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Abstract

While existing work concentrates on developing QoS models of business workflows and Web services, few tools
have been developed to support the monitoring and performance analysis of scientific workflows in Grids. This
paper describes novel Grid services for dynamic instrumentation of Grid-based applications, performance monitor-
ing and analysis of Grid scientific workflows. We describe a Grid dynamic instrumentation service that provides a
widely accessible interface for other services and users to conduct the dynamic instrumentation of Grid applications
during the runtime. We introduce a Grid performance analysis service for Grid scientific workflows. The analysis
service utilizes various types of data including workflow graphs, monitoring data of resources, execution status
of activities, and performance measurements obtained from the dynamic instrumentation of invoked applications,
and provides a rich set of functionalities and features to support the online monitoring and performance analysis
of scientific workflows. Workflows and their relevant information including performance metrics are stored and
utilized for comparing the performance of constructs of different workflows and for supporting multi-workflow
analysis.

1. Introduction

Recently, increased interest can be witnessed in ex-
ploiting the potential of the Grid for scientific work-
flows. Scientific workflows [28, 35, 41, 42], in contrast
to production and administrative business workflows,
are normally more flexible and completely automatic.
On computational Grids [15], the most common Grid
type, scientists usually try to harness and utilize avail-
able resources in Grids for their experiments. As the
Grid is diverse, dynamic and inter-organizational, it
comes out that even with a particular scientific exper-
iment, it requires to have a set of different workflows
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because (i) one workflow mostly fits to only a par-
ticular configuration of the underlying Grid systems,
and (ii) the available resources allocated for a scien-
tific experiment and their configuration in the Grid are
changed each execution. This requirement is a chal-
lenge to the workflow composition and the workflow
scheduler because normally they focus on composing
and constructing a particular workflow with respect
to available resources, and on mapping that workflow
into the available resources. It is also a challenge to the
performance monitoring and analysis of the workflows
because very often clients of the performance analysis
service (e.g., users and scheduling systems) want to
compare the performance of different workflow con-
structs1 with respect to the resources allocated in order

1 Basically, a workflow construct consists of a set of depen-
dent activities that are represented in a connected subgraph of the
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to determine which workflow construct should be best
matched to which topology of the underlying Grid.
Even though numerous tools have been developed for
constructing and executing scientific workflows in the
Grid, such as [12, 25, 28, 37], there is a lack of tools
that support the performance monitoring and analysis
of such flexible scientific workflows in the Grid. Most
existing work concentrates on developing QoS (Qual-
ity of Service) models of business workflows and Web
services [2, 10, 24, 33], however, few tools have been
developed to support scientists to monitor and analyze
the performance of their workflows in the Grid.

Because of the dynamics of the Grid, the per-
formance monitoring and analysis of workflow-based
applications (WFAs) has to be carried out in online
manner. Firstly, as a workflow (WF) is executed span-
ning distributed organizations in the Grid, in monitor-
ing and analyzing the performance of the workflow,
we need to collect and process a variety of types of
data relevant to the performance of the WFs, for exam-
ple execution status of WFs from workflow manage-
ment systems (WfMS), monitoring data of resources
on which WF activities are executed, and performance
measurements of code regions of invoked applications
of workflow activities. These relevant data are not only
provided by many sources but they are also diverse and
distributed. The performance monitoring and analysis
service, therefore, needs the support from the monitor-
ing middleware in order to obtain, gather, and utilize
that diverse data in a unified way. Secondly, to fully
understand the performance of a workflow, we need
monitoring and performance data of the workflow that
are measured at many levels of detail, such as at the
whole workflow, activity and code region level. With-
out the instrumentation of code regions of workflow
activities, we are only able to monitor at the level
of activity, thus significantly reducing the ability to
detect and correlate performance problems. Most ex-
isting WF monitoring tools are limited to the activity
level.

In previous work, we have developed a middleware
which supports services to access and utilize a variety
of types performance data in a single system named
SCALEA-G [40]. In this paper, we firstly present a
Grid service to support the dynamic instrumentation of
Grid applications. The Grid dynamic instrumentation
service provides a widely accessible interface to other
services/users to control the instrumentation process.
The instrumentation service leverages an XML-based

workflow, e.g., loop, sequence and fork-join. Common workflow
constructs can be found in [1].

Standardized Intermediate Representation for Binary
Code (SIRBC) for describing the program structure
of executable, and an instrumentation request lan-
guage (IRL) for specifying code regions of which
performance metrics should be determined and con-
trolling the instrumentation process. Secondly, we
introduce a Grid service for online monitoring and per-
formance analysis of scientific workflows on the Grid.
In order to provide detailed performance status and
problems of a workflow, the service collects resources
status from the Grid infrastructure monitoring, work-
flow execution status from the workflow control and
invocation services, and performance measurements
obtained through the dynamic instrumentation service.
It then conducts the online analysis of these data along
with the workflow graph. Relevant data to workflows
including workflow graphs and performance data are
stored. We then develop techniques to support multi-
workflow analysis. Refinement constructs of work-
flows can be specified, and performance of refinement
constructs of different workflows can be compared
and evaluated for multiple experiments. The work de-
scribed in this paper has been implemented based on
the SCALEA-G framework [40].

The rest of this paper is organized as follows: Sec-
tion 2 discusses instrumentation techniques for the
Grid. Section 3 describes the dynamic instrumenta-
tion service for Grid applications. Section 4 details
techniques used to implement incremental online pro-
filing. Performance analysis for WFs is presented in
Section 5. We illustrate experiments in Section 6. Sec-
tion 7 discusses the related work. We summarize the
paper and outline the future work in Section 8.

2. Instrumentation Techniques for Grid
Applications

2.1. Instrumentation and Measurement Techniques

One of the central elements of the performance analy-
sis of Grid applications is how performance data is
measured and collected. Firstly, we have to study dif-
ferent instrumentation mechanisms to efficiently mea-
sure different types of performance data. Source code
instrumentation provides a simple and efficient way
for collecting measurement data, however, it requires
the availability of all the source files. The instru-
mented sources have to be compiled and linked with
instrumentation libraries for specific target machines.
That is a time consuming effort because each time
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the application executes the resources allocated may
be different, not to mention the allocated resources
may not be known in advance. Dynamic instrumenta-
tion is complex but well-suited for measuring volatile
and long-running applications, and for applications
whose source code is not available. The WFA is nor-
mally dynamically composed, possibly at runtime,
from deployed applications whose source code is not
available for instrumentation. The dynamic instrumen-
tation would be an alternative for solving the problems
arisen from the selection of instrumentation and mea-
surement system and the compilation of instrumented
code fitted to the allocated resources.

We believe that instrumentation for the Grid should
employ both methods. We can instrument sources of
WF control and invocation service in order to gather
execution status of WFs because execution status in-
formation is normally simple and small. However,
for instrumentation of Grid scientific applications, we
believe that dynamic instrumentation would be more
suitable. While source code instrumentation for Grid
applications is widely supported, e.g., in [6, 19],
dynamic instrumentation in Grids has not got much
attention, even though dynamic instrumentation has
a long history in clustering and parallel computing
[13, 29].

Secondly, we have to carefully select the granular-
ity of the measurement for Grid applications, namely
profiling or tracing mechanism. Many tools support
tracing of Grid applications, e.g., [19, 32]. How-
ever, as Grid performance monitoring and analysis
must be carried out in online manner, tracing is not
suited because it generates a huge volume of trace
data which has been transfered on the fly to analysis
components. On the other hand, traditional profiling
is not suited for online monitoring and analysis be-
cause profiling data can only be obtained at the end
of the execution of applications. Therefore, incremen-
tal mechanisms in which profiling data is updated
or requested and retrieved incrementally at runtime
would be more suitable. For example, in the CrossGrid
project, monitoring data can be periodically retrieved
during runtime [8].

2.2. Instrumentation Service

While execution status of workflows and monitoring
data of resources may be obtained from WfMS and
infrastructure monitoring, respectively, the current sit-
uation is that the user has to manually instrument his
code in order to obtain performance measurements

of code regions of workflow activities, which are
executed on multiple Grid sites, because existing in-
strumentation systems are only appropriate for a single
Grid site (within a single organization). While existing
Grid toolkits (e.g., Globus [17]) provide core services
for job submission and resource discovery, similar
Grid services for instrumenting Grid application do
not exist.

Currently, in most cases the instrumentation of
Grid workflows must be carried out manually by the
end user. Consider the diversity and dynamics of the
Grid. On the one hand, if the user wants to instrument
his code, the user has to know in advance the Grids
he submits jobs to, and has to select the right instru-
mentation tool for each Grid site. As a result, the user
has to do a daunting task in order to instrument his
code. Moreover, the selected instrumentation tool may
not work with the monitoring middleware deployed
in the selected Grid site. On the other hand, instru-
mentation techniques are typically bound to specific
languages and systems. Therefore, it is possible that
we need many different instrumentation systems just
for instrumenting an application executed on the Grid.

We argue that the instrumentation service should
be a core service of a Grid. This approach gives
many advantages. Firstly, an instrumentation service
is bound to a specific Grid site, which normally con-
sists of (homogeneous) computational resources that
are controlled by a single security policy and exchange
data through a local network. Thus, the instrumenta-
tion service can be better developed, can efficiently
exploit features on that site, and is better to be coupled
with the supportive monitoring middleware deployed
in that site. Secondly, as an instrumentation system
is a service, the user does not need to worry about
how to select a suitable instrumentation system. In-
stead, he just discovers the service and uses it. Each
Grid site may provide an instrumentation service that
allows the user or the high level tools to control the in-
strumentation. To this end, the instrumentation service
hides all the low-level details of the instrumentation
process while the client of the instrumentation ser-
vice just simply specifies its requests. To follow this
idea, the instrumentation service must support widely
accessible interfaces, e.g., Grid/Web service opera-
tions, and protocols, e.g., APART SIR and MIR [34].
Nevertheless, with such generic Grid instrumentation
service, we have to accept some limitations, e.g., in-
strumentation of arbitrary code regions may not be
possible.



4

3. Grid Dynamic Instrumentation Service

Figure 1 presents the architecture of our dynamic in-
strumentation service for Grids. There are four main
components residing in different locations that involve
in the instrumentation process: Instrumentation Re-
quester (IR), Instrumentation Mediator (IM), Mutator
Service (MS) and Instrumentation Forwarding Service
(IFS). The IR controls the instrumentation process.
The MS, executed on the computational node where
the application processes execute, is responsible for
performing the dynamic instrumentation of applica-
tion processes. It attaches the application processes
and inserts application sensors into the application
processes. In the middle of the IR and the MS are the
IM and IFS which bridge and aggregate requests and
responses between the IR and the MS. IM and IFS are
needed because the IR cannot always directly commu-
nicate with the MS, e.g., due to the firewall. Moreover,
IR works at a high-level at which it considers the ex-
ecution of an application as a whole. Therefore, IR
may conduct the instrumentation spanning multiple
Grid sites. However, MS works at the lower level at
which its objects are application processes. As a re-
sult, IM and IFS are used to transfer and aggregate
requests and responses between the high-level view
and the low-level one. An IFS instance is responsi-
ble for forwarding requests to multiple MSs executed
on computational nodes. The above architecture is a
service-oriented model based on two languages. The
first language named SIRBC (Standardized Intermedi-
ate Representation for Binary Code) allows the instru-
mentor (MS) to describe instrumented applications in
a neutral representation and to provide that representa-
tion to IR; SIRBC is an implementation of simplified

SIR [34]. The second language named IRL (Instru-
mentation Request Language) allows IR to define what
portions of an application should be instrumented and
what performance metrics should be collected. Both
SIRBC and IRL are XML-based. Details of SIRBC
and IRL can be found in [40].

The MS is a Grid service which is implemented
based on gSOAP, a C++ Web Service toolkit with GSI-
plugin [18]. Figure 2 shows interactions between IR,
MI, IFS, and MS instances when conducting requests
for instrumenting an application. At the requester side,
the IR specifies requests and passes these requests to
IM. Based on the requests, the IM locates existing
IFSs which can forward the requests to MSs exe-
cuted on the same computational nodes of application
processes; if no such IFSs exist, IM makes a request
of creating new IFS instances. IM then sends IRL re-
quests to IFSs. When an IFS receives a request, it
searches MS instances which can fulfill the request.
If there is no MS instance for instrumenting appli-
cation processes of a user in a computational node,
IFS makes a request of creating a new MS instance
for the user on that node. IFS sends the requests to
MSs which in turn forward the requests to correspond-
ing MSs. The MS parses the IRL request and then
perform the instrumentation of application processes.
The MS inserts application sensors into application
processes. The dynamic instrumentation techniques
are facilitated by Dyninst [9]. The application sensors
perform the monitoring and measurement of appli-
cation processes. Performance measurements will be
sent to Sensor Manager Service (SM), which is a
part of the supportive monitoring middleware, or be
collected through MS. Note that the role of SM is
to collect monitoring data from application sensors.
Therefore, in principle, SM can be replaced by similar

Figure 1. Architecture of the Grid service of dynamic instrumentation.
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Figure 2. Steps in conducting a request for instrumentation.

infrastructures that can communicate with application
sensors. Existing infrastructures for collecting mon-
itoring data, such as R-GMA [11] and Mercury [5],
are not suitable for our purpose because they are using
relational database while our application sensors pro-
duce XML-based monitoring data and use XML-based
messages in the communication with SM.

The MS provides the application structure to the
requester in SIRBC format. Based on SIRBC, the
IR can decide which code regions should be instru-
mented. With the high-level encapsulation and high
interoperability, interfaced through service operations,
IRL and SIRBC, the dynamic instrumentation service
is widely accessible to other services.

3.1. Service Interface

The implementation of MS is based on the fac-
tory model. The MS consists of a Mutator Fac-
tory (MF) and Mutator Instance (MI). An MF is
a persistent service deployed in each computational
node. The MF provides a main operation named
createMutatorInstance for creating MIs when re-
quested. The MI is responsible for attaching applica-
tion processes and instrumenting these processes.

Information about MF is published to the support-
ive monitoring middleware. When IRF receives an
instrumentation request, it finds MIs on corresponding
computational nodes which can instrument application
processes of the calling user. If no such a MI exists,
the IFS calls the MF on the corresponding node to
create a new MI. When a MI running, it connects to a
SM, notifies its existence to the SM and waits for con-
trol from requesters. MI provides the following main
operations:
− performIRL: to process IRL requests. The MI will

react with appropriate functions such as attaching
the application process, instrumenting and dein-
strumenting, or detaching the application process.

− getProfilingData: to return profiling data col-
lected to the requester.

− destroyInstance: to end the execution of this in-
stance. When this operation is called the MI frees
resources it occupies, and finishes its execution.

In addition, MF and MI provide two auxiliary oper-
ations: ping operation to support ping service, and
getUserProcess to obtain user processes executed on
a computational node.

3.2. Practical Issues in Building SIR and
Instrumenting Applications

When processing different binary codes compiled by
different compilers, we observed that depending on
specific compilers and architectures, SIR for an ex-
ecutable is quite different from that of the other. It
contains many internal functions that the user may
not want to instrument. SIR however is designed for
C/C++/Fortran/Java sources, thus, it does not define
filters that can be used to exclude these irrelevant in-
formation when building the SIR from applications.
We extend IRL to allow the IR specifying filters into
getsir requests. Filters include code region names
that the instrumentation service should exclude, and
the function scope in which the instrumentation ser-
vice should limit its traversal.

Due to the dependency of executable structures
on the compilers and platforms, the SIR of differ-
ent processes of the same program may be different
when the program is compiled and executed on dif-
ferent platforms. Thus, a SIR is associated with a
process, not with a program. In some cases, the
same code region has different identifiers in different
SIRs. Therefore, when using identifiers to specify se-
lected code regions, the IR has to process each SIR
of a process individually. Consider a large number of
processes, it is a time-consuming task for IR, if IR
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wants to instrument a code region in all processes. To
avoid that, we can specify only the code region name
and the program unit in instrumentation requests. The
instrumentation service will instrument all functions
which have that name within a given program unit.

3.3. Security Model

The security in the dynamic instrumentation service
is based on GSI [43] facilities provided by Globus
Toolkit (GT) [17]. As shown in Figure 1, the security
model employs both transport and message level se-
curity, using delegation, authentication/authorization,
and run-as mechanism [20]. Except MS uses transport
level security, the interactions among the remaining
components are based on message level security. Mes-
sage level security employs GSI secure conversation
mechanism [20].

IR and IM run with the security identity of the user.
IFS service methods are set to run with the security
identity of the client. When IM requests an IFS service
to create an instance, the instance will be run with the
security identity of the user. MF runs with the service
identity in a none-privilege account. However, if MF
is deployed to be used by multiple users, it must be
able to create its instances running in the account of
calling users. The MI created by MF upon requests of
IFS will be run as user identity. MF uses a grid-map
file to authorize its requesters. As MI executes with
the security identity of the user, it has permission to at-
tach user application processes, and is able to perform
the dynamic instrumentation. Delegation is performed
from IM to IFS to MI.

In push mode, application sensors send measure-
ments to SM. When subscribing and/or querying data
provided by application sensors, data requester’s iden-
tity will be recorded. Similarly, before application
sensor instances start sending data to the SM, the SM
obtains the security identity of the requester who exe-
cuted the application. Both sources of information will
be used for authorizing the requester in receiving data
from application sensors. In pull model, performance
measurements collected by applications sensors will
be returned to the requester by MI. MI uses self-
authorization mechanism to check the requester. Re-
quests for obtaining performance measurements sent
by IR will be delegated from IM to IFS to MI. As a re-
sult, only the owner can be able to access performance
data.

In our system, service management, instrumenta-
tion control, and data query and subscription tasks are

conducted through service-based operations whereas
monitoring data is transfered through TCP-based
streams [40], therefore, the implementation of mes-
sage level security has very little impact on the perfor-
mance of our system.

4. Incrementally Updating Profiling Data

Traditionally, profiling is performed offline with per-
formance measurements are summarized and avail-
able for being analyzed when the application finishes.
Thus, this approach is not suitable for online pro-
filing as we have complete summary measurements
only when the application finishes. Online profiling re-
quires measurement data to be collected and analyzed
during runtime of the application. But if summary data
is sent back to the analysis component at the instant the
measurement data is updated, a huge volume data will
be sent over the network. As a result, the impact of the
monitoring on the execution of the application is high.

We develop a mechanism to support online and
incrementally updating profiling data. That is, in-
stead of always updating consecutive measurements
of code regions, the monitoring system returns only
the most-updated measurements in a maximum pre-
defined time or upon a request. To profile a code
region r the instrumentation service inserts a sensor,
composed by a start probe and a stop probe, into the
application process as follows:

sis_start(PBr )

r

sis_stop(PBr ),

where PBr is information used to determine the code
region; PBr is associated with a record storing mea-
surement data of code region r . When an activation of
r finishes, its measurement data will be updated into
the record. Each process keeps a profiling data of all
instrumented code regions.

An analysis component can obtain the profiling
data through pull or push mode. In pull mode, profiling
data is stored in shared memory. The analysis compo-
nent calls the getProfilingData operation of MI in
order to obtain the requested profiling data. In push
mode, the most recent updated measurements of n

code regions are stored into a flush buffer size n, buf n.
Performance measurements are incrementally sent to
Data Receiving and Publishing (DRP) component of
SM (see Figure 1). Figure 3 presents the algorithm
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procedure sis_start(PBr ))

begin

start the measurement of r .

if (it is first execution of r) then

send PBr to DRP component of SM.

end if

end

procedure sis_stop(PBr ))

begin

stop the measurement of r .

update performance measurements in PBr .

if (PBr is not in buf n) then

add PBr into buf n.

else

update PBr in buf n.

end if

if (buf n is full) then

flush whole buf n to DRP.

reset buf n.

end if

end

Figure 3. Updating profiling data to DRP.

used to send measurement data to the monitoring mid-
dleware. In addition, every t seconds since the last
time the buffer is flushed to DRP, the buffer will be
flushed if it is not empty. With this algorithm, perfor-
mance measurements of n last executed code regions
are flushed to DRP incrementally in maximum t sec-
onds. As a result, we ensure that the requester receives
the newly-updated profiling measurement of a code re-
gion no longer than t seconds since the measurement
is updated.

We have already implemented the push mode and
currently are implementing the pull mode. We are cur-
rently investigating to develop application sensors so
that they store collected data into shared memory. The
task to support pushing or pulling profiling data will
be done by MI. Also the getProfilingData operation
will support requests based on MIR [34].

5. Performance Monitoring and Analysis of Grid
Workflow-based Applications

Performance monitoring and analysis of Grid WFs
should support:

− inter-activity performance monitoring and analy-
sis: to monitor and analyze the interactions be-
tween activities, the impact of an activity on the
performance of the whole workflow or of the
workflow construct that the activity participates.
To this end, the monitoring and analysis tool has
to operate at the whole workflow level and on the
whole resources on which the workflow activities
are executed;

− intra-activity performance monitoring and analy-
sis: to monitor and analyze the performance of the
invoked application of the individual activity. To
this end, the monitoring and analysis tool has to
operate at the activity level and on the resource on
which the activity is executed.
Figure 4 presents the architecture of the Grid mon-

itoring and performance analysis service for WFs.
The WF is submitted to the Workflow Invocation and
Control (WIC) service which locates resources and
executes the WF. Events containing execution status
of activities, such as queuing, processing, and infor-
mation about resources on which the activities execute
will be sent to the monitoring tool. The Event Process-
ing processes these events and the Analysis Control
decides which activities should be instrumented, mon-
itored and analyzed. Based on information of a se-
lected activity instance and its consumed resource,
the Analysis Control requests the Instrumentation and
Monitoring Control to perform the instrumentation
and monitoring. Monitoring and measurement data
obtained are then analyzed. Based on the result of the
analysis, the Analysis Control can decide what to do
in the next step.

This architecture uses the SCALEA-G middle-
ware as its supportive monitoring middleware. Various
types of performance data are published to, stored in
and retrieved from SCALEA-G.

5.1. Supporting Workflow Computing Paradigm

Currently we focus on the workflow modeled as a
DAG (Direct Acyclic Graph) because DAG is widely
used in modeling scientific workflows. In a DAG-
based WF, a node represents an activity (task) and an
edge between two nodes represents the dependency
between the two activities. The invoked application
of an activity instance may be executed on a single
or on multiple resources. Meanwhile, we focus on
activities whose invoked applications are application
executables (e.g., MPI program).

We particularly concentrate on analyzing (i) fork-
join model and (ii) multi-workflow of an application.
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Figure 4. Model of monitoring and performance analysis of workflow-based application.

Figure 5(b) presents the fork-join model2 of work-
flow activities in which an activity is followed by a
set of n activities executed in parallel. This model
is widely used in many scientific WFs. There are
several interesting metrics that can be obtained from
this model, such as load imbalance, slowdown fac-
tor, and synchronization delay at the synchronization
point. These metrics help to uncover the impact of
slower activities to the overall performance of the
whole structure. We also focus on fork-join structures
that contain structured block of activities. A structured
block is a single-entry-single-exit block of activities3.
For example, Figure 5(c) presents structured blocks of
activities.

A workflow-based application (WFA) can have
different versions, each represented by a WF. For
example, Figure 5 presents an application with 3
different WFs, each may be selected for executing
on specific underlying resources. When developing
a WFA, we normally start with a graph describing
the WF. The WFA is gradually developed in a se-
quence of refinement steps that creates a better ver-
sion or an adapted version fitted to a particular un-
derlying Grid system. This refinement can be done
automatically by workflow construction tools or man-
ually by the WF developers. In a refinement step,
a subgraph may be replaced by another subgraph of
activities, resulting in a set of different WFs. For
example, the activity a1 in Figure 5(a) is replaced
by set of activities {a1(1), a1(2), . . . , a1(n)} in Fig-
ure 5(b). (Also we can consider set of activities

2 Also called as AND-Split AND-Join [44].
3 Existing WF constructs are detailed in [1].

{a1(1), a1(2), . . . , a1(n)} is reduced to a1.) In Grids
a WF can yield the best result in one particular run but
not in the next run because the Grid may be different
from run after run. The concept of the best solution is
now associated with a particular run. Moreover, since
the underlying system changed from experiment to ex-
periment a single WF may not be enough. As a result,
different solutions for a WFA, even all of them are
just used to solve a specific problem, may equally be
important. The key question is which WF construct
is best for a given collection of resources. Therefore,
multi-workflow analysis, the analysis and comparison
of the performance of different WF constructs, rang-
ing from the whole WF to a specific construct (e.g., a
fork-join subgraph), is an important feature.

We focus on the case in which a subgraph of a
DAG is replaced by an another subgraph in the re-
fined DAG. Let G and H be DAG of workflow WFg

and WFh, respectively, of an WFA. G and H repre-
sent different versions of the WFA. H is said to be
a refinement of G if H can be derived by replacing
a subgraph SG of G by a subgraph SH of H . SH is
said to be a replaced refinement graph of SG. Note
that SG and SH may not be a DAG nor a connected
graph. For example, consider the cases of Figures 5(a)
and 5(b). Subgraph SG = {a1} is replaced by sub-
graph SH = {a1(1), a1(2), . . . , a1(n)}; both are not
DAG, the first is trivial graph and the latter is not
a connected graph. Generally, we assume that there
are n connected components of a subgraph SG. Each
component is either a DAG or a trivial graph.

Graph refinement is a well-established field and
it is not our focus. Therefore, we do not concen-
trate on the determination of refinement graphs in
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Figure 5. Multiple workflows of an workflow-based application: (a) sequence workflow, (b) fork-join workflow, and (c) fork-join structured
block of activities.

workflows, rather, the workflow developers and/or
workflow construction tools are assumed to do this
task. Our main goal is that given different solutions
for a WFA we study the performance similarities and
differences between them.

In this paper, (ai, aj ) is denoted as the dependency
between activity ai and aj ; ai must be finished before
the execution of aj . Let G = (N,E) be given, and
select an arbitrary activity ai. pred(ai) and succ(ai)

are denoted as sets of the immediate predecessors and
successors, respectively, of ai .

5.2. Activities Execution Model

Each invoked application of an activity instance may
be executed on different resources allocated by the
WIC. We use the discrete process model [36] to rep-
resent the execution of an activity a. Let P(a) be an
activity execution status graph modeling the execution
of activity a (hence we call the execution graph of an
activity). A P(a) is a directed, acyclic, bipartite graph
(S,E,A), in which S is a set of nodes representing
activity states, E is a set of nodes representing activity
events, and A is a set of edges representing ordered
pairs of activity state and event. Simply put, an activity
event (e.g., executed) changes the activity state (e.g.,
from queuing to processing), which in turn influences
the occurrence and outcome of future activity events

(e.g., finished, failed). Figure 6 presents an example
of a discrete process modeling the execution of an ac-
tivity. Note that the real execution model of a WF is
more complex, depending on the implementation of
WIC. For example, an activity can be re-submitted,
aborted and suspended4.

Each state s of an activity a is determined by two
events: leading event ei , and ending event ej such that
ei, ej ∈ E, s ∈ S, and (ei, s), (s, ej ) ∈ A of P(a).
To denote an event name of P(a) we use ename(a).
Table 1 presents an example of a few event names
used to describe activity events5. We use t (e) to refer
to the timestamp of an event e and tnow to denote the
timestamp at which the analysis is conducted. Because
the monitoring and analysis is conducted at runtime,
it is possible that an activity a is in a state s but
there is no such (s, e) ∈ A of P(a). When analyzing
such state s, we use tnow as a timestamp to determine
the time spent on state s. We use → to denote the
happened before relation between events.

5.3. Workflow Instrumentation

The monitoring system collects states and events of
each activity instance, and builds the execution status

4 Detailed possible states of a workflow can be found in [44].
5 Detailed possible activity events can be found in [44].
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Figure 6. Discrete process model for the execution of an activity. 1 represents a state, ! represents an event.

Table 1. Example of event names.

Event name Description

Active The activity instance has been started to process its
work.

Completed The execution of the activity instance has com-
pleted.

Failed The execution of the activity instance has been
stopped before its normal completion.

Submitted The activity has been submitted to the scheduling
system.

graph of that activity instance. WIC in our experi-
ment is currently implemented based on JavaCog [27].
WIC contains a job submission engine which inter-
faces to GRAM [38] of the Globus Toolkit. Currently,
to get execution status of activities from WIC, the
job submission engine is instrumented with an event
sensor library. Monitoring data of activity execution
is described by a well-defined XML representation.
The job submission engine captures execution status
of activities and describes the execution status in the
XML representation. The event sensor library is used
to send the activity monitoring data to SCALEA-G
middleware. The Grid performance analysis service
receives monitoring data of activity events and states
by using notification mechanism of SCALEA-G and
by querying and subscribing activity monitoring data.

5.4. Performance Metrics of Grid Scientific
Workflows

Performance measurements for a Grid WF are col-
lected at two levels: activity and whole-application
level. Based on monitoring data, performance mea-
surements and WF graphs, the performance of WF is
analyzed.

5.4.1. Activity Level
At activity level, several performance metrics that
characterize an activity are provided. Firstly, we dy-
namically instrument code regions of the invoked
application of the activity. We collect performance
metrics such as wallclock time, CPU time, hardware
counters of instrumented code regions. Performance
metrics of code regions are incrementally provided to

the user during the execution of the workflow. Based
on these metrics, various exploratory data analysis
techniques can be employed, e.g., load imbalance,
metric ratio. We extend our overhead analysis for
parallel programs [39] to WFAs. For each activity,
we analyze activity overhead. Activity overhead con-
tains various types of overhead, e.g., communication,
synchronization, that occur in an activity instance.

Secondly, we focus on analyzing the response time
of activities. Activity response time, the time an activ-
ity takes to be finished, consists of waiting time and
processing time. Waiting time can be queuing time
and suspending/resuming time and processing time
can consist of communication and computation time.
For each activity a, its execution status graph, P(a), is
used as the input for analyzing activity response time.
Moreover, we analyze synchronization delay between
activities. Consider a dependency between two activ-
ities (ai, aj ) where ai ∈ pred(aj ). ∀ai ∈ pred(aj ),
when ecompleted(ai) → esubmitted(aj ), the synchro-
nization delay from ai to aj , Tsd(ai, aj ), is defined
as

Tsd(ai, aj )

= t (esubmitted(aj )) − t (ecompleted(ai)). (1)

If at the time of the analysis esubmitted(aj ) has not
occurred, Tsd(ai, aj ) is computed as

Tsd(ai, aj ) = tnow − t (ecompleted(ai)). (2)

Each activity aj associates with a set of the synchro-
nization delays. From that set, we compute maxi-
mum, average and minimum synchronization delay at
aj . Note that synchronization delay can be analyzed
for any activity which is dependent on other activi-
ties. This metric is particularly useful for analyzing
synchronization points in a workflow.

5.4.2. Workflow Level
We analyze performance metrics that characterize the
interaction and the performance impact among ac-
tivities. Interactions between two activities can be
file exchanges, remote method invocations or service
calls. There are various metrics of interest such as av-
erage response time, waiting time, queuing time and
synchronization delay of activities, load imbalance,
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Figure 7. Experimental workflows of the Montage application: (a) workflow executed on single resource, (b) workflow executed on two
resources, and (c) workflow executed on n resources.

communication to computation ratio, and success rate
of activity invocation. Correlation metrics, such as
number of activities per resource, resource utilization,
etc., are also important.

We combine WF graph, execution status informa-
tion and performance data to analyze load imbalance
for fork-join model. Let a0 be the activity at the fork
point. ∀ai, i = 1 : n, ai ∈ succ(a0), load imbalance
Tli(ai, s) in state s is computed as

Tli(ai, s) = T (ai, s) −
∑n

i=1 T (ai, s)

n
. (3)

We also apply load imbalance analysis to a set of se-
lected activities. In a workflow, there could be several
activities whose work are the same, e.g., mProject
activities in Figure 7, but are not in fork-join model.
Load imbalance analysis is useful technique to reveal
how the work distribution is conducted.

5.5. Multi-workflow Analysis

We analyze slowdown factor for fork-join model.
Slowdown factor, sf, is defined as

sf = n · maxn
i=1(Tn(ai))

T1(ai)
, (4)

where Tn(ai) is the processing time of activity ai in the
fork-join WF with n activities and T1(ai) is the fastest

processing time of activity ai in the (fork-join) WF of
single activity. The slowdown factor analysis can also
be applied to fork-join structures that contain struc-
tured block of activities. In this case, Tn(ai) will be
the processing time of a structured block of activities
in the WF with n blocks.

For different replaced refinement graphs of WFs
of the same WFA, we compute speedup factor be-
tween them. Let SG be a subgraph of workflow
WFg of a WFA; SG has ng components. Let Pi =
〈ai1, ai2, . . . , ain〉 be a critical path from starting node
to the ending node of the component i, Ci , of SG. The
processing time of SG, Tcp(SG), is defined as

Tcp(SG) = ng

max
i=1

(Tcp(Ci)), Tcp(Ci)

=
n∑

k=1

T (aik), (5)

where T (aik) is the processing time of activity aik .
Now, let SH be the replaced refinement graph of SG,
SG and SH are subgraphs of workflow WFg and WFh,
respectively, of a WFA. Speedup factor sp of SG over
SH is defined as follows:

sp = Tcp(SG)

Tcp(SH)
. (6)
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The same technique is used when comparing the
speedup factor between two workflows WFg and WFh.

To support multi-workflow analysis of WFs, we
collect and store different DAGs, subgraphs of the
WFA, performance data and machine information into
an experiment repository powered by PostgreSQL.
Each graph is stored with its associated performance
metrics; a graph can be DAG of the WF or a subgraph.
We use a table to represent refinement relationship
between subgraphs. Currently, for each experiment,
the user can select subgraphs, specifying refinement
relation between two subgraphs of two WFs. The
analysis service uses data in the experiment repository
to conduct multi-workflow analysis.

6. Experiments

We have implemented prototypes of Grid services for
dynamic instrumentation and performance analysis of
Grid WFs. JGraph [22] and JFreeChart [21] are used
to visualize WF graphs and performance results, re-
spectively. In this section, we illustrate the usefulness
of our services by presenting experiments of different
workflows of the Montage application in the Austrian
Grid [4].

Montage [30] is a software for generating astro-
nomical image mosaics with background modeling
and rectification capabilities. Based on the Montage
tutorial, we develop a set of WFs, each generat-
ing a mosaic from 10 images without applying any
background matching. Figure 7 presents experimental
workflows of the Montage application. In Figure 7(a),
the activity tRawImage and tUncorrectedMosaic are
used to transfer raw images from user site to comput-
ing site and resulting mosaics from computing site to
user site, respectively. mProject is used to reproject
input images to a common spatial scale. mAdd is used
to coadd the reprojected images. mImgtbl is used to
build image table which is accessed by mProject and
mAdd.

In workflows executed on multiple resources, we
have several subgraphs tRawImage → mImgtbl1 →
mProject1 → tProjectedImage, where each sub-
graph is executed on a resource. The tProjectedIm-
age activity is used to transfer projected images pro-
duced by mProject to the site on which mAdd is
executed. When executed on n resources, the sub-
graph mImgtbl2→ mAdd → tUncorrectedMosaic is
allocated on one of that n resources. When executed
on Grid resources using the same NFS (Network File

System), the task mProject can work on fork-join
fashion.

We conduct experiments on sites named LINZ
(Linz University), UIBK (University of Innsbruck),
AURORA6 (University of Vienna) and VCPC (Uni-
versity of Vienna) of the Austrian Grid. The user
resides in VCPC and the workflow invocation and
control service (WIC) submits invoked applications
of workflow activities to VCPC, LINZ, UIBK,
AURORA6. Most machines in experiments are non-
dedicated ones.

6.1. Monitoring Execution Status of Activities

Before a WF is submitted to WIC, the performance
monitoring and analysis service subscribes notifica-
tions of workflow executions to the SCALEA-G mid-
dleware. When the WF is executed, events containing
execution status (e.g., submitted, active, . . .) of activ-
ities are reported back to the monitoring and analysis
service. Figure 8 shows the Execution Status display
which monitors the execution status of activities. The
left window shows one of Montage workflows. The
right window displays execution status of activities of
that workflow. We also can examine execution time
of states during the runtime. For example, Figure 9
presents the execution time of states of the experiment
presented in Figure 8.

6.2. Dynamic Instrumentation

When an activity is executed, its status is shown in
the Execution Status diagram. The user then can start
to instrument activity instances. Figure 10 depicts
the GUI used to control the dynamic instrumenta-
tion of activity instances. On the top-left window,
the user can choose an activity. For each compute
node on which the selected activity instance exe-
cuted, running processes can be examined by invoking
GetUserProcesses operation, as shown in the top-right
window of Figure 10. For a given process of the in-
voked application of an activity instance, the detailed
SIR can be obtained by clicking GetSIR button, e.g.,
SIR of invoked application of activity mProject1 is
visualized in the bottom-right window in Figure 10.
In the bottom-left window is an IRL request used to
instrument selected code regions in the main unit with
a metric wtime (wallclock time).

6.3. Performance Analysis

When an invoked application of an activity instance
is instrumented, the measurement data collected is
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Figure 8. Monitoring execution status of a Montage workflow executed on 2 resources.

Figure 9. Execution time of states of Montage workflow executed on 2 resources.

analyzed by the performance analysis component.
The performance analysis component retrieves pro-
filing data through data subscription or query. Fig-
ure 11 presents the performance analysis GUI when
analyzing a Montage workflow executed on two re-
sources in UIBK. The left-pane shows the DAG of
the WF. The middle-pane shows the dynamic code
region call graph (DRG) of invoked applications of
activities. We can examine the profiling data of in-
strumented code region on the fly. The user can ex-
amine the whole DRG of the application, or DRG
of an activity instance (by choosing the activity in
the DAG). By clicking on a code region, detailed
performance metrics will be displayed in the right-
pane. Depending on the invoked application, source
code information may be available, thus code regions

can be associated with their sources. We can ex-
amine historical profiling data of a code region, for
example window Historical Data shows the execu-
tion time of code region computeOverlap executed on
hafner.dps.uibk.ac.at. The user also can monitor
resources on which activities are executed. For ex-
ample, the window Forecast CPU Usage shows the
forecasted CPU usage of hafner.dps.uibk.ac.at.

Figure 12(a) presents the response time and syn-
chronization delay analysis for activity mImgtbl2
when the Montage workflow, presented in
Figure 7(c), is executed on 5 machines, 3 of
AURORA6 and 2 of LINZ. The synchronization de-
lays from tProjectedImage3, 4, 5 to tImgtbl2 are very
high. This is caused by the high load imbalance be-
tween mProject instances, as shown in Figure 12(b).
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Figure 10. GUI used to control the instrumentation of activity instances of a workflow.

Figure 11. Performance analysis of workflow activities.
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(a) (b)

Figure 12. Analysis of Montage executed on 5 machines: (a) response time and synchronization delay of mImgtbl, and (b) load imbalance of
mProject.

Figure 13. Speedup factor for subgraph ProjectedImage of Montage workflows.

The load imbalance is not due to the inequality of work
distribution between mProject activities, but due to
the differences in processing capability of resources in
the Grid. The two machines in LINZ can process sig-
nificantly faster than all machines in AURORA6. This
detection indicates the workflow composition system
and scheduling system do not take into account the
processing capability of resources when constructing
activities and distributing them on Grids.

Throughout the workflow development procedure,
a subgraph named mProjectedImage which includes
tRawImage → mImgtbl1 → mProject1 in single re-
source version is replaced by subgraphs of tRawImage
→ mImgtbl1 → mProject1 → tProjectedImage
in a multi-resource version. These subgraphs basi-
cally provide projected images to the mAdd activ-
ity, therefore, we consider they are equivalent in

terms of QoS (from the user point of view); they
are replaced refinement graphs. We collect and store
performance of these subgraphs in different experi-
ments. Figure 13 shows the speedup factor for the
subgraph mProjectedImage of Montage workflows
executed on several experiments. The execution of
mProjectedImage of the workflow executed on single
resource in LINZ is faster than that of its refinement
graph executed on two resources (in AURORA6, or
UIBK). However, the execution of mProjectedImage
of workflow executed on 5 resources, 3 of AURORA6
and 2 of LINZ, is just very slightly faster than that
executed on 5 resources of AURORA6. The reason
is that the slower activities executed on AURORA6
resources have a significant impact on the overall ex-
ecution of the whole mProjectedImage as presented
on Figure 12(b).
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7. Related Work

The Grid computing aims at addressing the inter-
operability and integration of diverse resources and
services. To achieve that aim, it is necessary to pro-
vide well-defined interfaces to access these resources
and services by hiding their specific features. The Grid
Application Toolkit (GAT) [3] presents a high level ap-
plication programming that shields low level details of
underlying Grid sites from the user. The Grid dynamic
instrumentation service and GAT follow the same gen-
eral approach: using well-defined service interface to
hide low level details of Grids.

Several tools support performance analysis for
Grid applications such as GRM [6], OCM-G [7]. Our
tool differs from these tools in many aspects. Firstly,
our tool is an OGSA-based service. Secondly, we sup-
port dynamic instrumentation of Grid workflow-based
application. GRM, for example, supports only manual
instrumentation while OCM-G combines source code
instrumentation with a mechanism to dynamically en-
able instrumentation probes. OCM-G also supports
profiling and periodically updating monitoring data
[8], but it limits to MPI programs. Existing tools sup-
porting dynamic instrumentation, e.g., Paradyn [31]
and DPCL [13] are not designed to work with the
Grid. Nor do these tools provide enough accessible
and interoperable interface that our Grid dynamic in-
strumentation service introduces. However, similar to
Paradyn and DPCL, our Grid instrumentation service
uses dynamic instrumentation techniques provided by
Dyninst [9].

Monitoring of workflows has been discussed for
many years. Many techniques have been introduced
to study quality of service and performance models
of workflows, e.g., [10, 24], and to support monitor-
ing and analysis of the execution of the workflow on
distributed systems, e.g., in [2, 33]. Our work and
existing work share many general concepts of per-
formance metrics and monitoring techniques for the
workflow in distributed systems. However, most ex-
isting work concentrates on business workflows and
Web services processes while our work targets to
the performance of scientific workflows executed in
Grids which are more diverse and dynamic, and inter-
organizational. We support dynamic instrumentation
of activity instances, monitoring and performance
analysis of workflows based on not only execution sta-
tus but also performance measurements obtained by
instrumenting the invoked application, and resource
monitoring data. The performance monitoring and

analysis is not limited to activity level, but covers also
code regions of invoked applications. Moreover, we
support multi-workflow analysis.

Numerous performance monitoring and analysis
tools have been developed for the Grid, as studied in
[16, 45], but most of them do not support the moni-
toring and analysis of Grid scientific WFs. Most effort
on supporting the scientist to develop Grid workflow-
based applications is focused on workflow languages,
and workflow construction and execution systems,
but not concentrated on monitoring and performance
analysis of the Grid WFs. P-GRADE [23] is one of few
tools that supports tracing of workflow applications.
Instrumentation probes are automatically generated
from the graphical representation of the application.
It, however, limits to MPI and PVM applications. Our
Grid workflow monitoring and performance analysis
service combines online monitoring execution of ac-
tivities with online profiling analysis. The support of
dynamic instrumentation does not limit to MPI or
PVM applications.

8. Conclusion and Future Work

The dynamics and diversity of the Grid requires a
dynamic and flexible mechanism in conducting the
performance analysis of Grid applications. This pa-
per presents a dynamic approach to the performance
instrumentation, monitoring, and analysis of Grid
workflows. We have introduced a novel Grid service to
support dynamic instrumentation of workflow-based
applications. We have presented a Grid performance
analysis service that can be used to monitor and an-
alyze the performance of scientific workflows in the
Grid on the fly. The Grid performance analysis service
which combines dynamic instrumentation, activity ex-
ecution monitoring, and performance analysis of WFs
in a single system presents a dynamic and flexible
way to conduct the performance monitoring and analy-
sis of scientific WFs. Workflows and their relevant
performance metrics are stored and utilized for com-
paring the performance of subgraphs of workflows and
supporting multi-workflow analysis. We are currently
working towards the full implementation of our proto-
type, and are in the process to integrate the prototype
into the ASKALON toolset [14].

We should stress that the dynamic approach for
conducting the performance monitoring and analysis
of scientific WFs we present does not require us to
perform the monitoring and analysis at all levels such
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as whole-workflow, activity and code region level.
We should conduct the performance analysis from a
high level to a low level and the performance analy-
sis should be based on specific WFs. For example,
if we consider invoked applications as black-boxes,
we can collect only activity states and events from
the workflow invocation and control service. How-
ever, depending on workflows (e.g., workflows based
on Web services, activities implemented in Java in-
voke legacy C/Fortran code), through the instrumenta-
tion of invoked applications of activities, performance
measurements of interactions among activities (e.g.,
an invoked application of an activity calls a func-
tion of the invoked application of another activity) or
within an activity (e.g., an Java method calls C/Fortran
functions) may be collected and analyzed.

In the current implementation, we manually in-
strument WIC in order to get the execution status
of activities. To avoid that, we can extend workflow
specification language with directives specifying mon-
itoring conditions. These directives will be translated
into code used to publish events containing execution
status of activities into the monitoring middleware.
WIC can also provide well-defined interfaces for the
monitoring service to access execution status of activ-
ities. Our performance monitoring and analysis limits
to DAG workflows. Recently, scientific workflows
which have structured loops (e.g., do while structure)
are proliferated. Currently, we are investigating to
extend our techniques to cover workflows with struc-
tured loops. Another aspect is that while we focus on
invoked applications as executable programs (each ac-
tivity instance invokes an executable program), there
exist workflows that each activity instance invokes a
Web Service operation (e.g., written in Java). This
type of workflows will require different instrumen-
tation mechanism, e.g., dynamic instrumentation of
Java services. Meanwhile, the process of analysis,
monitoring and instrumentation is controlled by the
end-user, but it should be automated. The issues men-
tioned above will be addressed in the 6th FP EU
K-Wf Grid project [26] in order to support the perfor-
mance monitoring and analysis of Grid applications in
a knowledge-based workflow system.
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