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Abstract

Desktop Grid systems reached a preeminent place
among the most powerful computing platforms in the
planet. Unfortunately, they are extremely vulnerable to mis-
chief, because volunteers can output bad results, for reasons
ranging from faulty hardware (like over-clocked CPUs) to
intentional sabotage. To mitigate this problem, Desktop
Grid projects replicate work units and apply majority vot-
ing, typically on 2 or 3 results.

In this paper, we observe that this form of replication is
powerless against malicious volunteers that have the inten-
tion and the (simple) means to ruin the project using some
form of collusion. We argue that each work unit needs at
least 3 voters and that voting pools with conflicts enable the
master to spot colluding malicious nodes. Hence, we post-
process the voting pools in two steps: i) we use a statistical
approach to identify nodes that were not colluding, but sub-
mitted bad results; ii) we use a rather simple principle to
go after malicious nodes which acted together: they might
have won conflicting voting pools against nodes that were
not identified in step i. We use simulation to show that our
heuristic can be quite effective against colluding nodes, in
scenarios where honest nodes form a majority.

1. Introduction

Internet Desktop Grids[1] aggregate huge distributed re-
sources over the Internet and make them available for run-
ning a growing number of applications. A major concern
in such a middleware is the support for sabotage tolerance
(ST). Since computations run in an open and non-trustable
environment, it is necessary to protect the integrity of data
and validate the computation results. Without a sabotage-

detection mechanism a malicious user can potentially un-
dermine a full computation that may have been executing
for long [2].

All important ST techniques designed up-to-date for In-
ternet DGs are based on the strong assumption that workers
are independent from each other. While this assumption is
fulfilled, actual sabotage tolerance techniques perform very
well, supplying the required (very low) error rate for the
overall computation. But, as Zhao et al. [11] acknowledge,
a potential threat comes up when workers can devise some
scheme to interact. In fact, actual developments in desk-
top grid middleware are enabling connection of workers in
P2P networks. For example, collaborative techniques are
very attractive for data distribution [8], especially when the
the DG runs a parameter sweep application. Kim et al. [5]
proposed an entirely distributed P2P desktop grid. These
solutions violate the workers independence assumption, as
they enable workers to communicate, thus empowering sab-
otage. This brings new challenges to desktop grid systems,
because the master is not prepared to fight potential collec-
tive malicious behaviors, resulting from orchestrated work-
ers.

To face the new collusion threat, this paper proposes a
novel approach as a complement to the actual replication-
based mechanism. With replication, the master decides
about the trustworthiness of a result immediately after hav-
ing collected all replicas of a work unit. Instead, in our
approach, the master will postpone the decision moment in
the replicated voting pools until it gathers enough informa-
tion to infer the trustworthiness of the workers. We present
in this paper a statistical approach to analyze together the
voting pools and to infer and classify a worker as being ma-
licious or not. Further, the master can mark a voting pool
as being suspicious if a honest worker is losing the deci-
sion. On these voting pools, the master can apply further



replication to conclude about the validity of the result.
In contrast to other works on ST in DGs [7, 9, 11], we

evaluate our approach considering a wider range of ma-
licious saboteurs, including naive and colluding ones, as
well as transient saboteurs which change their profile during
their life.

The paper is further organized as follows. In Section 2,
we present background information about desktop grids. In
Section 3, we present our collusion-resistant sabotage tol-
erance technique. In Section 4 we present and discuss the
results obtained with our sabotage tolerance protocol. Sec-
tion 5 concludes the paper.

2 Background

A desktop grid system consists of a server (referred fur-
ther as the master) which distributes work units of an ap-
plication to workers. Workers are machines which volun-
tarily join the computation over the Internet. Once a work
unit is completed at the worker site, the result is returned
back to the master. A result error is any result returned by
a worker that is not the correct value or within the correct
range of values [6]. The error rate ε is defined as the ratio of
bad results or errors among the final results accepted at the
end of the computation. Thus, for a batch of N work units
with error rate ε, the master expects to receive εN errors.
For every application, the master employs some sabotage-
tolerance mechanism for obtaining an acceptable error rate
εacc with regard to its application. Redundancy is defined as
the ratio of the total number of replicas assigned to workers
to the actual number N of work units. Usually, redundancy
is larger than 1, which means that we need computing re-
sources only for verification purposes.

2.1 Related work

BOINC1, the most popular Internet desktop grid mid-
dleware uses replication with majority voting [1, 7] as the
ST mechanism. The master distributes 2m − 1 replicas of
a work unit to workers and when it collects m similar re-
sults, it accepts that result as correct. With the same model,
Wong [9] presents a variation of the replication with only
2 replicas, by considering the workers arranged as nodes in
a graph and connected by the workunits. This protocol al-
lows the host to estimate without auditing the proportion of
untrusted workers and how often these workers would sub-
mit incorrect results. From the redundancy point of view,
a more efficient method for error detection is spot-checking
[11], where a work unit with a known result is distributed
at random to workers. Worker results are compared against

1Where not specifically stated, the methods herein reviewed assume
independence between workers.

the previously computed and verified result. If the result for
the spotter is erroneous, then, the worker is blacklisted, in
the sense that all its previously and future results are dis-
carded. Credibility-based systems [7] use conditional prob-
abilities of errors based on the history of host result correct-
ness. It assumes that hosts that have computed many results
with very few errors are more reliable than hosts with a his-
tory of erroneous results. This method has problems to fight
against hosts that behave well for a long period of time, in
order to gain credibility, and after that start to sabotage.

Yurkewych et al. [10] presents a study regarding the col-
luding behavior in commercial desktop grids. As work-
ers receive money for their results, this study employs
a game-theoretical analysis, based on the traditional tax-
auditing game. They show that redundancy can eliminate
the need for result auditing when collusion is prevented.
Non-redundant allocation can work even with colluding
scenarios, if the master is able to impose high penalties on
cheating workers, given that some pre-defined positive au-
dit rate is preserved. We differentiate from this study as in
volunteer computing no monetary means can be enforced
to penalize malicious workers. Kondo et al. [6] performed
the first study that characterizes errors in Internet Desktop
Grids. They approached only I/O errors and discussed the
efficiency of the above sabotage tolerance methods. They
concluded that simply blacklisting erroneous hosts can cost
as much as 40% of the throughput, coming from hosts that
produce good results in general. They also concluded that
replication with majority voting is the most reliable sabo-
tage tolerance method in order to achieve low host error
rates. Therefore, we will use replication with majority vot-
ing as a starting point of our approach.

2.2 Sabotage models

To characterize erroneous hosts, we consider two mod-
els that define extreme behaviors: the first behavior is the
naive malicious, where a node randomly commits mistakes
in some work units independently of the behavior of other
nodes. Note that this could possibly happen because the
node is faulty, due, for instance, to malfunctioning hard-
ware. In the other extreme, we consider colluding nodes
that make their behavior depend from the participation of
other malicious nodes in voting pools. They introduce er-
rors only when they are sure that their sabotage can be suc-
cessful, for instance, when they know that other malicious
nodes are participating in the voting pool, thus forming a
majority. While naive malicious nodes expose themselves
to be detected and possibly black-listed in a rather easy way,
the colluding voters are much more subtle and can easily
pass undetected. We denote basic naive malicious nodes
by M1-type. An M1-type worker submits bad results with
a constant probability s, called sabotage rate. If we as-



sume the existence of a fraction f of M1-type saboteurs in
the total population of workers, then the expected error rate
εM1(f, s,m) of the majority-voting replication is [7]:

2m−1∑
j=m

(
2m− 1

j

)
(fs)j(1− fs)2m−1−j (1)

Unlike the basic M1-type, a colluding saboteur (further
referred as an M2-type worker), has the will and the means
to reach other saboteurs in order to develop malicious coali-
tions. In model M2, a dishonest worker w will sabotage
only if it finds enough dishonest peers to join it to defeat
the honest nodes involved in the same voting pool. We
assume that malicious nodes are connected in a complete
graph, such that communication between any two of them
is always possible. However, at this stage of our work, we
impose a limit to the power of malicious nodes: they are not
aware of our sabotage detection mechanisms. If the fraction
of M2-type saboteurs in the total population of workers is
f and each saboteur is active with probability s (i.e. s is
the probability it will launch the collusion-formation proto-
col), then the expected error rate εM2(f, s,m) is given by
Equation (2).

2m−1∑
j=m

(
2m− 1

j

) (
1− (1− s)j

)
f j(1− f)2m−1−j (2)

We consider yet another type of saboteurs deemed M3-
type, mixed malicious, which change their behavior during
their life, behaving either naive or colluding, but always per-
forming a dishonest role. For an M3-type saboteur, c is the
naive ratio, which is the fraction of work units for which
the worker behaves as an M1-type saboteur with sabotage
rate s1, while for the remaining 1− c fraction of work units
it behaves like a M2-type saboteur with sabotage rate s2.

2.3 Discussion

Given that M1-type saboteurs submit a rather small frac-
tion s of bad results (with an average of 0.0034 for inde-
pendent I/O errors [6]), it results that colluding saboteurs
are much more destructive than independent ones. Figure 1
shows the comparison of the error rates achieved with dif-
ferent number of identical results required m, for f = 0.035
and s = 0.0335 in the case of both M1-type and M2-type
saboteurs2. To allow for a better comparison, we used the
same value of s = 0.0335 for all types of colluders in Fig-
ure 1. However, colluding saboteurs would be much more
destructive if they always try to sabotage, i.e., if s = 1 (nat-
urally, this can leave more traces of their intervention). The

2We assumed the same error rate parameters as for the top 10% erro-
neous hosts reported by Kondo et al. [6].
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Figure 1: Error rates comparison between various types of
malicious workers against simple replication

error rate of M3-type saboteurs is something in between M1

and M2-types, being much closer to the latter. We consid-
ered c = 0.5 for an M3-type saboteur, while keeping the
same f and s1 = s2 = s.

We define the effectiveness of a saboteur as being the ra-
tio between the number of times it succeeds to defeat the
sabotage tolerance mechanism versus the total number of
times it sabotages. While naive saboteurs succeed to defeat
the master’s replication-based sabotage tolerance mecha-
nisms only in a small fraction of the attempts, a colluding
saboteur will sabotage only when it is sure to win the ma-
jority voting, and therefore, its effectiveness is total (1). We
should also note that besides being less destructive, naive
saboteurs leave more traces behind them, making it much
easier for the master to spot them out.

3 A collusion-resistant sabotage tolerance
protocol

In this section we propose a collusion-resistant sabotage
tolerance protocol, complementing the actual replication,
which seems to be very effective against M1-type naive
saboteurs.

3.1 Overview

From results of Kondo et al. [6] and from the DG
projects we are aware of, we fix m = 2, i.e., we use
2m − 1 = 3 replicas. However, instead of deciding on a
result as soon as the master gets a majority of 2 similar re-
sponses, it will postpone the decision until it gets all three
results from that work unit and until it collects enough re-
sults of related workers from different work units. We fur-
ther consider each work unit as a voting pool, where each
worker is worth a vote. After it collects a number of voting
information (the most it collects the better), the master will
analyze the information acquired from the voting behavior
and will infer which are the M1-type naive saboteurs. The
rationale for this is that, once these nodes are identified, the



f1 proportion of M1-type workers
s1 sabotage rate of M1-type workers
f2 proportion of M2-type workers
s2 sabotage rate of M2-type workers
f3 proportion of M3-type workers
c naive ratio for M3-type workers
s3,1 sabotage rate of M3-type workers while behav-

ing as M1-type
s3,2 sabotage rate of M3-type workers while behav-

ing as M2-type

Table 1: Parameters describing the population structure

remaining contradictory voting pools only contain collud-
ing nodes of type M2 and M3. Then, the master will recon-
sider these work units and ask for further responses.

A voting pool that contains contradicting votes is of in-
terest for the master, because it contains at least one faulty
node. A valuable observation is that in the case of naive
M1-type workers, the total number of such conflicting vot-
ing pools is higher than in the case of M2-type saboteurs,
for the same f and s, regardless their value. This makes it
easier for the master to spot out naive saboteurs. While a hy-
brid M3 saboteur has a mixed behavior switching between
being naive and colluding, this model will give us less clues
than naive saboteurs, but more clues than colluding ones.
Therefore, given our assumption that M2 and M3 nodes are
not aware of our sabotage tolerance mechanism, we expect
a better response against M3 than against M2 saboteurs.

3.2 Statistical modeling of the voting be-
havior

Consider a population SP consisting of honest and mali-
cious workers. Table 1 describes the meaning of each struc-
ture parameter. We impose that honest workers are in ma-
jority, i.e., f1 + f2 + f3 < 0.5. To enable evaluation, we
assume that the population structure is stable over time and
that workers fully comply with their models during all their
life. As we said before, we assume that nodes are unaware
of the algorithm that the master uses to spot collusion. Let
the master distribute replicated tasks from a set of work
units SW , such that, on average every worker gets on av-
erage N tasks.

A voting pool V = {v1, v2, v3} is a set of three (m = 2)
different workers vi ∈ SP , where each worker submits a
binary vote. Consider a fixed worker v ∈ V . The number
of votes against the worker collects in the voting pool V can
be modeled as a random variable Yv : {0, 1, 2} → R, where
Yv(i) = pv,i ≥ 0 is the probability that the worker v has i
votes against in the voting pool V , with

∑
i pv,i = 1.

Due to the i) population structure stability; ii) workers

compliance with their model; and iii) the fact that workers
can not influence how the master distributes them in the vot-
ing pools, any two voting pools for the same worker are sta-
tistically identical and independent and thus, we can model
the behavior of a worker during a sequence of N voting
pools as a multinomial experiment with N trials Yv.

We denote by Yv,N : {0, 1, . . . , 2N} → R the random
variable defining the probabilities for the worker v to collect
a given number of votes against over a total of N voting
pools. From the independence between two different vot-
ing pools, we can infer that Yv,N =

∏N
t=1 Yv = Y N

v . 3 In
our case, as every Yv is defined over the set {0, 1, 2}, for the
sake of simplicity, the discrete values of the random variable
Yv,N can be obtained by computing the corresponding coef-
ficients of a polynomial like the one of Equation (3). These
coefficients can be computed either by successively multi-
plying the polynomials (as we did) or by applying the multi-
nomial theorem and using the trinomial coefficients [4].

(pv,0 + pv,1X + pv,2X
2)N (3)

The joint distribution function of a voter v with Yv,N

is Fv : {0, 1, . . . 2N} → R, defined as Fv(i) =
Prob(Yv,N ≤ i), Fv(i) being the summation of all co-
efficients of the polynomial (3) up to the i rank.

For a given population structure, after determining the
initial values pv,0, pv,1 and pv,2 and computing the coeffi-
cients of Equation (3) using multiplications of polynomials
we got distribution function curves like the ones depicted in
Figure 2. The population we used to plot these curves was
the following: in each of them we considered f = 0.1 mali-
cious workers. Each worker has some predefined sabotage
rate of 0.5 and we assigned once N = 30 and N = 40 work
units per worker. First, in Figure 2(a) we considered only
naive M1-type workers. In Figure 2(b) we replaced naive
M1-type workers with colluding M2-type workers. We can
notice that for the same percentage of the malicious work-
ers (f = 0.1) and the same sabotage rate (s = 0.5), the gap
between the distribution functions for N = 30 and N = 40
increases, while the distribution function of naive workers
shifts to the right. In Figure 2(c) we considered a mix of M1

and M2-type workers, keeping the proportion of malicious
workers identical (f1 + f2 = 0.1). We can notice that the
distribution function of the naive malicious is on the right
side, the distribution function of the honest workers is on
the left side, while the distribution function of the colluding
malicious is shifted a bit on the right of the honest workers
distribution.

3Given 2 random variables Y1 : {x1
i , i = 1, n1} → R+, Y1(x1

i ) =

p1
i ,

∑
i
p1

i = 1 and Y2 : {x2
i , i = 1, n2} → R+, Y2(x2

i ) =

p2
i ,

∑
i
p2

i = 1, the product Y = Y1Y2 is defined by over the space

{x1
i ∧ x2

j , i = 1, n1, j = 1, n2} with the following expression:

Y (x1
i ∧ x2

j ) = pi
1pj

2.
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Figure 2: Theoretical distribution functions Fv for various population structures

After we analyzed extensively various population struc-
tures, using the mathematical procedure explained in the
above paragraph, the following important conclusions can
be drawn out: (i) M1-type (naive) saboteurs always collects
the biggest number of votes against, their joint distribution
functions being the most-right ones in the graphic; (ii) for
N large enough, there is a clear separation between the dis-
tribution functions Fv for the case of honest workers versus
malicious workers; (iii) the honest workers have the distri-
bution functions on the left side of the graphic, the distances
between a honest worker distribution and a naive (M1) ma-
licious one being the bigger ones; (iv) as expected, the dis-
tribution function for an M3-type worker, not shown on the
plots due to space consideration, will lay down between dis-
tribution functions of M1 and M2 workers.

3.3 Spotting out naive saboteurs

Based on the theoretical conclusions drawn out in Sec-
tion 3.2, we now propose a method for spotting out sabo-
teurs that behave permanently or intermittently as naive
M1-type ones. This includes M3-type workers. Suppose
that the master distributes a batch of work units, such that
each worker takes place in an average of N voting pools.
For some particular worker i, the number of voting pools is
Ni and the master can count the number of times c0, c1, c2,
the worker registered 0, 1, and 2 votes against, among its
work units. These figures, divided by Ni give the practical
(sampled) probabilities p0, p1, p2 (as used in Equation 3)
for that worker. Applying the procedure described in Sec-
tion 3.2, the master will obtain one distribution function
(similar to the ones of Figure 2) for each worker.

For two voters vi �= vj with the distribution functions
Fvi

and Fvj
computed after considering all voting pools

they took place in, we define in Equation 4 the distance be-
tween their distribution functions:

d(vi, vj) =
∑

k

(Fvi
(k)− Fvj

(k))2 (4)

Now, consider the symmetrical matrix D = (di,j) of
size n × n, where its elements are defined as the distances
di,j = d(vi, vj). A row i of this matrix shows how statisti-
cally different is the behavior of worker vi from the rest of
workers in the population. The matrix D can be normalized
to a matrix C to make the values of each row sum 1, by
dividing each row by its own sum.

According to the theoretical findings (Section 3.2), the
distances between naive-behaving saboteurs and the major-
ity of the population should be large. Having in matrix C
a measure of distance between any pair of nodes, we can
use the EigenTrust algorithm of Kamvar et al. [3] (Algo-
rithm 1), to give each node a single global score (its corre-
sponding eigenvalue). The score of each node tells us how
likely is that node to be dishonest. Kamvar et al. proved
that the algorithm will converge to some global scores vec-
tor, �t, if the initial matrix C is not singular. More, the global
vector �t contains only positive values with

∑
ti = 1.

Algorithm 1 The simple EigenTrust algorithm [3]

Input data:
C = (ci,j) a matrix of size n× n, with

∑
j ci,j = 1

some small error ε
�t0 = (t(0)i ), with t

(0)
i = 1

n , for every 1 ≤ i ≤ n
repeat

�t(k+1) ← CT�t(k)

δ ← ‖�t(k+1) − �t(k)‖
until δ < ε

To avoid obtaining singular matrices, we remove from C
the rows and columns for workers that scored only 0 votes
against in all their voting pools. After we compute�t, we sort
the scores of the nodes in ascending order considering that
each value represents a discrete probability and we compute
their corresponding distribution function. In Figure 3 we
depict a particular case for this distribution function (for a
population of 1000 workers processing on average N = 30
work units each, with f1 = f2 = 0.1, s1 = s2 = 0.5). In
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Figure 3: Distribution function and second order differences
for the �t values

most of our experiments we got a clear inflection in this plot
(indicated by the arrow), resulting from the differences be-
tween naive saboteurs and remaining population. In the ab-
sence of an inflection, the algorithm assumes that all work-
ers are either honest or M2-type (in fact some of the workers
could be M3 behaving mostly as M2).

To locate the zone of the inflection, we use the second or-
der differences of �t values, as these emphasize in a clearer
way the fast growth in that zone. We consider 10 consecu-
tive values in the second differences and we compute their
statistical variance. The inflection shows up when these
variances go above a given threshold (Equation (5)). In our
experiments we set ϑ = 10−8. We also tried other thresh-
olds with a difference of up to 3 orders of magnitude and
we noticed no sensible difference. Thus, we can consider
θ = ticr

and classify as naive malicious all workers i such
us ti ≥ θ.

icr = max {i|var(ti−10, ti) < ϑ} (5)

3.4 A general sabotage tolerance protocol

The theoretical modeling using multinomial experiments
presented in Section 3.2 allowed us to define the classifica-
tion procedure presented in Section 3.3. With a good cer-
tainty, the master can identify malicious workers, especially
those of type M1, while keeping the classification error low.
A low classification error means that a small number of false
positive workers, which are in fact honest workers, are re-
ported by the classification scheme. In this section we go
further and define our general sabotage tolerance protocol.

Since actual replication is effective to defeat naive sabo-
teurs, our protocol identifies those cases where a worker
that is not classified as (naive) malicious is defeated, and
asks further replication on those voting pools. Specifically,
the master has to employ the general algorithm described in
Algorithm 2.

Up to line 4 in Algorithm 2, the master applies classical
replication. In line 5 the master selects the conflicting vot-

Algorithm 2 The general sabotage tolerance algorithm

1: Input data:
2: SW : the set of work units, SP : the set of workers
3: Begin
4: SV ← Distribute tasks(SW , SP , 3);
5: SV,conflicting ← Select conflicting pools from SV

6: SMal ← Identify malicious workers
7: SV,suspect ← Select suspect pools from SV,conflicting

8: SV,err ← Ask 2 more responses on pools from
SV,suspect

9: SM2∪M3 ← Identify colluding workers from SV,err

10: SV,suspect1 ← Identify voting pools with consensus of
only colluding workers

11: Ask a new voting pool on every V ∈ SV,suspect1

12: Accept the results for all V ∈ SV by majority voting
13: End

ing pools out of the initial replication results. Next, in line 6,
the master applies the classification algorithm of Section 3.3
and obtains a list of malicious workers. In line 7, the master
selects among the conflicting voting pools those where an-
other worker not a malicious one is defeated. Each suspect
voting pool is further audited (line 8) by putting the tasks
on honest workers. The honest workers are selected from
the ones that recorded zero votes against or from the ones
that registered the smallest �t values in the classification pro-
cedure. At the end of this step, the master identifies those
voting pools SV,err where the initial result was reverted.
From these voting pools, the master identifies the collud-
ing workers (line 9). Next, in step 10, the master traces
back all non-conflicting voting pools where three malicious
workers where initially assigned. On each of these voting
pools, the master invalidates the initial quorum and asks a
new 3-times replication with honest workers as above. In
the end, the master accepts the results of each voting pool
with a majority voting.

4 Results and discussion

4.1 Results

In our analysis, we considered various population struc-
tures. Each worker gets on average N = 30 tasks (i.e.
10000 work units for a population of 1000 workers). For
each population structure we have run 100 experiments (we
show only the average values). We computed the final er-
ror rate and redundancy obtained with our scheme and we
compared them with the one obtained with the simple repli-
cation, before applying our sabotage tolerance protocol. We
compared the actual redundancy of our scheme against a
“theoretical” redundancy that would be obtained if the sab-
otage tolerance protocol would ask for another task replica



on each voting pool with conflicting responses. This theo-
retical redundancy is an optimistic value because it is still
not enough for establishing the correct result of a conflicting
voting pool.

We can note in Figure 4a that with only M1-type naive
workers our sabotage tolerance protocol works pretty well,
increasing the effectiveness of the replication by at least 10
times and avoiding the verification of each conflicting vot-
ing pool (Figure 4b). With only M2-type workers (Fig-
ure 4c), the sabotage tolerance protocol works in its full
power if the workers are sabotaging with rates greater than
0.3, i.e., s2 ≥ 0.3. For smaller values of s2, like 0.05, re-
sults of our algorithm are not so good, but even in this case,
when simple replication is effective, our protocol succeeds
to improve error rate by about 10 times. We can note that
defeating all colluding saboteurs (the cases with big sab-
otage rates) is done with the cost of a bigger redundancy
(Figure 4d), as for every conflicting voting pool we ask two
new results. But, we should note that redundancy is still
lower than 4 and the percentage of the saboteurs in the pop-
ulation is very high.

In Figures 4e, 4f and 4g we considered that the naive
workers are in a small, medium or large proportions (f1 =
0.05, f1 = 0.2 and f1 = 0.4) and we varied the structure
parameters regarding the colluding workers. We can notice
that if the naive workers do not overwhelm the colluding
ones (f1 = 0.05 and f1 = 0.2) then the ST protocol is
very effective in spotting out the collusion, especially on
the cases when the colluding workers are well defined (the
sabotage rate is big enough). For the case when f1 = 0.4,
colluding workers have only a very small influence on the
overall and we got a situation similar with a pure M1 popu-
lation. Still, we get 10 times improvement in the error rate.
In this mixed case, the redundancy is in between the pure
population cases. These redundancy plots were omitted to
to space constraints.

As we discussed previously, an M3-type worker is a hy-
brid one. Therefore, the results for populations consisting
on M3-type workers do not differ too much from the one
presented up to now, being similar with the case of mixed
M1 and M2 populations. We omitted these figures to con-
serve space. Mixing M3-type workers with pure M1 and
M2 ones does not change the results.

4.2 Discussion

Results of Section 4.1 showed that (i) we succeed to keep
the error rate in the acceptable limit of 10−4 for the most
majority of cases; (ii) if the malicious workers reveal their
colluding profile with high consistency (some sabotage rate
s2 ≥ 0.3), our sabotage tolerance heuristic spots them suc-
cessfully, even if the number of saboteurs is large; (iii) in
all cases, we get at least 10 times improvement over simple

replication, without a meaningful increase of redundancy.
Even in the worst case (with a large number of very effec-
tive colluding saboteurs), the redundancy remains below an
entire additional replication per work unit.

From the experiments it appears that the most difficult
situation for our sabotage tolerance approach occurs when
there are many colluding saboteurs (e.g. f2 = 0.4) and
when they sabotage very infrequently (s2 = 0.05). Here,
our protocol succeeds to lower the error rate, but it still re-
mains around 10−3. If possible, a solution might be to in-
crease the number of voting pools per worker (N ).

Another difficulty of the ST protocol occurs when the
number of naive malicious workers is large (f1 = 0.4).
The effectiveness of our ST protocol is closely related to
the weakness of replication in these situations, as shown
in [7]. In fact, although we succeed to get improvements,
to increase performance one might need to increase m. An-
other issue with our heuristic concerns the fact that we do
not eliminate completely all erroneous results. This results
from a number of facts. First, we select “honest” workers to
verify the suspicious results. Although we have a very good
confidence that our selected workers are honest, we can not
eliminate the possibility of selecting malicious workers in-
stead. This situation can happen with higher probability if
the number of saboteurs is very big. Second, the classifi-
cation algorithm of Section 3.3 is tuned for a compromise
between error classification (false positives) and recall (to-
tal number of real positives identified). Simultaneously im-
proving both is very hard or even impossible to achieve.

Regarding the computational effort, the matrix multipli-
cation algorithm is the most costly part (the analysis is in
Kamvar et al. in [3]). However this can be done off-line.

5 Conclusion

In this paper, we presented an algorithm that targets col-
luding nodes in desktop grid systems. We argued that sim-
ple majority voting is powerless against colluding behavior
and we observed that any DG system needs at least 3 repli-
cas to defeat such nodes. Then, we proposed an algorithm
that uses off-line processing on a moderately large set of
voting pools to spot malicious nodes, before accepting any
computation from volunteers. To evaluate our approach we
used three types of nodes, ranging from naive (M1) to col-
luding (M2) ones, including nodes with commuting behav-
ior (M3). Our experimental results show that our statistical
approach identifies well the nodes acting in a naive way,
leaving only the colluding (M2) nodes undetected. Then,
we go after M2 nodes on a voting-pool-by-voting pool ba-
sis, whenever we find conflicting results. We succeed to
keep the overall error rate low, even in the presence of smart
colluding nodes.

As future work, we intend to further improve and sim-
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Figure 4: Results obtained for various population structures

plify our mechanisms for finding M1 and M3 nodes. Ad-
ditionally, we believe that one important limitation of our
work results from the assumption that nodes are not be
aware of the algorithm that the master uses to spot them.
Although the M3 model tries to conceal its pattern of be-
havior, it falls short on that attempt and we still do not have
some formal proof or some evidence showing that no model
can defeat our sabotage tolerance scheme.
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