
Noname manuscript No.
(will be inserted by the editor)

umd-verification: Automation of Software Validation for
the EGI federated e-Infrastructure

Pablo Orviz Fernández · João Pina · Álvaro López Garćıa · Isabel

Campos Plasencia · Mário David · Jorge Gomes

This is the authors pre-print version of this work. The final publication is available at http://dx.doi.org/10.1007/

s10723-018-9454-2

Abstract Supporting e-Science in the EGI e-

Infrastructure requires extensive and reliable software,

for advanced computing use, deployed across over

approximately 300 European and worldwide data

centers. The Unified Middleware Distribution (UMD)

and Cloud Middleware Distribution (CMD) are

the channels to deliver the software for the EGI

e-Infrastructure consumption. The software is com-

piled, validated and distributed following the Software

Provisioning Process (SWPP), where the Quality

Criteria (QC) definition sets the minimum qual-

ity requirements for EGI acceptance. The growing

number of software components currently existing

within UMD and CMD distributions hinders the

application of the traditional, manual-based validation

mechanisms, thus driving the adoption of automated

solutions. This paper presents umd-verification,

an open-source tool that enforces the fulfillment of

the QC requirements in an automated way for the

continuous validation of the software products for

scientific disposal. The umd-verification tool has

been successfully integrated within the SWPP pipeline

and is progressively supporting the full validation of

the products in the UMD and CMD repositories. While

the cost of supporting new products is dependant on

the availability of Infrastructure as Code solutions to

take over the deployment and high test coverage, the

results obtained for the already integrated products

Pablo Orviz Fernández - Álvaro López Garćıa - Isabel Cam-
pos Plasencia
Instituto de F́ısica de Cantabria (CSIC), Santander, Spain
E-mail: orviz@ifca.unican.es

João Pina - Mário David - Jorge Gomes
Laboratório de Instrumentação e F́ısica Experimental de
Part́ıculas (LIP), Lisboa, Portugal

are promising, as the time invested in the validation

of products has been drastically reduced. Furthermore,

automation adoption has brought along benefits for

the reliability of the process, such as the removal of

human-associated errors or the risk of regression of

previously tested functionalities.

Keywords Automation · Software Verification and

Validation · Software Quality Assurance · Software

Quality Control · Software Testing · Continuous

Integration

1 Introduction

EGI [1] federates computing and data resources,

mainly hosted in Europe, to satisfy common and spe-

cific research requirements gathered from multidisci-

plinary scientific communities. EGI operates as an e-

Infrastructure [2] that exploits complex data-intensive

Grid and Cloud computing services [3,4] through

the Unified Middleware Distribution (UMD)1 and the

Cloud Middleware Distribution (CMD)23 official re-

leases, respectively.

The UMD and CMD distributions provide reposito-

ries to distribute software in the form of Linux packages

that are provisioned by external technology providers

(TPs). The environments in which the software has

been developed are not under the control nor monitored

by EGI, thus there is no guarantee that the software

is reliable enough for the production infrastructures.

Therefore, EGI invests on a validation effort for the

1 http://repository.egi.eu/sw/production/umd/
2 http://repository.egi.eu/sw/production/cmd-os/
3 http://repository.egi.eu/sw/production/cmd-one/

ar
X

iv
:1

80
7.

11
31

8v
1

 [
cs

.S
E

]
 3

0
Ju

l 2
01

8

http://dx.doi.org/10.1007/s10723-018-9454-2
http://dx.doi.org/10.1007/s10723-018-9454-2

2 Pablo Orviz Fernández et al.

Fig. 1 EGI Software Provisioning Process (SWPP).

incoming software products to lessen the odds of dis-

ruption. The Software Provisioning Process (SWPP)

[5], schematized in Figure 1, guides the EGI software

delivery through UMD and CMD distributions, encom-

passing the i) validation of the conformance criteria,

scope of the present paper, the ii) staged rollout phase,

which takes over the deployment and user-level testing

on production facilities, and, finally, the iii) release to

production, resulting in the software release preparation

and delivery.

During the validation of the conformance criteria

phase, every piece of software is deployed and tested

to detect any malfunction or deviation from the design

specification. The procedure of validation is governed

by the Quality Criteria (QC) definition, which enforces

the quality requirements that any software released un-

der UMD and CMD distributions must comply. The

validation phase appears as the most time-consuming

task within the SWPP since a major effort is spent

on dealing with the deployment peculiarities of each

software component, as well as in ensuring a minimal

testing coverage. Consequently, the validation process

requires some modernization that optimizes the effort

invested, being able to respond accurately to the grow-

ing needs of UMD and CMD consumers.

The remainder of this paper outlines the automated

solution implemented to speed up the process of confor-

mance criteria validation for UMD and CMD products.

Section 2 introduces the difficulties of preserving the

traditional validation process, presenting automation as

a suitable solution for the EGI QC enforcement. Section

3 contextualizes the QC validation in the software engi-

neering literature, emphasizing the role of automation

in the methodologies reviewed. Section 4 introduces the

new tool, umd-verification, that drives the QC vali-

dation process in an automated fashion. Finally, Section

5 highlights the proven advancements obtained after

applying the umd-verification tool in the EGI QC

validation process.

2 Boosting the validation process

2.1 Statement of the problem

An analysis of the evolution of EGI software product

catalogue, outlined in Figure 2, shows a growing trend

in the number of products being supported since

the first release of the UMD distribution, UMD-1. The

underlying reasons behind this growth are mainly the

evolving technology demands coming from the scien-

tific communities leveraging the EGI e-Infrastructure.

Recently, these user requirements resulted in the release

of the CMD distribution –as Cloud computing became

a popular technology for research computation–, thus

considerably increasing the number of products sup-

ported in the EGI production catalogue.

It is important to underline that Figure 2 only shows

the total products, not the actual validations being per-

formed. The number of validations averagely increases

in a factor of 2, depending on the number of operat-

ing system (OS) distributions supported within each

UMD major release. Table 1 shows the specific OSes

supported throughout the UMD and CMD major re-

leases, which in some cases raised up to 3 different OS

distributions.

Addressing the growing needs with the former val-

idation process resulted in delays within the SWPP

chain, leading to extreme situations where a product re-

lease was disregarded and superseded by a subsequent

release while queued at this stage. According to [5], the

validation of the conformance criteria phase was driven

by a team of 15-20 testers, each taking over the product

validation process based on their expertise. The process

was fully manual, with a typical estimated time comple-

tion of 1 or 2 working days for each software validation.

Thereby, the traditional approach of QC validation is

only sustainable as long as the manpower:number of

products ratio remains balanced, which is likely to be-

come unsustainable over time, based on the trend dis-

cussed above.

umd-verification: Automation of Software Validation for the EGI federated e-Infrastructure 3

Fig. 2 Trend graph showing the number of products supported in the EGI production repositories (UMD and CMD). The
incremental trend is interrupted by the end-of-life (EOL) cycles, which are rapidly recovered as a result of the parallel start of
the subsequent major release version. At this point in time, the incoming UMD major release progressively adopts, following
the validation process, the products previously existing.

Distribution Major release OSes

UMD

UMD-1 Scientific Linux 5

UMD-2
Scientific Linux 5
Debian Squeeze

UMD-3
Scientific Linux 6
Scientific Linux 5*
Debian Squeeze*

UMD-4
CentOS7

Scientific Linux 6

CMD CMD-OS
CentOS7

Ubuntu 16.04
Ubuntu 14.04*

CMD-ONE CentOS7

Table 1 Operating systems (OSes) supported throughout
UMD and CMD distributions lifetime. The support for the
OSes marked with an ’*’ were dropped during the associated
release.

2.2 Embracing automation

The adoption of automation seems to be an obvious

choice to address the delays within the validation phase.

This statement rests on the following assumptions.

Manpower

Taking into consideration the above-mentioned fact of

requiring 2 working days for each product:OS valida-

tion, in the likely event of having 20 queued products

supported in 2 different OSes, approximately 80 work-

ing days would be needed to complete their validation.

Distributing the load among the 15-20 testers, the pro-

cess would take roughly a full-time week of work for all

the members in the validation team.

While manual validation strongly relies on manpower,

an automated approach would only require effort when

supporting new products, as the maintenance costs are

not highly demanding. Following the current trend, the

manual process will soon not scale, requiring more and

more testers to satisfy the incoming rate of products.

Expert dependence

The good progress of a manual software validation is

driven by seasoned teams, usually system administra-

tors from resource centers taking part in the EGI e-

Infrastructure that are highly familiarized with the eval-

uated product. For this type of validation, technically

skilled experts are required to work around unpredictable

issues not addressed in the documentation provided by

the TPs.

The programmatic implementation of a product val-

idation would only require from expert knowledge the

first time it is set up. Once in place, the process could

be taken over by non-expert testers since most of the

complexity is hidden. This represents a much lighter

dependence on skilled testers, being better positioned

towards risk of knowledge loss.

Reproducibility and repeatability: fighting the human fac-

tor

In the context of mechanical or repetitive processes,

the likelihood of human error is substantially higher

than when the same process is performed in an au-

tomated environment. Whilst automated processes are

predictable, humans are not able to work with the same

level of consistency.

The deterministic nature of computational solutions

makes easier to achieve a high level of repeatability

4 Pablo Orviz Fernández et al.

in the results obtained when applied to the same in-

put data. Conversely, the same task performed manu-

ally could lead to unexpected outcomes as the proce-

dure may not be strictly fulfilled in consecutive itera-

tions. Moreover, the programmatic implementation of

a clearly defined iterative procedure, such as EGI’s QC,

makes the solution reproducible. Therefore, subsequent

executions shall obtain the same results as long as the

validation process is taken over under the same condi-

tions, regardless of the tester.

Time efficiency

Automation streamlines the time required to complete

a task. Time efficiency is usually associated with au-

tomation since it allows to meet strict deadlines or even

increase the number of tests that could be performed in

the same time slot, resulting in higher test coverages.

2.3 Automation assessment of the EGI Quality

Criteria requirements

Early introduced, the Quality Criteria (QC) document

drives the validation of software products within the

SWPP workflow. It defines the quality requirements

that a given product has to fulfill in order to be consid-

ered ready for the subsequent staged rollout phase. The

document is continuously evolving and it is currently

on the 7th release [6].

Table 2 lists the quality requirements, their asso-

ciated criticality and the possibilities of automation.

Requirements cover the minimum criteria for EGI ac-

ceptance, and are grouped in seven broad categories: i)

documentation, ii) installation, covering the full deploy-

ment of the product, iii) security, iv) information model,

which validates the outbound data published by the in-

formation service, v) operations, which groups probes

related to EGI e-Infrastructure, vi) support channels

and vii) other specific criteria, useful to extend the func-

tionality and integration testing coverage.

As depicted in the table, the only requirements that

need human interaction are the ones related to the anal-

ysis of the documentation (QC DOC x): one could address

programmatically the existence of the required docu-

mentation but not the suitability of its content. Never-

theless, the QC DOC x requirements seldom involve ma-

jor changes –only when products are included for the

first time–, commonly appearing as minimal improve-

ments when it comes to software updates.

Once the requirements suitable for automation are

identified and defined, the process to tackle them has to

be implemented. From the requirement list, deployment

and testing related tasks are the most complex and as

such will be thoroughly covered in the next sections.

3 Related work

Free and open-source software operating systems, such

as Linux distributions, rely on packages to distribute

the software. Packages are archives containing the bi-

naries, configuration files and dependency information,

accessible through online repositories. Software pack-

ages can be found in different formats attached to a spe-

cific Linux distribution, although there are recent solu-

tions that containeirise software applications, bundling

their dependencies, to make them installable across all

major Linux distributions [7,8,9]. Most quality-aware

distributions have quality control policies for package

creation [10] and dependency resolution [11]. Likewise

Linux operating systems, the software distributed through

UMD and CMD releases are in the form of packages,

which also are passed through a quality control process.

As the latter are lighter distributions, they can afford

to go a step further in the software validation, imposing

deployment and testing requirements.

Software validation is the process that checks that

the software satisfies its intended use, in conformance

with the requirements coming from the end users. Tightly

related and complemented by the software verification

process, they together address ”all software life cycle

processes including acquisition, supply, development, op-

eration and maintenance”, as defined in the IEEE Stan-

dard for Software Verification and Validation (V&V)

[12]. V&V are commonplace concepts in software engi-

neering literature, but these terms are often used inter-

changeably in practice [13]. Indeed, both processes serve

different purposes since verification is linked to the early

stages of the software development life cycle, focusing

on building the software correctly, while validation is

commonly placed at the end of the development pro-

cess, providing ”evidence that the software and its as-

sociated products satisfy system requirements allocated

to software at the end of each life cycle, solve the right

problem, and satisfy intended use and user needs”. The

V&V distinction is consistent with major systems engi-

neering processes for software development, such as the

Capability Maturity Model Integrated [14,15,16], orga-

nized in maturity levels, where software V&V practices

are addressed at the higher levels of the process [17].

A practical way to put V&V into action is referring

to the type of testing associated to each process. Soft-

ware verification implies the static analysis of the source

code, requirements and design documents for defect de-

tection via inspections, walkthroughs and reviews [18].

Conversely, software validation requires the software to

umd-verification: Automation of Software Validation for the EGI federated e-Infrastructure 5

Category ID Check Critical Automated

Documentation
QC DOC 1 Release notes provisioning 3 7
QC DOC 2 User documentation 3 7
QC DOC 3 API documentation 7 7
QC DOC 4 Admin documentation 3 7
QC DOC 5 Software license 3 3

Installation
QC DIST 1 Binary distribution (RPM, DEB) 3 3

QC UPGRADE 1 Upgrade previous working version 7 3

Security
QC SEC 1 X.509 certificate support 3 3
QC SEC 2 SHA-2 certificate support 3 3
QC SEC 3 RFC proxy support 7 3
QC SEC 4 ARGUS auth integration 7 3
QC SEC 5 World writable files 3 3
QC SEC 6 Passwords in world readable files 3 3

Information Model
QC INFO 1 GLUE schema 1.3 support 7 3
QC INFO 2 GLUE schema 2.0 support 3 3
QC INFO 3 Middleware version 7 3

Operations
QC MON 1 Service probes 7 3
QC ACC 1 Accounting records 3 3

Support QC SUPPORT 1 Bug tracking system 3 3

Specific QC
QC FUNC 1 Basic functionality test 3 3
QC FUNC 2 New feature/bug fixes test 7 3

Table 2 Quality Criteria (QC) requirements.

be in operation mode to be tested, so it is identified

with the dynamic behaviour of the source code. There

are different test-case design methodologies to tackle

the dynamic analysis of a software component but all

fall in the category of so-called black-box testing. In this

type of testing the test-cases are data or input/output

driven, as the internal structure of the software is not

of interest at this stage. In this regard, Myers et al.

[19] group under the term higher-order testing the type

of black-box testing methods –function, system, instal-

lation, integration, acceptance– that aim to detect de-

fects, from the user’s perspective, by categorizing the

test cases in which the software shall be exposed. The

outcome is a quality criteria that guide the software

validation.

The ultimate goal of software validation is to in-

crease the reliability of the systems being delivered to

the users. Nevertheless, in software validation, the eco-

nomics of testing shall be carefully considered. On the

one hand, inadequate investment may imply solving de-

fects at later stages. Quoting from Perry’s book [20], ”it

is at least 10 times as costly to correct an error after

coding as before, and 100 times as costly to correct a

production error”. On the other hand, a generous effort

may lead to increased project costs [21], not estimated

in the project design, and delays in the release dates

[22]. Therefore, measuring the cost-effectiveness of the

testing process does not only imply stopping at the op-

timum point where the cost of testing does not exceed

the value obtained from the defects uncovered, but also

focusing on the valuable features first within the appro-

priate testing phase in the life cycle [23].

Test automation is gaining momentum as a way to

decrease the costs and time associated to software test-

ing tasks. Process efficiency gets improved as automa-

tion optimizes the execution time of testing, maximiz-

ing the test coverage as more testing could be performed

in less time [24]. The augmentation of the test coverage

strengthens the quality and reliability of the end prod-

uct, reducing the number of defects present. Automa-

tion also increases the overall effectiveness, avoiding the

risk of human errors and achieving repeatability. This

is particularly useful to reduce the regression risk by

finding defects in the modified, but previously working,

functionalities of the system [25].

However, test automation does not always super-

sede manual testing. According to a number of studies

[26,27,28], not all the testing tasks can be easily au-

tomated, such as those requiring extensive knowledge

in a specific domain, or they require a costly mainte-

nance. In some cases, manual testing can complement

automation since, based on its unstructured nature, it

could potentially expose unexpected defects not con-

sidered in the previous stages within the software life

cycle.

4 umd-verification: an automated tool for the

software validation process

In order to automatize the software validation process

within EGI, the essential component would be a general

purpose tool to manage the QC execution for each prod-

uct validation. This tool would execute the appropri-

6 Pablo Orviz Fernández et al.

Fig. 3 Product validation worflow in umd-verification.

ate tasks for each requirement analysis and, eventually,

evaluate the obtained output values to judge whether

the given requirement has been fulfilled, allowing the
process to stop depending on its criticality.

4.1 Design considerations

Infrastructure as Code deployments

With the advent of Infrastructure as code (IaC) tools,

the automated maintenance and provision of services

in an infrastructure is powered through a series of def-

inition files, which enforce the desired configuration of

such services. Applying the IaC model to drive the de-

ployment part of the SWPP process would allow to have

reliable, repeatable and reusable configurations that su-

persede the traditional, less-efficient, manual guided de-

ployments. The solution to be implemented shall ensure

the usage of common, well-known IaC tools such as An-

sible [29] or Puppet [30].

Functional and integration testing

The QC definition enforces the fulfillment of functional-

ity testing, which covers the newly added features and

bugfixes. In this regard, the tool that orchestrates the

QC validation shall be flexible enough to execute exter-

nal scripts, wait for their completion and approve the

exit status.

Integration testing is needed whenever the product

in validation interferes with additional services while in

operation. This type of testing requires more complex

deployments, as the related services must be in place in

advance.

Dynamic provision of input parameters

Input parameters are needed in order to set up the

diverse environments in which the currently existing

products are verified. The application managing the

process needs to be fed with several types of in-

put parameter provision, such as run-time arguments,

instantiation-time parameters and configuration files.

umd-verification: Automation of Software Validation for the EGI federated e-Infrastructure 7

Inclusion of new products

Based on the incremental trend of product adoption in

the EGI software distributions, the integration of new

products into the automated solution proposed shall

be an easy task. The system shall provide a way to

declare new products in a standard way, relying on an

ubiquitous language that requires little or no previous

experience from the tester.

4.2 Implementation of umd-verification tool

umd-verification tool [31] is the solution proposed

for the automated, sequential validation of the require-

ments defined in the QC document. The tool is writ-

ten in the Python programming language [32] and uses

the Fabric library [33] for a high-level management of

the system calls. Fabric-ed applications are organized in

tasks and have built-in features such as remote execu-

tions and consistent argument passing via the command-

line fab tool.

Behind the scenes

Figure 3 shows the tool’s workflow. Every new prod-

uct validation is represented by an instance of the cus-

tomized Fabric base task, base.Deploy, which guides

the process through four major execution blocks: i) in-

stallation and configuration, ii) security and operations,

iii) information model, and iv) specific QC. Note that,

as already commented in Section 2.3, documentation

requirements need of human revision and thus are not

being validated by the application.

fts = base.Deploy(

name="fts",

doc="File Transfer Service (FTS)

deployment.",

need_cert=True ,

cfgtool=PuppetConfig(

manifest="fts.pp",

hiera_data =["fts.yaml", "fetchcrl.yaml

"],

module =[

("git :// github.com/egi -qc/puppet -

fts.git",

"umd")]

)

)

Listing 1 Python code snippet taken from the task validation
of fts product. The class attributes contain static information
such as the relevant pointers to enable the product’s
deployment using Puppet.

from umd import base

from umd.base.configure.ansible import

AnsibleConfig

from umd import config

class CloudInfoProviderDeploy(base.Deploy):

def pre_config(self):

extra vars

extra_vars = [

"cloud_info_provider_os_username:

demo ",

"cloud_info_provider_os_password:

secret ",

"cloud_info_provider_os_release: %

s "

% config.CFG["openstack_release"],

"cloud_info_provider_middleware:

openstack ",

"cloud_info_provider_conf_dir: /

etc/cloud -info -provider ",

"cloud_info_provider_bdii_dir: /

var/lib/bdii/gip/provider"]

self.cfgtool.extra_vars = extra_vars

cloud_info_provider = CloudInfoProviderDeploy(

name = "cloud -info -provider",

doc = "cloud -info -provider deployment

using Ansible.",

cfgtool = AnsibleConfig(

role = "https :// github.com/egi -qc/

ansible -role -cloud -info -provider",

checkout = "umd",

tags = ["untagged", "cmd"]),

qc_specific_id = "cloud -info -provider")

Listing 2 A complete task definition (base.Deploy) for the
validation of cloud-info-provider product (Python code).
The task relies on an Ansible role for the deployment,
which needs a set of input variables that are defined within
the pre config method. The testing part is defined in an
external configuration file (see Listing 3), identified by the
cloud-info-provider label.

As a result of being inherited from the base class

base.Deploy, every product validation need to provide

a set of class attributes that uniquely identify the prod-

uct. The code excerpt from Listing 1 shows a sample

implementation of a task validation. One of these class

attributes sets the next step in the workflow. A very

common requirement for Cloud and Grid services sup-

ported in EGI is to guarantee user data protection by

securing the connections using X.509 certificates [34].

Hence the definition of the need cert attribute, which

when enabled, issues a server certificate from a self-

signed certification authority.

The first block, Installation, addresses the deploy-

ment from scratch of the product using an IaC solution.

The base.Deploy. deploy() method first installs the

IaC tool and sets the required environment, such as

generating parameter files and handling the module in-

8 Pablo Orviz Fernández et al.

stallation and its dependencies. The deployment is then

triggered through the base.Deploy.config() method,

with optional pre and post steps that could have previ-

ously defined at instantiation time.

The Security and Operations block is comprised of

a set of basic security assessments. This phase is spe-

cially significant for the secured products since it checks

the compliance with X.509 cryptographic standard and

SHA-2 signatures [35].

Workload orchestration within EGI e-Infrastructure

relies on the resource information published by the

providers. The Information Model block ensures the

presence of published resource information, in GLUE

format [36], validated by the execution of an external

tool, glue-validator [37]. As not all the supported

products in UMD and CMD publish GLUE data, the

class attribute has infomodel signals when this re-

quirement should be checked.

The last block, Specific Quality Criteria, covers the

functional and/or integration testing of the product.

Here, basic operation and new features and/or bugfixes

included in the release are tested. The class attribute

qc specific id maps to the set of checks, in the form

of scripts, that must be executed. In the subsequent

product validations, these checks eliminate the regres-

sion risk as they are re-executed to ensure that the pre-

vious working functionalities are kept.

Listing 2 shows a more advanced usage of a valida-

tion task. In this example the base.Deploy.pre config()

method is overridden to set the values of some parame-

ters that need to be defined before the product’s deploy-

ment using Ansible. Moreover, the task is completed

with a test definition through the qc specific id at-

tribute.

Support for new software components

One of the key design considerations of

umd-verification application was to ease the

addition of new product validations, while relying on

a powerful and ubiquitous language. As described in

the section above, the usage of the Python language

matched both design requirements with the only caveat

of assuming certain degree of experience in Python

programming, specially in the case of very customized

and complex configurations.

The simplest case would directly inherit from the

base class base.Deploy, while more complex scenar-

ios would create a child class, overriding the neces-

sary class methods and attributes as shown in List-

ing 2. In either case, a new task definition is added

by filling in the mandatory attributes, consisting in the

name and description, the IaC configuration repre-

sented by the cfgtool attribute and the associated test

checklist identified by the qc specific id attribute.

Enabling or disabling the optional attributes need cert

and has infomodel further define the validation task

and, consequently, the workflow to be followed in the

Security and Information Model blocks.

Deployment settings vary with respect to the

IaC tool in use, having each a different object

class that takes over the deployment based on

the parameters passed, and accessible through the

base.Deploy.cfgtool attribute. Listings 1 and 2 use

different cfgtool objects, representing Puppet and An-

sible respectively.

Product testing needs a definition where the check-

list of tests are listed in order to be triggered in the

task validation. Listing 3 shows an excerpt of the con-

figuration file used for the test definitions. Tests are

categorized by the QC requirement –either QC FUNC 1

or QC FUNC 2– and defined by the test description, lo-

cation and arguments.

cloud -info -provider:

qc_func_1:

- test: "bin/bdii/client -test.sh"

description: "GLUE2 ldapsearch check.

"

args: "ldapsearch -site -bdii -cloud"

Listing 3 cloud-info-provider YAML test definition.

Based on the above guidelines, new product adop-

tion within the umd-verification tool is not a costly

task whenever the IaC modules and tests are al-

ready available, either provided by the TPs or indi-

viduals that share their work publicly. Both deployment

and testing are time-consuming tasks, if performed from

scratch, that require a great deal of expertise in the can-
didate product and, additionally, in the IaC tool being

used.

5 Evidence of the umd-verification adoption

5.1 Continuous Integration implementation

umd-verification is suitable for being integrated in

a Continuous Integration (CI) pipeline. The CI system

fires up the virtual resource, sets up the application,

triggers the execution with the appropriate runtime pa-

rameters and, finally, tears down the provisioned re-

source. All these steps are condensed in a job definition

within the Jenkins CI service [38] for each product in

the catalogue. Figure 4 shows a sample form in Jenkins

CI that, on submission, will trigger the validation pro-

cess leveraging the umd-verification tool. The run-

time parameters passed are commonly the ones show-

cased in the figure, consisting in the EGI distribution

umd-verification: Automation of Software Validation for the EGI federated e-Infrastructure 9

Fig. 4 Product validation form in Jenkins. The input (runtime) parameters are comprised of the software release –from UMD
or CMD distributions–, the operating system and the URL of the verification repository that contains the software packages
to be validated.

Fig. 5 Automated vs Manual validation process times. Time
values on the vertical axis use a logarithmic scale to bet-
ter showcase the important differences of time completion
for both types of validation processes. Manual values are not
as accurately estimated as the automated ones. Whilst the
latter have been obtained from the CI service, the manual
values were extracted from the validation reports uploaded
to the EGI Document Database [39].

and Linux OS, and the additional repositories, such as

the one containing the candidate version of the software

product.

The usage of a CI service to take over the valida-

tion of products, notably hides the inner complex-

ity of the validation process –resource provisioning,

umd-verification deployment and execution–, allow-

ing a non-expert usage.

5.2 Time efficiency for the validation process

The paramount benefit of automating the validation

process via the umd-verification application is the

time efficiency. Combined with the automated resource

provisioning, provided by the CI implementation previ-

ously described, this efficiency raises even higher.

As it was mentioned in the statement of the problem

in Section 2.1, back in the days of the manual validation

process [5], a common completion time was estimated

to be 1 or 2 days. With the new approach the validation

process takes a few minutes, although this duration is

tightly related to the deployment requirements of each

software component, as some products need additional

services for the testing phase. Therefore, the time re-

quired to add support for a new product within the

umd-verification tool may be costly whenever there

is no availability of IaC modules. Otherwise, as it was

shown in Section 4.2, the definition of the new product

in Fabric is an immediate task.

The data displayed in Figure 5 compares the vali-

dation time of both approaches for a set of UMD prod-

ucts, showcasing the profit percentage obtained with

the automated process. The results show an average

factor of 32 in the time efficiency of the vali-

dation process with the adoption of the automation

process described throughout this paper.

5.3 IaC knowledge base

One of the requirements imposed when supporting a

new product validation in the umd-verification ap-

plication is the usage of an IaC solution for its deploy-

ment. Since the adoption of automation, the EGI val-

idation team maintains a public repository [40] with

a collection of Ansible and Puppet modules resul-

tant from the validation process. Figure 6 provides an

overview of the work being done in this regard and re-

ferred as maintained –modules created and supported

10 Pablo Orviz Fernández et al.

Fig. 6 Ansible roles and Puppet modules being maintained,
forked and published in the official repositories by the EGI
validation team.

by the EGI validation team–, forked –modules modified

and contributed to upstream– and published –modules

contributed to the official Ansible [41] and Puppet [42]

community repositories–.

As self-documentation code, IaC modules shaped

in the validation phase can be then re-used in

a reproducible way in future deployments. As a

result, within the EGI e-Infrastructure, resource center

operators can make use of those modules to deploy the

products in the EGI catalogue. This contrasts with the

previous procedure, where deployments done in the val-

idation phase could not be easily reproduced: they were

locally addressed by the tester, with the only reference

of a set of non-structured annotations being included

in the verification report.

5.4 Release Candidate validation

Contiguous software validations are packed in releases,

each defined by a version number that reflects its pur-

pose either as revision, minor or major release. Every

release is checked by the EGI validation team before

being announced as production-ready, following the Re-

lease Candidate (RC) procedure.

The early RC implementation relied on a script

file that verified the installation of the EGI prod-

uct catalogue [43]. The list of products was manu-

ally maintained, adding or removing entries in the

script as the catalogue evolved. With the advent of the

umd-verification tool and the adoption of IaC capa-

bilities, the validation of the RCs is eventually tackled

using an Ansible role [44]. This new implementation

fetches dynamically the whole set of packages of

either UMD or CMD repositories, to detect any

unresolved dependency that might be introduced by

the new packages that take part of the release. When-

ever detected, the validation team fixes the dependency

issue and re-runs umd-verification tool until all the

packages in the repository are properly installed.

The dynamic gathering of packages profits from

Linux package management utilities, thus there is no

need to maintain a static list of software packages to in-

stall for each RC. Furthermore, in the past this list did

not contain the complete set of packages but only the

ones that refer to the main products in the catalogue.

As a result, there was a potential risk of uninstallable

packages living at the EGI repositories. As it can be

seen in Figure 7, almost 25 revisions –since 2012– were

explicitly devoted to solve troubles in package depen-

dencies. With the new implementation –back in July

2017– the number of revision releases meant for depen-

dency resolution dropped to zero.

6 Conclusions

Based on the growing demands of adopting new prod-

ucts and supporting existing ones in the UMD and

CMD releases, the validation of the conformance cri-

teria has to move forward to an automated process.

The suitability of the requirements currently existing in

the EGI QC document to be addressed programmati-

cally paved the path to the implementation and fur-

ther integration of the umd-verification tool within

the EGI SWPP. The current set of existing products

in UMD and CMD repositories are being progressively

integrated in the new automated process, often at the

cost of developing the required automated deployment

and test cases whenever they are not provided directly

by the technology provider or shared within the com-

munity. However, for those products already integrated,

the evidence of improvement has been demonstrated

both in terms of efficiency, as the process validation

times are clearly optimized, and effectiveness, by get-

ting rid of the likelihood of human error.

Completion time efficiency is the most apparent ben-

efit of adopting automation, shortening the process in

an average factor of approximately 32 when compared

with the reported time of traditional manual valida-

tions. This implies less human effort than the former

approach, now reallocated to integration and mainte-

nance activities, being in a better position to confront

unexpected demands of product validations. Growing

needs of manpower are no longer the solution to high

demands as, once the cost of integrating the product in

the umd-verification tool is assumed, it will require

little or no human intervention.

The programmatic evaluation of the EGI QC re-

quirements combined with the adoption of IaC solutions

achieved repeatability and reproducibility in the pro-

cess of validating software. In particular, IaC modules

make the deployment of the products to be reproduced

and shared, contributing to the creation of a knowledge

umd-verification: Automation of Software Validation for the EGI federated e-Infrastructure 11

Fig. 7 UMD and CMD revision releases that fixed previous releases with package dependency issues included. As of April 1st
2018, no revision release was needed to solve package unmet dependencies.

base within the community. Just as the IaC modules

facilitate the products’ deployment to non-experienced

users, so does the umd-verification solution with the

validation of conformance criteria. Testers not familiar-

ized with a given product can now take over its valida-

tion without any expert intervention and, as a result of

enabling umd-verification within a CI scenario, even

testers with no previous experience with the tool ought

to complete the validation process. This accessibility

has remarkably reduced the risk of expert dependence,

which was tightly associated to the former manual pro-

cess.

Acknowledgements This work has been partially funded
by the EGI-Engage project (Engaging the Research Com-
munity towards an Open Science Commons) under grant
agreement No. 654182. The authors are especially grateful
to EGI.eu’s colleagues Enol Fernández, for his contributions
to the umd-verification codebase, and Vincenzo Spinoso, for
his support in the tool integration within the EGI Software
Provisioning Process.

References

1. EGI.eu. EGI Federation. https://www.egi.eu, 2018. On-
line; accessed April 1st, 2018.

2. G. et al. Andronico. E-infrastructures for e-science: A
global view. Journal of Grid Computing, 9(2):155–184,
2011.

3. Shamsi J. et al. Data-intensive cloud computing: Require-
ments, expectations, challenges, and solutions. Journal of

Grid Computing, 11(2):281–310, 2013.
4. Pérez M.S. Montes J., Sánchez A. Riding out the storm:

How to deal with the complexity of grid and cloud man-
agement. Journal of Grid Computing, 10(3):349–366, 2012.

5. David M. et al. Validation of grid middleware for the
european grid infrastructure. Journal of Grid Computing,
12(3):543–558, 2014.

6. EGI Quality Assurance team. EGI Quality Criteria 7th
release. http://egi-qc.github.io/, 2018. Online; ac-
cessed April 1st, 2018.

7. Simon Peter. AppImage. https://appimage.org/, 2018.
Online; accessed April 1st, 2018.

8. Ubuntu. Ubuntu Snap. https://www.ubuntu.com/

desktop/snappy, 2018. Online; accessed April 1st, 2018.
9. FlatPak. FlatPak. https://flatpak.org/, 2018. Online;

accessed April 1st, 2018.
10. Debian. Debian Policy Manual. https://www.debian.org/

doc/debian-policy/, 2018. Online; accessed April 1st,
2018.

11. Debian. Debian Quality Assurance. https://piuparts.

debian.org/, 2018. Online; accessed April 1st, 2018.
12. IEEE Computer Society. Ieee standard for system and

software verification and validation. IEEE Std 1012-2012
(Revision of IEEE Std 1012-2004), pages 1–223, 2012.

13. Michael J Ryan and Louis S Wheatcraft. On the use of
the terms verification and validation. In INCOSE Interna-
tional Symposium, volume 27, 1, pages 1277–1290. Wiley
Online Library, 2017.

14. CMMI Product Team. Cmmi for development, version
1.3. Technical Report CMU/SEI-2010-TR-033, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 2010.

15. CMMI Product Team. Cmmi for services, version 1.3.
Technical Report CMU/SEI-2010-TR-034, Software En-
gineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 2010.

16. CMMI Product Team. Cmmi for acquisition, version
1.3. Technical Report CMU/SEI-2010-TR-032, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 2010.

17. P. Monteiro, R. J. Machado, and R. Kazman. Inception
of software validation and verification practices within
cmmi level 2. In 2009 Fourth International Conference on

Software Engineering Advances, pages 536–541, Sept 2009.
18. Andy German. Software static code analysis lessons

learned. Crosstalk, 16(11):19–22, 2003.
19. Tom Badgett Glenford J. Myers and Corey Sandler. The

Art of Software Testing. John Wiley & Sons, Inc., Hobo-
ken, New Jersey, 2012.

20. William E Perry. Effective methods for software testing: In-

cludes complete guidelines, Checklists, and Templates. John
Wiley & Sons, 2007.

21. Edward Kit. Software testing in the real world: improving
the process. Addison-wesley, 1995.

22. Chin-Yu Huang and Michael R Lyu. Optimal release time
for software systems considering cost, testing-effort, and
test efficiency. IEEE transactions on Reliability, 54(4):583–
591, 2005.

23. James Bullock. Calculating the value of testing from an
executive’s perspective, software testing is not a capi-
tal investment in the physical plant, an acquisition, or

https://www.egi.eu
http://egi-qc.github.io/
https://appimage.org/
https://www.ubuntu.com/desktop/snappy
https://www.ubuntu.com/desktop/snappy
https://flatpak.org/
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://piuparts.debian.org/
https://piuparts.debian.org/

12 Pablo Orviz Fernández et al.

another readily accepted business expense. a quality as-
surance manager describes how to present testing as a
business-process investment. Software Testing and Qual-

ity Engineering, 2:56–63, 2000.
24. Francesca Saglietti and Florin Pinte. Automated unit

and integration testing for component-based software
systems. In Proceedings of the International Workshop on

Security and Dependability for Resource Constrained Em-
bedded Systems, page 5. ACM, 2010.

25. Elfriede Dustin, Jeff Rashka, and John Paul. Auto-

mated software testing: introduction, management, and per-

formance. Addison-Wesley Professional, 1999.
26. Dudekula Mohammad Rafi, Katam Reddy Kiran Moses,

Kai Petersen, and Mika V Mäntylä. Benefits and limita-
tions of automated software testing: Systematic literature
review and practitioner survey. In Proceedings of the 7th
International Workshop on Automation of Software Test,
pages 36–42. IEEE Press, 2012.

27. Kristian Wiklund, Sigrid Eldh, Daniel Sundmark, and
Kristina Lundqvist. Impediments for software test au-
tomation: A systematic literature review. Software Test-

ing, Verification and Reliability, 27(8), 2017.
28. Ossi Taipale, Jussi Kasurinen, Katja Karhu, and Kari

Smolander. Trade-off between automated and manual
software testing. International Journal of System Assur-
ance Engineering and Management, 2(2):114–125, 2011.

29. Ansible. Ansible. https://www.ansible.com/, 2018. On-
line; accessed April 1st, 2018.

30. Puppet. Puppet. https://puppet.com/, 2018. Online;
accessed April 1st, 2018.

31. EGI Software Provisioning team. umd-verification tool.
https://github.com/egi-qc/umd-verification, 2018. On-
line; accessed April 1st, 2018.

32. The Python Community. The Python language. https://
www.python.org/, 2018. Online; accessed April 1st, 2018.

33. Jeff Forcier. Fabric - Pythonic remote execution. http://
www.fabfile.org/, 2018. Online; accessed April 1st, 2018.

34. D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Hous-
ley, and W. Polk. Internet x.509 public key infrastructure
certificate and certificate revocation list (crl) profile. RFC
5280, RFC Editor, May 2008. http://www.rfc-editor.

org/rfc/rfc5280.txt.
35. National Institute of Standards and Technology (NIST).

Secure hash standard. Federal Inf. Process. Stds. (NIST

FIPS), pages 180–4, 2015.
36. Open Grid Forum. GLUE Specification v. 2. https:

//www.ogf.org/documents/GFD.147.pdf, 2018. Online; ac-
cessed April 1st, 2018.

37. CERN. GLUE validator guide. http://gridinfo.web.

cern.ch/glue/glue-validator-guide, 2018. Online; ac-
cessed April 1st, 2018.

38. Jenkins. EGI Jenkins CI. https://jenkins.egi.ifca.es/,
2018. Online; accessed April 1st, 2018.

39. EGI.eu. EGI Document Server. https://documents.egi.

eu/, 2018. Online; accessed April 1st, 2018.
40. EGI Software Provisioning team. EGI Quality Criteria

in GitHub. https://github.com/egi-qc, 2018. Online;
accessed April 1st, 2018.

41. EGI Software Provisioning team. EGI Quality Criteria
in Ansible Galaxy. https://galaxy.ansible.com/egi-qc/,
2018. Online; accessed April 1st, 2018.

42. EGI Software Provisioning team. EGI Quality Criteria
in PuppetForge. https://forge.puppet.com/egiqc/, 2018.
Online; accessed April 1st, 2018.

43. Álvaro Simón. EGI Release candidate tester. https:

//github.com/alvarosimon/RC_tester, 2018. Online; ac-
cessed April 1st, 2018.

44. EGI Software Provisioning team. EGI Release
candidate Ansible role. https://github.com/egi-qc/

ansible-release-candidate, 2018. Online; accessed April
1st, 2018.

https://www.ansible.com/
https://puppet.com/
https://github.com/egi-qc/umd-verification
https://www.python.org/
https://www.python.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.ogf.org/documents/GFD.147.pdf
https://www.ogf.org/documents/GFD.147.pdf
http://gridinfo.web.cern.ch/glue/glue-validator-guide
http://gridinfo.web.cern.ch/glue/glue-validator-guide
https://jenkins.egi.ifca.es/
https://documents.egi.eu/
https://documents.egi.eu/
https://github.com/egi-qc
https://galaxy.ansible.com/egi-qc/
https://forge.puppet.com/egiqc/
https://github.com/alvarosimon/RC_tester
https://github.com/alvarosimon/RC_tester
https://github.com/egi-qc/ansible-release-candidate
https://github.com/egi-qc/ansible-release-candidate

	1 Introduction
	2 Boosting the validation process
	3 Related work
	4 umd-verification: an automated tool for the software validation process
	5 Evidence of the umd-verification adoption
	6 Conclusions

