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Abstract

Cloud infrastructures provide computing resources to applications in
the form of Virtual Machines (VMs). Many applications deployed in
cloud resources have an elastic behavior, that is, they change the number
of servers (VMs) dynamically, adapting the application to the workload.
Scaling-out and scaling-in operations are managed by an auto-scaler mod-
ule, which can be reactive (adapting the number of VMs to the current
workload) or proactive (adapting to the expected future workload). The
cloud infrastructure provides a management interface to create (deploy)
and destroy (shutdown) server instances, operations that require some
time to complete. In this work we evaluate to what extent the reduction
of the time required by VM management operations, namely deployment
and shutdown, impacts the performance of applications and the behavior
of reactive and proactive auto-scaling policies. After establishing several
ideal boundaries on the use of resources, we carry out a set of experi-
ments that show how short management times drastically reduce the use
of resources, while allowing the application to operate within the required
performance bounds.

1 Introduction

Cloud computing has emerged as a new paradigm to host and execute di↵erent
types of applications. A main di↵erence between cloud computing and other
classical computing approaches is the virtualization of resources, which provides
great benefits to both the owner and the user of the infrastructure. In particular,
the resources hosted by physical servers are provided in the form of abstract
computing units that are implemented as Virtual Machines (VMs).
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One of the characteristics that makes cloud infrastructures so appealing for
users is that they allow the on-demand utilization of resources, that is, VMs
for a running application can be acquired and released dynamically, enabling
the implementation of elastic applications [24] [29]. Furthermore, users pay
according to a scheme known as pay-as-you-go, meaning that they are only billed
for the resources they actually reserve. The relationship between the tenants
(users deploying applications) and the cloud provider (the one managing the
infrastructure) is sealed by a Service Level Agreement (SLA) that is defined in
terms of one or several Service Level Objectives (SLO).

Virtualized data centers support the execution of a large variety of appli-
cations, from scientific codes to web applications. Each of these applications
is initially deployed with a fixed number of servers (implemented as VMs) in
order to serve end-user requests. End-users normally expect that their requests
will be processed within the limits established by another SLA signed with the
application provider. It is important to di↵erentiate this SLA, which we will call
Application-SLA (A-SLA), from the one signed between the application owner
and the cloud infrastructure, which we will call, from now on, Infrastructure-
SLA (I-SLA).

As the input workload generated by end-users can be very variable, the
number of application instances (VMs) used by the application should adapt
correspondingly, to avoid A-SLA violations caused by saturated resources. Sim-
ilarly, if the number of VMs is excessive, some resources should be released to
avoid unnecessary costs. This resource-to-workload adaptation task could be
performed manually or, preferably, carried out by an auto-scaler module that,
without human intervention, adjusts the resources assigned to the application.
The auto-scaler checks periodically a set of metrics that measure input work-
load and resource utilization. It may then determine that some VMs should
be added to avoid A-SLA violations, or that it is safe to release some VMs if
they are no longer necessary, thus triggering a scaling event. Note that we are
dealing with elastic applications and horizontal auto-scaling [31].

Scaling events are implemented using the management interface o↵ered by
the cloud provider to acquire and release resources. Deploying a new application
instance is not instantaneous: a newly requested VM needs some time (several
minutes [21]) until it is fully operational and can start processing end-user re-
quests. Therefore, many A-SLA violations may happen while waiting for the
new VM. A proactive auto-scaler takes this time into consideration, trying to
anticipate future user demands. Removing a VM is not instantaneous either:
the VM must process all the pending requests, and then shut down the services.
Only then it is possible to remove it safely. Notice that auto-scaling decisions
do not result in immediate changes in service times (time required to process
the requests); for example, some time is required to have a newly deployed VM
e↵ectively processing requests and, thus, reducing the workload of other VMs.

In this paper we explore the benefits of having very short, even instanta-
neous, deployment and release operations. This is a complex task to be carried
out by the cloud provider, and we do not explore here how to do it – this is
left as future work. However we demonstrate how a shortening of these resource
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management operations a↵ects the behavior of elastic applications considerably,
allowing them to use fewer resources without putting A-SLA compliance at risk.
We also demonstrate how, when management times are short, the performance
di↵erence between simple reactive auto-scalers and their proactive counterparts
is remarkably reduced, avoiding the need to use and tune sophisticated predic-
tion algorithms.

This study has been carried out using a large number of simulations. We
model an elastic application hosted in a cloud infrastructure, under the control
of di↵erent auto-scalers. We use actual web traces to emulate the input received
by the application. As this work is not focused on evaluating auto-scalers, we
had to narrow the number of target metrics and the number of auto-scaling
algorithms evaluated. We have chosen a representative instance of reactive
auto-scalers and another one of proactive auto-scalers, both working with a
single target metric, as most actual auto-scalers do. Results show that both
make better decisions when managed times are reduced.

The rest of the paper is organized as follows. In Section 2 we define the
context and motivation of this work, following in Section 3 with a description
of the type of elastic applications considered in this study. We continue in
Section 4 by presenting the simulation-based experimental framework, including
a description of the set of experiments carried out. Section 5 is devoted to
establishing a baseline to compare the results presented in sections 6 and 7,
in which the results of the experiments are discussed. Next, in Section 8 we
discuss some previous works about shortening resource management times of
cloud applications. The paper finishes in Section 9 with some conclusions and
an enumeration of future lines of work.

2 Context and motivation

In this section we put in context the work presented in this paper. We start
by describing the cloud computing scenario in which elastic applications run.
Then we analyze the lifetime of a VM, in order to understand the importance
of shrinking management times. We end this section with a brief summary of
the main contributions of this work.

2.1 Cloud computing environments

A cloud computing environment can be divided into three layers: the infrastruc-
ture, the tenants and the end-users, as depicted in Figure 1. The right side of
the figure represents the manager of the infrastructure, which o↵ers resources to
their clients, the tenants that will pay for using them. Applications managed by
the tenants (represented in the middle of the figure) acquire or release resources
as needed in order to provide a set of services to groups of end-users (left-hand
side of the figure). An I-SLA governs the relationship between provider and
tenant. A di↵erent A-SLA governs the relationship between the tenants and
the end-users.
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Figure 1: Parties involved in cloud-deployed applications. The infrastructure
provides virtualized resources such as VMs (right) to tenants that run applica-
tions (middle). Applications deployed in the cloud provide services to end-users
(left). These end-users generate requests that must be served by the applica-
tion. Both tenants and infrastructure must meet the restrictions established in
the SLAs signed with their respective customers (A-SLA and I-SLA).

A fundamental aspect of the I-SLA is the price of the resources, but it
may include other factors, such as resource availability and also the manage-
ment times of VMs: the infrastructure must implement management operations
within some time bounds. The A-SLA normally includes an acceptable maxi-
mum response time, that is, the maximum time since a user request is received
by the application until the reply is sent. When this time is exceeded, we say
that an A-SLA violation has occurred.

We focus on horizontal scaling [31], that is, on applications that can be
scaled out (adding new server instances) or scaled in (removing server instances)
in order to adapt resources to demand. The application consists, thus, of a
collection of identical servers that receive requests to perform tasks from the end-
users. These requests arrive at the front-end or load balancer that distributes
them among the active servers. In this context, we will interchangeably use the
words VM and application server, as one is the way of implementing the other
in a cloud infrastructure. As, in this work, we do not study the role of the
load balancer (we focus on the collection of servers), we assume that a proper
mechanism is in place to inform the load balancer about the availability of a
new VM, and about the need to stop redirecting requests to a VM that is to be
removed.

Additionally, we consider that elasticity is implemented by means of an
auto-scaler module implementing a certain scaling policy. Its role is to react to
changes in the input request rate, making decisions about adding or releasing
resources. These decisions are implemented, through some invocation to the
management interface, by the infrastructure, which deploys or shuts down VMs
within the time limits established by the I-SLA. The auto-scaler tries to mini-
mize the use of resources (to save costs to tenants) while guaranteeing A-SLA
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compliance (to provide a satisfactory service to end-users).
Recently the use of containers as a new model for resource management in

cloud environments has become increasingly popular [12]. Throughout the rest
of the paper we will focus on VMs although all the analysis and conclusions
about auto-scaling remain the same for container-based elastic applications, as
deployment and release of containers also require non-null management times.

2.2 VMs lifetime

As explained in the previous subsection, when the auto-scaler decides that new
VMs are required, these are requested to the infrastructure through a manage-
ment interface. However, those VMs are not deployed instantly. In Figure 2 we
have represented the lifetime of a VM, and we can see how a Deployment Time
(TD) is required before a VM is ready to serve requests. The operations to be
carried out during this time include locating the adequate resources, booting the
operating system, setting up the required services (network, storage, etc.) and
finally starting up the application itself. Actual values of TD may vary broadly,
depending on many factors that include, among others, the particular OS being
used, and the location of the VM image to use: stored locally or somewhere else
in a network-based storage.

Only after the VM has been deployed, can it start serving requests. The time
that VMs spends ready to accept end-user requests is called Active Time (TA).
A VM will be in this state until the auto-scaler decides that it is no longer
necessary. When this happens, the VM must be released, a procedure to be
completed in several steps and that also requires some non-negligible Shutdown
Time (TS). The time required to safely release a VM is not easy to bound. First,
it is necessary to complete all the queued requests and those being processed
by the VM – if any. The duration of this stage is called the Backlog Time (TB)
and depends on the number of pending requests. The procedure to totally shut
down the VM, releasing the corresponding resources, can only start when the
VM is totally idle, and takes a certain Release Time (TR). When a VM is in the
backlog processing phase, the auto-scaler may reclaim it. Then the shutdown
process is canceled and the VM will never enter the release phase, returning
directly to the active state. Recycling a VM in the backlog stage is, thus, more
e�cient than releasing a VM and acquiring a new one.

Clearly, two of the times depicted in Figure 2 depend on characteristics (and
the I-SLA) provided by the cloud infrastructure: TD and TR are normally fixed,
due to technological restrictions. The value of these management times can vary
greatly between di↵erent cloud providers, but they are usually in the range of
minutes for TD, and tens of seconds for TR [21].

As a side-e↵ect of non-instantaneous management operation is the need of
auto-scalers to implement a cool-down period, longer than the management
times: after making a scaling decision, new ones are suspended, waiting for the
e↵ects of the last one committed. This imposes a limit to the adaptability of
the application.
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Figure 2: Dissection of the lifetime of a VM.

2.3 Expected e↵ects of reducing VM management times

From the analysis carried out in the previous section, it should be clear that
the time that application instances spend serving requests depends mainly on
the decisions made by the auto-scaler. However, there are some additional,
management-related overheads, whose duration depend on the specifics of the
cloud provider, and change from one to another.

Once the auto-scaler of an application has decided to add or remove VMs
from the allocated pool, the infrastructure must deploy them in, at most, TD

or release them in, at most, TR, as determined by the I-SLA. We expect these
times to have a negative e↵ect on cost and/or performance but, can we measure
this e↵ect? What are the benefits of shrinking these times as much as possi-
ble? Clearly, management times close to zero allow the applications to be more
reactive, as the decisions of the auto-scaler have an impact on request service
time almost immediately. As a result of this, these decisions would be more
e↵ective, and this should translate into a reduction in the amount of resources
required by the applications to meet the A-SLA. Subsequently, proactive auto-
scaling policies that try to counteract the e↵ects of those delays would be less
necessary, making the use of simpler reactive policies worthwhile.

Moreover, if the infrastructure and, thus, the application could react faster to
resource changes, the frequency of metric checks and auto-scaling decisions could

6



be increased accordingly, as actions result in noticeable performance changes
more rapidly.

The three main contributions of this work are as follows:

1. An in-depth analysis on the e↵ects of VM management times on the per-
formance of elastic applications.

2. A comparison of reactive and proactive auto-scaling policies under scenar-
ios of long and short VM management times.

3. An analysis of the impact of the frequency of auto-scaling decisions on the
performance of elastic applications, again taking into consideration long
vs. short VM management times.

Notice that in this paper we evaluate what would happen if cloud providers
had adequate mechanisms to enable the reduction of VM management times,
but an analysis of these mechanisms falls outside the scope of this paper and
is left as future work. In Section 8 we discuss some proposals found in the
literature.

3 Modeling elastic applications

In this section we describe the architecture of the class of elastic applications
used in this work, as well as the specifics of the auto-scaler that is in charge of
triggering scaling events.

3.1 Architecture of the application

We consider applications using a two- or three-tier architecture:

1. A load balancer (LB) receives the requests generated by end-users and
redirects them to any of the identical servers (VMs) that compose the
application. The LB may be implemented in a hardware device or as a
DNS-based redirection. We do not model it in this work; it is simply
assumed that the LB distributes requests evenly, and that it provides an
interface to enroll and withdraw application servers.

2. A business tier that implements the logic of the application. It is composed
of a variable collection of identical VMs that process input requests (from
end-users, redirected by the LB) and generate the required responses.

3. An optional persistence (storage) tier that implements the database re-
quirements of the application.

Although the study performed in this work is applicable to any kind of
applications supporting horizontal scaling [31] [14], for the sake of simplicity
and due to the fact that we do not model intra-application communications,
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we have decided to use only 2-tier applications. The number of servers in the
business tier is managed by an auto-scaler; it will make scaling decisions using
a given scaling policy. This component and the policies used in this work are
described next.

3.2 Auto-scaling policies

The auto-scaler is the component in charge of deciding whether to increase or
decrease (scale) the number of servers of an application. These decisions are
performed at fixed intervals of time (the auto-scaling period), after checking
one or more metrics defined by the application manager (the tenant). Di↵erent
scaling metrics can be used, including the average CPU load of the servers, or
the number of arriving end-user requests at a time t (Rt). In this work we have
chosen Rt. With this number, we compute the application capacity (number of
servers K) required to meet the response-time goal agreed between the tenant
and the end-users (TA�SLA), computed as follows:

Th =
TA�SLA

TAVG
(1)

K =
Rt

Th
(2)

In Equation 1, TAVG is the average VM time required to process a request.
This is a current value, measured since the last auto-scaling event. Thus, Th is
the number of requests that a VM is able to serve obeying the A-SLA. Equation
2 then computes the number of VMs required to deal with request rate Rt. This
capacity management scheme is similar to the one used in [15]. In that work
they used the maximum number of requests that a server is able to manage
without violating the TA�SLA. However, as the use of that value requires a
priori knowledge of the capacity of servers, we have replaced it with Th, which
can be computed dynamically as the execution goes.

Auto-scaling policies can be divided into two broad groups: reactive and
proactive. Policies in the first group make decisions based on the current value
of the scaling metrics. In contrast, proactive policies use estimations of future
values of the metrics, making auto-scaling decisions with these estimations. This
is done because there is a lag from the time a new resource is added/removed
until the e↵ects of this action are perceptible, and proactive policies aim to
have resources ready before they are needed. Once a decision is made, the auto-
scaler spends a cool-down period in which resource changes are not allowed, to
avoid oscillation issues. After this time, the results expected from the previous
decision can be checked and, maybe, reconsidered.

Although many complex auto-scaling policies have been proposed and de-
veloped [19], we have selected two simple ones (one reactive, one proactive) that
use metric Rt:

• Reactive (RT): This policy [15] manages resources adapting them to the
current request rate. It computes the number of required servers using
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equations 1 and 2 and then uses the management interface to add or
remove servers. The main drawback of this strategy is that its performance
depends strongly on the TD and the TR of the VMs, as the decisions will
not be implemented immediately. Note, though, that if the management
times and the period between scaling decisions were zero, this would be
an optimal strategy.

• Moving Window Average (MWA): This proactive policy [15] operates
like the previous one but, instead of using the current value of Rt, it
averages the request rate during a past window of some duration to predict
the rate at a future point in time. The idea behind this policy is that
at time t we can have an estimate of the request rate at time t + TD,
making an educated guess about the usefulness of resources not at the
current time, but when they are already deployed. As the window size
is a parameter with a high impact on the performance of MWA, and it
depends on specifics of each workload, we performed a sensitivity analysis
using several values for this parameter. The best results were obtained
using a window size of twice the deployment time (2⇥TD) and no further
improvements were achieved increasing this size.

When scaling-out, new resources are requested from the cloud provider (un-
less there are enough VMs in the backlog stage ready to be recycled). When
scaling-in, it is also necessary to determine which particular VMs will be re-
moved from the application. This could be done using di↵erent strategies, such
as choosing the less loaded VMs or the last added ones. Although the selec-
tion of this strategy has an impact on the auto-scaling process, for the sake of
simplicity we have chosen for this work the last added strategy.

4 Experimental setup

In this section we introduce the simulation-based framework used to evaluate
auto-scaling policies under di↵erent values of VM management times, TD and
TR. After describing the input workload used to feed the simulator, we present
the set of experiments carried out, designed to provide meaningful answers to
the three issues outlined in Section 2.3.

4.1 Input workload

The workload contains the sequence of requests that end-users submit to a given
application. In this work we use an actual workload captured from the produc-
tion web server of the University of the Basque Country UPV/EHU [10]. This
workload follows a daily periodic pattern receiving, on average, more requests
on workdays than during the weekend. We have focused on the load generated
during one particular, representative work day, depicted in Figure 3. The figure
shows the number of requests per minute that arrive to the web server.
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In this time-scale (minutes) we can set apart four periods following di↵erent
patterns. The first (P1) and fourth (P4) periods show a decreasing behavior
in which the number of requests is lower as time passes; the decreasing rate
is higher in P4. The second period (P2) is of intense growth, while the third
one (P3) is neither of growing nor of decreasing demand, but shows very strong
changes in very short periods of time.

Other works on auto-scaling use specific workload patterns of short duration.
However, actual workloads do not follow a single pattern, because the dynamics
of users change with time. The use of actual workloads allows us to reach more
general conclusions about the behavior of auto-scaling policies.

Figure 3: Representation of the real workload extracted from the web server of
the University of the Basque Country UPV/EHU. The duration is one day and
the plot represents the number of requests per minute.

A main limitation of actual workloads is that they are “as is”, a record of
an actual behavior. However, it is possible to derive realistic (but not real)
workloads from them, varying parameters such as the request rate (e.g. halving
or doubling it) or the per-request computational cost. In particular, we have
simulated request processing times by sampling a uniform distribution in the
interval [50, 250] ms, instead of using the actual ones.

4.2 Simulation environment

We have developed a custom, event-driven cloud simulator that allows us to
model and evaluate the dynamics of an auto-scaling environment in which an
application can acquire and release resources (VMs) based on the decisions
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made by an auto-scaler. The simulator implements several auto-scaling policies,
among them RT and MWA. It is also able to capture many performance metrics
from a hosted application and the infrastructure. In particular, we have used
the following metrics in our evaluations:

• VM hours: Given an application, this metric summarizes the total number
of hours that the assigned VMs spend turned on (including the deployment
and shutting down time). This metric is related to the utilization cost to
be paid by the tenant to the cloud provider.

• Number of VMs: Given an application, this metric summarizes the num-
ber of used VMs at a given time. In this work we use it to graphically
represent the amount of resources reserved by an application as the exe-
cution progresses. Notice that this metric by itself is not a cost indicator;
we have to also consider the time that the VMs spend turned on (the VM
hours metric explained above).

• Response time: This metric measures the service time of requests submit-
ted by end-users. Sometimes this metric is presented as a simple average,
but this is not a good indicator of the number of A-SLA violations. In-
stead, we will use the percentile 95 of the response time (T95), that is,
the value below which 95% of the response times are. When T95 is below
the A-SLA, we say that the system guarantees a percentile 95 goal of the
A-SLA. For this work we have chosen a 1000 ms value for the A-SLA.
This choice is motivated by the value used in [15] that was based on re-
cent studies [13] [18] [23] [30] that indicate that 95 percentile guarantees
of hundreds of milliseconds are typical.

4.3 Design of the experiments

We have carried out an extensive experimentation with a total of 160 di↵er-
ent simulation runs, gathering in each run the metrics detailed above. The
parameters varied in the di↵erent experiments were:

• We tested the two auto-scaling policies described previously: RT and
MWA.

• The scaling-related metrics that trigger scaling actions can be checked
with di↵erent granularity. We have considered auto-scaling periods of 1,
5, 10 and 60 seconds.

• We have tested five di↵erent values of TD: 1, 5, 10, 60 and 300 seconds.
The last value is close to those reported for commercial cloud providers
[21].

• For TR we have tested four values: 1, 5, 10 and 60 seconds.
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After a scaling decision is made, a cool-down period is applied (TCD) to
allow the resource change to be noticeable in terms of performance. This has to
be, at least, the deployment time (to have the VM ready) plus some extra time
to have the VM working fully, that is, serving end-user requests. In this work
we have set it as twice the deployment time (TCD = 2⇥ TD).

Considering all these parameters, we define an auto-scaling configuration as
a tuple (P/F/TD/TR) where P is the auto-scaling policy, F is the auto-scaling
period and TD and TR are the deployment and release times respectively. For
example, the following auto-scaling configuration

MWA/10/60/1

represents the use of the MWA auto-scaling policy, an auto-scaling period of 10
seconds, a deployment time of 60 seconds and a release time of 1 second.

As the time required by a VM to process a request is generated randomly
(see Section 4.1), we have repeated each experiment 10 times using a di↵erent
seed each time. Thus, the numerical results reported in the following sections
are averages of 10 simulation runs.

5 Cost boundaries and baselines

The purpose of this section is to set up some performance boundaries and base-
lines allowing us to put in context the merits of the di↵erent configurations
described in the previous section. First, we compute the “perfect” number of
VMs that an application would require to meet the A-SLA (for all the end-user
requests) with and without the use of an auto-scaler. For this, we assume total
knowledge of the incoming workload and zero management times, in such a way
that resources are ready when the are needed and only while they are needed.
This is an utterly unrealistic scenario, but it is useful to set up a lower bound
on resource requirements. We also carry out similar computations in more real-
istic scenarios involving the use of auto-scalers and typical management times
(similar to those o↵ered by actual cloud providers). The obtained results have
been depicted in Figure 4. Next we analyze these results in detail.

5.1 Ideal boundaries with and without an auto-scaler

The first cost boundary that we want to establish corresponds to a perfect auto-
scaling scenario. Let us assume that management times are zero (requests to
the cloud provider are implemented instantaneously). Let us further assume
that the auto-scaler has continuously updated information about the current
number of VMs, their utilization, the incoming requests and the time required
to process them (the scaling metric). Under these ideal circumstances, the auto-
scaler can compute with total precision the number of active VMs needed to
guarantee that the percentile 100 of the response time is within the A-SLA. This
configuration results in a perfect assignment of resources: VMs are reserved only
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Figure 4: Number of VMs per second required by an application to serve the
end-user requests meeting the A-SLA. The blue line corresponds to an elastic
application with a perfect auto-scaler. The pink horizontal line corresponds to
a non-elastic application with the maximum number of VM/s of the previous
configuration. The green and red lines correspond to realistic configurations
RT/60/300/60 and MWA/60/300/60.

when they are necessary, for the necessary period, and with full utilization; see
the blue line in Figure 4.

To implement this assignment of resources, the auto-scaler needs to know a
priori the computational demands of incoming end-user requests, and can adapt
to the workload immediately. This is possible in a simulation environment, but
unattainable in reality. Also, zero values for TD and TR are unreachable. Using
the terminology described in Section 4.3, the blue line would correspond to a
RT?/0/0/0 auto-scaling configuration, where RT? is an auto-scaling policy with
perfect knowledge of the workload.

We may wonder what the cost would be for the same application (under the
same workload) if implemented in a non-elastic way, i.e. without using an auto-
scaler. Again, with perfect knowledge of the workload, we could dimension the
application to cope with the maximum peak of demand, guaranteeing that in all
cases the A-SLA is met. This policy is called always on in [15]. The application
will have, since its initial deployment, the necessary number of VMs, depicted
in Figure 4 as a horizontal pink line. Note that this number is the peak number
of VM/s in the RT?/0/0/0 scenario. In this context, management times are
irrelevant, as there are no scaling events.
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5.2 Baseline cost with realistic VM management times

In the previous section we have established some ideal cost boundaries. Now we
focus on assessing realistic scenarios of elastic applications under unpredictable
workloads with VM management times close to those o↵ered by commercial
cloud providers, setting a baseline with which to compare the e↵ects of shrinking
management times in terms of both cost and performance. If this baseline is
close to the RT? ideal boundary, then no e↵ort would be required to reduce TD

and TR. However, as we will see, this is not the case.
We have tested two auto-scaling configurations with di↵erent auto-scalers:

• A reactive (RT) configuration with an auto-scaling period of 60s, TD = 300
and TR = 60 (RT/60/300/60)

• A proactive (MWA) configuration with the same parameters (MWA/60/300/60)

In both cases, the cool-down time (minimum time between auto-scaling de-
cisions) is 2⇥TD. We have verified that both configurations guarantee that T95

is below the A-SLA limit.
The results of the corresponding experiments are also represented in Figure 4.

The green line represents the number of VM per second required by the reactive
configuration. The long management times (that also imply long cool-down
times) make this configuration very far from the optimal. See the “stepped”
shape of the green line representing VM/s, and also the wide oscillations in the
number of deployed VMs.

The red line corresponds to the proactive configuration. Its shape is also
stepped, because of the long management times, and shows the di�culties that
the auto-scaler has to rapidly adapt to the input load. However, this policy
results in a better use of resources: the number of VMs required to meet the
A-SLA is much lower than with the reactive policy, showing the e↵ectiveness of
using predicted values of the scaling metric instead of the current ones. Also,
oscillations are greatly reduced: the number of deployed VMs is more stable.

We must insist on stating that, in real scenarios it is impossible to develop
the perfect auto-scaler due to many reasons. In particular, we can neither
know in advance the exact number of requests that will arrive (even when using
predictive techniques), nor the time required to process them. However, the
obtained unachievable results can be used to evaluate how far from them other
policies perform.

These initial experiments show clearly that, with management times similar
to those available nowadays, the proactive auto-scaler performs better than the
reactive one. This justifies the extensive body of literature on proactive auto-
scaling (see [19] for more details). MWA is capable of partially compensating
the delays in resource availability resulting from the VM management times.
However, the costs derived from both RT and MWA are still excessive: both
policies assign more resources than required to guarantee that response times
are within bounds (the A-SLA). If we compare Figure 4 with the shape of the
workload (see Figure 3 in Section 4.1), we can see that for the decreasing period
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P1, the di↵erence between the ideal and the achieved number of VMs is not very
large. However, the gap grows greatly at the beginning of P2: the auto-scaler
takes too long to adapt to the increasing number of requests. Both the RT and
MWA auto-scalers require more VMs than those assigned by the non-elastic
configurations, and this is due to the need for processing, in addition to the
incoming requests, the backlog of accepted but not yet finalized requests in the
servers.

In the following section we dig further into the performance of auto-scaling
configurations, exploring their e�ciency when using cloud resources.

6 Analysis of resource utilization

In the previous section we have shown how shortening VM management times
results in a reduction in the time required by the application to adapt to the
incoming workload. Now, using the presented performance boundaries, we want
to measure this e↵ect in terms of reduction in resource utilization.

We have summarized the results of the experiments for some representative
configurations in Figure 5. The top graph represents reactive auto-scaling, while
the bottom graph is for proactive auto-scaling. For both policies, we have tested
a configuration with long management times (close to those currently available
from commercial providers), and a configuration with very short management
times (not available from current providers).

For both policies, short management times (red line) results in much im-
proved resource utilization compared to those achieved with “commercial” times
– always complying with the A-SLA. These results are not as good as with the
perfect auto-scaler, but they are much better than the static option. On average,
RT/60/300/60 requires 130.53 VMs, while RT/5/1/1 can cope with the same
workload using just 52.16 VMs. Note also how the use of a shorter auto-scaling
period results in a significant increase in scaling events, allowing the auto-scaler
to adapt to the workload more rapidly. The analysis for the proactive policy is
similar: the average number of VMs is reduced from 114.26 to 45.11.

If we compare them with the theoretical boundaries, we can see how */5/1/1
configurations are closer to the RT?/0/0/0 configuration (in relative terms, us-
ing commercial management times as a reference), but the use of resources is
not optimal. This is to be expected, because the optimal policy has perfect
knowledge of the workload, and this knowledge is, obviously, not available to
a real auto-scaler. However, we deem this as an excellent result. It it also to
be noticed how, with commercial management times, average use of resources
exceeds the number of 110 VMs of the non-elastic alternative, meaning that
the use of an auto-scaler is actually counterproductive. However, using short
management times, auto-scaling shows its merit reducing the average use of
resources well below that number.

Figure 5 only shows the (dynamic) behavior of a few configurations, allowing
us to extract some conclusions about the way they acquire and release VMs.
Now we will focus on a more exhaustive study of other configurations, using in
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(a) RT

(b) MWA

Figure 5: Representation of the number of VMs per second required by
an application to serve the end-user workload, complying with the A-SLA.
Blue: configuration RT?/0/0/0. Pink: static configuration (no auto-scaler).
Green: RT/60/300/60 (a) and MWA/60/300/60 (b). Red: RT/5/1/1 (a) and
MWA/5/1/1 (b).
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this case as performance metric the number of VM hours required to process the
incoming workload, which is closely related to the cost of the configuration. We
have chosen, for the sake of clarity, only a subset of possible auto-scaling periods,
but the results have been validated for other configurations. In particular, we
will analyze these configurations (where * represents all the possible values for
a parameter):

• RT/5/*/* and MWA/5/*/*: configurations with very small auto-scaling
period, to be compared with

• RT/60/*/* and MWA/60/*/*: configurations with a “normal” auto-scaling
period.

6.1 Average results with reactive auto-scaling

The results for the reactive auto-scaler have been summarized in Figure 6. The
columns in the graphs represent the VM hours used by the di↵erent configura-
tions: the graphs on the left correspond to a 5 s scaling period, while the ones
on the right are for a 60 s scaling period. Columns are arranged in sets. A set
corresponds to a value of TD, while each individual column in a set corresponds
to a value of TR. We can extract the following conclusions:

• The benefits of using short management times can only be obtained with
short auto-scaling periods.

• Then, with a frequently-invoked auto-scaler, important cost reductions
can be achieved if deployment times are below 10 s.

• However, to take advantage of the benefits of enjoying a short TD, TR

must be short too.

In summary: the best configurations for the RT reactive policy are those
with short management times, but only if the auto-scaler operates with a cor-
respondingly increased frequency. These configurations make the auto-scaler
more capable of adapting to the current workload. As an example, the num-
ber of VM hours used in a realistic RT/60/300/10 configuration is three times
larger than that required in a hypothetical RT/5/10/5 configuration. There are,
thus, compelling reasons to ask the cloud provider to implement mechanisms to
reduce management times.

6.2 Average results with proactive auto-scaling

Now we will perform the same analysis of averaged cost but using the proactive
MWA auto-scaling policy. We want to remark that MWA has not exact knowl-
edge of future requests, only an estimation based on past behavior. Results are
depicted in Figure 7, which is arranged as explained for Figure 6.

There are significant di↵erences between both figures (that for RT vs. that
for MWA). The first di↵erence is that with MWA the auto-scaling frequency is
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not a critical parameter: graphs for 60 s and 5 s auto-scaling periods are almost
identical. And the same can be said about the release times: with MWA they
do not a↵ect results in a significant way.

The two graphs of Figure 7 still show the advantages of using short deploy-
ment times. A value of 10 s is good enough to obtain important benefits. Values
over 60 s are too long to allow the predictions provided by MWA to be precise
enough, resulting in an excessive allocation of resources – the priority is always
to comply with the A-SLA.

In Figure 7 we can see a clear di↵erence between the results for TD = 10 (and
below) and TD = 60. To see what happens for values in the middle, we have
depicted in Figure 8 the results of MWA/5/*/* configurations with TD from 10
to 60 with a step of 10. As we can see, the number of VM hours is proportional
to TD for values over 10, but does not decrease significantly for lower values
of this management time. The explanation has to be in the prediction ability
of the MWA technique: long-term predictions tend to be less accurate than
short-term predictions.

In summary, and using the same example of the previous section, the number
of VM hours used in a realistic MWA/60/300/10 configuration is 2.5 times
larger than that required in any hypothetical MWA/*/10/* configuration. This
confirms again that cloud tenants would benefit from I-SLAs specifying short
deployment times, if cloud providers were able to implement mechanisms to
guarantee them.

7 Dissection of the lifetime of VMs

The previous results have been expressed in terms of VM hours, which translate
immediately into costs paid by the tenant. We have seen remarkable reductions
in this metric resulting from the availability of short management times – or,
the other way around, remarkable overheads resulting from long management
times. We now analyze these overheads, to better understand how they can be
reduced. We do so by analyzing, together with the number of VMs used in the
di↵erent configurations explored in the experiments, the lifetime of those VMs,
to understand which portion of that lifetime is useful time (active time, TA)
compared to overheads (TD, TB , TR), and to what extent that active time is
e↵ectively used. This way, we can understand the relationship between policy-
parameters and performance-overheads.

We have summarized in Table 1 di↵erent parameters and metrics for a set of
configurations; for the sake of clarity we have included only */{5,60}/*/10 sce-
narios, although similar results were obtained with other configurations. These
are average results for the total time required to consume the workload (and for
10 simulation runs). We have included in the table:

• The configuration parameters. We use di↵erent values of policy, auto-
scaling period and deployment time, but the release time has been fixed
to 10 s.
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• TVM : The cost in terms of VM minutes. This can be achieved with a few
VMs deployed for a long time, or with many short-lived VMs.

• A dissection of the utilization of time by the VMs, indicating how much
of this time is deployment time (TTD), active time (TTA), backlog time
(TTB) and release time (TTR). All times are expressed in minutes, and
are aggregates of all the VMs used.

• The T95 time of each configuration. Notice that only in one instance
(MWA/5/300/10) this time (2646 ms) does not comply with the A-SLA
(1000 ms).

• The AS Events column summarizes the number of scale-in decisions made
by the auto-scaler. As the experiments collect all the lifetime of the ap-
plications, this number is also the number of scale-out decisions. A single
scale-in (scale-out) decision may result in the addition (release) of multiple
VMs.

As the release time is 10 s (1/6 m), values of column TTR (in minutes) divided
by 1/6 (multiplied by 6) indicate the number of VMs that have been actually
released, while column AS Events indicates the number of times that the auto-
scaler has decided to remove VMs. Remember that each scaling decision may
a↵ect adding / removing several VMs, and that the adding process could be
accelerating if VMs are ready for recycling.

Let us pay attention first to the upper part, corresponding to the RT reactive
policy. We confirm with this table the conclusions extracted from Figure 6: the
best configurations are those with short deployment times but only if the scaling
period is reduced accordingly. Therefore, the best configuration is RT/5/1/10.
Focusing on this, we can observe that most of the time spent by the VMs is active
time; deployment and release overheads are relatively low. These overheads
reflect that the configuration is very reactive: a TTR=10441.10 m means that
62646 VMs have been turned on and then o↵ during the life of the application.
Less reactive configurations, such as RT/60/300/10 shows 5244 changes in the
VM pool. In both cases the collection of active VMs is able to cope with the
workload without exceeding the A-SLA, but the first scenario uses on average
just 52.16 VMs with each VM turned on for 1253.03 minutes, while the other
requires 130.53 VMs with each VM turned on on average for 1391.62 minutes
(these values are not in the table, they have been extracted from the simulation
logs).

Also, we can see that backlog times (TTB in the table) in RT/5/1/10 are
relatively high, meaning that when the auto-scaler decides to remove a VM, it
needs a non-trivial time to complete the pending requests. This also means that
when a new VM is to be added, there is a high probability of recycling one in
the backlog phase, thus avoiding a release and a deployment period. In contrast,
configurations with long scaling periods and/or long deployment times cannot
really take advantage of the opportunity of recycling VMs. Furthermore, a long
TTB is an indicator of a better utilization of the reserved resources, as it implies
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Table 1: Parameters and metrics captured for the following configurations:
RT/{5,60}/*/10 and MWA/{5,60}/*/10. The values correspond to the average
of 10 di↵erent simulation runs.

TVM

Policy AS Period TD TVM TTD TTA TTB TTR T95 AS Events

RT

5

1 65358.99 1044.12 53677.56 196.21 10441.10 951.53 4314.80
5 68534.08 4243.86 55652.35 150.31 8487.56 934.62 3466.00
10 78109.35 7014.30 63977.17 103.75 7014.13 894.17 2516.70
60 155052.69 20130.40 131558.70 8.69 3354.90 495.06 678.30
300 181648.67 27790.50 152931.76 0.23 926.18 434.53 157.00

60

1 116572.10 322.56 113008.02 16.07 3225.45 913.39 4251.00
5 122244.39 1681.35 117186.36 14.15 3362.53 833.95 3382.40
10 130431.22 3571.08 123277.95 11.28 3570.91 798.09 2384.70
60 169342.18 16924.00 149597.40 0.28 2820.50 434.45 650.10
300 182837.57 26234.50 155728.60 0.16 874.31 364.65 143.00

MWA

5

1 58497.08 745.94 50115.51 176.32 7459.31 580.57 703.20
5 56773.61 1777.49 51332.82 108.50 3554.81 576.39 703.60
10 57634.66 1940.23 53695.10 59.27 1940.06 544.64 702.80
60 141626.71 3152.70 137944.41 4.32 525.28 410.27 470.00
300 160187.77 3215.00 156865.25 0.52 107.00 2646.68 130.00

60

1 55393.81 123.35 54008.46 28.64 1233.36 865.12 708.90
5 54561.55 389.85 53368.43 23.74 779.53 809.35 701.00
10 55971.86 636.01 54680.85 19.15 635.85 789.34 665.80
60 141652.46 2908.20 138255.80 3.93 484.53 432.73 448.40
300 159543.48 3095.00 156345.00 0.48 103.00 366.02 161.00

that active MVs, including those marked to be removed, are busy processing
requests. Note how, for costly configurations (those with high TVM ) TTB is
close to zero, meaning that resources are underutilized.

The proactive policy MWA is always better than RT: for comparable con-
figurations, cost is lower (see the TVM column), T95 is shorter (except for an
invalid configuration, MWA/5/300/10) and the number of scaling events is much
smaller. These good results are equally good for any value of TD <= 10, and
even when the auto-scaling period is 1 min.

Focusing on the user experience, we consider that any configuration com-
plying with the A-SLA is valid. Although shorter response times are not a
requirement, they will be perceived positively by users. In other words: no
extra resources should be added to reduce the T95 when it is just below the
A-SLA limits, but when comparing complying configurations with similar cost,
the one with smaller T95 is the best. Note how proactive configurations using
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fewer resources than their reactive counterparts achieve, additionally, shorter
T95 values. This also means that there is room for improvement in terms of
cost, as deployed VMs are not used fully.

We want to remark that MV minutes cannot be translated directly into cost
when taking into consideration the diverse payment models used by commercial
cloud providers. For example, with Amazon EC2, a user pays for a full hour
once she has a new MV allocated; with Windows Azure, the user pays for the
first ten minutes and, after that, billing goes by the (active) minute. This
means that when too many AS events are executed, the application will not
take full advantage of a pre-paid time slot (1 hour or 10 m). The capability
of recycling machines reduces this e↵ect. However, the pay-as-you-go concept
should be enhanced to adjust better to the actual use of resources. Also, auto-
scalers could adapt the scaling decisions to match those pre-paid time slots, but
this may result in bad performance levels or exceedingly high costs (under- or
over-provisioning) due to the reduced capacity to adapt to the input load.

8 Related work

In this section we discuss some previous works on resource management for
elastic applications in cloud environments. To the best of our knowledge, only
a few works have measured the VMs management times employed by commer-
cial providers. However, none of those studies have been devoted to deeply
analyzing the way these times a↵ect the capability of an application to meet
the A-SLA or the e↵ectiveness of the auto-scaling policies. All the works have
chiefly focused on developing mechanisms to actually reduce those times, mainly
the deployment time.

In [21], the authors measured the time employed by three real-world cloud
providers (Amazon EC2 [2], Windows Azure [11] and Rackspace [9]) to deploy
VMs. In particular, they analyze the relationship between the deployment time
and other factors such as the time of the day, the image size, the instance type
and the number of instances acquired at the same time. They argue that this
information is important to time-critical applications that rely on the elastic
resources provided by cloud infrastructures and that it is crucial to allow the
auto-scaling mechanisms to make correct decisions [20] [22]. In [26] a more
detailed analysis of deployment times is carried out, which takes into account
not only the image size but also additional content required for server startup
downloaded from the Amazon cloud infrastructure. Based on their findings,
they developed a mechanism to reduce that content and the size of the VM
images, which results in up to four times reduction of the storage size, and also
three times reduction of the VM startup time.

Instead of focusing of reducing data transfers using data compression, other
works aim to reduce management times via capacity management policies. For
instance, the AutoScale system described in [15] claims to reduce significantly
the number of servers required by an application in a data center by of increasing
the shutdown time of the VMs (what we call backlog time) in order to increase
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the probability of reusing VMs set to be shutdown. In [16] authors focused on
reducing the resume time of the VMs, that is, that of redeploying a previously
suspended VM. They implemented a real system using the open-source virtual
machine emulator Qemu [8], and were able to reduce the resume time to about
3 s, less than 1/10 of the default implementation. These results resulted in
the development of Dreamserver [17], an architecture to deploy virtualized ser-
vices just-in-time, such as web applications that are suspended when idle, and
resurrected in less than one second when the next request arrives.

Razavi et al. study both approaches in combination. They dealt with trans-
ferring the VM image from the storage node to the host in [25] and presented
Squirrel, a system that stores all VM images of a data center on all physical
servers. Then, in [27], the actual booting process of the VM is studied, proposing
to pre-boot a VM image in advance and take a snapshot with minimal hardware
resources that can be resumed very fast (2-3 s on average).

Regarding the behavior of current auto-scalers, they mainly use reactive
techniques by means of rules set by the owners of the application. Tenants
choose a particular metric, such average CPU time, request count or inbound/outbound
tra�c, and configure thresholds (or timetables) to trigger specific scaling-out or
scaling-in actions. In addition, cool-down periods must be configured in order to
prevent the auto-scaler from collecting information while the instance is initial-
izing, because during that time the collected usage metrics would not be reliable
and could cause undesirable oscillation e↵ects. The most prominent examples of
available auto-scalers are AWS Auto Scaling [1], Azure Autoscale [4], Compute
Engine Autoscaler [6], Bluemix Auto-scaling [5] and OpenStack SenLin [7]. It is
worth noting that AWS Auto Scaling has introduced recently Target Tracking
[3], which automatically scales applications after selecting only a value for a
target metric and, if desired, the cool-down period. Although Amazon does not
provide specifics about the internal behavior of this auto-scaler, it claims to be
proactive by constantly monitoring and making predictions of the target met-
ric in order to automatically scale the applications. The most used prediction
techniques that could be used for proactive auto-scalers, such as control theory
or machine learning, can be found in [28].

9 Conclusions and future work

Throughout this work we have discussed in depth the e↵ects that the reduction
of VM management times (mainly deployment and release times) has on the
cost and performance of elastic applications deployed in the cloud. We have
shown how short management times can result in using 1/3rd of the resources
required with current management times, always with the strict restriction of
complying with the A-SLA. Although other works have addressed the reduction
of the VM deployment time, none of them has deeply analyzed quantitatively
the benefits of this reduction.

If the auto-scaler is reactive, performance benefits can only be achieved us-
ing proportionally shorter scaling periods. Proactive auto-scalers do a good
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job predicting future demands, and can adjust more smoothly to the incoming
workload without excessive modifications in the resource pool. We can state
that, with short management times, reactive auto-scalers can adjust better re-
sources to the workload, but adding a simple proactive policy allows going a
step further in terms of resource savings.

In conclusion, auto-scaling elastic applications need a reduction of current
VM (or container) management times. This is mostly beyond the control of the
application: the infrastructure manager must implement strategies to shorten
deployment/release times. These strategies can be implemented using pre-
deployed, “dozing” VMs that will not be used until they are required by the
application (scaling-out event). There would be hidden costs, as some reserved
but idle resources must be kept. However, using appropriate technical and eco-
nomic policies, this cost could be very small, and more than counterbalanced
by the derived benefit. Analyzing this tradeo↵ is part of our future work in this
area. In particular, we are interested in developing strategies to be implemented
by the cloud infrastructure managers. The goal is to reduce the management
times in a way that is beneficial for both tenants and infrastructure owners.
Applications could take advantage of cost reductions derived from the better
utilization of resources (without putting A-SLA compliance at risk), while in-
frastructure managers will use fewer resources to provide high-quality services to
the tenants, thus reducing the energy consumption or hosting more applications
with the same amount of resources.
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(a) 5 second auto-scaling period.
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(b) 60 second auto-scaling period.

Figure 6: VM hours used by the application for di↵erent configurations of de-
ployment and shutdown times using a reactive auto-scaling policy (RT).
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(a) 5 second auto-scaling period.
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(b) 60 second auto-scaling period.

Figure 7: VM hours used by the application for di↵erent configurations of de-
ployment and shutdown times using a proactive auto-scaling policy (MWA).
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Figure 8: VM hours used by the application for MWA/5/{10,20,30,40,50,60}/*
configurations.
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