaccard Stability was k = 1.

6.1 Data sets
For the overall results, we use the Feynman benchmark, introduced in [56],
containing 100 equations from mechanical, electromagnetism, and quantum
physics, with different degrees of complexity. The reason for choosing this
benchmark is that it contains problems that describe actual phenomena, where



Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 23

Table 1: Description of the additional 4 GP benchmark problems. U(lb, ub, ns)
denotes a uniform distribution with bounds [lb, ub] and ns observations, and
E(start, stop, step) is an evenly spaced grid in the interval [start, stop] and
step size given by step. We adapted the number of generated observations
in relation to the original publication to make the results and comparisons
compatible with the Feynman benchmark.

Name Formula Features Train set/Test set

Korns-11 6.87 + 11cos(7.23x3) {x, y, z, v, w} U(−50, 10, 1000)
U(−50, 10, 100)

Korns-12 2− 2.1cos(9.8x)sin(1.3w) {x, y, z, v, w} U(−50, 10, 1000)
U(−50, 10, 100)

Vladislavleva-4 10
5+

∑5
i=1(xi−3)2

{xi}5i=1 U(0.05, 6.0, 1000)
U(−0.5, 10, 100)

Pagie-1 1
1+x−4 + 1

1+y−4 {x, y} E(−5, 5, 0.01)
E(−5, 5, 0.1)
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Fig. 4: Joint distribution of the number of features and the number of nodes
required to build the expression tree for the iirsBenchmark data sets. The
lighter portion of the histograms represents the GP benchmark.

the problem features have physical or mathematical meaning. The original
data contained 1, 000, 000 observations, from which we randomly picked 1, 000
data points. The test set was generated using the Latin Hypercube.

For a more detailed analysis, we selected four benchmark problems
commonly used in GP literature described in Table 1.

Fig. 4 shows the distribution of the number of features for these 104 data
sets.
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Table 2: Regression methods available on iirsBenchmark and used in the
experiments.

Regressor Interpretability Method type

XGB black-box Tree boosting
RF black-box Tree bagging
MLP black-box Feed-forward Neural network
SVM black-box Vector machine
k-NN gray-box Instance method
Operon gray-box Symbolic regression
ITEA gray-box Symbolic regression
Linear regression white-box Regression modeling
LASSO regression white-box Regression modeling
Single decision tree white-box Decision tree

6.2 Regression and explanatory methods
Table 2 shows all the regression algorithms used in this experiment. All of
them, except for ITEA3 and Operon4, are available via scikit-learn module5.

The tested configurations for each regressor are reported in Table
3. For symbolic regression methods ITEA and Operon, the functions
sets were, respectively, {log, sqrt, id, sin, cos, tanh, exp, expn, arcsin} and
{+,−,×, /, exp, log, sqrt, square, sin, cos, tanh, asin, constant, variable}.

Table 4 shows the explanatory methods used in this experiment together
with their main characteristics. We also created a Random Importance
explainer that supports local and global explanations, attributing random
ranks of importance for each feature every time it is called. This explainer will
serve as a baseline as it is expected to be the worst explainer.

For the robustness measures, we also report the values obtained in the
ground-truth model, called Feynman explainer. This is the result of apply-
ing the explainer models to the ground-truth expression, representing the
robustness of the true model.

6.3 Result analysis
The results involving multiple data sets are reported by presenting the median
and the Interquartile Range (IQR). While boxplots implicitly report the
Interquartile Range (IQR) — being the size of the filled box in the graphs —,
tables and heatmaps reports the results as m̃± IQR, where m̃ is the median of
the group and IQR is the respective IQR. Those descriptors were chosen due to
robustness to outliers while still providing a good summary of the distribution.

We use Critical Diagrams [87] to represent the acceptance or rejection
of the null hypothesis. The critical diagrams sorts the compared groups by

3https://github.com/gAldeia/itea-python.
4https://github.com/heal-research/operon.
5https://github.com/scikit-learn/scikit-learn.

https://github.com/gAldeia/itea-python
https://github.com/heal-research/operon
https://github.com/scikit-learn/scikit-learn
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Table 3: Regressors considered in the experiments, with their hyper-
parameters to be adjusted through the gridsearch procedure. The Linear
regressor is the only that had no adjustment.

Regressor Hyper-parameter Gridsearch values

XGB n_estimators
min_samples_split

[100, 200, 300]
[0.01, 0.05, 0.1]

RF n_estimators
min_samples_split

[100, 200, 300]
[0.01, 0.05, 0.1]

MLP hidden_layer_sizes
activation

[(50, ), (50, 100, ), (100, ), (100, 100, )]
[′identity′,′ logistic′,′ tanh′,′ relu′]

SVM kernel
degree

[′linear′,′ rbf ′,′ poly′]
[1, 2, 3, 4]

k-NN n_neighbors [3, 5, 7, 9, 11, 17, 19, 23, 29, 31]
Operon population_size

generations
[100, 250, 500]
[100, 250, 500]

ITEA popsize
gens

[100, 250, 500]
[100, 250, 500]

LASSO alpha [0.001, 0.01, 0.1, 1, 10]
Decision Tree max_depth

max_leaf_nodes
[5, 10, 15]
[5, 10, 15]

Default values of hyper-parameters were omitted. All the regressors have their respective
python module, and omitted parameters default values can be found on each regressor

documentation

Table 4: Explanation methods available in iirsBenchmark and used in the
experiments.

Explainer Agnostic Local Global Method type

Permutation Importance Y N Y feature removal
SHAP Y Y Y feature removal
SAGE Y N Y feature removal
LIME Y Y N Approximate by linear model
ELA N Y N Approximate by linear model
Morris sensitivity Y N Y Sensitivity analysis
Integrated Gradients Y Y N Gradient analysis
Partial Effects (PE) N Y Y Gradient analysis
Random Importance Y Y Y Random attribution

their average ranks, and two or more methods are connected by a horizon-
tal line if there is no statistical significance between them. The statistical test
used was the Wilcoxon signed-rank, with the p-values corrected by the Holm-
Bonferroni method, recommended when testing only one null hypothesis that
all groups have no significant differences between themselves [88]. The cor-
rection method mitigates the alpha inflation when multiple comparisons are
made. The statistical significance threshold considered is p < 0.05, evaluated
after correction.
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Finally, since the computational cost of the explanation may be relevant to
some applications, we also report the runtime of each explainer for both local
and global explanations.

6.4 iirsBenchmark
All regressors and explanatory methods included in the experiments were
wrapped up in a package module with a syntax similar to the Python ML
library scikit-learn in the iirsBenchmark. The python module also provides a
script to execute the experiments and all post-processing scripts.

All regression methods were previously implemented either by the scikit-
learn module or by their corresponding authors following scikit guidelines, all
of which have a structured unification. The iirsBenchmark only extends those
regressors by adding more class methods and static attributes useful in the
interpretability context. The explainers being evaluated lack a common inter-
face. In spite of that, we unified their interface by implementing standardized
classes in iirsBenchmark.

7 Experimental Results

In the first part of this section, we report and analyze the results obtained
with the Feynman benchmark. We present the aggregated results of all combi-
nations of regression models and explanation models. The following subsection
shows the results obtained on the four select challenging benchmarks from
SR literature, in which we will make a more detailed analysis of the obtained
results.

7.1 Feynman benchmark

In this subsection, we will have a broader view of the results for a bench-
mark set that does not present a challenging scenario for the non-linear
regression models. We expect to observe explanations close to what we would
obtain using the generating function.

7.1.1 Model accuracy

Fig. 5 shows the boxplot of the MAE and NMSE of each method considering
the entirety of the Feynman benchmark, with the critical difference diagram
of the average rank for each method. As we can see from these plots, ITEA
and Operon found the best performing regression models in the benchmark.
The critical difference diagrams show a significant difference between ITEA
and Operon, even though both obtained models are close to the maximum
observed accuracy. The three models considered interpretable in the literature
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Fig. 5: MAE (smaller is better) and NMSE (smaller is better) boxplots for all
regressors, vertically ordered from the best to worst median values. The Crit-
ical Diagram below each plot indicates the absence of statistical significance
between groups connected by a horizontal bar.
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Fig. 6: Expression sizes as number of nodes (smaller is better) for regression
models. The regression methods are vertically ordered from the best to worst.

were the worst-performing models in this benchmark, corroborating with the
idea of the trade-off between interpretability and accuracy.

Another relevant aspect of the interpretability of the model is the expres-
sion size. Larger expressions are harder to read and understand. Fig. 6 shows
the boxplot of the distribution of expression sizes obtained by Lasso, Lin-
ear, Operon, and ITEA. Lasso and Linear obtained the smaller expressions
since their size is bounded by the number of features, followed by Operon
with a median size of 50. ITEA median size was 100 with an upper quartile
much higher than Operon. This means that, despite the difference in accuracy
between ITEA and Operon, Operon managed to find smaller expressions than
ITEA, possibly increasing its readability by human experts.
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Fig. 7: Hit rate on Feynman data sets calculated for regression methods that
return mathematical expressions.

Complementing the analysis of the expression size, Fig. 7a shows a bar plot
of the hit rate of each of these methods. Given the original expression f and
the SR model f̂ , we perform a symbolic simplification of the expression f̂ − f ,
considering a hit if the result of the simplification is zero. The hit rate is the
percentage of expressions obtained by each model that corresponds precisely
to the ground-truth generating function.

As expected, ITEA obtained a higher hit rate than Operon since almost half
of this benchmark is representable by the constrained representation of ITEA,
having a search space that tends to favor this SR method. Fig. 7b shows a Venn
diagram of the intersection of the data sets that both methods obtained the
generating function. Only 7% were mutually found by both methods, meaning
that by merging the results of both methods, SR obtained a hit rate of about
42% on this benchmark. These results highlight the possibility of using SR as
an innate interpretable model without using a post-hoc explanatory method.

7.1.2 Explanation computational cost

Table 5 shows the median and IQR of the execution time for each explainer
when combined with different models. Regarding the global methods, Partial
Effect, Permutation Importance, and Morris Sensitivity have a significantly
smaller computation run-time than SHAP and SAGE. This is expected since
the former methods only require the evaluation of a well-defined function to
every point in the data set, while the latter methods require the sampling of
different subsets of features. We should notice that it is possible to reduce the
run-time of both SHAP and SAGE with the cost of reducing the explanation
quality.

For the local explanations, Partial Effects are the fastest method since
it becomes just a function applied to a given instance after calculating the
symbolic derivative. The other methods are comparable regarding run-time
but with some combinations that stand out: SHAP and IG with Random
Forest and IG with ITEA require a significantly longer time when compared to
other regressors using the same explanation method. These methods require a
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Table 5: Median and IQR of execution time (in seconds) each explainer took
to generate the explanations.

Global
Explanation

Partial
Effects SHAP SAGE Permutation

Importance
Morris
Sensitivity

KNN — 21.07 ± 19.71 1225.18 ± 5217.46 0.70 ± 0.82 0.30 ± 0.31
Linear 0.00 ± 0.00 14.47 ± 14.91 27.21 ± 110.25 0.06 ± 0.06 0.36 ± 0.38
Lasso 0.00 ± 0.00 14.05 ± 11.00 21.45 ± 107.16 0.06 ± 0.06 0.31 ± 0.29

Decision Tree — 14.30 ± 14.07 38.83 ± 100.23 0.06 ± 0.08 0.30 ± 0.31
RF — 111.42 ± 94.86 3116.55 ± 9144.32 6.94 ± 6.23 0.42 ± 0.34

MLP — 40.21 ± 19.14 549.54 ± 3613.16 1.87 ± 1.59 0.44 ± 0.33
SVM — 18.74 ± 26.52 2077.81 ± 10092.26 1.28 ± 3.55 0.33 ± 0.32
XGB — 18.14 ± 19.20 824.13 ± 3644.58 0.78 ± 0.70 0.29 ± 0.28

Operon 0.66 ± 0.46 12.37 ± 9.77 25.57 ± 159.81 0.06 ± 0.04 0.21 ± 0.09
ITEA 0.14 ± 0.13 25.41 ± 22.89 486.43 ± 1869.14 1.55 ± 1.01 0.41 ± 0.28

Local
Explanation

Partial
Effects SHAP Integrated

Gradients LIME ELA

KNN — 2.12 ± 1.87 4.53 ± 3.82 3.73 ± 2.99 —
Linear 0.00 ± 0.00 1.37 ± 1.52 0.92 ± 0.69 4.25 ± 3.47 1.83 ± 1.68
Lasso 0.00 ± 0.00 1.40 ± 1.16 0.86 ± 0.73 3.65 ± 2.75 1.75 ± 1.49

Decision Tree — 1.26 ± 1.21 0.94 ± 0.84 3.70 ± 3.19 —
RF — 11.41 ± 10.15 167.02 ± 154.94 6.93 ± 6.95 —

MLP — 3.98 ± 1.71 11.41 ± 8.51 6.52 ± 4.76 —
SVM — 1.98 ± 2.91 1.02 ± 0.73 3.30 ± 2.63 —
XGB — 1.70 ± 1.86 2.36 ± 2.24 3.76 ± 3.69 —
ITEA 0.13 ± 0.14 2.71 ± 2.24 17.67 ± 16.99 4.02 ± 2.68 2.16 ± 1.71

Operon 0.06 ± 0.04 1.09 ± 0.89 0.75 ± 0.48 2.93 ± 1.48 1.25 ± 0.49

higher number of evaluations to generate the feature importance, and so they
are more affected by prediction model size. Specifically for SR methods, we
used the model agnostic version of IG that approximate derivatives to a fair
performance comparison.

7.1.3 Local Explanations

Fig. 8 show the heatmap plot of different robustness measures for the com-
binations of regressors and explanation models for the local explanations. The
Jaccard Stability (Fig. 8a) is a very sensitive measure since we are calculating
based only on the top feature, so either the explanation gets everything right
or everything wrong in a single explanation. We can see that, despite this dif-
ficulty, Partial Effects, ELA and SHAP obtained the highest score for every
prediction model. This means that the top feature does not change around
a small neighborhood. Integrated Gradient presented stability issues under
this measure for the ensemble methods and KNN. LIME also presented worse
results for every regressor but still higher than the Random Importance.

Regarding Infidelity (Fig. 8b), ELA was the only explanation method that
obtained worse results than Random Importance. This means that ELA impor-
tance rank is sensitive to a slight change in the value of the feature. This
result is due to the dependency on having appropriate neighborhood points in
the data set, and this impact should be reduced when using larger data sets.
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Finally, the Integrated Gradient obtained worse results than Random Impor-
tance under the Stability measure (Fig. 8c) for the ensemble methods and kNN.
We notice from these results that the SR methods obtained very close results
to the reference ground-truth (Feynman), meaning that they are as robust as
the true expression.

Fig. 9 shows the heatmap plots for the Cosine similarity and the NMSE of
the local explanations calculated using the ground-truth as a reference point.
Considering the cosine similarity, which measures whether the sign of the fea-
ture importance is the same as the ground-truth, we can see that almost every
combination obtained a value closer to 1.0, meaning that even an inaccurate
model can at least indicate correctly whether a feature has a positive or nega-
tive influence to the target feature. The SR methods obtained the best possible
results with every explanation method except LIME. When also considering
the magnitude of the feature importance, we can see in Fig. 9b the SHAP
explainer is capable of returning explanations with smaller errors for black-
box models. On the other hand, LIME presented a very similar performance
for every regressor. Viewing from the regressor side, the SR methods returned
the best explanations for every method, except LIME. These results indicate
that not only an accurate model is essential for a correct explanation but also
that is must be a flexible model capable of capturing the different properties
of the generating function.

7.1.4 Global Explanations

Fig. 10 shows the heatmaps for the global explanations. The cosine similarity
for the global models is very similar to the local explanations, and most com-
binations of regressors and explanation models can indicate the correct sign
of the effect of each feature. On the other hand, we observed a higher increase
in NMSE when comparing SR models against simpler models like Linear and
Lasso. The SR methods outperformed other methods with every explainer.
Regarding the explainers, Morris Sensitivity is more sensitive to model accu-
racy, and every other explanation model maintained a small error except for
the linear models.

7.2 Selected benchmark

This subsection reports the obtained results with the selected data sets
focused on the SR models. These data sets are known to be challenging to any
regression model, and, as such, we expect to observe a disagreement in the
explanation of the SR models compared to the ground-truth.

7.2.1 Model accuracy

Table 6 shows the accuracy of ITEA, Operon and MLP models for the
selected data sets. We chose MLP as a black-box representative since it
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Fig. 8: Local explanation robustness metrics heatmaps showing the median
and IQR for each explainer-regressor combination. The best values cells are
highlighted with a black edge.

obtained the next best results after SR models. We can see from this table
that the SR models are still the most accurate among the tested models, but,
except for Pagie-1, all algorithms created inaccurate models, as can be seen
from the high values for MAE and NMSE. The former metric is more robust
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(a) Median Cosine Similarity (greater is better) heatmap between local explanations
obtained over the regressor and the original Feynman equation.
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(b) Median NMSE (smaller is better) heatmap between local explanations obtained
over the regressor and the original Feynman equation.

Fig. 9: Local explanation quality metrics heatmaps showing the median and
standard deviation for each explainer-regression combination. The best values
are highlighted with a black border around it, and the color maps always
attribute lighter colors to better results.

to outliers — as it uses the absolute values—, and the latter tends to allevi-
ate the prediction errors smaller than 1.0, while punishing prediction errors
higher than this value — since it squares the errors. The SR methods were
outperformed by the best black-box model only using the MAE metric on the
Korns-12 data set.

In practice, those models would be discarded as they do not capture the
relationship of the observation features with the target value. Notice that this
creates a situation where we have an unreliable model but will still extract the
feature importance information.

The difference in results between ITEA and Operon can be explained by
the expression size as reported in Table 7. We can see that ITEA generated
expressions 3 to 4 times larger than Operon. Also, as expected, none of the
SR algorithms could find a perfect hit in any run.



Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 33

KNN Linear Lasso Decision
Tree

RF MLP SVM XGB Operon ITEA

Partial
Effects

SHAP

SAGE

Permutation
Importance

Morris
Sensitivity

Random
Importance

0.99
±0.03

0.99
±0.02

0.98
±0.11

1.0
±0.0

1.0
±0.0

1.0
±0.01

1.0
±0.01

0.99
±0.02

1.0
±0.0

1.0
±0.0

1.0
±0.0

1.0
±0.0

1.0
±0.0

1.0
±0.0

1.0
±0.01

0.99
±0.03

0.99
±0.03

0.98
±0.04

0.99
±0.01

0.99
±0.01

0.99
±0.02

1.0
±0.01

0.99
±0.04

0.99
±0.02

1.0
±0.0

0.99
±0.04

0.99
±0.04

0.99
±0.04

1.0
±0.01

1.0
±0.0

1.0
±0.01

1.0
±0.01

1.0
±0.0

1.0
±0.0

1.0
±0.01

1.0
±0.14

1.0
±0.13

0.98
±0.06

0.99
±0.05

1.0
±0.01

1.0
±0.01

1.0
±0.01

1.0
±0.01

1.0
±0.01

0.84
±0.15

0.9
±0.18

0.8
±0.18

0.85
±0.04

0.84
±0.04

0.85
±0.04

0.83
±0.14

0.85
±0.04

0.85
±0.04

0.85
±0.04

0.80

0.85

0.90

0.95

(a) Median Cosine Similarity (greater is better) heatmap between global explanations
obtained over the regressor and the original Feynman equation.
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(b) NMSE (smaller is better) heatmap between global explanations obtained over
the regressor and the original Feynman equation.

Fig. 10: Global explanation quality metrics heatmaps showing the median
and standard deviation for each explainer-regression combination. The best
values are highlighted with a black border around it, and the color maps always
attribute lighter colors to better results.

Table 6: Median of MAE and NMSE for the two symbolic regression method
and the best performing black-box method for the selected data sets from the
literature. The best value for each data within each metric set is highlighted
in bold.

MAE NMSE

ITEA Operon MLP ITEA Operon MLP

Korns-11 7.67 7.26 7.65 15.43 32.76 262.80
Korns-12 0.92 0.88 0.87 17.43 30.03 30.07

Vladislav. 1.41 0.19 0.31 1.18 2.97 1.19
Pagie-1 0.00 0.01 0.06 0.00 0.00 0.01
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Table 7: Median expression size and hit rate (expressed as a percentage since
some regressors are non-deterministic) for methods that return mathematical
expressions.

Median expression size # hits

Linear Lasso ITEA Operon ITEA Operon

Korns-11 21.0 1.0 181.0 42.0 0% 0%
Korns-12 16.0 1.0 180.0 56.5 0% 0%

Vladislav. 17.0 1.0 110.5 72.0 0% 0%
Pagie-1 1.0 1.0 92.0 24.0 0% 0%

Table 8: Median of the quality measures for the selected local explanatory
methods with ITEA and Operon.

ITEA
Cosine similarity NMSE

IG PE SHAP IG PE SHAP

Korns-11 1.00 −0.07 −0.48 50.28 9.00e+ 14 1.64
Korns-12 1.00 0.00 −0.34 1.34e+ 7 5.61e+ 17 3.87
Vladslav. 1.00 0.87 0.91 0.51∗ 0.45∗ 0.14∗

Pagie-1 1.00 1.00 −0.61 0.47∗ 0.00∗ 0.24∗

Operon
Cosine similarity NMSE

IG PE SHAP IG PE SHAP

Korns-11 0.25 0.05 0.07 1.25 1.25 1.33
Korns-12 1.00 0.00 −0.07 126.71 3.20 2.99

Vladislav. 1.00 0.270 0.93 0.03∗ 0.00∗ 0.01∗

Pagie-1 1.00 0.85 1.00 0.98∗ 0.00∗ 0.06∗

7.2.2 Local Explanations

Table 8 shows a detailed analysis of the performance of each local explainer
with ITEA and Operon, focusing on the best performing explanatory methods
observed in the heatmap in Fig. 9: Integrated Gradients (IG), Partial Effects
(PE) and SHAP. We report the two explanation quality measures cosine sim-
ilarity and the MSE normalized by the variance of the expected explanation
(NMSE). Results marked with an ∗ were not normalized by the original feature
importance explanation since every feature has the same importance making
the variance zero.

With the bad prediction accuracy for these problems, we notice a degra-
dation in the feature importance values generated by the explanation models.
Both ITEA and Operon found inconsistent directions for their feature impor-
tance when using PE and SHAP on Korns-11 and Korns-12 data sets
regarding the cosine similarity. Using IG, they found that the sign of impor-
tances were partially correlated with the ground-truth for Korns-12. With the
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Vladislavleva-4 data set, the directions obtained by IG and SHAP were more
consistent with the ground-truth, even though this model was also inaccurate.
Pagie-1 did not get a perfect score even though they returned perfectly accu-
rate models. This means that, even though the regression models are perfect
w.r.t. the validation set, they may not correspond to the exact behavior of the
true model.

Partial Effects had a better performance with Operon rather than with
ITEA. To investigate this problem, we selected the expressions from ITEA and
Operon that had an explanation error close to the median reported in Table 8
for the Korns-11 data set. The selected ITEA model is a sum of cosines given
by:

ITExpr(x, y, z, v, w) =− 0.308 · cos
(
xw4

yz3v4

)
+ 0.133 · cos

(
y2v3

xz3

)
− 0.089 · cos

(
z4v3w4

x2y2

)
+ 0.137 · cos

(
yz2w4

v

)
− 0.121 · cos

(
v4w2

x4z

)
+ 0.175 · cos

(
zw4

xy3v4

)
+ 0.104 · cos

(
x3yzw

v4

)
− 0.098 · cos

(
z4v4

x2y3

)
+ 0.091 · cos

(
xz3w4

yv4

)
+ 2.118.

The true importance value for this data set for any given point is
[C, 0, 0, 0, 0] with C representing the importance value of x at any given point,
and this value is usually with a magnitude of 104. We can notice that the
ITEA expression uses every feature of the data set, not only the single mean-
ingful variable x. This means that it can attribute non-zero importance values
to noisy variables. At some points, we observed that the partial effect assigned
zero importance to x and a large value for one or two other variables, explain-
ing this large error observed in our results. On the other hand, Operon was
more competent in selecting the important features for its models, a selected
example for this data set is:

OPExpr(x, y, z, v, w) = 82.931

− 81.160 · sin(tanh(−3.433x)2
22

22

+ cos(tanh(tanh(tanh(−1.182z)))2)),

which significantly reduces the average error as there is only one noisy variable
in this expression.
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8 Discussion

The obtained results bring forward some aspects worth considering when-
ever we seek to extract additional information from the prediction models.
These results show additional evidence favoring Symbolic Regression as a gray-
box model that can either be interpreted without additional support or using
external models that extract the information of interest.

8.1 Symbolic Regression can have a good trade-off
between accuracy and interpretability

As we reported in Section 7.1.1, the Symbolic Regression models obtained
more accurate models than the black-box models for the Feynman benchmark.
Also, about 40% of the ground-truth models were successfully retrieved by at
least one of the SR methods. This indicates the possibility of using the sym-
bolic models explicitly when understanding the model behavior. Also, even for
the models that do not correspond to the ground-truth, the symbolic models
still allowed the extraction of near-perfect feature importance using different
explanatory models, as reported in Section 7.1.3. Additionally, their expla-
nations were as robust as those returned by MLP and SVM. Unlike these
models, Random Forest and Gradient Boosting had lower quality explanations
and were less robust due to their internal discretization of the feature space.
Besides these advantages, the symbolic model also allows us, under appropri-
ate conditions, to generate the symbolic partial derivatives of the model. This,
in turn, makes it possible to calculate another feature importance measure:
the partial effect. With the partial derivative expressions, we can also reduce
the estimation error of the Integrated Gradient.

We also found some counterpoints to the above conclusion in Section 7.2
where we tested a set of challenging benchmarks. None of the regression models
could generate a reasonable predictor for three out of the four data sets. As an
implication of these models, we observed a higher error in the feature impor-
tance estimation. The main problem was that all of the predictors could not
select the correct features for the model, thus attributing non-zero importance
to noisy features. This leads to our next point of discussion.

When comparing the SR methods with the linear methods (Linear and
Lasso) when using the regression-specific explainer Partial Effects, it is crucial
to notice that linear methods will always hold equal or more stable explanations
since the models do not perform any transformation or interaction over the
variables; thus small changes will always have a direct and linear effect in the
output. The SR methods, however, could approximate the behavior of linear
models for explanation robustness, as we can see from the similar reported
results for the robustness metrics in Fig. 8.
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8.2 The explanation quality correlates with the model
quality

Following the previous observation, we found that most explanatory models
could still return a reasonable explanation even when the prediction models
were not perfect (consider, for example, the accuracy of SVM explanations).
Nevertheless, a practitioner should ensure that the prediction model has a
reasonable quality and be aware of the possible inaccuracies when extracting an
explanation. At the bare minimum, the practitioner should follow the standard
Machine Learning pipeline of data cleaning, feature engineering, and hyper-
parameters optimization for high-stakes prediction tasks before trusting the
explanation extracted from the models.

We noticed that we did not perform an extensive grid search in the chal-
lenging benchmarks due to computational and time constraints. Having said
that, a more careful experiment could improve the SR models quality for these
challenging problems. Even when the model is accurate, we still have to be
careful about the explanations because some regression models do not comply
with the desiderata of explanatory methods.

8.3 Trusting an explanation requires evaluating its
robustness and quality w.r.t. the prediction model

Even when the prediction model was accurate, we observed some instability
in the explanations as depicted in Fig. 8 of Section 7.1.3. We noticed that the
explanations produced by Integrated Gradient, when coupled with decision
tree-based models, were unstable since these models generate a step function to
approximate non-linear relationships. The explanation at specific points may
suffer an enormous change when evaluated at neighborhood points. The practi-
tioner should be aware of these limitations when choosing the right prediction
and explanatory methods.

9 Conclusions

This paper proposed a benchmark of explanatory methods for regression
models using the Feynman data set as a proxy to evaluate these models using
a ground-truth as a reference. The main objective was to compare the perfor-
mance of Symbolic Regression models when coupled with different explainers
in contrast with other linear and non-linear regression models coupled with
the same explainers.

For this purpose, we have implemented the iirsBenchmark as an open-
source framework that contains wrapper methods to different regression
models, including two symbolic regression and many global and local explana-
tory methods that return the importance of each feature for the prediction.
This framework evaluates each pair regressor-explainer following the robust-
ness and quality criteria. The robustness criteria tests how sensitive an
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explainer is with slight variations in the data. The desideratum is that an
explainer will not abruptly change the explanation with small perturbations.
The quality of the explanations is evaluated as to whether the direction of the
feature importance agrees with the ground-truth and how close they are to the
true explanation.

We have done extensive experiments to evaluate how well Symbolic Regres-
sion models fare in this setting. We have found that, specifically for the
Feynman data sets, SR was capable of returning accurate models that made it
possible to extract the correct explanations even when the returned expression
did not correspond to the ground-truth. Compared to the other regressors,
SR performance was among the most stable explanations and closer to the
ground-truth.

In conclusion, we have found evidence that SR models can return accurate
models that correspond to the expected properties and behavior of the true
model as captured by the explanatory methods.

For future work, we intend to expand the coverage for more symbolic
regression methods, making it possible to compare different representations for
symbolic regression, different coefficient optimization methods, and different
evolutionary heuristics. One shortcoming of our experimental methodology is
that we only tested problems of the same domain (i.e., physics). We will also
add more regression problems from different domains in future work.

We also plan to investigate the role of dimensionality in feature impor-
tance explanations. We expect that dimensionality will have a compromise
with explanation quality and robustness since larger dimensionalities add more
degree of freedom when creating feature importance explanations.

Acknowledgments. This work was funded by Federal University of ABC
(UFABC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP), grant number 2018/14173-8.

Declarations
The authors have no conflicts of interest to declare that are relevant to the
content of this article.

References
[1] Medvedeva, M., Vols, M., Wieling, M.: Using machine learning to

predict decisions of the European Court of Human Rights. Artificial
Intelligence and Law 28(2), 237–266 (2020). https://doi.org/10.1007/
s10506-019-09255-y

[2] Winter, G.: Machine learning in healthcare: A review. British Journal
of Health Care Management 25(2), 100–101 (2019). https://doi.org/10.
12968/bjhc.2019.25.2.100

https://doi.org/10.1007/s10506-019-09255-y
https://doi.org/10.1007/s10506-019-09255-y
https://doi.org/10.12968/bjhc.2019.25.2.100
https://doi.org/10.12968/bjhc.2019.25.2.100


Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 39

[3] Roscher, R., Bohn, B., Duarte, M.F., Garcke, J.: Explainable machine
learning for scientific insights and discoveries. IEEE Access 8, 42200–
42216 (2020) https://arxiv.org/abs/1905.08883. https://doi.org/10.1109/
ACCESS.2020.2976199

[4] Modarres, C., Ibrahim, M., Louie, M., Paisley, J.: Towards explainable
deep learning for credit lending: A case study, 1–8 (2018) https://arxiv.
org/abs/1811.06471

[5] Yoo, S., Xie, X., Kuo, F.-C., Chen, T.Y., Harman, M.: Human com-
petitiveness of genetic programming in spectrum-based fault localisation:
Theoretical and empirical analysis. ACM Trans. Softw. Eng. Methodol.
26(1) (2017). https://doi.org/10.1145/3078840

[6] Lones, M.A., Alty, J.E., Cosgrove, J., Duggan-Carter, P., Jamieson, S.,
Naylor, R.F., Turner, A.J., Smith, S.L.: A new evolutionary algorithm-
based home monitoring device for parkinson’s dyskinesia. Journal of Med-
ical Systems 41(11) (2017). https://doi.org/10.1007/s10916-017-0811-7

[7] Lynch, D., Fenton, M., Fagan, D., Kucera, S., Claussen, H., O’Neill,
M.: Automated self-optimization in heterogeneous wireless communica-
tions networks. IEEE/ACM Transactions on Networking 27(1), 419–432
(2019). https://doi.org/10.1109/TNET.2018.2890547

[8] Izzo, D., Simões, L.F., Märtens, M., de Croon, G.C.H.E., Heritier, A.,
Yam, C.H.: Search for a grand tour of the jupiter galilean moons. In:
Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’13, pp. 1301–1308. Association for Comput-
ing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/
2463372.2463524. https://doi.org/10.1145/2463372.2463524

[9] Semet, Y., Berthelot, B., Glais, T., Isbérie, C., Varest, A.: Expert compet-
itive traffic light optimization with evolutionary algorithms. In: VEHITS,
pp. 199–210 (2019)

[10] Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need
hundreds of classifiers to solve real world classification problems? Journal
of Machine Learning Research 15(90), 3133–3181 (2014)

[11] Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S.,
Turini, F.: Factual and counterfactual explanations for black box decision
making. IEEE Intelligent Systems 34(6), 14–23 (2019). https://doi.org/
10.1109/MIS.2019.2957223

[12] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model
predictions. In: Proceedings of the 31st International Conference on Neu-
ral Information Processing Systems. NIPS’17, pp. 4768–4777. Curran

{arXiv:1905.08883}
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
{arXiv:1811.06471}
{arXiv:1811.06471}
https://doi.org/10.1145/3078840
https://doi.org/10.1007/s10916-017-0811-7
https://doi.org/10.1109/TNET.2018.2890547
https://doi.org/10.1145/2463372.2463524
https://doi.org/10.1145/2463372.2463524
https://doi.org/10.1145/2463372.2463524
https://doi.org/10.1109/MIS.2019.2957223
https://doi.org/10.1109/MIS.2019.2957223


Springer Nature 2021 LATEX template

40 Interpretability in Symbolic Regression

Associates Inc., Red Hook, NY, USA (2017)

[13] Adadi, A., Berrada, M.: Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI). IEEE Access 6, 52138–52160
(2018). https://doi.org/10.1109/ACCESS.2018.2870052

[14] Aldeia, G.S.I., de França, F.O.: Measuring feature importance of symbolic
regression models using partial effects. In: Proceedings of the Genetic and
Evolutionary Computation Conference. GECCO ’21. ACM, New York,
NY, USA (2021). https://doi.org/10.1145/3449639.3459302. https://doi.
org/10.1145%2F3449639.3459302

[15] Orzechowski, P., Cava, W.L., Moore, J.H.: Where are we now?: A large
benchmark study of recent symbolic regression methods. In: Proceedings
of the Genetic and Evolutionary Computation Conference. GECCO ’18,
pp. 1183–1190. ACM, New York, NY, USA (2018). https://doi.org/10.
1145/3205455.3205539. http://doi.acm.org/10.1145/3205455.3205539

[16] Cava, W.L., Orzechowski, P., Burlacu, B., de França, F.O., Virgolin, M.,
JIN, Y., Kommenda, M., Moore, J.H.: Contemporary symbolic regression
methods and their relative performance. In: Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track
(Round 1) (2021). https://openreview.net/forum?id=xVQMrDLyGst

[17] Kronberger, G., de França, F.O., Burlacu, B., Haider, C., Kommenda,
M.: Shape-constrained symbolic regression–improving extrapolation with
prior knowledge. Evolutionary Computation, 1–24

[18] Affenzeller, M., Winkler, S.M., Kronberger, G., Kommenda, M., Burlacu,
B., Wagner, S.: Gaining deeper insights in symbolic regression. In:
Riolo, R., Moore, J.H., Kotanchek, M. (eds.) Genetic Programming
Theory and Practice XI, pp. 175–190. Springer, New York, NY
(2014). https://doi.org/10.1007/978-1-4939-0375-7_10. https://doi.org/
10.1007/978-1-4939-0375-7_10

[19] de França, F.O.: A greedy search tree heuristic for symbolic regression.
Information Sciences 442-443, 18–32 (2018). https://doi.org/10.1016/j.
ins.2018.02.040

[20] Ferreira, L.A., Guimaraes, F.G., Silva, R.: Applying genetic program-
ming to improve interpretability in machine learning models. In: 2020
IEEE Congress on Evolutionary Computation (CEC). IEEE, New York
(2020). https://doi.org/10.1109/cec48606.2020.9185620. https://doi.org/
10.1109%2Fcec48606.2020.9185620

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1145/3449639.3459302
https://doi.org/10.1145%2F3449639.3459302
https://doi.org/10.1145%2F3449639.3459302
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
http://doi.acm.org/10.1145/3205455.3205539
https://openreview.net/forum?id=xVQMrDLyGst
https://doi.org/10.1007/978-1-4939-0375-7_10
https://doi.org/10.1007/978-1-4939-0375-7_10
https://doi.org/10.1007/978-1-4939-0375-7_10
https://doi.org/10.1016/j.ins.2018.02.040
https://doi.org/10.1016/j.ins.2018.02.040
https://doi.org/10.1109/cec48606.2020.9185620
https://doi.org/10.1109%2Fcec48606.2020.9185620
https://doi.org/10.1109%2Fcec48606.2020.9185620


Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 41

[21] de França, F.O., Aldeia, G.S.I.: Interaction–Transformation Evolu-
tionary Algorithm for Symbolic Regression. Evolutionary Computa-
tion 29(3), 367–390 (2021) https://arxiv.org/abs/https://direct.mit.edu/
evco/article-pdf/29/3/367/1959462/evco_a_00285.pdf. https://doi.org/
10.1162/evco_a_00285

[22] de França, F.O., de Lima, M.Z.: Interaction-transformation symbolic
regression with extreme learning machine. Neurocomputing 423, 609–619
(2021)

[23] Kantor, D., Von Zuben, F.J., de França, F.O.: Simulated annealing for
symbolic regression. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 592–599 (2021)

[24] Filho, R.M., Lacerda, A., Pappa, G.L.: Explaining symbolic regres-
sion predictions. In: 2020 IEEE Congress on Evolutionary Computation
(CEC). IEEE, New York (2020). https://doi.org/10.1109/cec48606.2020.
9185683. https://doi.org/10.1109%2Fcec48606.2020.9185683

[25] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F.,
Pedreschi, D.: A survey of methods for explaining black box models. ACM
Computing Surveys 51(5), 1–45 (2018) https://arxiv.org/abs/1802.01933.
https://doi.org/10.1145/3236009

[26] Ljung, L.: Perspectives on system identification. Annual Reviews in
Control 34(1), 1–12 (2010). https://doi.org/10.1016/j.arcontrol.2009.12.
001

[27] Marcinkevičs, R., Vogt, J.E.: Interpretability and Explainability: A
Machine Learning Zoo Mini-tour, 1–24 (2020) https://arxiv.org/abs/
2012.01805

[28] Rudin, C.: Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature
Machine Intelligence 1(5), 206–215 (2019) https://arxiv.org/abs/1811.
10154. https://doi.org/10.1038/s42256-019-0048-x

[29] Wu, Z.F., Li, J., Cai, M.Y., Lin, Y., Zhang, W.J.: On membership of
black-box or white-box of artificial neural network models. In: 2016 IEEE
11th Conference on Industrial Electronics and Applications (ICIEA), pp.
1400–1404 (2016). https://doi.org/10.1109/ICIEA.2016.7603804

[30] Loyola-González, O.: Black-box vs. white-box: Understanding their
advantages and weaknesses from a practical point of view. IEEE Access 7,
154096–154113 (2019). https://doi.org/10.1109/ACCESS.2019.2949286

[31] Julia Angwin, S.M. Jeff Larson, Lauren Kirchner, P.: Machine bias:

{https://direct.mit.edu/evco/article-pdf/29/3/367/1959462/evco\protect \T1\textunderscore a\protect \T1\textunderscore 00285.pdf}
{https://direct.mit.edu/evco/article-pdf/29/3/367/1959462/evco\protect \T1\textunderscore a\protect \T1\textunderscore 00285.pdf}
https://doi.org/10.1162/evco_a_00285
https://doi.org/10.1162/evco_a_00285
https://doi.org/10.1109/cec48606.2020.9185683
https://doi.org/10.1109/cec48606.2020.9185683
https://doi.org/10.1109%2Fcec48606.2020.9185683
{arXiv:1802.01933}
https://doi.org/10.1145/3236009
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1016/j.arcontrol.2009.12.001
{arXiv:2012.01805}
{arXiv:2012.01805}
{arXiv:1811.10154}
{arXiv:1811.10154}
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/ICIEA.2016.7603804
https://doi.org/10.1109/ACCESS.2019.2949286


Springer Nature 2021 LATEX template

42 Interpretability in Symbolic Regression

There’s software used across the country to predict future criminals. and
it’s biased against blacks (2016)

[32] Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on ad
privacy settings: A tale of opacity, choice, and discrimination. CoRR
abs/1408.6491 (2014) https://arxiv.org/abs/1408.6491

[33] Lipton, Z.C.: The mythos of model interpretability: In machine learn-
ing, the concept of interpretability is both important and slippery. Queue
16(3), 31–57 (2018). https://doi.org/10.1145/3236386.3241340

[34] Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning inter-
pretability: A survey on methods and metrics. Electronics 8(8), 832
(2019). https://doi.org/10.3390/electronics8080832

[35] Arrieta, A.B., Díaz-Rodríguez, N., Ser, J.D., Bennetot, A., Tabik, S., Bar-
bado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila,
R., Herrera, F.: Explainable artificial intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI. Information
Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

[36] Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608 (2017)

[37] Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.:
Explaining explanations: An overview of interpretability of machine learn-
ing. Proceedings - 2018 IEEE 5th International Conference on Data
Science and Advanced Analytics, DSAA 2018, 80–89 (2019) https://arxiv.
org/abs/1806.00069. https://doi.org/10.1109/DSAA.2018.00018

[38] Sendak, M., Elish, M.C., Gao, M., Futoma, J., Ratliff, W., Nichols, M.,
Bedoya, A., Balu, S., O'Brien, C.: The human body is a black box.
In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. ACM, New York, NY, USA (2020). https://doi.org/10.
1145/3351095.3372827. https://doi.org/10.1145/3351095.3372827

[39] Ghassemi, M., Oakden-Rayner, L., Beam, A.L.: The false hope of cur-
rent approaches to explainable artificial intelligence in health care. The
Lancet Digital Health 3(11), 745–750 (2021). https://doi.org/10.1016/
s2589-7500(21)00208-9

[40] Banerjee, I., Bhimireddy, A.R., Burns, J.L., Celi, L.A., Chen, L.-C., Cor-
rea, R., Dullerud, N., Ghassemi, M., Huang, S.-C., Kuo, P.-C., Lungren,
M.P., Palmer, L., Price, B.J., Purkayastha, S., Pyrros, A., Oakden-
Rayner, L., Okechukwu, C., Seyyed-Kalantari, L., Trivedi, H., Wang,
R., Zaiman, Z., Zhang, H., Gichoya, J.W.: Reading Race: AI Recognises
Patient’s Racial Identity In Medical Images (2021)

{arXiv:1408.6491}
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.3390/electronics8080832
https://doi.org/10.1016/j.inffus.2019.12.012
{arXiv:1806.00069}
{arXiv:1806.00069}
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1145/3351095.3372827
https://doi.org/10.1145/3351095.3372827
https://doi.org/10.1145/3351095.3372827
https://doi.org/10.1016/s2589-7500(21)00208-9
https://doi.org/10.1016/s2589-7500(21)00208-9


Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 43

[41] Yang, M., Kim, B.: Benchmarking Attribution Methods with Relative
Feature Importance (2019)

[42] Camburu, O.-M., Giunchiglia, E., Foerster, J., Lukasiewicz, T., Blun-
som, P.: The Struggles of Feature-Based Explanations: Shapley Values vs.
Minimal Sufficient Subsets (2020)

[43] Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: The
dangers of post-hoc interpretability: Unjustified counterfactual explana-
tions. In: Proceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence, IJCAI-19, pp. 2801–2807. International
Joint Conferences on Artificial Intelligence Organization, California,
USA (2019). https://doi.org/10.24963/ijcai.2019/388. https://doi.org/10.
24963/ijcai.2019/388

[44] Camburu, O., Giunchiglia, E., Foerster, J., Lukasiewicz, T., Blunsom, P.:
Can I trust the explainer? verifying post-hoc explanatory methods. CoRR
abs/1910.02065 (2019) https://arxiv.org/abs/1910.02065

[45] Alvarez-Melis, D., Jaakkola, T.S.: On the Robustness of Interpretability
Methods (Whi) (2018) https://arxiv.org/abs/1806.08049

[46] Hooker, G., Mentch, L.: Please Stop Permuting Features: An Explanation
and Alternatives, 1–15 (2019) https://arxiv.org/abs/1905.03151

[47] Orcun Yalcin, M., Fan, X.: On Evaluating Correctness of Explainable AI
Algorithms: an Empirical Study on Local Explanations for Classification
(April), 0–7 (2021)

[48] Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.:
Intelligible models for healthcare: Predicting pneumonia risk and hospital
30-day readmission. In: Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. KDD ’15,
pp. 1721–1730. Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2783258.2788613. https://doi.org/
10.1145/2783258.2788613

[49] Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck,
C.A., Casalicchio, G., Grosse-Wentrup, M., Bischl, B.: General Pitfalls
of Model-Agnostic Interpretation Methods for Machine Learning Models
(01) (2020) https://arxiv.org/abs/2007.04131

[50] Yang, M., Kim, B.: BIM: towards quantitative evaluation of interpretabil-
ity methods with ground truth. CoRR abs/1907.09701 (2019) https:
//arxiv.org/abs/1907.09701

https://doi.org/10.24963/ijcai.2019/388
https://doi.org/10.24963/ijcai.2019/388
https://doi.org/10.24963/ijcai.2019/388
{arXiv:1910.02065}
{arXiv:1806.08049}
{arXiv:1905.03151}
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
{arXiv:2007.04131}
{arXiv:1907.09701}
{arXiv:1907.09701}


Springer Nature 2021 LATEX template

44 Interpretability in Symbolic Regression

[51] Guidotti, R.: Evaluating local explanation methods on ground truth. Arti-
ficial Intelligence 291, 103428 (2021). https://doi.org/10.1016/j.artint.
2020.103428

[52] Hooker, S., Erhan, D., Kindermans, P.-J., Kim, B.: A bench-
mark for interpretability methods in deep neural networks. In: Wal-
lach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems, vol. 32, pp. 9737–9748. Curran Associates, Inc., Red
Hook, NY, USA (2019). https://proceedings.neurips.cc/paper/2019/file/
fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf

[53] Vaughan, J.W., Wallach, H.: A human-centered agenda for intelligible
machine learning. Machines We Trust: Getting Along with Artificial
Intelligence (2020)

[54] White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W.,
Kronberger, G., Jaśkowski, W., O’Reilly, U.-M., Luke, S.: Better GP
benchmarks: community survey results and proposals. Genetic Program-
ming and Evolvable Machines 14(1), 3–29 (2012). https://doi.org/10.
1007/s10710-012-9177-2

[55] McDermott, J., Jong, K.D., O'Reilly, U.-M., White, D.R., Luke, S., Man-
zoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper,
R.: Genetic programming needs better benchmarks. In: Proceedings of
the Fourteenth International Conference on Genetic and Evolutionary
Computation Conference - GECCO '12. ACM Press, New York, NY,
USA (2012). https://doi.org/10.1145/2330163.2330273. https://doi.org/
10.1145/2330163.2330273

[56] Udrescu, S.M., Tegmark, M.: AI Feynman: A physics-inspired method
for symbolic regression. Science Advances 6(16) (2020) https://arxiv.org/
abs/1905.11481. https://doi.org/10.1126/sciadv.aay2631

[57] Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., Tegmark, M.: Ai
feynman 2.0: Pareto-optimal symbolic regression exploiting graph modu-
larity. Advances in Neural Information Processing Systems 33, 4860–4871
(2020)

[58] Yasui, Y., Wang, X.: Statistical Learning from a Regression Perspective
vol. 65, pp. 1309–1310 (2009). https://doi.org/10.1111/j.1541-0420.2009.
01343_5.x

[59] Kuonen, D.: Regression Modeling Strategies: with Applications to Linear
Models, Logistic Regression, and Survival Analysis vol. 13, pp. 415–416
(2004). https://doi.org/10.1177/096228020401300512

https://doi.org/10.1016/j.artint.2020.103428
https://doi.org/10.1016/j.artint.2020.103428
https://proceedings.neurips.cc/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2330163.2330273
{arXiv:1905.11481}
{arXiv:1905.11481}
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1111/j.1541-0420.2009.01343_5.x
https://doi.org/10.1111/j.1541-0420.2009.01343_5.x
https://doi.org/10.1177/096228020401300512


Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 45

[60] Asadzadeh, M.Z., Gänser, H.-P., Mücke, M.: Symbolic regression based
hybrid semiparametric modelling of processes: An example case of a
bending process. Applications in Engineering Science 6, 100049 (2021).
https://doi.org/10.1016/j.apples.2021.100049

[61] Koza, J.R.: Genetic Programming: On the Programming of Computers
by Means of Natural Selection. A Bradford book. Bradford, Bradford, PA
(1992). https://books.google.com.br/books?id=Bhtxo60BV0EC

[62] Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter
identification for symbolic regression using nonlinear least squares. Genet
Program Evolvable Mach 21(3), 471–501 (2019). https://doi.org/10.1007/
s10710-019-09371-3

[63] Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parame-
ter identification for symbolic regression using nonlinear least squares.
Genetic Programming and Evolvable Machines 21(3), 471–501 (2020)

[64] Burlacu, B., Kronberger, G., Kommenda, M.: Operon c++: An efficient
genetic programming framework for symbolic regression. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion.
GECCO ’20, pp. 1562–1570. Association for Computing Machinery, New
York, NY, USA (2020). https://doi.org/10.1145/3377929.3398099. https:
//doi.org/10.1145/3377929.3398099

[65] Luke, S.: Two fast tree-creation algorithms for genetic programming.
Trans. Evol. Comp 4(3), 274–283 (2000). https://doi.org/10.1109/4235.
873237

[66] Aldeia, G.S.I.: Avaliação da interpretabilidade em regressão simbólica.
Master’s thesis, Universide Federal do ABC, Santo André, SP (December
2021)

[67] Breiman, L.: Random forests 45(1), 5–32 (2001). https://doi.org/10.1023/
a:1010933404324

[68] Ribeiro, M.T., Singh, S., Guestrin, C.: "why should i trust you?": Explain-
ing the predictions of any classifier. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’16, pp. 1135–1144. Association for Computing Machinery,
New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939778.
https://doi.org/10.1145/2939672.2939778

[69] Miranda Filho, R., Lacerda, A., Pappa, G.L.: Explaining symbolic regres-
sion predictions. In: 2020 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8 (2020). IEEE

https://doi.org/10.1016/j.apples.2021.100049
https://books.google.com.br/books?id=Bhtxo60BV0EC
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1109/4235.873237
https://doi.org/10.1109/4235.873237
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778


Springer Nature 2021 LATEX template

46 Interpretability in Symbolic Regression

[70] Covert, I., Lundberg, S., Lee, S.-I.: Understanding Global Feature Con-
tributions With Additive Importance Measures (2020)

[71] Morris, M.D.: Factorial sampling plans for preliminary computational
experiments. Technometrics 33(2), 161–174 (1991)

[72] Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified
framework for machine learning interpretability. CoRR abs/1909.09223
(2019) https://arxiv.org/abs/1909.09223

[73] Sundararajan, M., Taly, A., Yan, Q.: Axiomatic Attribution for Deep
Networks (2017)

[74] Aumann, R.J., Shapley, L.S.: Values of Non-atomic Games. Princeton
University Press, Princeton, NJ, USA (2015)

[75] Lüdecke, D.: ggeffects: Tidy data frames of marginal effects from regres-
sion models. Journal of Open Source Software 3(26), 772 (2018)

[76] Norton, E.C., Dowd, B.E., Maciejewski, M.L.: Marginal
Effects—Quantifying the Effect of Changes in Risk Factors in
Logistic Regression Models. JAMA 321(13), 1304–1305 (2019)
https://arxiv.org/abs/https://jamanetwork.com/journals/jama/
articlepdf/2728169/jama_norton_2019_gm_190004.pdf. https:
//doi.org/10.1001/jama.2019.1954

[77] Long, J.S., Mustillo, S.A.: Using predictions and marginal effects to com-
pare groups in regression models for binary outcomes 50(3), 1284–1320
(2018). https://doi.org/10.1177/0049124118799374

[78] Mize, T.D., Doan, L., Long, J.S.: A general framework for comparing
predictions and marginal effects across models. Sociological Method-
ology 49(1), 152–189 (2019) https://arxiv.org/abs/https://doi.org/10.
1177/0081175019852763. https://doi.org/10.1177/0081175019852763

[79] Onukwugha, E., Bergtold, J., Jain, R.: A primer on marginal effects—
part i: Theory and formulae. PharmacoEconomics 33(1), 25–30 (2015).
https://doi.org/10.1007/s40273-014-0210-6

[80] Agresti, A., Tarantola, C.: Simple ways to interpret effects in mod-
eling ordinal categorical data. Statistica Neerlandica 72(3), 210–
223 (2018) https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/
pdf/10.1111/stan.12130. https://doi.org/10.1111/stan.12130

[81] Norton, E.C., Dowd, B.E., Maciejewski, M.L.: Marginal
effects—quantifying the effect of changes in risk factors in
logistic regression models. JAMA 321(13), 1304 (2019). https:

{1909.09223}
{https://jamanetwork.com/journals/jama/articlepdf/2728169/jama\protect \T1\textunderscore norton\protect \T1\textunderscore 2019\protect \T1\textunderscore gm\protect \T1\textunderscore 190004.pdf}
{https://jamanetwork.com/journals/jama/articlepdf/2728169/jama\protect \T1\textunderscore norton\protect \T1\textunderscore 2019\protect \T1\textunderscore gm\protect \T1\textunderscore 190004.pdf}
https://doi.org/10.1001/jama.2019.1954
https://doi.org/10.1001/jama.2019.1954
https://doi.org/10.1177/0049124118799374
{https://doi.org/10.1177/0081175019852763}
{https://doi.org/10.1177/0081175019852763}
https://doi.org/10.1177/0081175019852763
https://doi.org/10.1007/s40273-014-0210-6
{https://onlinelibrary.wiley.com/doi/pdf/10.1111/stan.12130}
{https://onlinelibrary.wiley.com/doi/pdf/10.1111/stan.12130}
https://doi.org/10.1111/stan.12130
https://doi.org/10.1001/jama.2019.1954
https://doi.org/10.1001/jama.2019.1954


Springer Nature 2021 LATEX template

Interpretability in Symbolic Regression 47

//doi.org/10.1001/jama.2019.1954

[82] Plumb, G., Al-Shedivat, M., Xing, E.P., Talwalkar, A.: Regularizing black-
box models for improved interpretability. CoRR abs/1902.06787 (2019)
https://arxiv.org/abs/1902.06787

[83] Alvarez-Melis, D., Jaakkola, T.S.: Towards Robust Interpretability with
Self-Explaining Neural Networks (2018)

[84] Yeh, C.K., Hsieh, C.Y., Suggala, A.S., Inouye, D.I., Ravikumar, P.: On
the (In)fidelity and sensitivity of explanations. Advances in Neural Infor-
mation Processing Systems 32(NeurIPS) (2019) https://arxiv.org/abs/
1901.09392

[85] Zhou, Z., Hooker, G., Wang, F.: S-lime. Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining (2021).
https://doi.org/10.1145/3447548.3467274

[86] Loh, W.-L., et al.: On latin hypercube sampling. Annals of statistics 24(5),
2058–2080 (1996)

[87] Demšar, J.: Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine learning research 7(1), 1–30 (2006)

[88] Lee, S., Lee, D.K.: What is the proper way to apply the multiple com-
parison test? Korean Journal of Anesthesiology 71(5), 353–360 (2018).
https://doi.org/10.4097/kja.d.18.00242

https://doi.org/10.1001/jama.2019.1954
https://doi.org/10.1001/jama.2019.1954
{1902.06787}
{arXiv:1901.09392}
{arXiv:1901.09392}
https://doi.org/10.1145/3447548.3467274
https://doi.org/10.4097/kja.d.18.00242

	Introduction
	Related work
	Symbolic Regression
	Genetic Programming for Symbolic Regression
	State-of-the-Art Symbolic Regression
	Interaction-Transformation representation

	Explanatory Methods
	Permutation Importance
	Local Interpretable Model-agnostic Explanations (LIME)
	Explain by Local Approximation (ELA)
	SHapley Additive exPlanations (SHAP)
	Shapley Additive Global importancE (SAGE)
	Morris Sensitivity
	Integrated Gradients
	Partial Effects


	Measuring explanations quality
	Robustness of explanations
	Stability
	(in)fidelity
	Jaccard Stability

	Quality of explanations with imperfect predictions
	Cosine Similarity

	Normalized Mean Squared Error

	Methodology
	Data sets
	Regression and explanatory methods
	Result analysis
	iirsBenchmark

	Experimental Results
	Feynman benchmark
	Model accuracy
	Explanation computational cost
	Local Explanations
	Global Explanations

	Selected benchmark
	Model accuracy
	Local Explanations


	Discussion
	Symbolic Regression can have a good trade-off between accuracy and interpretability
	The explanation quality correlates with the model quality
	Trusting an explanation requires evaluating its robustness and quality w.r.t. the prediction model

	Conclusions
	Acknowledgments


