
COMPSs-Mobile: parallel programming for Mobile-Cloud Computing

Francesc Lordan

Barcelona Supercomputing Center, BSC-CNS
Universitat Politècnica de Catalunya, UPC

Barcelona, Spain
francesc.lordan@bsc.es

Rosa M. Badia

Barcelona Supercomputing Center, BSC-CNS
IIIA - CSIC

Barcelona, Spain
rosa.m.badia@bsc.es

Abstract—The advent of Cloud and the popularization of
mobile devices have led us to a shift in computing access.
Computing users will have an interaction display while the
real computation will be performed remotely, in the Cloud.
COMPSs-Mobile is a framework that aims to ease the develop-
ment of energy-efficient and high-performing applications for
this environment. The framework provides an infrastructure-
unaware programming model that allows developers to code
regular Android applications that, transparently, are paral-
lelized, and partially offloaded to remote resources.

This paper gives an overview of the programming model and
describes the internal components of the toolkit which supports
it focusing on the offloading and checkpointing mechanisms. It
also presents the results of some tests conducted to evaluate the
behavior of the solution and to measure the potential benefits
in Android applications.

Keywords-Mobile Cloud Computing Framework, Parallel
programming model, Android, Offloading, Checkpointing

I. INTRODUCTION

In the recent years, we have assisted to a revolution in IT

technologies. On the first mile, mobile devices permanently

connect people to IT services; on the other end, Cloud tech-

nologies enable the access to computation as a utility. Mobile

Cloud Computing (MCC) brings together the benefits of

both: the immediacy of access of mobile devices and the

infinite computing capacity of the Cloud.

Developing applications that fully exploit MCC is not

straight-forward. Programmers face the concerns of par-

allelizing the application and distributing its components.

Besides, developers deal with the rapid variability of the

network conditions induced by the high mobility of the

mobile device. To not harm the performance and the energy-

efficiency, applications should rapidly adapt their behaviour

to the environmental conditions. Facing these issues requires

a high level of expertise, and dealing with them means to

increase the development time of the application.

This paper presents COMPSs-Mobile: a framework that

eases the coding of MCC applications by freeing the devel-

oper of all these concerns. Its main contributions are the re-

design of the COMPSs runtime to target MCC environments;

the checkpointing mechanism; temporal, energetic and eco-

nomic models to decide whether to offload application

computations, and the validation on real platforms.

II. COMPSS-MOBILE OVERVIEW

The core of the COMPSs-Mobile framework is a pro-

gramming model that abstracts application developers from

the parallelization and distribution details. Developers code

in a sequential fashion making no reference to the infras-

tructure nor any particular API. At compilation time, the

code is modified to insert a set of invocations to a runtime

system that manages the partitioning and deployment of the

application on the underlying infrastructure.

A. Programming Model

The COMPSs programming model [1] aims to allow de-

velopers to write applications without being aware about the

parallelism or infrastructure details. COMPSs applications

are considered composites of methods that run parallelly;

each component is called Core Element (CE); and the whole

composition, Orchestration Element (OE).

To pick a method as a CE, programmers declare the

method in the Core Element Interface (CEI) along with a

@Method annotation indicating the implementing class and

some @Parameter annotations to describe of how the CE

operates on each data it accesses (parameters) specifying its

type and directionality (in, out, in-out).

B. Application Modification and Packaging

Android applications are written in Java and bundled

in Android packages for distribution. The building process

starts with the creation of a Java class to access non-source

code entities (Resource Manager) and all the proxy-stub

classes required for interprocess communications (Pre Com-

piler). Java classes are compiled to generate Java bytecode

(Java Builder) that is translated into Dalvik bytecode and

bundled with the resources into the package file.

To parallelize and distribute the sequential code, CE invo-

cations are replaced by asynchronous tasks whose executions

are orchestrated by a runtime toolkit. Similarly, all accesses

to remote values are instrumented so the runtime fetches

them from the node. For this purpose, we have added a

step to the building process after the Java Builder, the

Parallelization, which replaces the original Java classes by

instrumented versions of them and adds to the bundle all the

components required by the runtime library. To instrument

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.16

497

the code, the framework leverages on Javassist [2], a library

for Java class editing. After that, the packaging process

progresses as done for any regular Java application.

C. Programming Model Runtime

When the final user launches the application, it executes

the instrumented calls that invoke a runtime toolkit that

orchestrates the CE executions aiming to fully exploit the

application parallelism while guaranteeing sequential con-

sistency.

The runtime library is two-fold. Its front-end registers

accesses to private data and intercepts CE invocations; it

is instantiated in every COMPSs-Mobile application, and

its code is executed by the threads of the application. The

back-end manages accesses to shared data, detects data de-

pendencies between tasks and orchestrates their executions;

a unique instance of it is deployed as a Android service in

an independent process.

Finally, each remote worker node hosts a pool of threads

that execute the tasks submitted by the runtime. Worker

nodes are responsible for fetching all the input data required

to run tasks, notifying the creation of their results and

transferring these values to other nodes that need them.

D. Offloading Mechanism

To decide whether a task runs locally or on a surrogate,

the library has an engine that leverages on three models to

predict the energetic, economic and temporal cost of hosting

a task execution on the mobile and offloading it. With

accurate predictions, the engine evaluates the improvement/-

worsening of each parameter and takes a decision according

to a three-variable (representing the improvement for time,

energy and cost) inequality. To feed the models with the

variables described in Table I, task executions are profiled

to make a statistical analysis of each CE.

Data transfers are one of the most influential factors on

the economic, energetic and temporal cost of running an

application. By providing workers with a scheduler that

plans the execution of tasks, they can overlap the fetching of

input values for a task with the computation of other tasks.

Variable Description
Wi Number of CE i tasks waiting to run locally
WR Waiting time on offloaded resources
LTi Execution time for a CE i task on the phone
RTi Execution time for a CE i task on the surrogate platform
SIL Size of the input data to be transferred to the phone
SIR Size of the input data to be transferred to the surrogates
SOR Size of the output data to be transferred from the surrogates
CIN Price per byte to download data to the phone
COUT Price per byte to upload data from the phone
EIN Energy per byte to download data to the phone
EOUT Energy per byte to upload data from the phone
Ei Energy spent to run a CE i task on the phone

Table I

DESCRIPTION OF THE VARIABLES PROVIDED BY THE RUNTIME LIBRARY

A data-sharing platform across workers enables a reduc-

tion on the mobile energy consumption. Currently, the mo-

bile node hosts a data directory. When a value is generated,

the creating node notifies the data generation to the mobile

device which registers the data availability in the directory.

Whenever a node requires that value, it queries the locations

of that data and requests its transfer to any hosting node.

Table II contains the equations used for each prediction

when processing a CE i task t. To compute the timespan,

the model considers two aspects: the waiting time before the

computation starts and the actual computation time. Since

data transfers overlap with the computation of other tasks

in both cases, they are not considered in the model. For the

local economical cost, it only considers the cost to transfer

back the data values that are not on the phone yet; whereas

for the remote case it considers the cost shipping the input

data only available at the phone and transferring back the

results. For the energy prediction, it uses the energetic cost of

transmitting/receiving instead of the price. For the local case,

it also considers the energy spent on the task computation.

Local Remote

Time
N∑

j=1

(Wj ∗ LTj) + LTi WR+RTi

Cost SIL ∗ CIN SIR ∗ COUT + SOR ∗ CIN

Energy SIL ∗ EIN + Ei SIR ∗ EOUT + SOR ∗ EIN

Table II
MODELS EQUATIONS

E. Checkpointing Mechanism

When the mobile device reads a data value generated by

an offloaded task, the main code execution waits for the

runtime library to obtain the actual value. Due to the high

mobility of the mobile device, connection losses are likely.

To recover from them and continue with the execution, the

mobile device runs locally the task that produces the value,

which at its time may require other values. This mechanism

results in a back-tracking process that only stops when all

the input data required by a task exists in the local device.

To avoid a full re-execution of the application, the runtime

transfers back some values to establish some checkpoints.

These values are selected according to a graph-partioning

into blocks. The runtime analyses each block, identifies its

output values and transfers them back to the mobile as soon

as they are available. To enable this backtracking procedure,

a task can not be removed from the dependency graph until

all its output values have been transferred back to the mobile,

or the result of all its successors have been saved and the

values can not be accessed by the application in the future.

498

III. EVALUATION

To evaluate the behavior of the COMPSs-Mobile toolkit

on different situations, we have ported a scientific applica-

tion: HeatSweeper; and executed it considering two different

scenarios where COMPSs-Mobile uses resources within a

local network or geographically distributed resources.

A. Use Case: HeatSweeper

HeatSweeper is an intensive search algorithm that opti-

mizes the location of 1-to-N heat source to minimize the

time to warm-up the whole surface to certain temperature.

For this purpose, the algorithm runs a set of heat transfer

simulations, each one encapsulated in a simulate task that

generates a report describing the result of the simulation.

In a second phase, the algorithm selects the best performing

configuration by comparing pairs of reports in getBest tasks.

We run two different configurations to optimize the place-

ment of up to two heat sources: low-resolution representing

short-lasting applications, with 9 possible locations and short

simulations (up to 50 iterations each); and high-resolution

emulating large computations, with 25 different spots on the

surface and long simulations (up to 10,000 iterations each).

B. Testbed

HeatSweeper runs on a smartphone equipped with a quad-

core processor at 2.5GHz and 3GB of memory. For the LAN

case, it offloads tasks to a laptop equipped with a quad-core

at 2.40GhZ and 8 GB of memory connected to the mobile

via a 52 Mbps Wi-Fi. On the WAN scenario, the phone uses

as surrogates a cluster of eight quad-core VMs on an Open-

Nebula cloud. Physical nodes are equipped with six-core at

2.67 GHz processors and 24 GB of memory interconnected

by a Gigabit Ethernet network. The connection between the

mobile device and the surrogates has a 85.5 ms RTT.

Table III contains energy and time measurements ob-

served when benchmarking the testbed components. The

base consumption of the mobile is 0.08 W; the additional

cost of turning on the display depends on the screen bright-

ness (from 0.3 to 1 W). Using the processor increases power

consumption by 1.5 W when the mobile computes at full-

capacity. When the display is off, the processor governor

prioritizes battery lifetime over phone responsiveness and

reduces the CPU frequency to a 5%. Despite this mechanism

increases power consumption only by 0.1 W, computations

last longer and the overall energy spent grows.

C. Performance evaluation

1) Low-resolution: HeatSweeper takes 71 s to run and

consumes 135.52 J when the screen is on; 1,631 s and 251.72

J when it is off. We select the scenario where the screen

stays on as the representative for the phone since it is better

performing and less consuming that switching it off.

Figures 1(a) and 1(b) depict the relation between the

amount of surrogates resources and the application timespan

and energy consumption respectively. The isolated points

show the obtained values for the mobile submitting tasks

to the laptop; the continuous lines, when offloading to one,

two, four and eight cloud instances; and the cross and the

dotted line, the optimal values according to Table III values.

The best performing testbed for the low-resolution sce-

nario is using the laptop as a surrogate. If the screen is kept

on during the execution, the application achieves a speed up

32 times faster than the phone case (1,632 ms) and reduces

the energy consumption to a 0.5% of the original (0.74 J).

Cloud scenarios behave better than using an isolated

phone, but the execution time grows along with the number

of surrogate nodes. The high latency on the network slows

down the exchange of messages to notify data creations

across different surrogates. When a data value is generated,

all the tasks within the creating node can already access it

while other surrogates need the data directory to notify them

the existence and sources for that piece of data. Therefore,

the best performing case is the one with a single surrogate

since only the task description messages and the initial data

transfers are affected by the high network latency.

2) High-resolution: Solving the high-resolution problem

takes 99,641 seconds (more than 27 hours) on the phone

with the screen on and the phone needs to keep plugged

to an energy source. It is an example of the large set

of applications whose executions are not viable in current

mobile devices; however, COMPSs-Mobile provides them

with an extra computing power that enables its execution by

reducing the execution time and the energy consumption.

Again, figures 2(a) and 2(b) show the execution time and

energy consumption according to the surrogate platform as

done for the low-resolution case.

Since the Core Element execution time and the network

latency are lower when the runtime uses a laptop as a

surrogate than to a cloud platform when only 4 cores

are available, the first behaves much better than the latter.

Offloading to the laptop, it takes 1,368 seconds to solve the

problem, achieving a 72.83x speed-up compared to running

the application on the phone. This severe reduction on the

timespan has a significant impact on the energy consumption

that enables the application execution on the mobile device:

621.63 J when brightness is at 0%. Switching off the screen

has a small impact on the application performance 1,401 s

and gets a better energy consumption 216 J.

On the cloud scenario, when using only four cores, the

execution time is significantly higher; and, therefore, the

energy consumption too. In the respective best cases, the

application lasts 2,318 s (42.99x), and the consumption is

363 J. However, the strong point of the cloud is the amount

of resource available for the runtime to offload tasks. When

the resource pool is increased up to 32 cores and the display

is on, the application execution time is reduced to 320

seconds, and it consumes 146 J. This is 310 times faster

than the isolated phone scenario and 4.26 times faster than

499

Computing Capabilities Core Element Analysis
Idle Computing 50 iters. sim. 10k iters. sim. Merge

Power (W) MIPS Power (W) Time (ms) Energy (J) Time (ms) Energy (J) Time (ms) Energy (J)
Mobile - off 0.08 15.92 0.20 35,549 6.72 6,794,135 1,350 negligible negligible

Mobile - on 0% 0.37 376.96 1.87 1,483 2.85 288,667 561.61 negligible negligible
Mobile - on 100% 1.07 376.30 2.55 1,468 3.95 288,816 797.03 negligible negligible

Laptop - 2,369.232 - 38 - 6,072 - negligible -
Cloud - 1,326.08 - 57 - 27,979 - negligible -

Table III
RELATION BETWEEN EACH COMPUTING CONFIGURATION (MOBILE WITH SCREEN OFF, MOBILE WITH THE SCREEN ON AT 0% BRIGHTNESS AND

100%, LAPTOP OR CLOUD VM) WITH ITS COMPUTING CAPABILITIES AND THE ANALYSIS OF EACH CORE ELEMENT EXECUTION

(a) Execution time (b) Energy consumption

Figure 1. Low-resolution scenario results according to the surrogate platform

(a) Execution time (b) Energy consumption

Figure 2. High-resolution scenario results according to the surrogate platform

offloading tasks to a laptop. Switching off the screen allows

the runtime to obtain a lower energy consumption 54.61 J.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents the features of COMPSs-Mobile, a

framework that automatically parallelizes MCC applications

shorting their execution time while reducing the energy

consumption as shown in Section III. To the best of our

knowledge, it is the first framework to bring together Mobile

Cloud Computing and automatic parallelization.

Organizing the infrastructure as a peer-to-peer network to

distribute the data directory management would solve the

observed latency issues and increase the independence of

the workers during network breakdowns. Both ends of MCC

have room for improvement: mobiles are equipped with

GPUs and clouds allow dynamic resource provisioning; en-

hancing their exploitation would improve the performance.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Goverment

(contracts TIN2012-34557, TIN2015-65316-P and BES-

2013-067167), by Generalitat de Catalunya (contract 2014-

SGR-1051) and by the European Commission (ASCETiC

project, FP7-ICT-2013.1.2 contract 610874).

REFERENCES

[1] F. Lordan et al., “Servicess: An interoperable programming
framework for the cloud,” Journal of Grid Computing,
vol. 12, no. 1, pp. 67–91, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10723-013-9272-5

[2] “Java programming assistant (javassist),”
http://www.javassist.org.

500

