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Abstract IoT-based applications need to be dynam-
ically orchestrated on cloud-edge infrastructures for
reasons such as performance, regulations, or cost.
In this context, a crucial problem is facilitating the
work of DevOps teams in deploying, monitoring,
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and managing such applications by providing neces-
sary tools and platforms. The SODALITE@RT open-
source framework aims at addressing this scenario.
In this paper, we present the main features of the
SODALITE@RT: modeling of cloud-edge resources
and applications using open standards and infrastruc-
tural code, and automated deployment, monitoring,
and management of the applications in the target
infrastructures based on such models. The capabili-
ties of the SODALITE@RT are demonstrated through
arelevant case study.

Keywords Orchestration - Cloud - Edge -
Heterogeneous infrastructures - TOSCA - Containers

1 Introduction

Over the last few years, cloud computing technologies
have become mature, and organizations are increas-
ingly using the cloud as their IT infrastructure [1].
On the other hand, the era of the Internet of Things
(IoT) is rapidly coming of age, with a large number
of IoT devices already deployed in network edges [2].
Organizations typically have complex applications
consisting of multiple components that need to be
deployed on multiple infrastructure types to utilize
characteristics of a particular type to achieve the best
performance, for example, usage of cloud resources
for compute-intensive tasks and edge resources for
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latency-sensitive services. However, manually deploy-
ing complex applications with heterogeneous deploy-
ment models is a highly complex, time-consuming,
error-prone, and costly task [3].

In the last decade, the automated deployment and
management of applications have been considered
vitally crucial by both academia and industry [3-9].
Most current works focus on deploying applications
on clouds [10-13], including multi-clouds [5, 14-16]
and hybrid clouds [17, 18]. Recently, several studies
have employed the container technology for deploying
applications on edge infrastructures [19, 20]. How-
ever, the containerization-based solutions fail to deal
with complex applications that span across multiple
heterogeneous container clusters or hybrid VM and
container clusters [21, 22].

In this paper, we present the SODALITE (SOftware
Defined AppLication Infrastructures managemenT and
Engineering) platform (namely SODALITE@RT/run-
time), which aims to support the deployment, exe-
cution, monitoring, and management of applications
on heterogeneous cloud-edge infrastructures. To deal
with the heterogeneity of resources and applica-
tions, we use the open standard TOSCA (Topology
and Orchestration Specification for Cloud Applica-
tions) [23] to describe heterogeneous cloud and edge
resources and applications in a portable and standard-
ized manner. The TOSCA-based models are imple-
mented by using the industrial IaC (Infrastructure-as-
Code) technologies [24]. IaC enables the automated
management and provisioning of infrastructures using
machine-readable definition files rather than manual
setup and configuration. The SODALITE@RT platform
includes a meta-orchestrator that employs IaC to deploy
and manage the applications by utilizing and coor-
dinating the low-level resource orchestrators offered
by different execution platforms (e.g., OpenStack,
AWS, and Kubernetes at Edge). The SODALITE@RT
also supports the monitoring and policy-based runtime
adaptation of the application deployments.

The rest of the paper is organized as follows.
Section 2 motivates the needs for orchestrating appli-
cations on cloud-edge environments and highlights
the key challenges. Section 3 provides an overview
of TOSCA and IaC, and summarizes the related
studies. Section 4 presents the SODALITE@RT in
detail, including high-level architecture, modeling,
deployment, monitoring, and deployment adaptation.
Sections 5 and 6 present the implementations of
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the SODALITE@RT and the motivating case study.
Section 7 discusses the key usage scenarios for the
SODALITE@RT, and Section 8 concludes the paper.

2 Motivation: Vehicle IoT Case Study

In this section, using an industrial case study from
our SODALITE H2020 project,! we illustrate the
challenges in orchestrating dynamic applications over
cloud-edge infrastructures.

The SODALITE Vehicle IoT use case involves the
provisioning and delivery of data-driven services from
the cloud to a connected vehicle (or across a fleet
of vehicles), leveraging a combination of data both
from the vehicle itself (e.g., GPS-based telemetry data,
gyroscope and accelerometer readings, biometric data
from driver monitoring) and from external sources that
can enrich the vehicle data and provide additional con-
text to the service (e.g., weather and road condition
data based on the location and heading of the vehicle).
Figure 1 shows the simplified high-level architec-
ture, highlighting the services and other components
deployed at the cloud and the edge. The services
include deep/machine learning (DL/ML) based appli-
cations such as drowsiness detection, license plate
detection, and intrusion and theft detection. As com-
putational capabilities at the edge are often limited,
the corresponding DL/ML model training services are
hosted at the cloud.

The vehicle IoT application highlights the follow-
ing two key challenges pertaining to orchestrating
cloud-edge applications:

1. Supporting Portability of Cloud-Edge Appli-
cation Deployments. The application needs to
be deployed over multiple cloud and edge infras-
tructures with little or no modification. More-
over, some components of the application may be
deployed on either cloud or edge nodes. Within a
given cloud or edge infrastructure, there may exist
heterogeneous resources, for example, different
VM types, edge gateways, and hardware accelera-
tors. Thus, portashould be supported at each phase
of the application deployment workflow, includ-
ing packaging application components, modeling

Thttps://www.sodalite.eu/
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Fig. 1 A simplified high-level architecture of the vehicle IoT application

the application’s deployment topology, and provi-
sioning and configuring resources.

2. Supporting Runtime Management of Cloud-
Edge Application Deployments. Cloud-Edge
infrastructures and users exhibit considerable
dynamism, which can make the deployed appli-
cation sub-optimal, defective, and vulnerable as
the usage context changes. For example, the vehi-
cle is not a stationary object and may, at any
time, crosses over into another country, - subject-
ing the data processing activities carried out by
the services to the regulatory compliance require-
ments of not only the country where it started
its journey, but also every country it enters along
the way. As the workload changes, the utilization
of cloud-edge resources also changes. Overuti-
lization of resources can lead to violations of
the application’s performance objectives, while
underutilization can incur an undue cost. Differ-
ent edge accelerators have different performance
modes and thermal operating ranges. Stepping
outside of these ranges can lead to (machine
learning) inference failures or other types of hard-
to-detect undefined behaviors. In order to cope
with the dynamism of the cloud-edge applica-
tions successfully, their deployments need to be
monitored and managed at runtime. For exam-
ple, the thermal states of the edge nodes should
be monitored, and the redeployment using more
thermally-conservative configurations should be
triggered when a predefined threshold is crossed.

In response to the location-changed events origi-
nated from the vehicle or user app, the application
should be partially redeployed to prevent the vio-
lation of regulatory compliance requirements.

3 Background and Related Work

In this section, we first introduce the technologies
that the SODALITE@RT uses to model and imple-
ment deployment models of complex heterogeneous
applications. A deployment model is a specification of
the components belonging to the application and their
connectors, as well as their dependencies on a specific
technological stack [3]. Next, we present an overview
of the existing studies on orchestrating applications on
cloud-edge infrastructures.

3.1 TOSCA

TOSCA [23, 25, 26] is an OASIS standard for describ-
ing deployment and management of distributed appli-
cations declaratively in a portable way. The key
TOSCA concepts for describing a deployment model
are : Topology Template, Node Template, Node Type,
Relationship Template, and Relationship Type. Topol-
ogy Template specifies the structure of the applica-
tion in terms of Node Templates and Relationship
Templates. Node Templates model application com-
ponents (e.g., virtual machines, databases, and web
services), whose semantics (e.g., properties, attributes,
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requirements, capabilities and interfaces) are defined
by Node Types. Relationship templates capture rela-
tions between the nodes, for example, a node hosting
another node or network connection between nodes.
Relationship types specify the semantics (e.g., proper-
ties and interfaces) of these relationships. The prop-
erties and attributes represent the desired and actual
states of nodes or relationships, e.g., IP address or
VM image type. Interfaces define the management
operations that can be invoked on nodes or relation-
ships, e.g., creating or deleting a node.

The TOSCA standard originally was developed
for defining deployment models for automating the
orchestration of cloud applications in a vendor-
agnostic fashion. The TOSCA language is highly
extensible as new types (e.g., node types, capabil-
ity types, and policy types) can be defined without
extending the language it self. The deployment mod-
els specified in TOSCA are generally enacted by the
middleware systems called orchestrators. The man-
agement operations of a deployment model can be
realized using different languages including classical
shell scripts. Overall, the TOSCA standard enables
achieving the portability and reusability of the deploy-
ment model definitions.

3.2 IaC and Ansible

Infrastructure-as-Code (IaC) [24] is a model for pro-
visioning and managing a computing environment
using the explicit definition of the desired state of the
environment in source code via a Domain Specific
Language (DSL), and applying software engineering
principles, methodologies, and tools. The interest in
[aC is growing steadily in both academia and indus-
try [7, 27]. Instead of low-level shell scripting lan-
guages, the TaC process uses high-level DSLs that can
be used to design, build, and test the computing envi-
ronment as if it is a software application/project. The
conventional management tools such as interactive
shells and UI consoles are replaced by the tools that
can generate an entire environment based on a descrip-
tive model of the environment. A key property of the
management tasks performed through IaC is idem-
potence [28]. The idempotence of a task makes the
multiple executions of it yielding the same result. The
repeatable tasks make the overall automation process
robust and iterative, i.e., the environment can be con-
verted to the desired state in multiple iterations. IaC
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languages and tools typically support the provision
and management of a wide range of infrastructures
including public clouds, private clouds, HPC clusters,
and containers. Thus, the IaC approach also enables
achieving greater application portability as the appli-
cations can be moved across different infrastructures
with little or no modification to IaC programs.
SODALITE@RT prototype uses the Ansible IaC
language? to operationalize the TOSCA based deploy-
ment models. Ansible is one of the most popular lan-
guages amongst practitioners, according to our previ-
ous survey with practitioners [7]. In Ansible, a play-
book defines an IT infrastructure automation workflow
as a set of ordered tasks over one or more inventories
consisting of managed infrastructure nodes. A module
represents a unit of code that a task invokes. A mod-
ule serves a specific purpose, for example, creating a
MySQL database and installing an Apache webserver.
A role can be used to group a cohesive set of tasks and
resources that together accomplish a specific goal, for
example, installing and configuring MySQL.

3.3 Related Work

In this section, we discuss the existing studies on mod-
eling and orchestrating Cloud and Edge application
deployments, with respect to the two key challenges
mentioned in the previous section. As a basis of our
analysis, as appropriate, we refer to the recent relevant
literature reviews, for example, [3-5, 12, 13].

There exist many approaches that enable specifying
the deployment model of an application, for exam-
ple, Ansible,® Chef,* Puppet,5 OpenStack Heat,® and
TOSCA [23]. Wurster et al. [3] compared these tech-
nologies with respect to their ability to model the
essential aspects of a declarative deployment model.
Among these approaches, TOSCA comprehensively
supports the declarative deployment models in a tech-
nology agnostic way. As TOSCA is an open standard,
the adoption of TOSCA enables more interoperable,
distributed and open infrastructures [4, 17, 29].

When a deployment model is available, then an
orchestrator can execute it and deploy the corresponding

Zhttps://www.ansible.com/
3https://www.ansible.com/
“https://www.chef.io/
Shttps:/puppet.com/

Shttps ://docs.openstack.org/heat/latest/


https://www.ansible.com/
https://www.ansible.com/
https://www.chef.io/
https://puppet.com/
https://docs.openstack.org/heat/latest/

J Grid Computing (2021) 19: 29

Page 50f23 29

components on the available resources. The recent sur-
veys from Tomarchio et al. [5] and Luzar et al. [13]
compared the existing orchestrators for the Cloud
(including multi-clouds). The analysis covers both
commercial products (e.g., Cloudify’ and CloudFor-
mation® and academic projects (e.g., SWITCH [11],
MODACIouds [30], SeaClouds [31], MiCADO [32,
33], Occopus [15], and INDIGO-DataCloud [17, 29])
in terms of criteria such as portability, container-
ization, resource provisioning, monitoring, and run-
time adaptation. The portability is typically supported
by adopting open standards such as TOSCA [11,
17, 18, 34, 35] and OCCI (Open Cloud Computing
Interface) [10]. As regards to resource provisioning,
there exist a limited support for dynamic selection of
resources, as well as for deployment and management
of resources through IaC (or configuration manage-
ment tools). As regards to monitoring, the collection
of both system/infrastructure metrics and application
metrics are supported for heterogeneous cloud envi-
ronments. The key focus of the runtime adaptation
support in the existing tools is threshold-based hori-
zontal scaling. There are needs for policy-based adap-
tation as well as proactive data-driven adaptation of
application deployments.

Kubernetes” and Docker Compose!? are well-known
container-based orchestration mechanisms. Both of
them, though, have not been conceived to deal with
complex applications that span across multiple het-
erogeneous container clusters and, to overcome this
limitation, have been integrated with TOSCA-based
approaches [21, 22, 35].

The containerization has been employed to deploy
microservice-based applications on the Edge and
hybrid Cloud-Edge infrastructures [19, 20]. There are
also studies using OpenStack Heat [36] and TOSCA
[37]. The key focus of these works is on the deploy-
ment of the applications while satisfying deploy-
ment constraints such as geographical constraints and
inbound network communication restrictions.

Table 1 compares the existing projects and our
proposed framework. There exist many studies on
orchestrating applications on multi-clouds. However,

https://cloudify.co/
8https://aws.amazon.com/cloudformation/
9https://kubernetes.io/
Ohttps://docs.docker.com/compose/

a little research has been done on orchestrating appli-
cations on heterogeneous cloud-edge infrastructures,
especially on portability and runtime management
of application deployments. Multi-cloud orchestrators
such as SWITCH, MiCADO, INDIGO-DataCloud,
and Occopus leverage the TOSCA standard and con-
tainerization (mostly Docker) to support portability.
Among these projects, INDIGO-DataCloud employs
IaC (Ansible) for specific tasks such as deploy-
ing a Mesos cluster. SWITCH and MiCADO offer
runtime adaptation capabilities in terms of vertical
and horizontal resource scalability. In comparison
to the existing studies, our focus is on supporting
portability and runtime management for cloud-edge
application deployments. To achieve portability, we
rely on the TOSCA standard, containerization, and
TaC. Regarding runtime adaptation, we aim to sup-
port the common structural changes to the deploy-
ment topology of an application, for example, adding,
removing, and updating nodes or a fragment of the
topology.

4 SODALITE@RT: A Runtime Environment
for Orchestrating Applications on Cloud-Edge
Infrastructures

The SODALITE runtime environment (SODALITE@RT)
attempts to support the automated deployment and
management of applications across cloud and edge
infrastructures in a portable manner. To this end, to
reduce the complexity introduced by the infrastruc-
ture and application heterogeneity, and to support
the deployment portability, we adopt and extend the
TOSCA standard to describe the deployment model
of a managed heterogeneous distributed application.
The SODALITE@RT also offers the capabilities of
the enactment, monitoring, and adaptation of such
TOSCA-based application deployments.

Figure 2 shows the high-level architecture of the
SODALITE@RT platform, which consists of TOSCA
Repository, 1aC Repository, Orchestrator, Monitoring
System, and Deployment Refactorer. TOSCA Repos-
itory includes TOSCA node types and templates,
which represent both application and cloud-edge
infrastructure components (types and instances). To
implement the management lifecycle operations (e.g.,
create, install, and delete) of a defined component
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Table 1 Comparison of existing studies and our proposed framework

Study Portability Runtime management Infrastructure
Deployment Monitoring Adaptation Multi-Cloud Cloud-Edge

INDIGO-DataCloud [17, 29] + + + ~ + -

SWITCH [11] + + + ~ + _

MiCADO [32, 33] ~ + + ~ + -

Occopus [15] + + ~ - + -

Buzachis et al. [19] - + ~ ~ - ~

Kepes et al. [37] + - - ~
SODALITE@RT + + + + +

+ : Sufficiently Support ~: Partially Support - : Limited or No Support

type, we use the Ansible IaC language, which is one
of the most popular languages amongst practition-
ers [7]. IaC Repository stores the reusable Ansible
scripts corresponding to the realization and man-
agement of the component types (i.e., the TOSCA
node types) in TOSCA Repository. laC Repository
offers RESTFul APIs for adding, removing, updating,
retrieving Ansible artifacts. TOSCA Repository pro-
vides RESTFul APIs for adding, removing, updating,
retrieving the definitions of TOSCA node types and
node templates, and for finding node templates that
satisfy a predicate over node properties. Orchestra-
tor is responsible for (re)deploying a given application
on the cloud-edge infrastructures by executing Ansi-
ble IaC scripts as necessary. It receives the initial

Fig. 2 Architecture of the
SODALITE@RT
environment
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native deployment model (from Deployment Refac-
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In the rest of this section, we discuss the
SODALITE@RT environment in detail. We first
present TOSCA and IaC based modeling of deploy-
ment models of cloud-edge applications, highlighting
the mappings between cloud and edge resources and
application components to TOSCA and IaC concepts.
Next, we focus on deployment and monitoring of
cloud-edge applications with our Orchestrator and
Monitoring System. Finally, our support for the policy-
based adaptation of the deployment models at runtime
is discussed.

4.1 Modeling of Cloud and Edge Deployments
with TOSCA and IaC

A deployment model describes the structure of an
application to be deployed including all elements,
their configurations, and relationships [3]. An element
can be an application component (e.g., a microser-
vice), a hosting platform or software system (e.g.,
MySQL database or Apache Web server), and an
infrastructure resource (e.g., VM or network router).
We apply the containerization to model software sys-
tems, and application components that are standalone
or hosted on a hosting platform. As the containeriza-
tion technology, we use Docker. As mentioned above,
we use the TOSCA standard (Simple Profile in YAML
1.3) to represent edge resources, cloud resources, and
containerized application components. To create and
manage the instances of resources and components,
we use Ansible [aC scripts. Table 2 shows the map-
pings between cloud-edge resources and components
to TOSCA and Ansible concepts. In the rest of this
section, we discuss the key mappings, and provide
examples.

4.1.1 Modeling Cloud Resources

The common types of computing infrastructure
resources are compute resources such as VMs and
containers, and network resources such virtual com-
munication networks and network devices. There exist
different providers of such resources, for example,
AWS and Openstack. The creation and management of
resources is provider-specific, for example, AWS VM
and Openstack VM. Thus, we use the TOSCA node
types to model different types of compute resources,
and employ Ansible scripts to implement the relevant

management operations. The parameters or labels of
resources are represented as the properties of TOSCA
Node types (OpenStack.VM and AWS.VM), and the
instances of resources are modeled as TOSCA node
templates (Table 2).

A container runtime pulls containerized application
components (e.g., container images) from the con-
tainer registry and hosts them. To model the semantics
of container runtime and containerized components,
we introduce two TOSCA node types DockerHost and
DockerizedComponent. Ansible playbooks are used
to create the Docker engine in a host node, and to
run Docker images. To specify a given containerized
application component, a corresponding TOSCA tem-
plate with the appropriate properties such as image
names and environment variables should be created.

Figure 3 shows the snippets of the TOSCA node
type and a node template for OpenStack VMs, and the
Ansible playbook that implements the create manage-
ment operation of the node type. The node type defines
configuration properties, e.g., image and flavor, and
specifies the requirements for protecting the VM with
the security policies. The node template vehicle-demo-
vm is an instance of this node type, and specifies the
values for the properties of the node type, e.g., image
as centos7 and flavor as m1.small. The task Create VM
in the playbook uses the Ansible module os_server to
create compute instances from OpenStack.

Figure 4 shows an example (snippets) for the
TOSCA node type DockerHost and its instance, and
the Ansible playbook that can instantiate the node
type. The node type DockerHost defines a Docker
container runtime. The property registry-ip specifics
the Docker image repository. The capabilities of the
node type indicate that it can host Docker containers
(DockerizedComponent). The node type also defines
the management operation for installing the Docker
runtime in a host as a reference to the relevant Ansible
playbook, which uses some Ansible roles to installs
Docker, and some tasks to configure and start the
Docker daemon.

4.1.2 Modeling Edge Resources
We use the container clusters as edge infrastructures,
in particular, Kubernetes. The application components

that target edge resources can be modelled as Kuber-
netes objects, such as a Kubernetes Deployment,
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Table 2 Mapping from cloud-edge resources and components to TOSCA and Ansible

Edge/Cloud resource/Component

TOSCA

TaC (Ansible) and other files

VM Type

VM Parameter/Label

VM Instance

Edge Cluster

Edge Cluster Parameter/Label
Edge Node

Edge Node Parameter/Label

Edge Node with Accelerators (GPU,
EdgeTPU, etc.)
Container Runtime Parameters

Application Component on Cloud

Application Component on Edge

Application Component Parameters
Application Component Instance

Node Exporters Skydive Exporters IPMI
Exporters

Application-level Edge Exporters
Accelerator-level Edge Exporters MQTT-
level Edge Exporters *MQTT stands for
The Standard for [oT Messaging.

TOSCA Node Type (AWS, OpenStack,
etc.)

TOSCA Node Properties (flavor, image,
network, volume, etc.)

TOSCA Node Template with values for
node properties

TOSCA Node Type (Kubernetes Cluster)
TOSCA Node Properties (cluster access
information, kubeconfig)

TOSCA Node Type (Kubernetes Node)
TOSCA Node Properties (hardware archi-

tecture, accelerators, devicetree proper-
ties, etc.)

TOSCA Node Template

TOSCA Node
(image_registry_ip, etc.)

TOSCA Node Type (DockerizedCompo-
nent)

Properties

TOSCA Node Type (Kubernetes Object
or Helm chart)

TOSCA Node properties (container
image, ports, environment variables, etc.)
TOSCA Node Template

Ansible playbook that creates the VMs
installs the exporter, launches the dae-
mon and registers as a Consul service on
creation; and deregisters from Consul on
destruction

Ansible playbooks that configure, create,
and delete VMs using respective Ansible
modules or collections (e.g., AWS EC2
module, OpenStack module)

Any possible configurations for a particu-
lar instance (e.g., userdata, cloud-configs,
and additional ssh-keys)

Ansible playbook to configure and run the
container image using Docker container
module. Docker Image and possible con-
figuration or source artifacts specific to
the component need to be provided.

Ansible playbook to configure and run
an application component specified either
as a Kubernetes Object or Helm chart.
Possible configuration or source artifacts
specific to the component can be pro-
vided.

Any possible configuration or source arti-
facts for a particular component instance

A Helm chart installs the exporter into
the Kubernetes cluster with the appropri-
ate scrape annotation, which is picked up
automatically by the Prometheus server.
An Ansible playbook may install the
Helm chart directly, using the Helm mod-
ule. Consul service sync may be enabled
to automatically synchronize Kubernetes
Pods with the Consul service catalog.
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sodalite.nodes.OpenStack.VM: (a)
derived_from: tosca.nodes.Compute
properties:
name: ...
image: ...
flavor: ...

interfaces:
Standard:
type: tosca.interfaces.node.lifecycle.Standard
create:

implementation: openstack/vm/create.yml
delete:

implementation: openstack/vm/delete.yml
requirements:
- protected_by:
capability: tosca.capabilities.Node

relationship: tosca.relationships.DependsOn

node: sodalite.nodes.OpenStack.SecurityRules

vehicle-demo-vm: (b)
type: sodalite.nodes.OpenStack.VM
properties:

name: vehicle-demo-vm

image: centos?

flavor: m1.small

network: orchestrator-net

security _groups: default,vehicle-iot
requirements:

- protected_by: security-rules-vehicle-iot

tasks: (c)
- name: Create VM
0s_server:
state: present
name: "{{ vm_name }}"
image: "{{ image }}"
key name: "{{ key name }}"
flavor: "{{ flavor }}"
network: "{{ network }}"
security_groups: "{{ security _groups }}"

Fig. 3 Snippets of, a the TOSCA node type for OpenStack VM, b a node template example for the node type, ¢ the Ansible playbook

for creating OpenStack VM (create.yml)

or can be encapsulated in Helm!! charts. Helm is an
application package manager for Kubernetes, which
coordinates the download, installation, and deploy-
ment of Kubernetes applications. We developed TOSCA
node types that handle the Kubernetes/Helm deploy-
ment onto edge clusters or edge nodes with specific
accelerator types.

As shown in Fig. 5, the node type sodalite.nodes.Kuber-
netes.Cluster provides properties that define cluster
access information (such as kubeconfig) and con-
tains host capability for cluster-wide deployment via
Kubernetes definitions or Helm charts. The node type
sodalite.nodes. Kubernetes.Node defines the properties
of an edge node, such as accelerators and CPU archi-
tecture, as well as the accelerators selectors (gpu_selector
and edgetpu_selector). These selectors are represented
as a mapping between accelerator type and the Kuber-
netes node labels it represents: for instance, an edge
node that contains an NVIDIA GPU can be labeled
with a node label - nvidia.com/gpu. The reason for
such mapping is to specify a node affinity, such that
application pods will be scheduled to a node with

https://helm.sh/

the specific accelerator, where a node affinity is set
by patching values of Helm charts using Ansible.
Figure 6 presents an example of a node template for
a MySQL Helm chart deployment on the GPU edge
node. It also shows the fragments of the correspond-
ing TOSCA node type and the Ansible playbook that
realizes the create management operation using the
Ansible Helm module.

4.2 Deployment and Monitoring of Applications

In this section, we present the capabilities of the
SODALITE@RT environment for deploying and mon-
itoring applications over the cloud-edge infrastruc-
tures.

4.2.1 Deployment

There exist different infrastructure providers, and they
generally offer the REST APIs to create and man-
agement the resources in their infrastructures. These
REST APIs hide the underling low-level resource
orchestrators, and aid achieving interoperability of
heterogeneous infrastructures. Thus, we design and
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sodalite.nodes.DockerHost: (a)
derived_from: tosca.nodes.SoftwareComponent
properties:

registry_ip: ...

interfaces:
Standard:
type: tosca.interfaces.node.lifecycle.Standard
create:
implementation:
primary: docker/create_docker host.yml
delete:
implementation:
primary: docker/destroy docker host.yml
capabilities:
host:
type: tosca.capabilities.Node
valid_source_types: [ sodalite.nodes.DockerizedComponent ]

vehicle-demo-docker-host: (b)
type: sodalite.nodes.DockerHost
properties:
registry_ip: { get_input: docker-registry-ip }
requirements:
- host: vehicle-demo-vm
vars: (c)

pip_install_packages:
- name: docker
tasks:
- name: Configure the docker for OpenStack
service:
name: docker
state: restarted
roles:
- geerlingguy.repo-epel
- geerlingguy.docker

Fig. 4 Snippets of, a the TOSCA node type for Docker runtime, b a node template example for the node type, ¢ the Ansible playbook

for creating the node type (create_docker_host.yml)

implement our orchestrator as a meta-orchestrator that
coordinates multiple low-level resource orchestrators.
Figure 7 shows the main components in the architec-
ture of the orchestrator.

Meta-Orchestrator receives the TOSCA blueprint
file describing the deployment model of the
application through its REST API, validates the
received model via TOSCA Parser, and uses

sodalite.nodes.Kubernetes.Cluster:
derived_from: tosca.nodes.Compute
capabilities:
host:
type: tosca.capabilities. Compute
valid_source_types: [ sodalite.nodes.Kubernetes.Kind,
sodalite.nodes.Kubernetes.Definition ]

(@)

properties:
kubeconfig: ...
username: ...
sodalite.nodes.Kubernetes.Node:
derived_from: tosca.nodes.Compute
capabilities: ...
properties:
name: ..
gpu_selector:
type: map
default: { "key': "accelerators/gpu
edgetpu_selector: ...
cpus:
type: integer
default: 0
gpus: ..

"non
b}

value': "true" }

edge-cluster:
type: sodalite.nodes.Kubernetes.Cluster
properties:
kubeconfig: ~/.kube/config
username: { get_input: frontend user }
attributes:
public_address: { get_input: frontend address }
edge-gpu-node:
type: sodalite.nodes.Kubernetes.Node
properties:
name: gpu-node
gpus: 1
gpu_selector: { "key'": "nvidia.com/gpu'’,
"value": "1" }

(b)

cpus: 1

©

tasks:
- name: "Create from
Kubernetes definition file"
community.kubernetes.k8s:
state: present
kubeconfig: "{{ kubeconfig }}"
src: "{{ path }}"

Fig. 5 Snippets of, a TOSCA node types for Kubernetes edge clusters and nodes with accelerators, b node template examples of the
node types, and ¢ an Ansible playbook for creating Kubernetes environment from their definitions
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sodalite.nodes.Kubernetes.Definition.Helm.Node:

node: sodalite.nodes.Kubernetes.Node
interfaces:
operations:
create:
inputs: ...
implementation:
primary: playbooks/create_from helm.yaml

derived_from: sodalite.nodes.Kubernetes.Definition.Helm mysql-deployment-via-helm-on-edgetpu:
requirements: type: sodalite.nodes.Kubernetes.Definition.Helm.Node
- host: ... properties:
- kube_node: (a) name: mysql-release-1-from-helm-on-edgetpu

namespace: default

chart: stable/mysql

chart_version: latest

repo_name: stable

repo_url: "https://charts.helm.sh/stable"
keep_repo: false

values:

- name: Install chart
community.kubernetes.helm:
name: "{{ helm_name }}"
namespace: "{{ helm_namespace }}"
chart_ref: "{{ actual_helm_chart }}"
values_files: "{{ helm_values_files }}"
values: "{{ actual_helm_values }}"

©

replicas: 1
(b) persistence:
enabled: False
requirements:
- host: edge-cluster
- kube_node: edge-gpu-node

Fig. 6 Snippets of, a the TOSCA node type for Helm, b an Ansible playbook for Helm charts deployment, and ¢ the node template
for a MySQL Helm chart deployment on a GPU edge node

laC-based Orchestration Layer to provision the nodes and relationships and their design time
resources and deploy components in the deploy- (node properties) and runtime (node attributes)
ment model. The deployment states of TOSCA parameters are stored in a database so that the

Application Deployment
Descriptions (TOSCA and Inputs) Eig

Orchestrator REST API
e — o
Deployment State Meta-Orchestrator . Alﬁ}lll(t)}:zn;:icoafi/llla:;ier
- @@
Application Data Manager
TOSCA Parser TaC-based Orchestration Layer Image Registry

[aaS Cloud (e.g., Openstack,
AWS, etc)

Cloud-Edge Edge Infrastructure (e.g.,
Infrastructures KubeEdge)

Fig. 7 Architecture of the SODALITE@RT orchestrator
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deployment status can be monitored via the REST
API and the next deployment iterations can be
compared against current version. The deploy-
ment version comparison helps to efficiently
update and reconfigure running application topol-
ogy, handling only those nodes/relationships that
need modifications.

— TOSCA Parser parses and validates syntax of
TOSCA models based on the version v1.3 of
TOSCA Simple YAML Profile specification. It is
a general purpose tool that can be used by any
other orchestrators to validate TOSCA models.

— Authentication and Authorization Manager
handles the user and secrets management across
the whole SODALITE stack and Orchestrator
REST API in particular. Each TOSCA blueprint
and deployment is associated to a project domain,
an access to which requires an access token with
specific JWT (JSON Web Token) claims. Given
that the access token is valid, one can perform
orchestration actions such as deployment or unde-
ployment, getting information about a deployment
state as well as performing deployment updates.
In order to hide sensitive data being passed as
inputs for the TOSCA blueprints, special direc-
tives are implemented on the inputs that allow to
retrieve the secrets during the deployment opera-
tion. The secrets are registered by the users with
the Authentication and Authorization Manager
and the IDs of the secrets are passed to the inputs.
Moreover, Orchestrator implements an encrypted
storage, where the deployment state is securely
stored and can be retrieved with the storage key.

— Application Data Manager incorporates various
transfer protocols and endpoints to achieve trans-
parent data management across multiple infras-
tructure providers. The data transfer pipelines can
be implemented by using the ETL (Extract, trans-
form, load) tools as well as [aC. Apart from using
Ansible’s built-in modules for data transfer, for
example, files modules (copy and fetch) or URI
modules (get_url and uri), other advanced data
transfer protocols such as SFTP, GridFTP can
be incorporated on the supported targets, which
will provide advanced features such as security,
performance and third-party data transfer.

— Image Registry is an internal or external reposi-
tory of container images. The internal repositories
should provide APIs to pull the images through

@ Springer

IaC. We use Docker Hub for storing images of the
application components in the case studies.

— IaC-based Orchestration Layer interfaces with
various APIs and endpoints, for example, IaaS
management APIs and platforms APIs in order
to request the resources needed for the deploy-
ment, configure and deploy the application com-
ponents. It pulls and executes Ansible play-
books that implement the lifecycle operations for
nodes/relationships defined in a TOSCA model
from the laC Repository. Ansible provides sev-
eral convenient modules, which enable interaction
with a particular platform. For OpenStack, there
are several modules available, allowing the cre-
ation of various components of the virtual infras-
tructure: virtual machines (os_server), networks
(os_networks), block storage (os_volume), and so
on. It also has modules (cloud_modules) for cre-
ating and managing resources in Azure, AWS,
and GCP public Clouds. The dedicated module
k8s for management of Kubernetes objects allows
creation of deployment pods and services.

Due to the fact that the application development
and deployment are nowadays continuous, for exam-
ple, shipping new releases frequently, there will be
updates in the previously deployed application topol-
ogy. Alternatively, the updates can be triggered on the
infrastructure level in order to satisfy QoS parameters,
for example, increase of responsiveness of the applica-
tion by provisioning greater resources. Therefore, it is
a task of the Orchestrator to handle these updates and
implement redeployment actions on deployed applica-
tion topology. Application redeployment is requested
by submitting the new version of the application
deployment topology via the Orchestrator REST API.
Current implementation of redeployment is to have the
new version and the old version coexist (with a HA
proxy forwarding requests to the correct version) and
tearing down the old version once the new version is
deployed and can be used by end-users.

4.2.2 Monitoring

The deployed application is continuously monitored to
collect the metrics that can be used by the components
such as Deployment Refactorer. As shown in Fig. 8,
the monitoring system is composed of the follow-
ing elements: a number of Exporters that collect and
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Exporter
Discovery

Monitoring Alert Manager
Server

Infrastructure 1 (e.g., OpenStack)

Fig. 8 Architecture of the SODALITE@RT monitoring system

publish relevant information about the resources on
which they are installed, Exporter Discovery ser-
vice that discovers and allows registering exporters,
Monitoring Server) that gathers all the information
via exporters or directly scraping nodes, and Alert
Manager that receives data from Monitoring Server
and emit alerts by evaluating a set of rules over the
received data.

Exporters are in charge of measuring their tar-
geted metrics across the heterogeneous infrastruc-
ture. There exist four types of exporters: node
exporter, Skydive exporter, IPMI (Intelligent Platform
Management Interface) exporter, and edge exporter.
Node exporter is used to gather information such as
CPU, input/output, and memory usage from virtual
machines. Skydive exporter enables collecting various
network metrics such as network flow and traffic met-
rics using the Skydive tool!2. IPMI exporter gathers
low-level information (e.g., power consumption) from
IPMI-compatible sensors installed on the physical
nodes in the infrastructure.

Edge nodes are expected to run a node exporter
and accelerator-specific metric exporters for any
attached heterogeneous accelerators (e.g., Edge TPU
and GPU). As with the cloud VMs, the node exporter
is responsible for gathering and exposing general
information about the node, whereas the accelerator-
specific exporters provide specific insight into the

2http://skydive.network/

********* O

Exporters

Infrastructure n (e.g., Kubernetes at Edge)

attached accelerators. This may include aspects such
as the number of devices available, the load average,
or thermal properties.

The Ansible playbooks that are responsible for
setting up nodes also deploy the exporters. The con-
figuration parameters for exporters can be provided
using TOSCA node properties. Figure 9 shows a snip-
pet of an Ansible playbook that installs the EdgeTPU
exporters into the edge nodes in a Kubernetes cluster.
It uses the Ansible modules for executing the relevant
Helm charts.

Monitoring Server gathers data from all of the
different exporters running all over the computing
infrastructure. It queries Exporter Discovery to find
information about exporters. The exporters publish
the collected data through their HTTP endpoints. The
collected real-time metrics are recorded in a time
series database.Alert Manager receives the collected
real time metrics from the monitoring server, and trig-
gers different types of alerts based on a set of rules.
Figure 10 defines an alert rule to generate the alert
HostHighCPULoad when the CPU load in the node is
greater than 80%.

4.3 Adaptation of Application Deployments
In response to the data collected and events received
from Monitoring System, Deployment Refactorer

decides and carries out the desired changes to the cur-
rent deployment of a given application. To allow a
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Fig. 9 Snippet of an
Ansible playbook for tasks:
installing the EdgeTPU
exporter

- name: Add Prometheus Community repository
community.kubernetes.helm_repository:
name: prometheus-community
repo_url: https://prometheus-community.github.io/helm-charts
- name: Add Adaptant repository
community.kubernetes.helm_repository:
name: adaptant
repo_url: https://adaptant-labs.github.io/charts/adaptant
- name: Install EdgeTPU exporter
community.kubernetes.helm:
name: edgetpu-exporter
chart_ref: adaptant/edgetpu-exporter
release_namespace: "{{namespace}}"

software engineer to define the deployment adapta-
tion decisions, we provide an ECA (event-condition-
action) based policy language. Figure 11 the key
concepts of the policy language. A policy consists of
a set of ECA rules.

— Events and Conditions. A condition of a rule is
a logical expression of events. We consider two
common types of events pertaining to the deploy-
ment model instance of an application: deploy-
ment state changes and application and resource
metrics. The former event type captures the state
of a node or relation in a deployment model
instance, which are fourfold: Added, Removed,
Updated, and ConstraintsViolated. The Updated -
event type comprises the changes to the prop-
erties, requirements, capabilities of a node and
the properties of a relation. The ConstraintsVi-
olated event type indicates the violation of the
constraints on deployment states, for example,
removal or failure of a CPU (in a node rep-
resenting a VM) can violate the constraint that
the number of CPUs should be greater than a
given threshold. The application and resource

metric events include (raw or aggregated) prim-
itive metrics collected from the running deploy-
ment, for example, average CPU load, as well
as alerts or complex events that represent pred-
icates over primitive metrics, for example, the
above-mentioned HostHighCPULoad alert. The
application components may also generate cus-
tom events, for example, a component (the user
app) in the Vehicle IoT application periodically
does a reverse geocoding of the GPS coordinates
and when there is a country change it triggers a
notification. Moreover, time of the day or other
context conditions can also be the conditions of
deployment adaptation rules.

Actions. The actions primarily include the com-
mon change operations (Add, Remove, and
Update) and the common search operations (Find
and EvalPredicate) on nodes, relations, and their
properties. Additionally, the custom actions can
be implemented and then used in the deploy-
ment adaptation rules, for example, actions for
predicting performance of a particular deploy-
ment model instance or predicting workload. To
ensure the safe and consistent changes to the

Fig. 10 An alerting rule for i
indicating high CPU usage - alert: HostHighCPULoad

in a node for- 5m

labels:
severity: warning
annotations:

expr: 100 - (avg by(instance,os_id) (irate(node_cpu_seconds_total {mode="idle"}[5m])) * 100) > 80

summary: "Host high CPU load (instance {{ Slabels.instance }})"
description: "CPU load is > 80%\n VALUE = {{ $value }}\n LABELS: {{ Slabels }}"
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Fig. 11 Meta-model of the deployment adaptation policy language

deployment model instance, Deployment Refac-
torer makes the change operations to a local repre-
sentation (a Java Object model) of the deployment
model (represented using the concept of mod-
els@runtime [38]). Once the adaptation rules in
a rule session are executed, Deployment Refac-
torer translates the current local object model to
a TOSCA file, and calls the update API opera-
tion of the Orchestrator with the generated file. To
implement search actions, Deployment Refactorer
uses the corresponding API operations provided
by TOSCA Repository.

There exist dependencies between adaptation
decisions. An enactment of a given adaptation
decision may require the enactment or prevention
or revocation of some other adaptation decisions.
To capture these dependencies, we introduce an
action to generate custom events. A rule can
emit an event indicating the state (e.g., comple-
tion) of the enactment of an adaptation decision.
The dependent rules can use that event in their
conditions.

Execution. The correct ordering of the rules as
well as that of the actions within each rule are

required to achieve a desired outcome. The rules
are independent and are activated based on their
conditions. When multiple rules are activated at
the same time, the priorities of the rules can be
used to resolve any conflicts. Within a rule, if-
then-else conditional constructs can be used to
order the actions.

The Deployment Refactorer uses a policy engine to
enact the deployment adaptation policies. It supports
addition, removal, and update of policies. It can parse
given policies, process events and execute the policies.
The policy rules are triggered as their conditions are
satisfied, and the desired changes are propagated to
the deployment model instance.

Figure 12 show an example of a deployment
adaptation rule that reacts to the event Location-
ChangedEvent by un-deploying a data processing ser-
vice deployed in a VM located in a data center at the
previous location (de-Germany), and deploying the
same service in a VM from a data center at the new
location (it-Italy). A predicate over the TOSCA node
properties location and service name is used to find
the correct TOSCA node template.
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Fig. 12 A snippet of a
deployment adaptation rule

when

then

end

import eu.sodalite.TOSCARepositoryAPI repoAPI;
rule "location_change_from_de_to_it"

$f1 : LocationChangedEvent(preLoc == "de", currentLoc == "it") and
$dm : DeploymentModel()

$dm.removeNode (" (?location = \"" + $fl.getPreLoc() + "\" )
$dm.addNode (repoAPI.find("(?location = \"" + $fl.getCurrentLoc() + "\" )

emit NodeReplaced($fl.getServiceName());

&& (?service-name = \"" + $fl.getServiceName() + "\" )");

&& (?service-name = \"" + $fl.getServiceName() + "\" )"));

5 SODALITE @RT Prototype Implementation

We implemented the SODALITE@RT environment
using a set of open source projects/tools. Figure 13
shows the key components of the prototype imple-
mentation and the open source projects/tools used.
The implementation of the SODALITE platform is
maintained at GitHub.!3

We implemented the meta-orchestrator with xOpera,!
which supports TOSCA YAML vl1.3. The current
features of xOpera includes: 1) registering, remov-
ing, and validating TOSCA blueprints, 2) deploying
and undeploying the applications based on the reg-
istered blueprints, and 3) monitoring the progress
of deployment and undeployment operations. xOpera
executes the blueprints through Ansible playbooks,
which implement the necessary infrastructure man-
agement operations. xOpera uses PostgreSQL to store
the TOSCA blueprints and the states of the appli-
cation deployments. The token-based authentication
and role-based authorization were implemented using
Keycloak!3 identity and access management solution.
We use Docker!® as the container technology. We
employ Ansible and Apache NiFi'” to implement data
pipelines that can transfer application data across var-
ious platforms and storage systems such as Amazon
S3, Google Storage, Hadoop file system (HDFS), and
Apache Kafka message broker.

We implemented the policy engine using the Drools
business rule management system.'8 Drools supports
both production business rules and complex event pro-
cessing. It also offers a web UI and an Eclipse IDE

4

Bhttps://github.com/SODALITE-EU
4https://github.com/xlab-si/xopera-opera
Bhttps://www.keycloak.org/
16https://www.docker.com/
17https:/mifi.apache.org/
Bhttps://www.drools.org/
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for authoring policies, and fully supports the DMN
(Decision Model and Notation) standard for mod-
eling and executing decisions. We implemented the
SODALITE monitoring system using Prometheus'”
and Consul.?® Prometheus implements exporters, the
monitoring server, and the alert manager, while Con-
sul implements the exporter discovery.

The SODALITE@RT currently supports five key
types of infrastructures: edge (Kubernetes?!), private
cloud (OpenStack*? and Kubernetes), public cloud
(AWS), federated cloud (EGI OpenStack23), and HPC
(TORQUE?* and SLURM??). The HPC support was
partially presented in a previous publication [39]. The
examples for orchestrating applications on each type
of these infrastructures can be found in our GitHub
repository.

In addition to the runtime environment, the SODALITE
project also includes a development environment,
implemented as an Eclipse plugin to support author-
ing defect-free TOSCA blueprints and Ansible scripts.
We have presented our development environment and
its capabilities in our previous publications [39—43].

6 Case Study: Realization of Vehicle IoT
with SODALITE@RT

This section illustrates three different scenarios in the
Vehicle IoT case study that have been implemented with
the SODALITE@RT platform. The selected scenarios

Yhttps://prometheus.io/
2Ohttps://www.consul.io/
2Ihttps://kubernetes.io/
22https://www.openstack.org/
Bhitps://www.egi.eu/

24 https://adaptivecomputing.com/cherry-services/
torque-resource-manager/

ZShttps://slurm.schedmd.com/
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Fig. 13 Prototype implementation of the SODALITE@RT environment

demonstrate deployment, monitoring, location-aware
redeployment, and alert-driven redeployment. Each
scenario covers deployment modeling, actual deploy-
ment, monitoring, and deployment adaptation. The
case study implementation can be found in the
SODALITE project’s GitHub repository?%?’ and the
industrial partner’s GitHub repository.?® The recorded
demonstration videos of the three scenarios are also
available in the GitHub.2® In this section, we first pro-
vide an overview of the deployment of the vehicle
IoT application with the SODALITE@RT. Then, we
present three scenarios and a performance evaluation
of the SODALITE@RT with respect to the use cases.

20https://github.com/SODALITE-EU/iac-management
2Thttps://github.com/SODALITE-EU
28https://github.com/adaptant-labs
2https://github.com/IndikaKuma/SODALITEDEMOS

6.1 Deployment of the Case Study

Figure 14 shows the deployment of the vehicle IoT
case study in the SODALITE testbeds. It includes the
key components used by the three scenarios. The edge
testbed consists of 3 nodes managed by Kubernetes.
Three edge devices are Raspberry Pi 4, Google Coral
Al Dev Board, and NVIDIA Jetson Xavier NX. Their
accelerators are NCS2 (Neural Compute Stick 2),
EdgeTPU, and NVDLA x2. The cloud testbed provi-
sions virtualized resources (e.g., virtual machines and
containers) managed by OpenStack and Kubernetes.
Furthermore, the cloud testbed hosts the development
environment, which contains the SODALITE CI/CD
server and deployed SODALITE components. It offers
Ubuntu 18.04 VMs in flavors small(1 vCPUs and 2GB
RAM), medium (2 vCPUs and 4GB RAM), large (4
vCPUs and 8 GB RAM), and xlarge (8 vCPUs and
16 GB RAM).
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Fig. 14 Vehicle IoT case study deployment with the SODALITE@RT environment

Each SODALITE@RT component (i.e., the orches-
trator, the deployment refactorer, and the monitoring
system) is deployed on medium VMs. The inference
service drowsiness detector, the MySQL storage, and
the reverse geocoder service are deployed on edge
nodes. The region router and three echo services are
deployed on cloud VMs. The echo services are used
to simulate the services deployed in the data centers at
three different countries.

6.2 Location-aware Redeployment

This case demonstrates the capability of the
SODALITE@RT to redeploy an application in response
to changes in legal jurisdiction, helping deployed appli-
cations maintain both service continuity and meet their
compliance requirements as vehicles travel between
countries. An in-vehicle driver monitoring service
making use of biometric data (classified as spe-
cial category data by GDPR Art. 9) for drowsiness
detection and alerting requires physical locality of
processing for both latency and regulatory compliance
reasons, limiting the ability to carry out cross-border
data transfers. In vehicles with sufficient resources,
this is ideally carried out directly in the vehicle itself,
while in others, it may be necessary to stream data to
the cloud and carry out the analysis in-cloud.
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A region router handles region-specific routing for
in-bound REST API requests originating from the
frontend application (the user app). In the case where
a suitable region is available, in-bound requests are
passed through directly. Where no matching region is
provisioned, a notification is sent to the deployment
refactorer in the form of a JSON payload that des-
ignates the affected service, the country being left,
and the country being entered. The deployment adap-
tation rule described in Section 4.3 is related to the
implementation of this scenario.

6.3 Alert-driven Redeployment: Cloud Alerts

This scenario demonstrates the capability of reacting
to the events from cloud resource monitoring. To pre-
vent over/under utilization of resources, the vehicle
IoT application needs to be redeployed based on the
CPU usage of the cloud VMs that host the application.
We first modelled and deployed the initial applica-
tion in a medium flavor VM, and created two alerting
rules: one for the alert HostHighCPULoad (CPU load
> 80%) and other for the alert CPUUnderUtilized
(40% > CPU load < 50%). The deployment adap-
tation rules for reacting to these two alerts are also
defined: redeploy the application in a Medium VM
for the alert CPUUnderUtilized, and redeploy the
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Fig. 15 Alerting rules for

EdgeTPU temperature - alert: TPUTempNormal

monitoring expr: edgetpu_temperature_celsius < 70.0
labels:
severity: info
annotations:

summary: "Normal EdgeTPU device temperature"
- alert: TPUTempCritical

expr: edgetpu_temperature celsius > 95.0

labels:

severity: critical

annotations:

summary: "Critical EdgeTPU device temperature"

application in a large VM for the alert HostHigh-
CPULoad. Next, we stressed the VM to change the
CPU load, and observed alert generation, receiving
events and triggering of adaptation rules, and finally
successful redeployment.

6.4 Alert-driven Redeployment: Edge Alerts

This scenario demonstrates the capability of the edge-
based monitoring and alerting to throttle an applica-
tion deployment that has exceeded thermal tolerances.
In this case, we consider an Al inference workload
running on an edge-attached EdgeTPU accelerator.
The EdgeTPU itself has a narrowly defined operating
temperature range, where exceeding certain levels can
produce erratic behavior, ranging from silent (and dif-
ficult to debug) inference failure, to physical damage
to the package itself. While thermal trip points can be
configured to physically power off the device where
a critical temperature being exceeded could damage
the hardware itself, the SODALITE@RT platform is
leveraged to mitigate the risks of rising temperature
inducing inference failure.

The EdgeTPU run-time libraries®® are provided
in -max and -std versions, the former providing the
highest clock rate (S00MHz) and performance, while
producing the highest operating temperature. The lat-
ter divides the input clock in half, running at a reduced
clock rate (250MHz), providing reduced performance
and producing a lower operating temperature. We cre-
ated two different variants of the inference application

Ohttps://coral.ai/software/

containers, each linked against one version of the run-
time library, using an appropriate accelerator-specific
base container.3! The EdgeTPU exporter’? provides
EdgeTPU-specific metrics, including the number of
devices and per-device temperature, which are scraped
by the monitoring server. Based on these metrics,
alerting rules that allow for different actions to be
taken at different thermal trip points are also defined
(see Figure 15).

Figure 16 illustrates the switching between the
-max variant and the -std variant of the inference ser-
vice depending on the measured temperature of the
EdgeTPU device. First, the default -max variant of the
inference application is deployed to the edge node by
the orchestrator. As other workloads are deployed onto
the node, the ambient temperature within the enclo-
sure rises, slowly increasing the EdgeTPU device
temperature. The monitoring server, using the defined
alerting rules, identifies that a thermal limit has been
passed, and fires the alert TPUTempCritical. The alert
manager receives the alert and notifies the deploy-
ment refactorer, which identifies a throttling measure
as a possible mitigating solution (by selecting the
-std variant of the inference service), and informs
the orchestrator by providing the revised TOSCA
blueprint. The orchestrator updates the deployment on
the edge node. When the EdgeTPU device tempera-
ture drops below 70, and the alert TPUTempNormal
is generated, which initiates the switching back to the
-max variant.

31 https://github.com/adaptant-labs/accelerator-base-containers

3https://github.com/adaptant-labs/edgetpu-exporter
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Fig. 16 Switching between
deployment variants as the
edge device temperature
changes

TPUTempCeritical

N

-maxVariant of
Drowsiness Detector

Edge Node with TPU

-stdVariant of
Drowsiness Detector

Edge Node with TPU

6.5 Performance Evaluation

To get an insight of performance overhead of the
orchestrating capabilities of the SODALITE@RT, we
measured the average time to deploy and undeploy
the use cases. In addition to the vehicle IoT appli-
cation, we also consider the cloud-based use case of
the SODALITE project, namely the snow use case,
which implements a deep learning pipeline for assess-
ing the availability of water on mountains based on
snow images. The snow use case consists of 10 com-
ponents (containerized microservices) and a MySQL
database, and is deployed on two medium VMs.
Table 3 shows the results of the performance eval-
uation. It reports the average values over 10 runs of
deployment and undeployment operations. The deploy-
ment overhead is between 134.72-424.7 seconds, and
the undeployment overhead is between 43.2-114.6
seconds. Since the SODALITE@RT uses a meta-
orchestrator that employs IaC for orchestrating appli-
cations, the performance of the low-level orchestrators
and IaC tools (e.g., Ansible) can potentially deter-
mine the overhead incurred by the SODALITE@RT.
Thus, we consider this overhead acceptable since
the SODLITE@RT can benefit from the performance
improvements made at the low-level orchestrators and

~__

TPUTempNormal

IaC tools, which are generally industrial tools, and
have active developer and user communities.

7 Supported Scenarios

In the previous section, we provided several scenar-
ios within the vehicle IoT use case that were sup-
ported using the SODALITE@RT framework. In this
section, we provide a general discussion on the poten-
tial scenarios, which can be implemented using the
framework.

— Machine/deep learning pipelines. A ML/DL
pipeline consists of a set of steps such as data pre-
processing, feature engineering, training and tun-
ing models, evaluating models, and deploying and
monitoring models. Typically, the training process
can be computationally intensive, and offloaded
to more compute-capable cloud or HPC clusters.
However, the models can be deployed at the edge
as microservices to provide the fast inferences to
the end-users. The inference performance needs
to be continuously monitored. When new training
data becomes available or the inference perfor-
mance drops below a given threshold, the models

Table 3 Average
deployment and

Vehicle IoT use case

Snow use case

undeployment times for use
cases

Scenario 1 Scenario 2 Scenario 3
Deployment Time 245s 121.86s 134.72s 424.7s
Undeployment Time 60s 43.2s 48s 114.6s
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need to be retrained at the cloud and redeployed
on the edge. This heterogeneity and dynamism
of ML/DL pipelines makes the SODALITE@RT
framework a suitable candidate to orchestrate
them. For example, the orchestrator can deploy
the inference service to the edge, transfer train-
ing data to the HPC/cloud cluster, submit the job
for training and monitors the job execution. After
the job is executed, the inference model can then
be transferred by the orchestrator via data man-
agement utilities and integrated into the business
logic of the service at runtime. The monitoring
system can be used to monitor the model perfor-
mance, and the deployment refactor can be used
to trigger necessary resource reconfigurations.

— Deployment switching. The increasing hetero-
geneity of computing resources gives rise to a
very large number of deployment options for
constructing distributed multi-component appli-
cations. For example, the individual components
of an application can be deployed in different
ways using different resources (e.g., a small VM,
a large VM, and an edge GPU node) and deploy-
ment patterns (e.g., a single node, a cluster with
load balancer, with or without cache, and with
or without firewall). A valid selection of deploy-
ment options results in a valid deployment model
variant for the application. Different deploy-
ment variants can exhibit different performance
under different contexts/workloads. Hence, the
ability to switch between deployment variants
as the context changes can offer performance
and cost benefits. The deployment refactorer was
designed to support deployment switching use
cases. To enable deployment model switching, we
are currently developing a learning based efficient
approach that can accurately predict the perfor-
mance of all possible deployment variants using
the performance measurements for one or few
subsets (samples) of the variants.

—  Orchestrating and managing applications on
dynamic environments. As a deployment envi-
ronment evolves overtime, the new resources
will be added and the existing resources will
be removed or updated. Moreover, as discussed
within the vehicle IoT use case, the precise
requirements of the workloads are also subject to
change based on factors such as the regulatory
environment, the privacy preferences of the driver,

resource availability, requisite processing power,
and connectivity state. A key usage scenario for
the SODALITE@RT is to enable deploying and
managing applications on dynamic heterogeneous
environments. The monitoring system can collect
metrics from different environments and trigger
alerts. In response to these alerts, the refactorer
can make necessary changes to the deployment
instances at runtime. In addition to the rule-based
decision making, we are also extending the refac-
torer with a learning-based decision support for
performance prediction, deployment switching,
and performance anomaly detection. The orches-
trator is also being extended to support more
infrastructure options, and the graceful and effi-
cient update of running deployment instances.

8 Conclusion and Future Work

The SODALITE@RT platform enables the deploy-
ment of complex applications on heterogeneous cloud
and edge infrastructures. It supports the modeling
of heterogeneous application deployments using the
TOSCA open standard, deploying such applications
based on created models, and monitoring and adapt-
ing application deployments. It also utilizes the con-
tainerization technology (Docker and Kubernetes) to
encapsulate applications and execution platforms, and
IaC (Infrastructure as Code) to provision heteroge-
neous resources and deploy applications based on
the TOSCA-based deployment models. We validated
the capabilities of our platform with an industrial
case study across a range of real-world scenarios.
The TOSCA standard, the containerization, and the
IaC approach enabled developing portable deploy-
ment models for heterogeneous cloud-edge applica-
tions. They also enabled managing such applications
at runtime since moving applications’ components
from one deployment environment to another becomes
more manageable.

We will be conducting future work in two key
directions. On the one hand, we will further develop
the SODALITE@RT by incorporating new infrastruc-
tures such as Open FaaS and Google Cloud, and by
completing the integration of the runtime layer within
the overall SODALITE stack. On the other hand,
the monitoring and deployment adaptation support
will be extended with the federated monitoring, and
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the machine learning-based approaches to switching
between different deployment variants and detecting
performance anomalies. Moreover, we are also devel-
oping the distributed control-theoretical planners that
can support vertical resource elasticity for container-
ized application components that use both CPU and
GPU resources [44]. The integration of such capa-
bilities with the deployment refactorer will also be
investigated.
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