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Abstract Virtual machine (VM) images (VMIs) often share common parts
of significant size as they are stored individually. Using existing de-duplication
techniques for such images are non-trivial, impose serious technical challenges,
and requires direct access to clouds’ proprietary image storages, which is not
always feasible. We propose an alternative approach to split images into shared
parts, called fragments, which are stored only once. Our solution requires a
reasonably small set of base images available in the cloud, and additionally only
the increments will be stored without the contents of base images, providing
significant storage space savings. Composite images consisting of a base image
and one or more fragments are assembled on-demand at VM deployment.
Our technique can be used in conjunction with practically any popular cloud
solution, and the storage of fragments is independent of the proprietary image
storage of the cloud provider.

1 Introduction

As cloud computing users and providers face the ever changing demands of a
wide range of highly connected and autonomous applications, the backbones
of clouds are frequently tested to their limits. One of the demanding require-
ments of recent scenarios like Internet of things to cloud integration is the
rapid construction and destruction of computing infrastructure components
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often hosted in a federation of Infrastructure as a Service (IaaS) clouds. These
operations depend on the cloud provider’s specialised storage area networks
that aim at serving, replicating, storing and distributing the disk volumes
for the VMs used within the customer’s computing infrastructures. The most
stressful operation for these dynamic scenarios is the creation of new VMs,
which requires the duplication of the substantially sized virtual machine disk
contents (called Virtual Machine Images - or VMIs). This operation is required
as VMs would not be in full control of the contents of their disks.

In a typical cloud infrastructure, the number of such VMIs may vary from
tens to thousands. For example Amazon Web Services currently offers for its
Elastic Compute Cloud (EC2) [1] service 31 different community VMIs, addi-
tionally from the AWS Marketplace, 2101 images for Software Infrastructure,
552 Images as Developer Tools and 1362 Images as Business Software are avail-
able (there are overlaps between the categories). VMI sizes also vary widely,
from a few hundred of megabytes to several gigabytes. Thus, storing them as
separate images implies significant storage space requirements at the provider
side, which is often reflected in the costs of VMI storage at the customers.
Consequently, both parties are interested in the reduction of the overall and
individual storage footprint of the VMIs. To fight the excessive storage needs,
providers either limit the choice (e.g., do not allow custom VMIs or only allow
VMIs to be derived from their own) or apply techniques that reduce the stored
data on the provider side but maintain the images as if they were stored from
the user point of view. The most notable techniques here are copy-on-write
(which does not duplicate VMIs on VM creation, instead only keeps track of
the written parts of the VMIs for the user’s VMs – [21]) and de-duplication
(which analyses VMIs stored in the system for common blocks and only stores
the unique ones – [18,22]).

Unfortunately, these solutions only offer remedy to the providers, and even
for them it offers limited capabilities. Customers on the other hand not only
have the issue of storing images at a single provider, they often could face
situations when a VMI stored at one provider should be instantiated at a
completely different one. As cross-provider VMIs are problematic to create, in-
stead customers often resolve this issue by utilising DevOps techniques (e.g.,
using chef recipes – [10]) to automate the creation of the VMI that meets
the different provider’s requirements. In this article, we propose a customer
side space reduction technique, which identifies self-contained and often se-
mantically meaningful and reusable fragments by instrumenting the customer
applied automated image construction technique.

We present our technique through an architecture based on the assump-
tion that we can store VMIs in parts and assemble them on-demand. We have
contributed the following architectural components: (i) a provider independent
image catalog; (ii) a third-party partial image storage system (which associates
searchable metadata with previously defined VMI fragments); (iii) the image
decomposition system, which analyses the file operations accomplished with
the customer’s DevOps tools and identifies those files that could be meaning-
fully separated into their own fragment; (iv) a virtual image composer which
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can reverse the decomposition process and reproduce the customer’s originally
intended image which previously required only a fraction of its storage space;
and finally, (v) the VMI launcher which allows customers to directly instan-
tiate decomposed VMIs in a cloud. Our solution, besides the advantage of
expected reduced storage requirements, can be used as a complementary tool
without altering the proprietary image repository backing up (due to external
fragment storage) or affecting the operation of the cloud. As a result, with the
help of the multi objective fragment storage optimisation tool of ENTICE [20],
even multi-cloud fragmented VMI launch is possible. As a disadvantage, when
applied with our VMI launcher, our solution imposes increase in VM instan-
tiation time as the image fragments need to be assembled on the site of the
new VM.

In order to analyse the behaviour of our architecture, we have executed two
experiments. We have collected several widely used VMI definitions and inves-
tigated their impact on the cloud VMI storage. To evaluate the success of our
customer side solution, we have provided the metric of storage space reduction
ratio. Using this metric, we have evaluated 4 storage scenarios and concluded
that our architecture could potentially reduce customer storage costs to 1

5 −
1
6

of its original levels.
The rest of the paper is organized as follows. In Section 2, we give a brief

introduction about the ENTICE project. In Section 3, we overview the main
approaches to split VM images into individual and common parts and merge
them back on-demand. In Section 4, we present the users’ view of the pro-
posed system that transparently handles image fragmentation and assembly.
Section 5 describes the design decisions and technical solutions we applied
to implement the image fragmentation concept. Section 6 reports on prelimi-
nary experimental results. In Section 7, we discuss the related work. Finally,
Section 8 concludes the paper and outlines future works.

2 The ENTICE project

The ENTICE project [19,11] is a multidisciplinary team of computer scien-
tists, application developers, cloud providers and operators with the aim to
research a ubiquitous repository-based technology for VMI (and container)
management called ENTICE environment. This environment proves a univer-
sal backbone for IaaS image management operations, which accommodate the
needs for different use cases with dynamic resource (e.g., requiring resources
for minutes or just for a few seconds) and other Quality of Service (QoS)
requirements.

The developed ENTICE environment is completely decoupled from the ap-
plications and their specific runtime environments, but continuously supports
them through optimised VMI creation, assembly, migration and storage. It
is designed to receive unmodified and functionally complete VM images from
users, and transparently tailor and optimise them for specific Cloud infrastruc-
tures with respect to their size, configuration, and geographical distribution,
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Fig. 1 ENTICE image fragmentation approaches: a.) top-down; and b.) bottom-up

such that they are loaded, delivered (across cloud boundaries), and executed
faster and with improved QoS compared to their current behaviour. ENTICE
gradually stores information about the VMI and fragments in a knowledge
base that will be used for interoperability, integration, reasoning and optimi-
sation purposes (e.g. repositories should decide at which other repositories one
needs replicas of a heavily requested image and at which time such an image
is replicated).

3 Approaches to Reducing Space Requirements of VM Image
Storage

Fig 1 depicts the two main approaches to decomposing images. First the top-
down approach (see (a) in Fig. 1) starts from an existing set of monolithic
VM images available in the cloud’s image repository (see Service 1’s VA in
Fig. 1). After analysing the content of different images, it extracts common
parts (see Service 1&2 common delta). Identical content is removed from the
original images and stored separately. Simultaneously, a fragment index record
is created that lists all constituting fragments from which the original image
can be restored. This approach can be either file or block based. In the former
case common files are extracted, in the latter case images are split into fixed-
size blocks (e.g., of size 4kB). These are stored individually, and only the
identifiers of the different blocks are registered in the fragment index record.
The less the block size is the more likely that different images share common
blocks, i.e., more space saving can be achieved, but on the other hand, the size
required to maintain fragment index records can drastically increase.
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Second is the bottom-up approach (see (b) in Fig. 1) that starts from a
small set of initial base images with limited functionality and of size as little as
possible (e.g., minimal operating system images), and every subsequent image
is built upon these base images. In the case of new images, only the incre-
ments are calculated and stored compared to previous, base image contents,
representing layers on top of base images. This approach avoids storing base
image contents redundantly in the different images extending the same base
images.

Both approaches have advantages and disadvantages. First, both approaches
allow to create a Just enough OS (JeOS) [15] VA that will act as a minimal VA
that allows the application or service to run. For the top-down approach (see
(a) in Fig. 1), considering variable-size blocks, the method to determine an
optimal set of common fragments is non-trivial (and even finding one, adding
new images might corrupt it); furthermore, in the case of large image set, the
number of required comparisons can be very high and compute-intensive. Also,
fragments identified in this way typically lack of any semantics (that is, how
fragments can be related to specific software components or operating system-
related contents). On the other hand, this approach can be well automated
and can achieve significant space savings. For the bottom-up approach (see (b)
in Fig. 1), the calculation of the difference (increment) between base images
(parent) and images extending the same base image (children) is much eas-
ier, and the pair of images to compare is inherent. Storage space reduction is
achieved by not replicating base image contents in child images. The drawback
of this approach is that it cannot decompose automatically existing (legacy)
images.

Image comparison can be done either based on byte-level, block-level, or
file-level. The finer the granularity is, the more processing power and time
are required. The higher space savings may result in higher computation or
network cost at decomposing and restoring virtual machine images. Finding
a trade-off between reduced storage and acceptable VM deployment time can
be challenging [17]. Image assembly can also happen off-line or on-the-fly. In
the off-line case, the image of the VM to be deployed is assembled first (on
a separate host), then this image is transferred to the host of the VM in a
second step. In the case of on-the-fly assembly, a bootable VM is launched,
which assembles the underlying disk contents by transferring and merging
the corresponding fragments at boot time. In the first case, transferring the
assembled image to the host implies additional overhead; in the latter case, it
is important not to interfere the boot process with simultaneous disk changes.

This paper proposes an implementation of approach (b), which uses file-
level granularity and assemble VM disk images on-the-fly. The reason for
choosing that approach was due to the specific requirement of the ENTICE
project that is fragments are also related to semantical units (such software
packages). From these the system should be able to build new images corre-
sponding to different configurations according to user’s needs. By using block-
level granularity for units this would not be possible.
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4 User’s Perspective

Ideally, the mechanism that splits VM images to fragments and reassembles
them is completely transparent for the end-user, and end-users must also be
able to easily compose new images having a set of pre-defined functionalities
(e.g., based on a list of required software packages) using a graphical user
interface. This section presents a user scenario, which illustrates how they can
exploit these features from their point of view.

For the end-users, in the ENTICE environment, the image catalog is pre-
sented, which lists all the previously created VM appliances (including base
and composite images). It provides search functionality as well. Each image
entry contains a name, description as well as a list of labels called as tags.
These tags refer to functionalities that the image is capable of, which may
include the name of the underlying operating system (e.g., Ubuntu, CentOS
ArchLinux), software names (e.g., tomcat, mysql-server, redmine), or any other
custom labels relevant to that image, respectively. Image entries can be filtered
by typing in a list of tags. When the end-user finds an appropriate image in
the catalog with all the demanded tags, a virtual machine can immediately
be run from this image, which will have all the functionalities that the user
needs.

If the user does not find an appropriate image, a list of similar images –
having the most tag matches – is offered for extension. After selecting one of
these images, the user can choose one or more additional functionality among
the a set of pre-made installers. Installers have name, tags, description, and
version number (e.g. ”mysql-server”, ”Installs MySQL Community Server ver-
sion”, ”v5.6”). After having selected the proper installers, the system will
automatically build and add the new image to the catalog by running these
installers on the original source image. The new image built automatically gets
all tags that the installers imply. If no installer found providing the demanded,
the user can submit custom shell scripts, Ansible playbooks, etc. to be run on
the source image.

When the installation cannot be done automatically with installers, ad-
vanced users may choose to create a new image manually by starting a VM
from an existing image and do the installation/configurations on its own. When
done, the disk image of the VM can be saved (snapshot) and uploaded, which
will however not be stored as a whole, but the increment fragment will au-
tomatically be computed. The user can specify arbitrary tags, name and de-
scription for the new image.

Legacy images can also be added/uploaded to the image catalog with ar-
bitrary name, tags, and description, however, these images, similarly to base
images, will not be split into fragments. Still, new image extensions built on
top of them will then use increments.
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5 Design Concepts

This section presents how an image fragmentation system fulfilling the pre-
viously described requirements could be designed, how it was be decomposed
into separate functional components and how they interact with each other
during the different user scenarios. Some implementation details are also pro-
vided. The designed system architecture is shown in Fig. 2. In the following
subsections, each component is described in more detail except for the third-
party Fragment Storage component, which is assumed to be a simple data
storage (e.g., S3 object storage), the Image Storage, which is the proprietary
image storage of the related cloud, and the GUI, which is an integrated one
for the whole ENTICE environment and thus, beyond the scope of this paper.
Note, that the ENTICE environment contains further multi-objective optimi-
sations [20] on these storage components (e.g., it can decide where to store
particular base images, where to replicate fragments). These optimisations are
out of scope of this paper, but they enable the ENTICE architecture to han-
dle situations such as loss of fragments (i.e., because of hardware failure), or
I/O bottlenecks for specific fragments. In this paper, we solely focus on how
to identify the smallest fragment set that can still represent the VM images
under the control of the ENTICE environment.

The main processes that realize the high-level functionalities of the image
fragmentation system are as follows:

– Base image registration. The image fragmentation system allows of register-
ing base images. Base images correspond to some operating system images,
which are not subject of image fragmentation but are stored in clouds’ pro-
prietary image repository as a whole. VMs thus can be deployed from base
images directly in the related clouds. In this process only the Virtual Im-
age Manager component is involved, which maintains the catalog of base
images and their details (such as the proprietary image id in the cloud’s
image repository).

– Creation of a new virtual image. The image fragmentation system allows
of creating new virtual (or composite) images that are composed of a base
image and one or more image fragments assembled on-demand. At creating
a new virtual image the image fragmentation system automatically com-
putes the related fragment. Any new virtual image either extends a base
image or an already existing virtual image with additional functionalities
(e.g. new software packages). The extension can be done automatically us-
ing pre-made installers, or manually, respectively, in which case, an already
prepared image file is provided to the fragmentation system. This process
involves the interaction of the Virtual Image Manager component, which
provides details about the base image and the fragments of the source
(parent) image, the Virtual Image Decomposer component, which calcu-
lates the difference between the source and the target image (temporary
whole image of the new virtual image), the Virtual Image Composer com-
ponent, which provides the assembly script to build the source image, the
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Fig. 2 System architecture of ENTICE image analysis and optimised fragmentation

Image Storage, which stores the image file of the original base image, the
Installer Storage component, which provides the installer scripts to build
the target image, the Fragment Storage component, which is used to store
the fragments.

– Virtual image launching. The image fragmentation system allows of launch-
ing VMs from virtual images. The system starts up with launching the
base image in the related cloud and assembles its underlying disk con-
tents from fragments. This process involves the Virtual Image Launcher
component, which orchestrates VM launch and image assembly process
by interacting with the Virtual Image Manager component, which pro-
vides the proprietary image id from which the initial VM is started, the
Virtual Image Composer component, which provides the assembly script
that merges all fragments of the virtual image, and the Fragment Storage
component, which stores the fragments.

Infrastructure level concerns and decisions are considered out of scope for
this paper. For example at the infrastructure level there should be multiple
guarantees that a certain degree hardware failure does not result in data loss. In
this context losing a fragment is the same as a customer losing a VMI due to a
hardware failure in the storage subsystem of any cloud. However indeed losing



ENTICE VM image analysis and optimised fragmentation 9

a fragment would affect multiple VMIs (and possibly multiple customers).
We also assume that the storage subsystem properly distributes load, caches
or replicates to avoid hot spots caused by concurrently accessing fragments
required for multiple VMIs in large-scale scenarios. Our services augment cloud
systems. Images may be registered in a cloud repository (and the underlying
infrastructure takes care of failure tolerance and replication), and/or stored
on an object storage service like Amazon S3, where fragments can be stored
as well (and the underlying infrastructure takes care of replication and failure
tolerance).

5.1 Virtual Image Manager

Virtual Image Manager is the central component of the image fragmenta-
tion system, which maintains the catalog of base and composite images. Base
images typically correspond to some small-size, official images of Linux OS
distributions (Ubuntu, Debian, CentOS, etc.), which are not split into frag-
ments; each stored in the proprietary image repository of the clouds. Com-
posite images are assembled at VM deployment-time, which are also referred
to as virtual images as they are never stored as a whole. The image catalog
contains meta-information about each image (identifier, names, descriptions,
tags, etc.) and relations. Extension and registration of new images can be
initiated through this component; it is responsible for tracking image build-
ing and fragmentation processes done in the background and also assisting
at VM launch for proper contextualization. Virtual Image Manager provides
high-level functionality (list, create, delete virtual images) through a REST
API, which serves as a backend for the graphical user interface. We note that
this component does not store any image or fragment contents, merely holds
references to contents stored in other storages.

Base and composite images form a set of trees in the image catalog, as
illustrated in Fig. 3, where root nodes correspond to base images, whereas
other nodes correspond to composite images. (Directed) edges represent frag-
ments, which, when merged to parent images result in the children images.
A composite image corresponding to a particular node in this tree can thus
be obtained merging all fragments along the path from the root node to that
node, in the proper order.

To register a new base image we only have to give some simple parame-
ters such as name, description and tags, and id of the image in the related
proprietary cloud image repository (repositories) (used to at VM launching),
no fragments are computed in this case. When introducing a new composite
image, the users have either the option to use pre-made installers (I2 → I4
in Fig. 3), custom install scripts (I4 → I7 in Fig. 3), or provide a snapshot
obtained by making modifications manually (I5 → I9 in Fig. 3). In all these
cases, the manager initiates the fragment computation between the parent and
the new composite image, via the Virtual Image Decomposer component (see
Fig. 2).



10 Akos Hajnal et al.

Fig. 3 Tree of base and composite images

To each node a set of tags is associated in a way that successor nodes
contain an aggregation of all tags associated with parent(s) (recursively). Fur-
thermore, when applying installers to extended an image, the new image auto-
matically gets all tags of the related installer(s), which information is provided
by the Installer Storage component.

The manager component is capable of providing the information from
which fragments a composite image can be assembled, that in turn is used
by the Virtual Image Composer component (see Fig. 2).

5.2 Installer Storage

Installer Storage is the repository, where the so called installers are stored.
The purpose of using installers is to assist users adding new software compo-
nents (such as software packages, databases, etc.) to virtual machine images.
Installer Storage maintains the catalog of installers offered to the user when
they need to extend existing images with missing functionality. Installers have
tags associated, which help in browsing/searching among installers.

Each installer package consists of the following components: First, meta-
information contains name, description, version, and tag information about
the installer. Second, installer code is used by the Virtual Image Composer
component (see Fig. 2) to prepare the image having the required package
installed. This code can be e.g., a shell script, a packer receipt or an Ansible
playbook. Third, dependences are list of tags that the image must own in order
to successfully perform the installation, for example, an installer could contain
a dependency ”ubuntu” meaning that the installer works on images having the
tag ”ubuntu”. Dependencies may also refer to tags implied by other installers
(e.g. mysql-server is required prior to installing a certain web application).
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When selecting multiple installers, the system will try to automatically re-
order the list of requested installers to fulfill all potential dependences, and
this order will be used to produce the new image.

Fourth, the optional post-assembly script is used by the Virtual Image
Composer component at assembling the image of a newly deployed VM. Since
fragment merging merely modifies the disk contents, services, daemons will
not be started automatically. To avoid the necessity of rebooting the launched
VM, this script serves as starting the related services. For example, after the
fragment containing mysql-service files, the post-assembly script starts the
MySQL database management system (i.e., with the service mysql start com-
mand). Finally, pre-assembly script is for special, rare cases, when prior to
merging a fragment, certain actions are required to perform, such as stopping
processes, that could conflict with the successful fragment application (e.g.,
because of file locks, pids, etc.).

5.3 Virtual Image Decomposer

This component performs the actual computation of the fragment between
two VM images, called source and target images, when a new virtual image is
to be created and added to the image catalog. The steps of this procedure are
as follows:

1. Source image composition or download. Depending on whether a base or a
previous composite image is extended, the source image is either already
given and can be downloaded from the related cloud image repository, or
the source image has to be composed in the same way as at launching
VMs, as it will be described in section 5.4, first by downloading the image
corresponding to the base image of the composite image then merging
fragments onto it.

2. Target image creation or download. In the case of manual extension, a
snapshot corresponding to the target image is provided by the user. When
using installers, the the target image has to be built which is made on the
clone of source image (for later difference computation, both the source
and target images must be present). In the current implementation, first
the clone of the source image is mounted, then installers are run one-by-one
in a chroot environment. Depending on the that whether the installer is a
script, recipe or playbook, its execution alters correspondingly. As a result
of the installation the target image will be available.

3. Difference calculation. We used the rsync tool with the proper parame-
ters to calculate the difference between the source and target images by
mounting them onto different directories source-dir/ and target-dir/. It is
done in two steps. In the first step, we determine all files that are new
in the target-dir/ or it has been changed in any way, respectively, identi-
fied by hashing or size and last change or modification date. All additions
and updates (with whole file contents and attributes) are copied to a new
folder named diff/. In a second step, we determine those files that exist
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in source-dir/ but missing from target-dir/ and create a special file called
delta-deletion in diff/, which contains the paths of all such deleted file en-
tries. We note that rsync is configured to precisely consider all attributes:
ACLs, permissions, symbolic links, hard links, group and owner, times of
access, change and modification.

4. Fragment creation. If we use installers to build the target image, before
creating the fragment package, we copy pre- and post-assembly scripts
of the installers to the directory of the fragment. Also, at preparing the
delta package, a special file /var/lib/cloud/vvmi.id containing the identifier
of the new composite image (maintained by the Virtual Image Manager
component) is added as a ”watermark”. This id helps in automatically
finding out the original, predecessor image, when an image is extended
manually, and a snapshot is given. Then a compressed archive (tar.gz ) of
the fragment contents (diff/ ) is created.

5. Storing the fragment. The fragment is then uploaded to the Fragment Stor-
age, and the corresponding reference to the delta package (download URL)
is returned to the Virtual Image Manager. We note that it is also possible
to calculate a hash code for the entire fragment contents, and store only
fragments whose hash code differs from all previous hash codes, to avoid
storing the same delta packages redundantly. In the case of identical hash
codes, the same fragment reference is used in the Virtual Image Manager
component.

5.4 Virtual Image Composer

Virtual Image Composer component (see Fig. 2) is responsible for assembling
a composite image from fragments. More specifically, it provides a shell script
that contains all the necessary commands required by merging delta packages
and starting services, as needed.

To generate the assembly script, the Virtual Image Composer only requires
giving the image id (node) of a composite image to be assembled, which must
exist in the image catalog of the Virtual Image Manager. The Virtual Image
Composer can then query the Virtual Image Manager for the sequence of frag-
ments, more specifically, the list of URLs from where the fragment packages
can be downloaded (stored in edges along the path between the correspond-
ing base image and the composite image). The assembly script contains the
following functionalities:

1. Download the fragment package from the provided URL.
2. Extract and execute the optional pre-assembly script provided by the frag-

ment package.
3. Assemble using fragment package contents and by removing not-needed

parts specified by .delta-delete.
4. Execute optional post-assembly script.
5. Clean-up: remove fragment package, pre- and post-assembly scripts and

deletions.
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Executing the assembly script on the base image of the composite image
will reproduce the accurate disk contents of the composite image composed
of a series of fragments, also start all services given in post-assembly script.
Virtual Image Composer is used by the Virtual Image Decomposer component
to assemble composite source images, and also by Virtual Image Launcher to
assemble the composite images at deploying a virtual machines, see Section 5.5.

5.5 Virtual Image Launcher

This component is used to launch VMs in clouds whose disk images correspond
to composite images, and so they cannot be launched in conventional ways
provided by the cloud provider API/GUI as their images are not present in
the proprietary repository of in the cloud as a whole.

After giving the id of the composite image, the necessary credentials (access
key, secret key) and optional parameters (e.g., instance type), the Virtual
Image Launcher queries the Virtual Image Manager then launches a VM with
disk corresponding to the base image of composite image (root node) using the
appropriate cloud API interface (e.g., EC2). As the base image is registered
in the cloud, the VM can be booted up like any other images.

In contrast to other VMs in the cloud, this VM is contextualized in a way
that after booting up, it downloads and executes the assembly script from the
Virtual Image Composer corresponding to the composite image id given at
launching the VM. As a result, the launched VM will automatically assemble
the disk contents from fragments. In the current implementation, we used
cloud-init [7] cloud configuration file to perform such contextualization.

6 Experimental Results

To evaluate our proposed techniques, we have set up 2 scenarios each with
increasing complexity (in terms of the number of VMIs involved in decompo-
sition process). In our first scenario, we have analysed the integrated behaviour
of all architectural components from Fig. 2. We have evaluated this scenario
on a real life deployment of our system. For the later scenario, we have im-
plemented a simulation environment which analyses online software package
repositories (e.g., ones offered by the maintainers of the Ubuntu and Debian
Linux distributions) and deduces decomposition options as well as expected
fragment sizes based on metadata acquired from these repositories. Thus, in
our second scenario, we have collected the recipes for several frequently built
Ubuntu Linux based VMIs and analysed the expected behaviour of our virtual
image decomposer with them.

Our system uses different auxiliary components that may seem to affect
the results: dependency trees for fragments are represented as simple database
entries. Scripts are negligible in size compared to fragments or base images.
Installers could be larger, but as a general recommendation (for any type of
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installer), that it should source components (e.g., release tarball of a specific
software) either from official sources or use operating system packages thus,
only the script part needs to be stored by our system. Based on this we assume
the size of the different installers is also negligible.

6.1 Small scale experiments

The ENTICE infrastructure utilizes different clouds provided by its academic
and industrial partners. These are based on the open source OpenNebula [28]
(3 sites), the commercial Flexiant Cloud Orchestrator [13] and VMware ESXi.
For the small scale experiments we chose OpenNebula as we are running it
in production for years. The familiarity with this middleware allow us to ef-
fectively identify and track down possible idiosyncrasies when performing our
experiments. For this we chose the LTM stack, meaning Linux, MySQL and
Tomcat7, see Fig. 4 and Section 6.2 for more details. As base image we used
an image based on the cloud image provided by Canonical based on Ubuntu
16.04 LTS [8]. On top of the LTM stack we deployed the Data Avenue [16]
application. Table 2 presents the results.

Image content size in Table 2 show the actual disk usage within the image,
while image size refers to the actual size of the image. We use the compressed
QCOW2 format that can cause non-linear differences between content and
image size. Also we denoted two image sizes: first is with image maintenance.
This means the following: first the package manager caches are cleaned. Second
the free space on the image is written over with zero data, this allows achieving
better compression results for the QCOW2 format. However the image must
be duplicated as QCOW2 will not automatically make use of this. This reduces
the final image size by approx. 23.3% at the cost of additional time to produce
the final image.

Each step and additional fragment produces an image that contains a func-
tionality that can be used on its own. Let’s consider the storage requirements
for all images versus the base image and the fragments and calculate the Stor-
age Space Reduction Ratio (SSRR) using the following formula:

SSRR = 1− size(Base Images + Fragments)

size(Base Images + V irtual Images)
= 0.7866 (1)

This simply means that storing only the fragments and the base image
compared to storing the intermediate (virtual) images with the base image
requires 78.66% less storage space.

In order to evaluate the overhead of on-the-fly disk content composition,
we carried out several experiments, in which we measured the time required
to re-assemble VM images from fragments at VM start-up. These data are
then compared to the time required to launch the composite image (all the
components were set up in advance, stored as whole in the cloud image repos-
itory). We used an OpenNebula cloud (version 5.2.0), and two instance types
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Instance type
Composite image
service start-up

time

Fragmented image
service start-up

time
Slow-down

t2.medium 59 seconds 151 seconds 92 seconds

t2.large 53 seconds 122 seconds 69 seconds

Table 1 Service start-up times using composite and fragment VM images

t2.medium (2VCPU, 4GB RAM) and t2.large (2VCPU, 8GB RAM). In these
experiments, the Fragment Storage component (see Fig. 2) was a simple file
system-based storage (fragments are stored in the file system), implemented
using a simple tomcat web application deployed in a separate VM.

We measured the time elapsed between VM start time and the time when
the service (Data Avenue) is up and running, in the case of both composite
and fragmented images, on the two instance types. These data are shown in
Table 1 (average values of ten measurements). From these data we can see that
launching VMs using fragmented images are indeed slower as expected by 69
and 92 seconds, respectively. On return, however, we gain almost 80% storage
space savings. The average fragment assembly times of all the four fragments
were 64 and 81 seconds, respectively, which include fragment download, ex-
traction, and service startup times (mysql, tomcat).

We also measured how much time it would require to install these packages
manually (or using an automated configuration management tool like Chef or
Ansible). The installation of mysql-server and tomcat7 took 96 seconds from
console, which is slower than re-assembling these packages from fragments. In
the latter measurement we excluded the installation of Data Avenue, which
requires manual configuration.

We note that the cloud used in these experiments provides very fast im-
age transfer to the host machine from the image repository. In other clouds,
transferring composite images of increased size might be slower. In the case
of fragmented image assembly, the base image is required to be transferred,
which is of less size, whereas fragments are downloaded in compressed form
afterwards. We also note that download and extraction of fragments are done
sequentially one after the other. Parallelization of the extraction of the previ-
ous fragment and download of the next fragment might speed up assembly.

6.2 Experiments on frequently built VMIs

For our second experiments, we have identified commonly built VMIs that
use widely available free software and can be built based on a Ubuntu 14.04
base image. First, we have collected a set of base servers that are frequently
used, these were the following: (i) MySQL, (ii) Nginx, (iii) Node.js, (iv) Mon-
goDB, (v) Redis, (vi) RabbitMQ, (vii) Apache2 and (viii) Tomcat7. Next,
we have collected a set of server stacks that are widely considered by De-
vOps teams: (i) LAMP – Linux, Apache, MySQL, PHP; (ii) LAPP – Linux,
Apache, PostgreSQL, PHP; (iii) LEMP – nginx, MySQL, PHP; (iv) LLMP
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Fragment/
Base image

Fragment size
(tar.gz, Bytes)

Image content
size (Bytes)

Virtual image size
with (or without)

maintenance
(QCOW2, Bytes)

Ubuntu 16.04
LTS 64bit (base)

- 971 677 696
1 064 370 176

(-)

update 27 775 599 978 051 072
1 068 537 472

(1 133 117 440)
mysql-client,
mysql-server

102 746 591 1 225 785 344
1 232 142 336

(1 519 583 232)

tomcat7 119 537 550 1 364 975 616
1 370 947 584

(1 729 298 432)

data avenue 46 553 088 1 529 782 272
1 422 721 024

(1 855 651 840)

Table 2 Size of fragments and corresponding images to produce the LTM stack with Data
Avenue deployed

– Linux, Lighttpd, MySQL, PHP; (v) LYME – Linux, Yaws, Mnesia, Erlang;
(vi) MEAN/MERN base – MongoDB, Node.js (leaves out Express.js and An-
gular.js/React.js); and, (vii) LTM – Linux, MySQL, Tomcat7. Finally, we
have also identified a few server based applications that are widely deployed,
namely: (i) WordPress and (ii) Redmine. For all these, we have determined
the recipe (in the form of the list of required software packages) to be used to
transform our Ubuntu base image into the required VMI.

Next, we have constructed a simulation which can understand and anal-
yse package caches from any Debian based OS (like the one in our Ubuntu
base VMI). These caches list the metadata (e.g., direct dependencies, alter-
natives, installed size etc.) of all the possible software packages (P ) that can
be installed on the OS. First of all, this simulation was capable to list us the
required packages to be added for a set of packages in a recipe on top of a
given base VMI (i.e., the simulation resolves the dependencies of the packages
in the recipes). Second, the simulation also mimicked the behaviour of our
decomposition technique on the level of software packages (∀f ∈ F : f ⊂ P ,
where f is an arbitrary fragment, F is all possible fragments, and P is the
package set). Using this notation we will use the base VMI as fbase ∈ F , and
the notation of frecipe ∈ FR ∈ F will depict additional packages needed for
a given recipe (e.g., fmongodb ≡ f35 represents MongoDB). Here, FR is the
set of all fragments which were acquired from the recipes for the identified
VMIs. Note, ∀fr ∈ FR : fbase ∩ fr = ∅. Thus, we show how our decomposition
technique creates a new fragment (fn ∈ F ) with the following equation:

fn = fx ∩ fy (2)

Where fn is the decomposed fragment, and fx and fy are the pre-existing
fragments. Next, based on the metadata contained in the cache, our simula-
tion would also list the expected installation size of all required packages in a
fragment, this is denoted as the function size : F → N. Finally, starting from
the fragments resulting from the recipes, the simulation applied the decompo-
sition technique repeatedly until it was not possible to find any pair of not-yet
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Table 3 List of the selected recipe based fragments and their respective sizes

Fragment – f Package count: |f | Simulated size(f)
fbase 413 915MiB
f5 38 116 MiB
f8 57 132 MiB
f9 27 29 MiB
f11 84 185 MiB
f12 25 118 MiB
f13 70 49 MiB
f14 72 129 MiB
f18 6 5.7 MiB
f20 45 33 MiB
f21 10 4.8 MiB
f22 45 22 MiB
f23 65 129 MiB
f24 62 52 MiB
f31 70 92 MiB
f33 6 11 MiB
f35 23 115 MiB
f77 27 98 MiB

combined fragments that would result in a non-empty decomposed fragment
(we refer to this as the complete decomposition).

Fig. 4 shows the complete, software package level decomposition of the
16 VMIs (∀f ∈ FR) that we have collected recipes for previously. The figure
shows members of the FR fragment-set with red dots, the other combined
fragments are shown as black ones. The arrows on the figure show the inclusion
relation. For example: f53 is included in f39 is shown as: f53 → f39 and means
f53 ∈ f39. Thus, having f39 during a VM composition procedure means we
would not need to acquire f53. On the other hand, storing f53 as well as f39 in
a repository is a possible waste of storage (as f39 would replicate the almost
3 MiB data from f53).

Storing all selected VMIs without fragmenting (i.e., one would always need
to store a fragment with the base like: f ′

35 = f35∪fbase) would require 16.5GiB
storage space. Storing only the base and the recipe related fragments already
significantly reduces the storage requirement to 2.2GiB (this is the base be-
haviour of our implementation and it is shown in Table 3). Rendering a space
reduction ratio of: SPRROnlyRecipe = 0.8675. But as mentioned before this
still incurs plenty of storage waste as shown by the other combined fragments
of the figure. If one would store all fragments identified in the complete de-
composition shown in Fig. 4, then this would require 3.5GiB of storage which
would introduce great flexibility of future additions to the fragmented VMI
set at the expense of more than 1GiB storage. As a result, we would have an
SSRRCompl.Dec = 0.786

For the efficient operation of the VM Image composer, it needs to ensure
it downloads the least amount of redundant content. Thus, ideally it requires
a disjunct set of fragments that would lead to the VMI when merged. This
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Fig. 4 Possible fragment relationships of the 16 VMIs in the experiment
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requires extension fragments to be defined as follows:

fext
x,n = fx\fn (3)

Where fx is a fragment which includes fn, and fext
x,n is the complementer of

fn so the union of two results the original fx fragment. Unfortunately, this
leads to even further levels of fragmentation and more storage requirements.
Also, it decreases the VM Image composer’s performance as it needs to build
more parts of the image than it would be necessary (i.e., now it needs to
get extension and combined fragments additionally to the base instead of the
recipe based fragments initially produced by the decomposer).

To reduce the performance degradation on the composer and while to also
reduce our the storage requirements, we follow the following heuristic. We iden-
tify combined fragments that could be the foundation for most recipe based
fragments. To keep the storage costs low, we only keep combined fragments
which would result in extension fragments with a threshold size (i.e., this can
be set based on the network properties of the site where the VM Image com-
poser is deployed). This behaviour is governed by the following equations:

FX(f) = {fe ∈ FR : (f ⊂ fe)} (4)

Fkeep = {fk ∈ F : (size(fk) > T ∧ |FX(fk)| > 1 ∧
(∀fo ∈ FX(fk) : (T < size(fext

o,k ) < size(fo)/2))}} (5)

Here we first define the set FX(f) that encapsulates all recipe based fragments
that derive from the the given fragment f (i.e., they have f as their common
root in Fig.4). Later, with the function FX(fk), we define the set of all com-
posite fragments which have at least two recipe based fragments derived from
them while the expecting their extension fragments to be at least the size of
T threshold (the upper threshold of extension fragment sizes is set so large
duplicates are not considered in the solution). Applying a T = 10MiB value
results in the following list:

FX = {f78, f38, f34} (6)

These fragments contain commonly used components like mysql and php.
Based on these the simulation estimated several new extension fragments
that could replace their original recipe based packages, these are listed in
Table 4. This approach significantly reduces the 3.5GiB storage requirement
of the complete decomposition. Instead, with the introduction of these three
additional fragments, it is reduced even below the base behaviour of just
storing all recipe fragments and the base image. The simulated storage re-
quirement is now at 2GiB. Thus we arrived to the space reduction ratio of
SSRRWithExtensions = 0.8786

For a the complete picture regarding the simulation results, an excerpt of
the list of fragments is presented in Table 5, while a full list is available at [23].
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Table 4 List of the extension fragments and their respective sizes

Fragment – f Simulated size(f)
fext
8,34 18MiB

fext
23,34 15MiB

fext
14,38 27MiB

fext
23,38 28MiB

fext
5,78 18MiB

fext
8,78 34MiB

fext
11,78 87MiB

fext
14,78 31MiB

fext
23,78 31MiB

7 Related Work

There are several approaches for reducing the storage footprint of VM images
(VMIs). First we are looking at how container images are structured and
what techniques are there used to reduce their size, and then methods for
de-duplicating data segments for VMIs and storage systems in general.

Container technologies for example can be effectively utilized in solutions
that allow orchestrating large-scale deployments on top of VMs in clouds [31].
Docker is probably the most well-known container engine [30], others include
Rkt [24], LXD [5] or OpenVZ [25]. Docker defines its containers as follows
[9]: ”Docker containers wrap a piece of software in a complete file system
that contains everything needed to run: code, runtime, system tools, system
libraries anything that can be installed on a server. This guarantees that the
software will always run the same, regardless of its environment.”. A container
engine can ”execute” a container thus, it is analogous to a hypervisor or VM
Monitor. A Docker container (image) is built using a special descriptor file
called Dockerfile. This file contains a sequential list of commands about (i)
which Linux distribution to base the image on; (ii) what software components
are required to be installed; (iii) commands to deploy the service; etc. The
Dockerfile can be regarded as a recipe to produce the desired container image.
This resulting container image is a layered file system, where each command
in the Dockerfile produces a new additional layer on top of the previous one.
These layers are read-only, and there is a final thin read-write layer provided
to write runtime modifications. Docker uses amongst others OverlayFS [9,2]
union file system to mount the layers as a single file system. Docker is designed
to run a single process (e.g., Database engine, web server or application) within
a container. This means Docker relies on file system related features to achieve
the final file system. In case of VMs this is not feasible as VMs can use custom
file systems, their file systems can be resized, may contain custom kernels that
do not support some of the features required, etc.

On the other hand LXD is a container management tool that utilizes
the LXC [4] operating system container, thus LXD runs a complete ”Vir-
tual Machine” inside a container. It is image based [6], for example it can
use BTRFS [3] for execution, which is a modern copy-on-write file system
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Table 5 Excerpt of list of fragments. For the full list of 81 items see [23].

Id (f) size(f) Composes Extends with packages
13 49MiB 26,29,52 tinymce, libphp-snoopy, libphp-phpmailer, libx11-6,

libjs-cropper, wordpress-theme-twentyfourteen, libtiff5,
libxpm4, libvpx1, php5-gd, libjbig0, wordpress, libgd3

14 129MiB 29,38 ruby-blankslate, ruby-hmac, ruby-treetop, ruby-rack-test,
ruby-activemodel-3.2, ruby-net-ldap, dbconfig-common,
ruby-atomic, rake, ruby-thor, ruby-mysql, ruby-builder,
ruby-journey, libyaml-0-2, mysql-client, ruby-railties-3.2,
redmine-mysql, ruby-activerecord-3.2, ruby-polyglot,
ruby-rack-cache, ruby-thread-safe, ruby-i18n, ruby-
rack-openid, ruby-minitest, ruby-activeresource-3.2,
ruby-rails-observers, ruby-actionmailer-3.2, ruby-
actionpack-3.2, ruby-hike, ruby-arel, ruby-openid,
ruby-activesupport-3.2, ruby-sprockets, ruby-tilt, ruby-
rack-ssl, ruby-mail, ruby-tzinfo, ruby-multi-json, ruby-
coderay, redmine

16 7361kiB 73 libjson-c2
18 5787kiB 30 nginx-light
24 52MiB 37,41 postgresql-client-9.3, postgresql-9.3, postgresql-common,

libpq5, php5-pgsql, libedit2, postgresql-client-common,
ssl-cert

30 5047kiB 64 nginx, nginx-common
32 16MiB 10 erlang-ssl, erlang-xmerl, erlang-webtool, erlang-asn1,

erlang-inets, erlang-crypto, erlang-public-key, erlang-
mnesia, erlang-tools, erlang-runtime-tools

41 35MiB 51,52 libapache2-mod-php5
42 107MiB 55,60 php5-mysql
58 1491kiB libstdc++6, gcc-4.8-base
68 22MiB 0,76,78,80 apache2, apache2-bin, apache2-data, libapr1, libaprutil1-

ldap, libaprutil1
70 10MiB 3,81 php5-common, php5-json
77 98MiB 7,62 libdbi-perl, mysql-common, libmysqlclient18, libdbd-

mysql-perl, mysql-server-5.5, mysql-server, mysql-server-
core-5.5, libaio1, mysql-client-5.5, libreadline6, libterm-
readkey-perl, mysql-client-core-5.5

with writeable and read-only snapshots, compression and planned in-band de-
duplication. LXD images can be tarballs, either single one called ”unified”;
or ”split” where a tarball contains the file system and a second one contains
metadata. The file system tarball must contain a full bootable Linux distribu-
tion and configured to be able to run in a container (e.g., properly configured
network interfaces). The tarball approach would allow to port our solution,
however with some limitations (i.e., kernel).

For VM images different de-duplication approaches can be used to reduce
their storage footprints: first is block level where each image is treated as a
sequence of blocks of fixed size (e.g., 8KB, 16KB, etc.). These blocks are regis-
tered (via a hashing function) thus duplicate ones among different images can
be filtered. Another approach is to use file based de-duplication. Comparison
of these methods is discussed in detail in Section 3. Additionally, compression
techniques may be utilized as well [29].
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Keren et al. [18] show that with block level de-duplication techniques,
one can identify nearly 70% of identical parts in frequently used VMIs. This
paper shows several chunk identification techniques, but these chunks never
reach over the level of file systems. Finally, the paper addresses the issue
of the package management systems and their effect on the efficiency of de-
duplication. The different behaviour and dependencies in the widely available
package management systems lead to some variance in data chunks on the
VMIs. This variance is expected to be unavoidable even if one processes the
metadata offered by file systems. They claim that with even simple chunk-level
de-duplication methods the size of a single image file can be reduced up to
80%. However the block level handling of the images hides several important
inter-relationships between the image parts. Over several hundred VMIs were
analysed by Jayaram et al. [17]. The analysis consisted of checking how ef-
ficiently 5 de-duplication techniques could work on the images, and also the
authors introduced several similarity metrics. The used metrics and techniques
were both checked in inter- and intra-VMI contexts. Unfortunately, this paper
does not go further than point out the chance of optimizing image storage
or delivery. The authors showed in a real world scenario that choosing the
right chunk-size for de-duplication is crucial, as the size increases so the de-
duplication factor decreases. Unfortunately the analysed techniques were not
checked for their capabilities of VM image size optimization.

VMIs are continuously created in datacenters, and duplicated data seg-
ments may exist in such VM images, which is a waste of storage resource. The
size of VM images is generally large, therefore it is inefficient to load massive
VM image fingerprints into memory for a fast comparison to recognize dupli-
cated segments. Xu et al. [26] propose a clustering-based acceleration method
called improved k-means clustering to find images having a high chance to
contain duplicated segments. In this way, only limited VM image candidate
fingerprints are loaded into memory. Their experiments show that it signifi-
cantly reduces the performance interference to hosting virtual machine with
a negligible increase in disk space usage, compared to existing de-duplication
methods. Many clouds must manage thousands or more virtual machine im-
ages, requiring significant amounts of storage. To provide a good user experi-
ence, they must be able to deploy those images quickly. Lin et al. propose a
new service for efficiently storing and deploying disk images [22] by exploiting
the redundant data found in similar images using de-duplication. It is also inte-
grated with an existing highly-optimized disk image deployment system, called
Frisbee, to distribute and install images. They also propose a new chunking
algorithm, called AFC, which enables fixed-size chunking for de-duplicating al-
located disk sectors. The authors claim that their experiments show that their
system reduces storage requirements by up to 3x factor while, imposing only
a negligible runtime overhead. Liquid [27] is introduced as a lightweight dis-
tributed file system heavily building on ideas from the fields of de-duplication
and peer-to-peer computing. The authors consider de-duplicating both run-
ning and offline VM images, and they allow rapid cloning mechanisms with
the help of copy on read. As Liquid is implemented as a file system it can
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be rather transparent for the IaaS system, on the other hand the authors re-
quire the IaaS systems to completely adopt Liquid in order to achieve the best
performance. The authors claim that Liquid provides good I/O performance
while doing de-duplication in the background by caching frequently used data
blocks and organizing them into chunks to reduce disk operations. P2P tech-
nique provides good scalability. On the other hand, an own file system should
be used to track VM life-cycle with a metadata server.

8 Conclusions and future work

In this paper we presented the ENTICE approach for image analysis, de-
duplication and optimised fragmentation. It relies on file-level de-duplication
and a bottom-up approach for VM image fragmentation. First we discussed
the different approaches available for reducing the storage space requirements
for VMIs. Next we presented our proposed techniques and our system imple-
menting these. We evaluated our proposed techniques using two scenarios. In
the first scenario we evaluated the integrated behaviour of all architectural
components with a real life deployment of our system. In the second scenario
we implemented a simulation environment that analyses online software pack-
age repositories and deduces decomposition options with expected fragment
sizes. We introduced the Storage Space Reduction Ratio (SSRR) that denotes
the achieved storage space saving when using fragments compared to the tradi-
tional storage. We showed that our technique can achieve a SSRR = 0.7866 for
the first scenario; and SSRRWithExtensions = 0.8786 for the second scenario.

Although the services described here provide a complete functionality for
image analysis and fragmentation we see several possibilities to improve their
functionalities. Some of these are as follows. We plan to add a component that
is responsible for the automated updating of base images (i.e., package and
security updates) as well as rebuilding of virtual image trees in the background
using the updated images and fragments. We want to use updated usage statis-
tics (the Knowledge Base component of ENTICE collects these, see [14] for
more details). Based on this we plan to add automated node removals from and
creation to the virtual image trees. This would also allow to unify paths and
fragments for often used together items, for faster deployment. Additionally
as future work we plan to introduce the ENTICE VM image analysis and op-
timised fragmentation service in the institutional OpenNebula cloud in MTA
SZTAKI. This will allow us large scale evaluation to confirm the simulation
results.

Software availability

The ENTICE image analysis and optimised fragmentation software is open
source, it is available under the conditions of Apache License version 2 from
the ENTICE WP3 GitHub repository [12].
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