
 - 1 -

A Science Driven Production Cyberinfrastructure - the Open
Science Grid

The Open Science Grid Executive Board: Mine Altunay1

Contact: Ruth Pordes, OSG Executive Director, Fermilab, PO Box 500, Batavia, IL

, Paul Avery2, Kent
Blackburn3, Michael Ernst4, Dan Fraser5, Rob Quick6, Rob Gardner7, Sebastien
Goasguen8, Tanya Levshina1, Miron Livny9, John McGee10, Doug Olson11, Ruth
Pordes1, Maxim Potekhin4, Abhishek Rana12, Alain Roy9, Chander Sehgal1, Igor
Sfiligoi12, Frank Wuerthwein12

E-mail: ruth@fnal.gov

Abstract. This article describes the Open Science Grid, a large distributed computational infrastructure in the
United States which supports many different high-throughput scientific applications, and partners (federates)
with other infrastructures nationally and internationally to form multi-domain integrated distributed systems for
science. The Open Science Grid consortium not only provides services and software to an increasingly diverse
set of scientific communities, but also fosters a collaborative team of practitioners and researchers who use,
support and advance the state of the art in large-scale distributed computing. The scale of the infrastructure can
be expressed by the daily throughput of around seven hundred thousand jobs, just under a million hours of
computing, a million file transfers, and half a petabyte of data movement. In this paper we introduce and reflect
on some of the OSG capabilities, usage and activities.

Keywords: Scientific Computing, Distributed Computing, Grids, High Throughput Computing, Data Intensive
Computing

Acknowledgements: We acknowledge the prior, current and hoped for future many contributors and sponsors of
the OSG use and work.

1. Overview

The Open Science Grid (OSG) [1] provides a collaborative environment for communities of scientists and
researchers to work together on both common and user specific distributed computing problems and solutions.
The collaboration includes a broad, multi-disciplinary community of scientists and researchers, IT providers,
software developers, educators and computing administrators. The OSG partners with peer organizations in the
US and abroad to provide integrated solutions for its users and also supports groups to build and operate their
own distributed systems to meet their local needs. The OSG project is funded jointly by the Department of
Energy SciDAC-2 program and the National Science Foundation.

In this paper we: Introduce the OSG, including the underlying goals, fundamental concepts, principles and
organization; Explain the operational services that the OSG delivers to its users in support of their computing
activities, including security; Tell you about the software that OSG packages, releases and supportsand that is
used by both the OSG sites and users as well as other communities and projects; Summarize the application
usage modes through the OSG and compare alternative methods that we support for a user to submit their jobs
and accomplish their work; Cover what a site and resource owner needs to do to make their farms and/or disks
accessible to users of the OSG, including how the idea of community (Virtual Organization or VO) relates to the
(end)-user and (owned)-site; Give some challenges of interoperation of heterogeneous infrastructures; And
finally, touch on some new technology directions we are currently working on.

2. Introduction

The communities contributing to the OSG Consortium drive the capabilities and evolution of the infrastructure,
software and activities. The multi-agency sponsorship of the OSG, mentioned above, provides a unique
opportunity for participation at all scales, from individual research PIs to several thousand member global
scientific collaborations and small university campus groups to large DOE laboratory facilities.

There is active participation in and use of the OSG by groups from molecular dynamics, protein structure
prediction, biology, climate, text mining, and computer science. However, the user communities with the most

1 Fermilab, 2University of Florida, 3Caltech, 4Brookhaven National Laboratory, 5 Argonne National
Laboratory,6Indiana University, 7University of Chicago, 8Clemson University, 9University of Wisconsin
Madison, 10 RENCI, 11 Lawrence Berkeley National Laboratory, 12University of California, San Diego.

 - 2 -

challenging needs, scale and sustained use, are the large physics collaborations in the United States. The OSG
provides the computing infrastructure in the United States for the Large Hadron Collider (LHC) ATLAS [2] and
CMS [3] experiments. Other major users are the Laser Interferometer Gravitational Wave Observatory (LIGO)
[4], the Tevatron experiments (D0 and CDF) and the STAR Relativistic Heavy Ion Experiment. The software
used on the OSG is based on the Condor [5] and Globus [6] technologies. Today several thousand users have
accessed the OSG infrastructure and services.

The OSG provides (research and science) communities the means to build vertically integrated distributed
computational systems to their specific needs. Many of the larger user communities have “thick” middleware and
processes that augment those provided by the OSG. Such communities support and use their own community
grid, layered over the common platform provided by the OSG. The OSG has active collaborations with
community projects (e.g. the Data Intensive Science University Network and the LIGO Data Grid) to leverage
the strengths and activities of the different organizations and to help harmonize the resulting systems.

At the other end of the scale, the researchers in smaller communities have little or no time available even to learn
how to use the technologies and processes. For such communities the OSG provides tools, documentation and
support of low overhead use of the common platform. The OSG thus supports “ready-made” end-user services
and software and embedded help for adapting and developing user applications to run on the OSG facility and
help for running local distributed infrastructures.

OSG does not own any computing or storage resources. Rather, these are contributed by the members of the
OSG Consortium and used both by the owning organization as well as shared for use by others. The resource
owners can select which communities they provide access to their clusters and storage, and the priority assigned
to jobs scheduled on their site. The resources accessible through the OSG infrastructure span more than 70
university and laboratory institutions in the United States and South America. Today, mid-2010, the OSG
provides access to 113 compute clusters, 65 data or tape storage systems, and 9 partner campus and regional
infrastructures. Nearly all of the resources are commodity clusters running a variant of the Linux operating
system and NFSor otherwise managed data disk-caches appropriate for the OSG’s focus on high-throughput and
data intensive applications. Typically any application will use more than a dozen of the accessible clusters in any
production run. An overview of OSG CPU usage and data transfer is shown in Tables 1 and 2, respectively.

Sample chart showing different VOs running over time Sample chart showing Sites being used over time.

Table 1: Accounting Summaries of VO and Site Usage

Chart showing typical variation in data transfer during
a day (taken at midnight)

Chart showing recent ramp up in number of file
transfers per month due to 2 recent new applications.

Table 2: Accounting Summaries of Data Movement and File Transfer

 - 3 -

The OSG architecture is designed to allow contributors to: 1) provide access to their computing and storage
resources and/or software developments, 2) benefit from the use of and support of the common software stack
and operational services, and 3) store, access and process their data on the ensemble of resources made
accessible. Only a thin layer of middleware is shared between them. The architecture allows the resources to be
managed and controlled autonomously, especially with regards to operations. Resource providers operate their
local distributed resources according to local policies, preferences and expertise. These resources are often
integrated with non-remotely accessible resources at the local institution.

The use of the OSG has shown a fifty percent increase over the past two years. About thirty percent of the cycles
were executed on resources not owned by the user’s community. Non-HEP usage has increased substantially due
to the increased ability of LIGO to submit Einstein@Home jobs supporting pulsar analysis. From June 2009 to
June 2010, the fraction of non-HEP usage increased 4-fold from about five percent to about twenty percent. The
major applications being executed are protein simulations, molecular dynamics in several sub-disciplines, and
structural biology.

One measure of the contribution to science is the number of publications where the author’s recognize the OSG’s
services. Three hundred and sixty seven papers have been published over the past 12 months that have benefited
from using the OSG (see the OSG NSF Annual Report, June 2010). These publications depended not only on
OSG “cycles”, but also on OSG−provided software, monitoring and testing infrastructure, security and other
services. Of these, 25% are from non-particle physicsa significant increase from the previous year.

3. Principles and Concepts

We describe here the principles, governance and concepts that the OSG has adopted and which provide the
underlying foundations for the use and value of the infrastructure and multi-disciplinary collaborations that
contribute to it. We can only briefly cover these here due to space constraints, but encourage interested readers to
learn more through the main OSG web site2

3.1. Principles

.

The principles that govern the OSG architecture and activities were developed at the start of the project and are
described in a “blueprint” which is continuously evolved based on our improved understanding and stakeholder
needs. Adherence to and consideration of these principles enables us to work towards a coherent, consistent
technical eco-system in an environment of diverse implementations and technologies [7]. While additional
principles have been added, we have found that those developed early on have stood the test of time and helped
with the improvement and extension of the services offered by the OSG. Examples of some of the principles are:

Foundational Computer Science: Symmetry and recursion in any concepts, architectures, designs and
implementations developed for the OSG (for example, no service needs to be unique; if there is one instantiation
of the information service there can be many, and the design and implementation of the information software and
deployments must allow for this); Services should work toward minimizing their impact on the hosting resource,
while fulfilling their functions; Services are expected to protect themselves from malicious input and
inappropriate use.

Operational: The OSG infrastructure must always include a phased deployment, with a clear operations model
adequate to the provision of production-quality service; OSG will provide baseline services and a reference
implementation. Use of other services will be allowed; The OSG infrastructure must be built incrementally. The
roadmap must allow for technology shifts and changes.

Participatory: All services should support the ability to function and operate in the local environment when
disconnected from the (wide area) OSG environment; Policy should be the main determinant of effective
utilization of the resources. Thus, given sufficient requests and open policies for its use, if the OSG is efficient
there should be full utilization of the resources. Users are not required to interact directly with resource
providers; the requirements for participation should promote inclusive participation both horizontally (across a
wide variety of scientific disciplines) and vertically (from small organizations like high schools to large ones like
National Laboratories).

3.2. Governance
The distributed and autonomous nature of the organizations that make up the OSG collaboration led us to pay
particular attention to a governance model that can effectively meet our goals of “openness” (to all research and
science) and “partnership” or benefit through mutual contributions. The aim is to provide community specific
value as well as develop common artefacts, share knowledge and software, share resources that are otherwise

2 www.opensciencegrid.org

http://www.opensciencegrid.org/�

 - 4 -

unused as well as provide agreed upon throughput when needed, foster and sustain a team of experts and
experience for support, take decisions on the evolution and extension of the infrastructure and activities, and
provide additional value more broadly outside as well as inside the Consortium itself.

The consortium members include those organizations and individuals using the infrastructure and/or contributing
cluster, caches, storage as well as projects and organizations developing and providing software and services to
the activities and infrastructure. The governing Council adopts policies that cover usage, security and operations,
as well as defining the expectations of individual and organization members that contribute to and benefit from
the OSG.

Currently the OSG project includes: Production coordination, software, operations, integration and sites, user
support and engagement (of new entrants), campus grids, security, training and content management,
“scalability, reliability and usability”, work load management, network monitoring, administration and metrics,
communication, and some sustaining support for the Condor software. In addition to the core OSG project,
several “Satellite Projects” ↓independent projects providing capabilities or services that will be made available to
OSG stakeholders using the OSG infrastructurecontribute to the goals and mission of the Consortium. We are
finding that the model of contributory partnerships and satellite projects is providing an effective means to
extend the scope and influence of the OSG with a minimum of additional effort by the core project staff.

3.3. Virtual Organizations
The OSG methods and processes are based on the organization, management and use by community groups or
Virtual Organizations (VOs). VOs are typically long-lived stable collaborations, each with well-defined
governance. In the OSG context, a VO includes not only the people who are members of a community, but also
the resources, services, software and policies of that community. VOs can contain other VOs and/or sub-VOs,
interface with each other and share resources, and can have common services, common organizational policies
and methods, and common membership. Many communities deploy, manage and use their own community
based distributed systems layered over and dependent upon the core OSG platform. The members of the
community are able to use additional resources and services outside of their own system by having common
software and interfaces with those of the core part of the OSG. University, regional, research and scientific
communities with their own infrastructures are able to selectively integrate with and/or rely on OSG services.

3.4. Security
Security management is integrated throughput every activity in the OSG and abides by the overarching principles
of maintaining openness and usability for the scientific communities.

The identity management infrastructure of the OSG is based on the X.509 technologies and extended PKI
certificates. The authorization and access control infrastructure is based on the “attribute certificates” as profiled
in RFC 32813

Support is being extended to include Shibboleth-based “identity end-points” in collaboration with InCommon
and CILogon projects and use of local security infrastructures within a campus infrastructure with well defined
“adaptors” to support bridging to the wide-area OSG environment. The increased integration of web-based and
grid-based access tools has led us to develop integrated user tools to improve the usability across the two user
identity and authorization domains.

. The multiple sources and implementations of software to create and manage these certificates
across the job, data, information and operations services is an exemplar of how collaboration can effectively be
brought to bear to work on interoperation and standardization. An example is the recent work on interoperability
between the EU and US services to support the XACML protocols [8].

Many challenges to the usability and simplicity of the end-to-end security infrastructure remain. These include:
Dependencies on external organizations for key parts of the security infrastructure, both certificate generation
and software; Improving the end users experience in use from the laptop, through the local to the remote
infrastructures; Engaging the scientific communities in the necessary policies and processes; Monitoring the
entire system for unexpected behaviors and coordinating incident response across the globe; And ensuring
consistent and complete application of security and authorization models in the software.

4. Operations

Operations for the OSG includes the operation, maintenance and evolution of several different activities: core
“service desk” responsibilities; host based services used and relied on by one or more communities; and help for
and interactions with the distributed set of VO, site, and partner support organizations. In delivering a highly
available production data center, the quality and scope of the operations services and attributes are critical [9].

3 www.ietf.org/rfc/rfc3281.txt

http://www.ietf.org/rfc/rfc3281.txt�

 - 5 -

OSG operations activities are equally driven by our principles, with the specific result that each “OSG-wide”
service and practice is developed to enable, and supported for, reuse and replication on other peer infrastructures.

OSG Operations is distributed across multiple institutions. It provides a single contact point for standardized
operational services and is responsible not only for triaging and tracking any request or problem, but also for
ultimately ensuring the resolution, capturing the lessons learned, and communication of any changes needed to
improve the experience from using OSG services for the future. Operations sets service expectations through
Service Level Agreements (SLAs) between the OSG, service providers and the user communities as appropriate.

The day-to-day operational services provided to the OSG community include: Helpdesk response and triaging;
Trouble ticket tracking and troubleshooting; Credential distribution sources for both people and resources;
Communication hubs including grid-wide event notification and change management announcements; Round the
clock emergency security response; Collaborative documentation infrastructure; And administrative, hardware,
and hardware environment services.

Host based grid services that Operations is responsible for include: Topology databases; Information services
and validation; Monitoring and availability testing; Accounting repositories (current and historical); Software
(middleware) caches; Information consolidation and presentation portal; and several “grid-bridging” services
described below.

OSG operations develops and provides grid-bridging services
 specific software and processes that support use of
multiple infrastructures by the user communities. Our goal here,
as with other areas of OSG, is to facilitate other organizations and
communities to federate their local infrastructures with the OSG
to provide a seamless environment. Currently the grid-bridging
services include a unique trouble ticket exchange system that
allows automated (as well as manual) routing and exchange
of service-desk tickets with other ticketing services. This
allows institutions contributing to the OSG, as well as partner projects, to
maintain their autonomy and local operational practices using their home
or local service desk environment. Figure 1 is a diagram of the current
ticket exchange architecture between the OSG Footprints, EU GGUS, RT and
Remedy service desk implementations.

Operational security is of paramount importance and requires processes and practices that allow marshalling the
whole organization to respond quickly to attacks and threats. The small amount of dedicated project effort is
augmented to include, as needed, “all hands to the wheel” to respond to reported concerns, vulnerabilities and
incidents. The scale and scope of the diverse, and autonomous sites and use groups and the nature of the
partnerships to supply the internationally integrated system for many of the science collaborations means that
any banning or removal activities have wide impact. The actions taken to mitigate and respond to threats and
incidents benefit from deep attention to the context and risks in the end-to-end eco-system [10].

We are increasingly adopting the ITIL practices of incident, change, configuration, problem and release
management. This is bringing us in line with other production data centers in terms of the quality and robustness
of our environment. Whether we can apply for ISO20000 certification in the future remains to be seen.

Solid operation is absolutely necessary in a production grid environment. It is the “glue” that holds the whole
eco-system together, through providing a small number of processes and host based services needed to run the
OSG, and paying attention to measuring effectiveness and cost.

5. Software

To decrease effort for OSG Consortium members and users, OSG provides the OSG Software Stack. Users can
install any appropriate subset of the software stack in order to provide or use resources. For the most part, the
software stack is built upon existing software (such as Condor, Globus, VOMS to name a few) and OSG does as
little software development as possible. In
just a couple of circumstances where there are
no appropriate software components, OSG
has developed it’s own, but our goal is to
build upon existing high-quality tools. OSG
users are not required to use the software
stack, but doing so is the simplest way to

Figure 1: Ticket Exchange Interfaces

Figure 2: Layers in the End-to-End Software Infrastructure

 - 6 -

participate in OSG. The layers of the end-to-end software systems are shown in Figure 2.

The OSG makes integrated tested software releases based on the OSG’s Virtual Data Toolkit (VDT [11]) to
enable access to and use of the ensemble of processors and storage. The OSG supports these common
technologies for both OSG and other projects. We also train new users in their adoption and use. The VDT
currently includes more than forty independent components from nearly as many software development groups.
The modules span generic open source toolkits to those needed and provided by the user communities
themselves. Although we develop little software, it is significant work to build, test, package, distribute, and
support these independently developed components into coherent, harmonized sets for end-user computing, data
processing and storage services, and operations and management tools. The VDT is released for many variants of
Linux and in client mode for Mac OSX. Processes to build, test, and release the software ensure managed
evolution and extension of the capabilities offered.

The VDT includes the following software (roughly categorized):
• Core Distributed Infrastructure Software: Condor and the Globus Toolkit.
• Information Services: including information providers based on the GLUE specification, LDAP

repositories, Gratia accounting, monitoring and resource validation scripts, and resource selection and
matching services based on Condor ClassAds.

• Build and testing tools: the Metronome build and test infrastructure, regression tests etc.
• Storage Service Implementations: BeStMan, dCache and XRootd.
• Security tools and infrastructure: X509 certificate management, VO management services based on X509

extended attributes, authorization and grid to local account mapping tools.
• Client Tools: utilities for accessing OSG services; libraries to read/write data from/to grid-accessible storage

sites; workflow tools. These include tools for “submit hosts” which are services separate from the users
lap/desk top which provide client services shared by members of one or more VOs.

• Support Software: Utilities used by many software packages, including Apache, Tomcat, Berkeley DB,
MySQL, OpenLDAP, PHP, Squid web caching and miscellaneous VDT tools to help administrators, support
staff and users.

The “software life-cycle” involves much interaction with the users, the site administrators and the OSG
operations teams. Requirements for new software versions and components come from the communities and the
staff and are prioritized based on the need and effort required. Similarly, a decision to drop support for or remove
a software component from the VDT is based on community input.

The software in the VDT is, in the main, built from source and regression tested locally. Then a two phase testing
is done, first on a small number of small dedicated OSG sites – where the basic functionality is tested – and then
on a larger Integrated Testbed (ITB). OSG operations services, separate from those used in production, are
instantiated for the ITB – thus allowing end-to-end testing of the whole infrastructure. The OSG community
software and applications are tested as part of the ITB before the final VDT release is authorized. OSG specific
configuration scripts and tools are layered over the VDT and supplied by OSG operations. For a major
OSG/VDT software release, the whole process spans several weeks.

Patches and bug fixes are treated in a streamlined and expedited process based on the criticality of the change –
security related having highest priority – and the likely impact on other software components and services.

6. Using the OSG

Owners of the clusters and disk caches typically provide access to their resources in three “tiers”: Guaranteed to
the owner’s own user community; following agreements between the owner organization and their “friend” user
communities; and opportunistic use by other user communities through dynamic resource sharing. By
“opportunistic” we mean that owners allow, without specific allocation or agreement, any otherwise unused
compute cycles to be used by any community with jobs queued at the local batch or resource management
system. As members of the OSG consortium, resource owners are encouraged to provide access of the order of
10% or more of their computing cycles to other communities. As mentioned earlier, in fact, about 30% of the
overall usage is opportunistic.

Opportunistic use is a hallmark of the OSG. It provides a low overhead mechanism for users to increase
throughput using already provisioned resources. It allows resource owners to automatically enable use of
available cycles and storage by other OSG members. It supports the principle of inclusion of members who have
no resources of their own but contribute value in other areas.

The OSG is targeted at high-throughput computing applications, which means those needing large amounts of
computing over long periods of time where the aggregate amount of computing accomplished is more important
than the completion of any one specific job. Applications that benefit are large ensembles of loosely coupled

 - 7 -

parallel applications for which the overhead in placing the application and data on a remote resource is a fraction
of the overall processing time. In summary, OSG is particularly effective for: High throughput, pleasantly
parallel applications4

Table 3 below summarizes the types and characteristics of applications running on the OSG, based on a
classification from European Grids for EsciencE [12]. Any particular application may have of one or multiple
such characteristics.

; Job runs of between one hour and several days; Jobs that can be check-pointed; Explicit
management of large scale data movement and storage; Ensembles that can effectively run across a large number
of resources.

 Examples on the OSG Job and Data Attributes
Simulation Physics Monte Carlo event simulation.

Protein structure determination.
Nuclear physics modeling and simulation.
Molecular dynamics.

CPU-intensive.
Large number of independent jobs.
Large run sequences.
Small input data sets; large output data sets.

Production
Processing

Processing of physics raw event data.
Nanotechnology parameter sweeps.
Protein analysis.

Significant amount of database access – locally and remotely.
Equivalent (often large) input and output data from remote sources.
Reuse of some files by all jobs.
Sequence of similar jobs and parameter sweeps.

Complex
Workflow

Physics analysis.
Text mining.
Earthquake simulations.
Gravitational wave analysis

Integration of “thick” VO specific higher-level services.
Dependencies between tasks and need for good error reporting and
response from all layers.

Real Time
Response

Testing, validating applications.
Operations and monitoring.

Short runs with small amounts of data.
Semi-guaranteed response times.

Small-scale
Parallelism5

Weather forecasting.
 Chemistry simulations.

Molecular dynamics.

Allocation of multiple cores on a single CPU.
Need for consistent set of MPI libraries across sites.

Table 3: Application Families on the OSG

6.1. Application (VO) Middleware
Each community or VO develops, integrates and supports its end-to-end (vertically) distributed system. We show
two examples, where the details are provided by the reference papers, the ATLAS job submission software [13]
and the CMS data management software [14], together with a key to the acronyms used in the diagrams. The
main message is to show the complexity in the number of services and the mix of externally and internally
provided services needed for these user communities. We would note that the need for multiple community
services and integration of a fairly complex system is typical for many different research areas.

Figure 3: Examples of application service architectures

4 You may have heard the term “embarrassingly parallel”, but we prefer the term “pleasantly parallel”. There is
nothing to be embarrassed about—we’re pleased that there are so many applications that can be parallelized in
this way.
5 Though often these need large-scale parallelism. OSG supports those applications that can be effectively
executed with small-scale parallelism.

 - 8 -

ATLAS or CMS release A version of the Atlas or CMS software for data analysis.
Autopilot Utility to manage pilot job submission to site queues via Condor G.
DBS CMS data set booking service.
CE Consists of one or more similar computers, managed by a single scheduler/job queue, which is set up to

accept and run jobs submitted remotely. The machines do not need to be identical, but must have the
same OS and the same processor architecture. In OSG, the CE runs the bulk of the OSG software stack.

Condor-G Job client interface to diverse grid-job execution environments.
FTS File transfer service that manages the network pipes across multiple simultaneous data movement

actions.
GLEXEC Permits a pilot job to re-authenticate using the credential of the payload user, as if the user had directly

submitted the job.
GlideinWMS Technology for implementing pilot based job management system over a diverse set of resources.
GRAM Service that "provides a single interface for requesting and using remote system resources for the

execution of 'jobs'.
GridFTP An implementation of ftp that uses Grid Proxies for authentication and authorization.
LFC LHC File Catalog System for authenticated registration of mappings between logical file names and one

or more physical file names (i.e. replicas).
LRMS Local Resource Management System, i.e. whatever batch system is in use at the site (Condor, SGE,

PBS, etc).
OSG Client The OSG CLI client suite. Includes all end-user tools to handle credentials, look up information, and

submit jobs to sites.
Panda Monitor The Panda graphic web application interface by which users and administrators can see the state of the

system.
Panda Server The Panda job scheduling/dispatch server. This is where pilot jobs retrieve real user payload
Pathena The command like utility by which ATLAS users can submit jobs to Panda.
Phedex CMS data movement and placement service.
SE The interface through which components communicate with the remote storage unit.
SRM Middleware that interfaces to diverse implementations storage resources using a standard interface.
VOMS Manages real-time user authorization information for a VO.

Table 4: Legend for the example application service architectures

6.2. How the Users Submit Jobs
The distributed computing deployment model introduces several problems for the users of the system. Three
major problems are the complexity of job scheduling in the distributed environment, the non-uniformity of
compute resources, and no easy way to accommodate end-to-end job monitoring.

When providing job submission services to its customers and constituents, users have a variety of technology
choices to solve these problems depending on the types and quantities of the jobs managed. To help OSG better
understand the tradeoffs in technology; and therefore, be able to better advise its user communities, OSG
currently supports three solutions for job routing and distribution: the OSG Matchmaker, Glide-in WMS, and
PanDA. (Additional job submission tools that have been used to a lesser degree on the OSG include Gridway,
Pegasus and Swift.)

Each of these services relies on the underlying information architecture that includes resource names,
availabilities, capabilities, loads, and access mechanisms. This information is used by the application developers
to find resources that can effectively execute their jobs.

Every site and resource that is considered part of the OSG is registered in the “OSG Information Management”
database that stores basic (mostly static) information about sites and resources such as names, descriptions, and
contact information. Dynamic information, such as availabilities, capabilities, and loads, is provided by localized
scripts that run at each site and maintain a local information repository. Data from each site is dynamically
aggregated and provided to a central collector, from where the data is pushed out simultaneously to several
different places controlled by the OSG itself. Users are able to easily access the resources' published information
and use it manually or in their automated job management system.

The OSG MatchMaker is a direct extension of the familiar model of submitting jobs to a local batch scheduler.
The MatchMaker discovers the list of currently available sites and user submitted jobs that are then matched to a
specific site. It is not a single batch system, but individual users can instantiate their own matchmaker. In
addition to basic job management capabilities, it builds-in sophisticated tests of remote sites and can run
"preparation" jobs that set up sites with needed software packages (increasing the probability of success for user
jobs).

Many of the larger communities in OSG use an alternative job submission mode: pilot jobs. Before a user
submits a job, a pilot job system (or “factory”) submits a workload-management job that can that pull the end-
user job once it is running in a site’s batch system. Pilot based systems hide many of the distributed-resource-
related failures from the users because the link to the remote system has already been created and because the
pilot job can run various tests to ensure the environment is appropriate for user jobs. Handling failures is shifted

 - 9 -

from the end-user to the operator of the pilot job system. This job submission mechanism has the capability of
scaling to a large the number of simultaneous jobs that can be sustained. OSG users have had up to 200,000 jobs
in the pilot job system at any given time, with more than 25,000 end-user jobs running simultaneously.

The glideinWMS [15] and PanDA models are quite different in approach although both are pilot based.
GlideinWMS was built directly on top of the Condor infrastructure: the pilot is a Condor process that joins a
Condor pool. Once a pilot is running and ready to accept a user job, it appears to the user just like any local
Condor batch slot. Being Condor-based also means that glideinWMS can readily accept non-trivial workflows
created around Condor DAGs (sets of jobs organized as an directed acyclic graph) [16]. Condor provides an
inherent ability for managing and prioritizing jobs that are being submitted. This is the most widely used job
submission infrastructure on the OSG because of these capabilities.

The PanDA (Production and Distributed Analysis) system was designed using standard web service and
database components. All job management is handled by a central server and the client installation is minimal.
Since PanDA pilot jobs are not coupled to Condor infrastructure (and, in fact, can be submitted in a variety of
ways), there is considerable flexibility in functionality of the pilot. This allows the pilot code to be customized
for specific conditions and/or perform probing of sites and worker nodes to ensure that adequate configuration
and capability are present. Details of pilot jobs execution are reported to the central server and can be used for
troubleshooting if necessary. Upon successful completion of the probing stage, the pilot job gets instructions
from the central server on how to obtain its payload, and commences its execution. Through a system-wide job
database, the PanDA Web portal (Monitor) provides a comprehensive and coherent view of the system and job
execution, from high-level summaries to detailed drill-down job diagnostics.

When used in the context of Atlas software stack, PanDA automates data staging, and provides sophisticated
ways of matching jobs to the sites where required data has been already staged, optimizing overall system
performance. Its satellite system (called Bamboo) provides a fully automated, database-driven submission of
Atlas production jobs. The PanDA system has been thoroughly tested on Atlas production workloads and is also
running CHARMM VO production jobs [17].

The table below compares the functionality of the three systems (see
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison for full description):
Submission Capabilities
and Requirements

MatchMaker Glide-in WMS PANDA

Job Distribution
Mechanism (User
perspective)

Condor-G Pilot Based Pilot Based

Is the service centrally
hosted?

Each VO must install at least one
instance of OSGMM

The Pilot Factory is centrally
hosted, VOs must each install
their own Job submission
infrastructure to submit jobs to the
Pilot Factory. VOs can also install
their own Pilot Factory if desired

The PanDA server, monitor and
their databases are centrally
hosted. Pilot submission is a light
weight process that is hosted by
the VO. VOs must each install
their instance of Job submission
scripts

Difficulty level for new
VOs to install and setup
the required job
submission infrastructure

Easy -- components are available
through the VDT

Moderate/Difficult, new VOs
currently require handholding to
get started. (There is active work
on making it easier.)

Moderate/Difficult, VOs have a
minimal number of frontend
services to set up and maintain but
handholding from developers is
still needed.

Difficulty level for new
users to get their
applications running

Moderate, users must embed their
jobs in Condor wrappers. Data
movement can be tricky to
manage; Condor provides some
built-in data handling capabilities.

Easy. Submission is based on a
command line infrastructure. Data
management can require use of
GridFTP or comparable staging
mechanism

Is the setup and operation
of the system well
documented in terms of
"thoroughness" and "ease-
of-use" for end users (1 to
5, 5 being best)?

Thoroughness (3) Ease-of-use (5) Thoroughness (4) Ease-of-use (3) Thoroughness (4) Ease-of-Use (3)

Support for complex
workflows

Yes, based on Condor DAGMan Yes, based on Condor DAGMan Complex workflows must be
implemented manually

https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=0;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=0;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=1;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=2;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=3;table=2;up=0#sorted_table�

 - 10 -

Submission Capabilities
and Requirements

MatchMaker Glide-in WMS PANDA

Support for Job
prioritization

Based on Condor. Can only
prioritize jobs per submit node↓
not for the whole VO

Full featured, based on Condor
infrastructure

Basic prioritization in the
brokerage module, gradual
throttling of user job priorities
depending on submission volume

Error handling of ill
configured sites or
environments

Regular test/maintenance jobs are
sent to make sure sites are up and
running. Retries are automatically
enabled to minimize end user
error messages

User jobs don't start unless a Pilot
job is already running at the site,
errors are stored in log files for
manual inspection

Pilots probe the environment
before acquiring a job, and report
cases of misconfiguration to the
central service

Information systems used
to schedule jobs

Resource Selection Service
(queried every few minutes)

One time use of registration to
install sites; localized
infrastructures keep track of
dynamic data based on pilot
submissions

User jobs are submitted via
command line tools, production
job submission is automatic,
driven by the database and
managed by a satellite service

User information systems Command line tools Command line tools; limited
monitoring capabilities for end
users

Portal Interface (Monitor)
provides a good interactive view
of the entire system for the users
and operators

Number of VOs that have
used or are using this
service in production

3 8 2

Site requirements for job
submission (other than a
CE and basic correct
configuration)

None Outbound network connections on
each worker node if Condor CCB
is installed; otherwise requires bi-
directional WAN

Outgoing connectivity to WAN
on each worker node

Typical number of
systems that a VO needs
to set up in order to
manage 5000
simultaneous jobs

One dual core, 8GB system 1-2 systems, 8GB memory total One system, very lightweight job
submission requirements

Is Root typically required
for VOs to set up the
submit hosts?

Yes Yes No

Table 5: Comparison of the three OSG large-scale job submission systems

6.3. Usability, Reliability and Scalability – Data, Storage and Testing
Many applications running on the OSG sites are data-intensive and require high-throughput. The LHC (Large
Hadron Collider) experiments such as ATLAS, CMS and ALICE transfer an unprecedented amount of data. The
Tevatron experiments (D0, CDF) as well as non-HEP experiments such as LIGO, SCEC and others also need a
significant amount of data transfer. The data scale of transfer varies from petabytes to terabytes depending on
demands from Tier-1 and Tier-2centers. Gigabyte scale transfer of data may be created by a single job on a
single worker node. The requirements on storage and data management vary widely among the user
communities.

The software provided by the OSG can manage the transfer of input and output data files associated with a job,
as well as pre-staging of data before launching jobs The sites are responsible for administering and supporting
storage available at their sites. The minimal requirement on a site is to provide at least some temporary space for
job IO. In order to satisfy this requirement a site usually provides a local storage visible on a gatekeeper and all
worker nodes. The persistency of application's input and output data created in this space must exceed the
lifetime of the job that created it. A site also guarantees the availability of at least 10 GB of temporary staging
space per job on each worker node. The space should be cleaned up after job completion.

An OSG site may also offer access to storage systems managed and interfaced separately from the processing
clusters and nodes. On each “storage element” (e.g. physical file system, disk cache or hierarchical mass storage
system), data are stored and managed according to the authorization policies provided by the end-to-end security
services. To date the majority of accessible storage is configured to be used by the owning community.
However, increasingly all applications need some data storage persistent across jobs. To meet this need, sites are
asked to provide access to storage for non-owner communities - a chunk of available space (usually up to 5% of

https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=0;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=0;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=1;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=2;table=2;up=0#sorted_table�
https://twiki.grid.iu.edu/bin/view/Documentation/JobSubmissionComparison?sortcol=3;table=2;up=0#sorted_table�

 - 11 -

the total) with specific, or even uncertain, lifetimes for public usage. A user or user community can use this
public space if appropriate authorization settings are in place.

With the ever-expanding number of resources and user communities, the OSG risks reaching limits in its
robustness and usability. Software components may become unreliable or stop working altogether when reaching
a certain threshold. Tools that were adequate on small scale may become unusable at a large scale. Procedures
that worked for a small group of people may become completely infeasible with hundreds or thousands of
participants.

To avoid getting into this situation, OSG has dedicated effort to evaluate the current tools and procedures to
evaluate their effectiveness at the current scale. Also, effort is being expended to simulate subsystems at the
scales expected a few years from now and in evaluating the current tools and procedures in that environment. If
any problems are detected in any part of the infrastructure, the owners of that piece are notified of the
shortcoming and given all the necessary support to reproduce and fix the issue.

The OSG scalability, reliability and usability team has developed tools to automate most of the software testing
and, since OSG does not own any hardware, is relying on hardware given by VOs that are most concerned about
the scalability and reliability of a certain subsystem. Unfortunately the evaluation of procedures is much harder
to automate, so the team mostly evaluates them manually and seeking feedback from the wide OSG user
community as much as possible. The OSG also makes significant efforts to insure the scalability and reliability
of the support set of storage software and configurations. The certification and performance tests developed in
the OSG, executed on the various storage test stands, assure to some extent the scalability and quality of the
available software. The results of the tests also provide feedback to the developers to allow them to improve the
software. During the last year we have done a lot of work to simplify the installation, configuration and usability
of the storage implementations for small sites – particularly in support of the LHC university, Tier-3 sites.

Many challenges remain. Feedback from our users has made it clear that we need to improve the availability and
management of storage for use by communities who do not own the resource. The following requirements must
be met: Provide managed access to all VOs supported by a particular resource to reserve, use and release
requested data storage; Protect sites from bandwidth and other (inadvertent) user misuse; Simplify and automate
the users ability to discover and request data transfer and data replication; Provide a common file, and possibly
other metadata, cataloguing service; Enable VOs to manage the available and reserved storage allocated to them
across multiple sites; Provide an operations service to manage the public storage. The evaluation of iRODS as a
space management solution and common metadata catalog is underway to see if it could satisfy the
abovementioned requirements.

7. How Sites Participate

Once the owner of a cluster or storage resource decides that they would like to make it accessible to OSG users
and communities they follow a few basic steps to: Register the resource to the OSG operations, including
identifying the owning community or organization and obtaining a security certificate for the resource; Follow
the instructions off the OSG wiki to install the appropriate software collection offered from the OSG software
caches; and participate in an operations meeting and join the and site administrators mail lists to meet the support
staff and peer technical groups. Once the software is installed the administrator starts the few core services
required to participate in the common infrastructure, if so desired. Those services include the interface to the
processing nodes and data areas, as well as the security, accounting, information, and validation services.

The site administrator maintains control of the management, priorities and policies of the resource made
accessible to the OSG. Installing the OSG software does not obviate use of the cluster or storage areas by local
users, through the local batch system and I/O utilities etc. The OSG services are all designed to support this
sharing, to be replicated for high-availability and failover, and to operate on infrastructures separate from OSG –
either fully locally managed and used, as part of infrastructures bridged or federated with the OSG, or a
combination of these with providing direct access to OSG users.

The situation of course is not quite so simple in practice. There is significant diversity across sites in the network
and resource hardware implementation and configurations. With regards to networking, the details of site
firewalls, NATs, in-bound or out-bound network access to the final execution CPUs and storage systems impact
the usability, errors, performance of the applications using the site. Troubleshooting such problems is difficult, as
each installation tends to have specific unique features. With regards to the compute and storage hardware, the
specific version and variant of Linux, the disk space and memory available to each execution node and the
availability of shared file systems, all have impact on the usability and performance of the site for different
communities and applications. Luckily, the team nature of the OSG Consortium helps the scaling in support
needs. The “many” email lists and engaged contributors mean that invariably new administrator questions and

 - 12 -

issues are responded to and resolved in a timely fashion by the extant community of experts. This is a valuable
commodity and is regarded as a core strength of the collaboration.

In general, sites deal with the communities of users. The security infrastructure supports defining policies and
authorization for access by community, group within the community, as well as the ability, in the last instance, to
ban or enable an individual per se. VOs are registered in the OSG information databases and have identified
contacts for security, troubleshooting and support. Within a VO, the community self-manages priorities between
sub-groups, support VO specific software, services and users, thus providing a well layered structure for their
end-to-end distributed environments over the set of distributed resources – some of which they own and some of
which are “opportunistically” accessed.

8. Federation and Interoperation

As described previously, the scope of OSG’s thinking and activities includes support for applications and
services that bridge federated distributed computing infrastructures. OSG currently federates with the
EGEE/EGI, TeraGrid, the Worldwide LHC Grid, New York State Grid, the Sao Paolo regional Grid
(GridUNESP), and the Clemson University, Grid Laboratory of Wisconsin, Fermilab and University of Nebraska
campus-wide infrastructures. The model includes “bridges” between local campus grids and the wide-area Grid
where job and data are automatically and transparently uploaded from the local to the OSG environment
(mapping of the security tokens, management of the input and output data etc.). OSG supports services to publish
information from one infrastructure to the next (resource availability, usage etc.).

Fundamental to the thinking is that the different grids can evolve their technologies and services independently.
Thus there is a continuing need for testing of interoperation of job submission and execution and data transport
and access between and across OSG and the grids with which we federate. We leverage the tools and processes
in our software and service release and testing for interoperability and transparency testing.

9. New Job Management Technologies

New applications, new computer hardware, and new software technologies are bringing opportunities for
increasing the effectiveness of the computing ensemble for an increased range of applications. The OSG is
currently working in several of these areas to provide benefit for additional communities and improve the
usability and throughput accessible to the users.

9.1. High Throughput Parallel Computing
With the advent of 4- and 16-core CPUs packaged in commodity CPU systems, OSG stakeholders have shown
an increased interest in computing that combines small scale parallel applications with large scale high
throughput capabilities, i.e. ensembles of independent jobs, each using 8 to 64 tightly coupled processes. The
OSG “HTPC” program (funded through a separate NSF grant) is evolving the technologies, engaging new users,
and supporting the deployment and use of these applications. While still in the early stages, there have been
some useful applications running to date and submitting publications of their results. Currently the focus of the
program is to: Bring the MPI and other specific libraries from the client to the remote executive site as part of the
job – thus removing the dependence on the different libraries invariably found on different sites; Adapt
applications to only use the number of cores available on a single CPU; And extend the OSG information
services to advertise support for HTPC jobs. For example, chemistry applications have been run across 6 sites
(Oklahoma, Clemson, Purdue, Wisconsin, Nebraska and UCSD). The work is being watched closely by the HTC
communities who are interested in taking advantage of multi-core while not adding a dependency on MPI.
Challenges remain in all the above areas as well as adapting the OSG accounting, troubleshooting and
monitoring systems to work well with this new job paradigm.

9.2. Clouds
Cloud computing has emerged as an economic model for computing. The characteristic features of clouds are
elasticity, on-demand and a utility principle exhibited via a pay as you go model. Therefore the challenge that
many operational grid infrastructures face is to investigate Cloud computing and determine if it is cost-effective
to outsource the computer hardware management and if we should adapt the OSG infrastructure and its
middleware to support a new cloud model. To that end OSG has encouraged and started grass roots efforts that
call on the community to research, test and deploy cloud prototypes and measure the cost and benefits.

Several efforts are currently on-going to evaluate the use of cloud computing with OSG. As an example, the
STAR nuclear physics experiment is exploring several implementations or different OSG sites:

• STAR has successfully used Nimbus to deploy a fully-fledged grid site on the Amazon EC2 and run batch
processing jobs on it. In this experiment, the compute element and the worker nodes were virtualized on EC2

 - 13 -

and the standard job submission techniques were used to send jobs to the OSG processing resource running in
EC2.

• Condor, which is the most widely used batch system on OSG, has recently added a virtual machine universe
which offers VMware and KVM support. There the virtual machine is a regular condor job. STAR tested on
the Condor VM universe at the University of Wisconsin.

• At Clemson University, the OSG processing interface was modified to automatically instantiate VM based on
job requests, as well as target the VMs of specific VOs. This technique has the advantage that the user keeps
on using his usual workflow while being guaranteed execution in his virtual machine [18].

In addition, OSG sees new testbeds funded by the DOE (Magellan) and NSF (FutureGrid) as partners in the
exploration of cloud computing and as a means to inform our future architecture and evolving principles.

10. Conclusion

The OSG provides value and benefit to its collaborations through the successful technical hands-on teamwork
(and patience) of the many site administrators and users as well as the efforts of a fantastically dedicated and
experienced staff. We have learned that attention to the “open” in OSG fosters this spirit, that the science
supported by the OSG provides a meaningful goal to motivate the team, and that the “Grid” is a
workablethough challengingmarket to be in. We have described just a few aspects of the OSG today. But
we don’t stand still! Come visit us in person or electronically (via osg-contact@opensciencegrid.org) to find out
more.

11. References
[1] Pordes, R. “Challenges facing production grids” in High Performance Computing and Grids in Action.
Advances in Parallel Computing, 16th ed. (Amsterdam: IOS Press, 2008), 506-521.

[2] The ATLAS Experiment at the CERN Large Hadron Collider, The ATLAS Collaboration and G Aad et al,
Journal of Instrumentation, Volume 3, August 2008, 2008 JINST 3 S0800, doi: 10.1088/1748-
0221/3/08/S08003.

[3] The CMS experiment at the CERN LHC   The CMS Collaboration and S Chatrchyan et al  2008 JINST 3
S08004 doi: 10.1088/1748-0221/3/08/S08004.

[4] "LIGO and the Detection of Gravitational Waves" Physics Today, October 1999.

[5] Douglas Thain, Todd Tannenbaum, and Miron Livny, "Distributed Computing in Practice: The Condor
Experience" Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-356,
February-April, 2005

[6] Globus Toolkit Version 4: Software for Service-Oriented Systems. I. Foster. IFIP International Conference
on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

[7] Analysis of the current use, benefit, and value of the Open Science Grid, R Pordes (for the Open Science Grid
Executive Board), 2010 J. Phys.: Conf. Ser. 219 062024 doi: 10.1088/1742-6596/219/6/062024.

[8] XACML profile and implementation for authorization interoperability between OSG and EGEE, G
Garzoglio et al, 2010 J. Phys.: Conf. Ser. 219 062014 doi: 10.1088/1742-6596/219/6/062014.

[9] The Open Science Grid, OSG Executive Board, Journal of Physics: Conference Series 78:012057.

[10] Optimal Response to Attacks on The Open Science Grid, Mine Altunay; Sven Leyffer; Jeffrey T Linderoth ;
Zhen Xie Elsevier Editorial System(tm) for Computer Networks COMNET-D-09-3466R1.

[11] A. Roy and the OSG Consortium, “Building and testing a production quality grid software distribution for
the Open Science Grid”, Journal of Physics: Conference Series, Issue, Volume 180, Number 1, 2009 J. Phys.:
Conf. Ser. 180 012052 doi: 10.1088/1742-6596/180/1/012052
[12] Interactive and Real-Time Applications on the EGEE Grid Infrastructure, E. Floros and C. Loomis,
Remote Instrumentation and Virtual Laboratories, Springer US DOI 10.1007/978-1-4419-5597-5.

[13] Ganga: User-friendly Grid job submission and management tool for LHC and beyond   D C Vanderster ,et
al  2010 J. Phys.: Conf. Ser. 219 072022 doi: 10.1088/1742-6596/219/7/072022.

[14] PhEDEx Data Service Ricky Egeland , Tony Wildish and Chih-Hao Huang , 2010 J. Phys.: Conf. Ser. 219
062010 doi: 10.1088/1742-6596/219/6/062010.

mailto:osg-contact@opensciencegrid.org�
http://home.fnal.gov/~ruth/GridsInAction.pdf�
http://iopscience.iop.org/1748-0221/3/08�
http://iopscience.iop.org/search?searchType=fullText&all_authors=The+CMS+Collaboration&time=&query=�
http://dx.doi.org/10.1088/1742-6596/219/6/062014�
http://dx.doi.org/10.1088/1742-6596/180/1/012052�
http://www.springerlink.com/content/u71334/?p=428a9d4361f247b5b3c37b11f97ed9ca&pi=0�
http://iopscience.iop.org/1742-6596/219/7/072022?fromSearchPage=true�
http://iopscience.iop.org/search?searchType=fullText&all_authors=D+C+Vanderster&time=&query=�
http://dx.doi.org/10.1088/1742-6596/219/7/072022�
http://iopscience.iop.org/search?searchType=fullText&all_authors=Chih-Hao+Huang&time=&query=�
http://dx.doi.org/10.1088/1742-6596/219/6/062010�

 - 14 -

[15] glideinWMS—a generic pilot-based workload management system, I Sfiligoi et al 2008 J. Phys.: Conf. Ser.
119 062044 doi: 10.1088/1742-6596/119/6/062044

[16] Peter Couvares, Tevik Kosar, Alain Roy, Jeff Weber and Kent Wenger, "Workflow in Condor", in In
Workflows for e-Science, Editors: I.Taylor, E.Deelman, D.Gannon, M.Shields, Springer Press, January 2007
(ISBN: 1-84628-519-4)

[17] Damjanovi, A., et al. Open Science Grid study of the coupling between conformation and water content in
the interior of a protein. Journal of Physical Chemistry, B, August 2008.

[18] M. A. Murphy, L. Abraham, M. Fenn and S. Goasguen “Autonomic Clouds on the Grid” Journal of Grid
Computing Volume 8, Number 1 (March 2010), pages 1-18.

http://dx.doi.org/10.1088/1742-6596/119/6/062044�
http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/asap/abs/ci800263c.html�
http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/asap/abs/ci800263c.html�

	1. Overview
	2. Introduction
	3. Principles and Concepts
	3.1. Principles
	3.2. Governance
	3.3. Virtual Organizations
	3.4. Security

	4. Operations
	5. Software
	6. Using the OSG
	6.1. Application (VO) Middleware
	6.2. How the Users Submit Jobs
	6.3. Usability, Reliability and Scalability – Data, Storage and Testing

	7. How Sites Participate
	8. Federation and Interoperation
	9. New Job Management Technologies
	9.1. High Throughput Parallel Computing
	9.2. Clouds

	10. Conclusion
	11. References

