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Abstract—Unified Virtual Memory (UVM) improves GPU’s
programmability by enabling on-demand data movement be-
tween CPU memory and GPU memory. Thanks to this emerging
feature, GPUs become more ubiquitous in systems ranging from
servers to data centers, and there has been an increasing trend of
adopting GPUs for large-scale and general-purpose applications.
However, this trend soon creates a dilemma that the limited
capacity of the GPU device memory is oversubscribed by the
ever-growing application working set. Oversubscription overhead
becomes a major performance bottleneck for data-intensive
workloads running on GPU with UVM.

This paper proposes a novel intelligent framework for over-
subscription management in CPU-GPU UVM. We analyze the
current rule-based methods of GPU memory oversubscription
with unified memory, and the current learning-based methods for
other computer architectural components. We then identify the
performance gap between the existing rule-based methods and
the theoretical upper bound. We also identify the advantages
of applying machine intelligence and the limitations of the
existing learning-based methods. This paper proposes a novel
intelligent framework for oversubscription management in CPU-
GPU UVM. It consists of an access pattern classifier followed
by a pattern-specific Transformer-based model using a novel loss
function aiming for reducing page thrashing. A policy engine
is designed to leverage the model’s result to perform accurate
page prefetching and pre-eviction. We evaluate our intelligent
framework on a set of 11 memory-intensive benchmarks from
popular benchmark suites. Our solution outperforms the state-
of-the-art (SOTA) methods for oversubscription management,
reducing the number of pages thrashed by 64.4% under 125%
memory oversubscription compared to the baseline, while the
SOTA method reduces the number of pages thrashed by 17.3%.
Our solution achieves an average IPC improvement of 1.52X
under 125% memory oversubscription, and our solution achieves
an average IPC improvement of 3.66X under 150% memory
oversubscription. Our solution outperforms the existing learning-
based methods for page address prediction, improving top-1
accuracy by 6.45% (up to 41.2%) on average for a single GPGPU
workload, improving top-1 accuracy by 10.2% (up to 30.2%) on
average for multiple concurrent GPGPU workloads.

Index Terms—GPU, Unified Virtual Memory, Oversubscrip-
tion, Deep learning

I. INTRODUCTION

Modern GPUs support an advanced feature called Unified
Virtual Memory (UVM) [1], which enables a unified virtual
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memory space and programmer-agnostic demand-driven au-
tomatic data migration between the CPU memory and the
GPU device memory. UVM significantly enhances GPU’s
programmability by relieving the developers from the burden
of data management.

Despite the attractive benefits, UVM also raises concerns
about the efficiency of the GPU runtime’s data management
strategy. Since there is only one physical copy of the data
maintained in either the CPU memory or the GPU device
memory, an inappropriate strategy may cause unnecessary
memory transfers between the host and the GPU. As a result of
the relatively slow bandwidth of the CPU-GPU interconnect,
these transfers may lead to serious performance slowdown
for the GPU workloads. Unfortunately, the limited capacity
of the GPU device memory and the ever-growing size of the
applications further increase the probability of the occurrence
of this problem. Page thrashing unavoidably happens while the
application’s working set size exceeds the device memory size.
Currently, page thrashing becomes a first-order performance
bottleneck for data-intensive applications using GPU UVM.

A few methods have been proposed to handle page thrash-
ing in GPU UVM. Ganguly et al. [2] studied the interplay
between software prefetchers and page replacement algorithms
under oversubscription. They proposed a new eviction policy
inspired by the semantics of the tree-based prefetcher to reduce
page thrashing. Furthermore, Ganguly et al. [3] leveraged
the hardware-access counter and the zero-copy technique to
propose an adaptive framework (UVMSmart) for page mi-
gration and pinning to address the performance overhead of
oversubscribed GPGPU workloads. Yu et al. proposed a hier-
archical page eviction policy [4] (HPE) for GPU UVM. These
works utilize knowledge extracted from in-depth analysis of
inherent application characteristics (memory access patterns,
etc.) to design specific rules for each workload. Although
these methods significantly mitigate the performance impact
of memory oversubscription, there are still problems left to
be solved. Firstly, a thorough understanding of workloads’
memory access patterns in advance is not always possible in
practice. A rule-based design for a particular subset of the
GPGPU workloads may not be generic to the others. Secondly,
memory access patterns may vary in different program phases.
A simple combination of the existing data prefetchers and



eviction policies can not handle this variance. Thirdly, existing
mechanisms suffer from inefficiency when a data prefetcher
and an eviction policy are combined.

To compensate for the weakness of the rule-based methods,
machine intelligence is introduced to provide insights for
improvement. Since there aren’t any existing learning-based
methods for oversubscription management in GPU UVM,
we only discuss the learning-based works on other hardware
prediction mechanisms in this paper. Hashemi et al. [5] apply
the RNN model to the analysis of memory access patterns,
which demonstrates higher precision and recall than table-
based approaches. Shi et al. [6] applied deep learning to
solve the cache replacement problem. Shi et al. [7] propose a
hierarchical model of data prefetching that accommodates both
delta patterns and addresses correlation. Existing learning-
based works applied variant neural models and generated
impressive performance improvement on different hardware
issues by extracting knowledge from collected memory traces.
However, unique challenges also emerge while these learning-
based methods try to make themselves practical for use. Firstly,
some of the basic operations of the learning-based methods
(normalization, embedding, etc.) require profiling of future
memory access information, which is not always available
in practice. Secondly, as for the learning-based design which
framed their issue as a classification problem, the number of
classes may grow explosively in the life cycle of the running
workloads. Such a growing number of classes may cause
the neural models to suffer from serious forgetting problems
when they are continually updated with new coming data.
Thirdly, some of the existing learning-based methods use
an identical neural model to handle all the data, and some
of the works create neural models for every unique page.
Empirically, it is difficult for a single model to learn the
knowledge from all the memory access patterns or all the
GPGPU workloads, whereas creating too many neural models
may cost unacceptable computation and storage overhead.

To solve these challenges, we propose an intelligent frame-
work for oversubscription management in CPU-GPU UVM
in this paper. This framework takes as input a sequence of
historical memory access information including page address,
page delta, PC, and Thread Block ID. When the new data
arrives, the input sequence will be first fed to a memory
access pattern classifier to identify which pattern it belongs
to. According to the pattern classification results, a specific
set of neural model weights will be selected from a pattern-
based model table and be fed to a novel page predictor.
In other words, each pattern’s input sequences are trained
by a separate neural model. After being pre-processed, the
input sequence will be fed to a novel page predictor to
perform page delta prediction. To extract knowledge from
both regular (stride, constant, etc.) and irregular (pointer chase,
etc.) memory access patterns, the page predictor is composed
of two Transformer-based [8] basic blocks to learn these
patterns respectively. To solve the explosive growing number
of classes problem, we introduce the incremental learning
method into the page predictor to encourage the neural model

to keep learning the new classes without forgetting the old
ones. A novel loss function is used in the training of the
page predictor, and this loss function helps the page predictor
become thrashing-aware. All the prediction results with the
same interval will be aggregated and be fed to a policy engine.
By leveraging a prediction frequency table and a page set
chain, the policy engine can learn the importance of different
pages in the near future memory access of the workload.
Then, the policy will determine the prefetching or the eviction
candidates according to each page’s importance when the
corresponding prefetching or eviction request arrives. Finally,
the decision will be sent to the GPU memory management
unit (GMMU) and the corresponding memory operation will
be performed.

This paper makes the following contributions:

• To our knowledge, this is the first paper to introduce
a deep learning-based method into the oversubscription
management in CPU-GPU UVM.

• We provide an in-depth analysis of the current rule-based
methods for oversubscription management and the current
learning-based methods on other computer architectural
issues. We identify the necessity of applying machine
intelligence for more accurate data prefetching and data
eviction compared with the rule-based methods, and we
identify sources of performance loss for current learning-
based methods while running in an online manner.

• We propose an intelligent framework for memory over-
subscription management in CPU-GPU UVM. Among 11
different GPGPU benchmark applications across different
categories, our solution achieves a 64.4% reduction on
average in page thrashing compared to the baseline under
125% UVM oversubscription, while the state-of-the-art
(SOTA) work achieves a 17.3% reduction on average. Our
solution achieves an average IPC improvement of 1.52X
under 125% memory oversubscription, and our solution
achieves an average IPC improvement of 3.66X under
150% memory oversubscription.

• Compared to the SOTA works which handle the input
data online, our solution achieves a 6.45% top-1 accu-
racy improvement on average (41.2% at most) in page
prediction of a single GPGPU workload, and our solution
achieves a 10.2% top-1 accuracy improvement on average
(30.2% at most) in page prediction of concurrent multiple
GPGPU workloads.

The remainder of this paper is organized as follows. Section
II presents the background of this work. Section III discusses
the limitations of both the rule-based works on GPU memory
oversubscription management and the learning-based works
on other hardware prediction issues. Section IV describes the
design of our intelligent framework. Section V compares the
results of our intelligent framework with both the rule-based
works and the learning-based works. Section VI discusses
the related works of this paper, before providing concluding
remarks in Section VII.
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II. BACKGROUND

In this section, we review the general mechanics of on-
demand paging in CPU-GPU UVM, the soft and hard pining,
the software and hardware prefetcher, and the page eviction
mechanisms following the NVIDIA/CUDA terminology. It is
worth noting that techniques mentioned in this section as well
as our design described in the following sections are adaptable
to the other GPU architectures besides NVIDIA.

A. On-demand Page Migration and Soft/Hard Pinning

CPU-GPU UVM provides a single virtual address space
accessible from both CPU and GPU. Using CUDA, developers
can apply UVM by calling the cudaMallocManaged API to
allocate data that can be accessed by both host code and
GPU kernels with a single shared pointer. The functionality
of Unified Memory is enabled by on-demand memory al-
location and fault-driven page migration. In modern GPUs,
load/store instructions use virtual addresses. When a scheduled
thread/warp in an SM (Streaming Multiprocessor) generates
a device memory access with virtual addresses, such virtual
addresses are translated to physical ones before accessing data
in the GPU L1 cache. The load/store unit (LDST) of that SM
performs a translation lookaside buffer (TLB) lookup to find
whether the translation for the issued memory access is cached
in TLB or not. A miss in the last level TLB will be relayed
to GPU memory management unit (GMMU), which performs
a page table walk for the requested page. If there is a hit in
either the TLB lookup or the page table walk, the translation
will be returned and the requested data will be accessed within
the GPU memory hierarchy. This is demonstrated as sequence
(1) in Figure 1.

Fig. 1. Overview of the UVM page migration and zero-copy.

However, if there is no page table entry (PTE) for the
requested page or the valid flag is not set, then a far-fault
is registered in the GMMU’s Far-fault Miss Status Handling
Registers (MSHR) and the corresponding warp will be stalled.
Then this request will be forwarded to the host and triggered a
host-side page table walk. Once the page table walk is finished
and the requested page is returned, MSHRs will be consulted
to notify the corresponding LDST to replay the device memory
access, and then the stalled warp will be marked executable.

This is demonstrated as sequence (2) in Figure 1, and this is
the general process of GPU UVM on-demand page migration.

Handling far-faults with on-demand migration is costly
because of the high latency of page table walk and data
migration over PCI-e interconnect. The NVIDIA CUDA run-
time introduces pinning memory to alleviate this problem.
On one hand, developers can call the cudaHostRegister and
the cudaHostGetDevicePointer APIs to force the memory
allocation to be hard-pinned to the host memory. In this
case, pages in such allocation of memory will never be
transferred from host to device memory. GPU kernels can
only request these pages using remote direct memory access
(RDMA). This is demonstrated as sequence (3) in Figure 1,
and this is the case of CUDA zero-copy. On the other hand,
developers can call the cudaMemAdviseSetAccessedBy and
the cudaMemAdviseSetPreferredLocation APIs to advise
the allocation to be soft-pinned to the host memory. In this
case, pages in such allocation will not be migrated to the
device memory at the first touch. Rather, the migration will
be delayed till the number of read-requests reaches a certain
static threshold. This is demonstrated as the combination of
(2) and (3) in Figure 1.

B. Software and Hardware Prefetcher

CUDA 8.0 introduced the cudaMemPrefetchAsync API to
handle the costly far-faults. This is a software prefetching
scheme that allows the developers to manually overlap the
kernel execution with the asynchronous data migration.

Fig. 2. A tree-based neighborhood hardware prefetcher implemented by
NVIDIA since CUDA 8.0 on a 512KB memory chunk.

In the GPU Technology Conference 2018, a tree-based
prefetcher was mentioned being implemented by NVIDIA
CUDA 8.0 driver. Ganguly et al. [2] uncovered the semantic
of this tree-based neighborhood prefetcher through micro-
benchmarking and profiling. The user-requested size of a
cudaMallocManaged allocation is logically divided into some
2MB memory chunks plus a remainder. Each of these chunk
is further logically divided into 64KB basic blocks, which
is the unit of prefetching. According to the far-faults received
from the GPU, the runtime calculates the base addresses of the
basic blocks corresponding to these faults. Then, these base
addresses will be sent to the IOMMU and all the pages within
the corresponding basic blocks will be migrated to the GPU.
The runtime keeps track of the total size of valid memory
resided in GPU for each non-leaf node among all the 2MB
trees. If runtime detects that any non-leaf node’s GPU valid
memory is more than 50% of the total capacity of that node,
the remaining non-valid pages of that node will be scheduled
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as further prefetching candidates. Figure 2 illustrates such a
tree structure for a 512 KB region.

C. Page Eviction

Plenty of research has targeted improving the performance
of eviction policies for cache and memory on CPUs [9, 10, 11].
LFU is a representative frequency-based policy, but it is found
not enough for selecting an appropriate eviction policy for
unified memory [4]. The widely-used recency-based policy
LRU performs well for a significant portion of applications.
However, the ideal LRU is too expensive to implement, and it
performs poorly for the thrashing access patterns. For unified
memory, Zheng et al. [12] evaluated the performance of LRU
and Random for some applications. LRU maintains an ordered
list of pages based on their last access. Upon reaching GPU de-
vice memory capacity, LRU chooses the oldest accessed page.
Unlike LRU, Random chooses a random page irrespective of
when it is last accessed. Ganguly et al. [2] introduced a tree-
based pre-eviction inspired by the tree-based prefetcher which
leverages the full-binary tree structures created and maintained
by the runtime for the managed allocations. It employs a
thresholding-based heuristic inverse of the prefetcher. At any
instance, if the current occupancy of a non-leaf node falls
below 50%, the runtime pre-evicts other 64KB valid leaf
nodes under it. Yu et al. [4] proposed a hierarchical eviction
policy that manages a page set chain dynamically and uses
statistics to classify applications. It selects an appropriate
eviction strategy based on the classification result. GPU Tech-
nology Conference 2017 [13] specified that the CUDA drivers
implement the LRU page replacement policy.

III. CURRENT CHALLENGES

In this section, we describe the performance bottleneck
associated with GPU UVM oversubscription. Then, we discuss
the limitation of the existing rule-based methods for oversub-
scription management, and we discuss the limitation of the
existing learning-based methods in computer architecture.

A. Oversubscription Overhead

Figure 3 shows that all GPGPU workloads suffer from
performance loss due to memory oversubscription, and this
loss exacerbates as the oversubscription level grows (the av-
erage performance slowdown under 125% oversubscription is
24.1%, and 3 of the applications (ATAX, NW, 2DCONV) are
crashed under 150% oversubscription). More precisely, 125%
oversubscription indicates that the device memory size equals
0.8 times the certain workload’s working set size, and 150%
oversubscription indicates that the device memory size equals
0.67 times the working set size. For instance, if the working
set size of a certain application is 1 MB, then a device memory
size of 0.8 MB will lead to 125% oversubscription. It is worth
noting that the device memory size here only considers the
managed memory allocated by calling cudaMallocManaged,
and the cudaMalloc allocation are considered pinned and will
not be evicted.

Fig. 3. Performance slowdown of GPU workloads under different percentages
of memory oversbuscription.

The major cause of the performance loss of memory over-
subscription (shown in Figure 3) is page thrashing, which
means that pages are moved back and forth between CPU
and GPU memory repeatedly upon reaching GPU device
memory capacity. Since the data migration latency over PCI-e
interconnect is very high due to the lower bandwidth compared
to the local device memory (PCIe 3.0 interconnect’s bandwidth
is 16GB/s, AMD Instinct MI60 using HBM2’s bandwidth is
1TB/s [14]), the higher the oversubscription level is, the larger
the performance cost. In addition, the cooperation of inappro-
priate prefetching and pre-eviction mechanisms may further
deteriorate this problem. While useless pages are fetched in by
aggressive prefetching, useful pages may be evicted since the
capacity of the device memory is reached, and these pages will
have to be brought back in the near future. On the other hand,
a recency-based eviction policy may mistakenly select the hot
pages as eviction candidates because of the lack of information
(frequency, pattern, etc.), which may cause instant thrashing
and hurt the application performance. In the experiments are
shown in Figure 3, the tree-based prefetching mechanism and
the LRU pre-eviction policy are applied, which is the same as
the CUDA runtime [1, 13].

B. Limitation of existing rule-based methods

Since page thrashing is the major performance bottleneck in
UVM memory oversubscription, the number of pages thrashed
becomes an important metric to evaluate the memory manage-
ment strategy. Table I shows the number of pages thrashed us-
ing different strategies under 125% memory oversubscription.
Baseline indicates the combination of tree-based prefetcher
and the LRU eviction policy as described in Section III-A.
Since Belady’s MIN algorithm [15] (MIN) provably minimizes
the number of cache misses, it is considered optimal guidance
for a data replacement problem. We assume all the data fetched
in are demand load (D. or Demand.) and MIN is applied for
page eviction upon the capacity of the memory is reached. We
take this combination (D.+Belady.) as the theoretical upper
bound of this study. HPE [4] and UVMSmart [3] are the two
SOTA works in handling the memory oversubscription in GPU
unified memory.
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TABLE I
TOTAL NUMBER OF PAGES THRASHED USING VARIANT MEMORY

MANAGEMENT STRATEGIES UNDER 125% MEMORY OVERSUBSCRIPTION.

Benchmark Baseline D.+HPE UVMSmart D.+Belady.
AddVectors 0 0 416 0

ATAX 4688 745 1728 0
Backprop 0 0 0 0

BICG 8704 8385 9952 2224
Hotspot 6144 0 4416 0
MVT 2912 0 2736 0
NW 29952 3230 23776 772

Pathfinder 0 0 160 0
Srad-v2 5632 3942 5632 3667

2DCONV 0 0 0 0
StreamTriad 0 0 0 0

We can see that D.+Belady achieves the minimum page
thrashed for all the GPU workloads among all the strategies.
However, since Belady’s MIN algorithm is impractical, which
requires future knowledge to decide which page to evict.
This result can only be guidance instead of a solution to this
problem. Baseline causes the largest number of pages thrashed
for most of the workloads. We believe that the reason for
this result is as described in Section III-A, which is because
of the poor adaptability between the aggressive tree-based
prefetching mechanism and the recency-based eviction policy.
UVMSmart exploits both the page migration and the zero-
copy to handle the memory oversubscription, which improves
the performance of baseline to some extent. However, UVMS-
mart combines different prefetching and pre-eviction mech-
anisms according to the memory access pattern classification
result in the profiling program phases. This combination is
hard to keep effective when the memory access patterns in
the following phases change significantly. Furthermore, the
excessive use of pinned memory is risky and this may hurt
the performance of the applications which use paged memory.
D.+HPE achieves the second-best result besides with the
upper bound. We believe that this is due to the demand load
(no garbage prefetching) and the novel eviction policy (more
information for eviction candidates’ selection). After all, we
can see that there is still space to improve between the SOTA
works and the upper bound.

TABLE II
TOTAL NUMBER OF PAGES THRASHED USING DIFFERENT HPE-BASED

MEMORY STRATEGIES UNDER 125% MEMORY OVERSUBSCRIPTION.

Benchmark Demand.+HPE Tree.+HPE
AddVectors 0 377381

ATAX 745 498928
Backprop 0 14282372

BICG 8385 33797724
Hotspot 0 97340
MVT 0 0
NW 3230 8812785

Pathfinder 0 1878699
Srad-v2 3942 44650411

2DCONV 0 566653
StreamTriad 0 3690578

Table II shows that HPE experiences dramatic performance

loss when it cooperates with data prefetcher to handle memory
oversubscription (Tree. indicates the tree-based prefetcher).
HPE relies on the per-page counter, which records the number
of touched pages in each basic block to classify applications
into regular and irregular access pattern types. This counter
is substantially affected by data prefetching, and this makes it
unable to deliver correct classification. It is worth noting that
we only focus on the number of pages thrashed in this section,
and demand load may provide more benefits compared to data
prefetching on this metric. However, prefetching brings more
performance improvement than demand load for the GPU
workloads using UVM due to the slow CPU-GPU interconnect
(described in Section II). This motivates the requirement of
demand-load like prefetching, which means prefetching with
high accuracy and coverage. And this raises the need for
learning-based data prefetching mechanisms.

C. Limitation of existing learning-based methods

Machine learning has provided insights into various com-
puter architectural problems, including branch prediction [16,
17], cache replacement [6], and data prefetching [7, 18,
19, 20, 21]. It is natural to consider applying a learning-
based method to memory oversubscription management. With
the combination of an accurate prefetching mechanism and
the corresponding eviction policy, we will be able to bring
D.+Belady. (as described in Section III-B) into practicality. In
other words, the more similar the prediction and the future
knowledge of the access information are, the closer we are
able to approach the upper bound in this problem.

Existing learning-based works [6, 7, 18, 19, 20, 21] can be
formulated as follows:

P (Accesst+1|Access1, Access2, · · · , Accesst) (1)

The main idea of Equation 1 is to exploit correlations
between consecutive historical memory access information
to predict future memory access. In other words, a data
prefetching problem can be viewed as a classification prob-
lem where each class is a potential indicator of a data
location (address, address delta, offset, etc.) that will be
accessed at time step t + 1 (Accesst+1), and the learning
task is to learn the probability of these classes with the
occurrence of all or a subset of historical memory accesses
information (Access1, Access2, · · · , Accesst). By leveraging
machine learning, existing works show superior accuracy
and coverage in data prefetching compared to the rule-based
methods described in Section III-B. However, there are limi-
tations to these designs. Previous works [7, 21] present online
design by doing the training and prediction process in an
alternate manner to accommodate the requirement of hardware
prefetcher. Intuitively, this design makes sense since memory
access patterns may vary in different program phases. The
neural model needs to be retrained to capture the dynamic
pattern, and then it can be used to deliver accurate predictions
for data prefetching. However, we find that the reality may not
the same as our intuition.
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Fig. 4. Top-1 accuracy of page delta prediction on single workload using
online training and offline training.

Figure 4 shows the results of page delta prediction on a
single GPGPU workload using the online training method and
offline training method. In the online training experiments, we
use the starting 10% instructions (about 50 million instructions
in most cases) of each GPGPU workload to train the model,
and we use the trained model to make predictions for the fol-
lowing 10% instructions, and this train-predict loop continues
until all the instructions are consumed. In the offline training
experiments, we randomly select 50% of the total instructions
as the training set to train the neural model, and then we use
the trained model to make predictions for all the instructions
in a temporal order. Both the online experiments and the
offline experiments use the same input-output pair (input data
is a sequence of 10 consecutive historical memory accesses,
input features include address, address delta, and PC; output
is the following memory access of the input sequence, output
class is address delta), the same neural model (Transformer),
and the same hyper-parameters. Figure 4 shows that there
is an average 11.08% top-1 accuracy loss of page delta
prediction using online training compared with using offline
training. NW, Hotspot, and Srad-v2 are the three workloads
that experience the largest accuracy loss (NW’s accuracy loss
is 51.4%, Hotspot’s accuracy loss is 16.2%, Srad-v2’s accuracy
loss is 11.4%). We believe that the analysis of these workloads
can reveal the reason for this performance gap between online
training and offline training.

TABLE III
THE NUMBER OF UNIQUE PAGE DELTAS IN DIFFERENT PROGRAM PHASES.

Bench Program Phase
mark 0 1 2

AddVectors 55 56 56
ATAX 112 113 114

Backprop 45 131 141
BICG 17 18 37

Hotspot 59 66 71
MVT 6 12 12
NW 479 830 1466

Pathfinder 98 102 103
Srad-v2 49 145 170

2DCONV 155 155 155
StreamTriad 38 38 38

Table III shows the number of unique page delta (the
classification class used in the experiments described in Figure
4) in different program phases. We can see that NW’s and
Srad-v2’s page delta numbers grow significantly from the
beginning to the end. The distribution of NW’s (Figure 5(a))
and Srad-v2’s page delta (Figure 5(b)) also vary in different
phrases. We believe that these are the major reasons for the
accuracy loss of NW’ and Srad-v2’s page delta prediction
using online methods: In each training batch, the neural model
is updated with new coming training data whose number of
classes is continually growing. Ideally, the neural model should
be able to learn new patterns while maintaining the ability to
recognize previous ones. However, machine learning or deep
learning model always suffer from serious forgetting problems
when they are continuously updated with new coming data.
This is also termed ’catastrophic forgetting’ problem [22].

According to Table III and Figure 5(c)-(d), Hotspot’s and
StreamTriad’s page delta share a similar steady characteristic
in both the quantity and the distribution. However, Stream-
Triad’s online prediction loss is smaller than Hotspot’s. We
reference the deterministic finite automaton (DFA) described
in [3] to re-label all the input data with their corresponding
access pattern. According to DFA’s definition, there are 6
access patterns (described in Section IV-C) so we use the digits
0-5 to represent them. Figure 5(e)-(f) show the visualization
of the access stream of StreamTriad and Hotspot workloads in
different program phrases using these new labels. Compared to
Hotspot, we can see that there is stronger temporal proximity
of similar access patterns within StreamTriads’ visualization.
We believe that such pattern proximity helps the neural model
perform better in a near local range within the application’s
global memory access stream. On the other hand, it is difficult
for a single neural model to capture the knowledge in an
online manner while the distribution of the memory access
patterns is sparse. In this case, blindly increasing the training
epoch of each batch may trigger the problem of over-training,
which will cause even worse prediction performance in the
subsequent batch. Figure 6 shows that it is better to use
separate models to make predictions for different memory
access patterns. As for Hotspot’s page delta prediction, offline
training delivers the highest top-1 accuracy (85.6%). Online
training using multiple models delivers the second-best per-
formance (80.5%) and online training using a single model
experiences the largest performance loss (69.4%).

IV. OUR SOLUTION

We describe our intelligent framework for oversubscription
management in CPU-GPU UVM in this section. We start
by presenting a high-level overview of the framework. We
then describe the key innovations in our design. First, to
handle the potential explosive growing number of classes
in the new coming data, our framework uses incremental
learning. Second, a novel neural model is used to perform
data prefetching prediction with the awareness of thrashing
information. Third, our framework adopts a pattern-aware
scheme, so that instead of relying on a single model to handle
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(a) NW (b) Srad-v2 (c) StreamTriad

(d) Hotspot (e) StreamTriad (f) Hotspot

Fig. 5. Page delta distribution and memory access pattern visualization in different program phases.

Fig. 6. Top-1 accuracy of page delta prediction of Hotspot using different
training methods.

all the data, our framework uses separate models to learn the
knowledge from the data of different access patterns.

A. Overall Design and Workflow

As shown in Figure 7, our intelligent framework takes as
input a sequence of memory accesses and produces as output
the next memory management policy to the GPU memory
management unit (GMMU). The workflow of our framework is
as follows: (1) The framework extracts features (page address,
page address delta, PC, thread block ID) from the incoming
memory access sequence; (2) According to the extracted fea-
tures, there is a classification module to classify the sequence
into different access-pattern categories; (3) Upon the classifica-
tion result, a specific neural model corresponding to the certain
pattern will be selected and be used to perform prediction; (4)
To prepare the data for the prediction of the neural model, all
the features will be transformed to numerical representation;

(5) Then, the selected neural model from (3) will apply the pre-
processed input to perform prediction; (6) The policy engine
decides the next memory strategies according to the prediction
results and delivers it to GMMU; (7) GMMU receives the
policy and performs the corresponding operations (including
data prefetching, data pre-eviction, pinning, etc.).

B. Thrashing-aware Incremental Learning based Page Predic-
tor

Figure 8 shows our framework’s neural model’s architec-
ture. In order to extract knowledge from both regular (data
reuse, strides, etc.) and irregular (complex calculation with
memory indirection, pointer chase, etc.) access patterns, the
framework’s neural model exploits four input features: page
address, page address delta, PC, and Thread Block ID (TB
ID). More precisely, address and delta are used to capture
the regular access pattern, while PC and TB ID are used to
capture the irregular access pattern. Thus, the two pairs of
input features will be fed to two separate blocks (regular and
irregular) for training after their individual embedding. Either
block is an independent Transformer [8]. The reason for using
Transformer is described in Section V-B. Finally, the outputs
of these two blocks will be weighted by a learnable parameter
respectively, and then they will be concatenated and be fed
into a linear layer, producing a probability distribution over
the classification classes. We use page delta as the output class
in this study.

As described in Section III-C, we introduce incremental
learning to handle the potential catastrophic forgetting problem
caused by a continually growing number of classes over time.
To avoid the knowledge acquired from the previous data being
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Fig. 7. Overview of intelligent framework for oversubscription management in CPU-GPU UVM.

Fig. 8. Architecture of thrashing-aware incremental page predictor.

overridden by the new coming one, a regulation term is added
to the model’s loss function to consolidate previous knowledge
when learning new data. Researchers have proposed different
regulation-based methods to promote incremental learning
performance. We use LUCIR [23] in this study. It is worth
noting that our framework can also adapt to other more
advanced regulation-based methods.

Since our final goal is to reduce oversubscription overhead,
the page predictor should bring thrashing information into
consideration, instead of only performing page prediction upon
the correlations within the input sequence. We introduce a
thrashing term into the page predictor’s loss function, which
is computed as follows:

LThra(x) =

|E|
⋃

|T |∑
i=1

yilog(pi) (2)

E is the set of pages that have been evicted from the GPU
device memory to the CPU memory, and T is the set of pages
that have already been thrashed. y is the one-hot ground-truth
label and p is the corresponding class probabilities obtained by
softmax. Mathematically, LThra(x) is the additive inverse of
the standard cross-entropy (CE) loss. Semantically, LThra(x)
encourages the model to deliver page predictions beyond the
set of evicted pages and thrashed pages, which aims to reduce
the probability of pages being thrashed or being thrashed
again.

Totally, the loss function L of the page predictor is as
follows:

L =
1

|N |
∑
x∈N

(LCE(x)+λLG
dis(x))+

µ

|S|
∑
x∈|S|

LThra(x) (3)

N is a training batch, which is composed of a set of pages
corresponding to the newly arrived memory accesses. S is
a subset of N , which is defined as |S| = |N |

⋂
(|E|

⋃
|T |).

LCE(x) is the standard CE loss. LG
dis(x) is the regulation term

introduced by LUCIR [23], which is used to encourage the
orientation of features extracted by a current neural model to
be similar to those by the previous model. λ and µ are both loss
weights. λ is used to adjust the degree of need to preserve the
previous knowledge according to the number of new classes
introduced in each training batch. µ is used to adjust the degree
of need to migrate the pages in the historical page thrashing
and page eviction record according to the current memory
access pattern. Intuitively, there are three goals that L aims
to achieve: Firstly, L uses LCE(x) to perform multi-class
classification learning upon the historical memory accesses.
Secondly, L uses LG

dis(x) to improve model training under
the multi-class incremental setting. Thirdly, L uses LThra(x)
to mitigate the probability of page prediction towards the ones
which are already evicted or thrashed.

It is worth noting that replay-based methods [24, 25, 26]
are also popular for alleviating the catastrophic forgetting
problem. Replay-based methods store a set of reserved sam-
ples taken from all observed classes and replay the model
on them to reduce forgetting. Commonly, there is a strict
memory budget for the design of data prefetcher or cache
replacement policy [27]. The implementation of the replayed-
based methods may introduce dramatic storage overhead as
the number of new classes grows. Thus, we do not consider
the replay-based method in this study.

C. Pattern-aware prediction scheme

As described in Section III-C, a memory access pattern
classifier and a pattern-based model table are added to our
intelligent framework (Figure 7) to help the neural model
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learn the knowledge of different access patterns. The pattern
classifier takes the same input as the neural model (described
in Section IV-B), and it determines which kind of pattern the
input sequence of memory accesses belongs to. The pattern-
based model table tracks the neural model of each access
pattern. Since the architectures of all the neural models are
identical, the pattern-based model table can be modeled as a
direct-mapped cache that is indexed by a hash of the current
access pattern and then returns the page predictor’s weights
for that pattern.

We reference DFA [3] as the pattern classifier in this study.
DFA’s mechanism is briefly described as follows. Based on the
group of far-faults from GPU, unified memory runtime (UVM
backend) determines the 64KB basic blocks as the migration
candidates. These basic blocks are communicated to the I/O
root complex to schedule DMA transfers. After segregating
these transfers at kernel boundaries based on their scheduling
timestamp, DFA scans the corresponding basic block addresses
and determines whether they show linearity/randomness of
migration. In addition, basic-block addresses are compared
to determine any re-referencing across the kernel boundaries.
Finally, the basic-block transfers are classified into 6 cat-
egories: Linear/Streaming, Random, Mixed/Irregular, Linear
Reuse/Regular, Random Reuse, and Mixed Reuse. It is worth
noting that our framework can also adapt to other more
advanced pattern classification methods.

D. Prediction-based memory strategy

Figure 9 shows the workflows of the policy engine (shown
in Figure 7) handling page prefetching and page eviction.

When the GPU device memory fills to capacity, page
eviction is required. In our intelligent framework, the eviction
candidates are selected according to the page predictor’s pre-
diction results. To alleviate the probability of instant thrashing,
we leverage the page set chain proposed by Yu et al. [4],
which classifies the accessed pages into three partitions (new,
middle, old) according to intervals (a specified number of page
faults). We use this page set chain and update it with both
the demand loads and the prefetches. The search for eviction
candidates migrates from the old partition to the new partition
depending on whether the certain partition is empty or not.
In addition, we use a prediction frequency table to select the
eviction candidate within the same partition. Typically, there
is a large number of memory accesses within one interval, and
there is equally a large amount of page prediction results for
data prefetching in the same interval. The prediction frequency
table keeps counters for pages occurring in several near
intervals’ prediction, which indicates the importance of these
pages in the near future memory accesses of the workload.
When a certain partition is chosen and the search begins, the
eviction candidate will be selected from the pages with the
lowest prediction frequency. As for pages that never show
up in the prediction results, their frequencies are set to −1.
This frequency table will be flushed periodically to keep
an accurate representation of memory accesses in different
program phases. We use the same interval length (64) as HPE,

and we empirically flush the page frequency table every 3
intervals.

To deal with the long latency caused by on-demand paging,
prefetching is required. As described in Section III-C and
Section IV-B, the intelligent framework takes as input a se-
quence of historical demand loads’ information (Page address,
Deltas, PCs, and Thread Block IDs), and it generates as output
a page delta between the current memory access and the
next one. Data prefetching candidates are generated purely by
prediction in each interval. An identical prediction frequency
table as the eviction phase is used in data prefetching. This
table can be exploited to control the amount of prefetching
while the oversubscription level is too high. More precisely,
the prefetching candidates will be selected from the pages
with the highest prediction frequency. In this study, we use all
the predicted pages as prefetches. The length of the historical
sequence is empirically set to 10.

E. Hardware Complexity

TABLE IV
MEMORY FOOTPRINT USING PATTERN-AWARE PREDICTION SCHEME

(WITH QUANTIZATION).

Benchmark Params.(MB) Acti.(MB) Patterns Total(MB)
AddVectors 0.41 1.46 3 6.84

ATAX 0.27 1.46 3 6.00
Backprop 0.73 1.46 3 8.76

BICG 0.71 1.46 3 8.64
Hotspot 0.50 1.46 3 7.38
MVT 0.50 1.45 3 7.35
NW 0.48 1.47 4 9.72

Pathfinder 0.57 1.46 3 7.80
Srad-v2 0.50 1.46 3 7.38

2DCONV 0.46 1.46 3 7.14
StreamTriad 0.42 1.46 3 6.90

Table IV shows the memory consumption of the pattern-
aware prediction scheme. These memory consumption statis-
tics are collected using a MIT-licensed library [28]. Equation
4 shows the calculation of the total memory footprint.

Total = (Params.× 2 +Acti.)× Patterns (4)

(Params. × 2 + Acti.) indicates that both the weights of
the current and the previous models need to be stored for
the calculation of the LUCIR term, but only the current
model’s activation is needed to update the model’s weights.
This sum is multiplied by Patterns because each access
pattern needs an individual model to make predictions. We
exploit quantization to compress the memory consumption of
our solution. Explorations show that clamping the weights
and the forward/backward pass activation to [-16,+16] will
not harm the performance of our predictor. We believe that
the memory footprint of our solution could be mitigated
compared to the one using the float32 value (5 bit is enough to
represent all the values in our predictor). Overall, the largest
storage cost of the pattern-aware prediction scheme is 9.72MB,
which is significantly smaller than a state-of-the-art deep-
learning-empowered data prefetcher [7, 29]. In addition, a
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new Transformer engine using FP16 precision has been built
upon the latest NVIDIA Hopper Tensor Core [30]. We believe
that the hardware complexity of the pattern-aware prediction
scheme can be further improved in the latest GPU architecture.

The prediction frequency table is designed as a 16-way set
associate cache (which is similar to the shared GPU L2 cache).
Each entry is corresponding to a basic block (described in
Section II-B), which means the tag is 48 bits (system width
64 bits, page address width 12 bits, basic block address width
16 bits). The data field of each entry is used to store the
counter of the predicted pages within each basic block. Since
we flush this table every 3 intervals, a 6-bit counter for each
page is adequate in our experiments. In addition, the length
of this frequency table is set to 1024 because the largest
working set in our experiments is 64MB (a larger working set
is impractical for simulation due to the long-running time).
Thus, the total storage overhead of the prediction frequency
table is 18KB ((6*16+48)/8*1024=18KB), which is relatively
small compared to the pattern-aware prediction scheme.

Fig. 9. Overview of intelligent framework’s policy engine.

V. EVALUATION

We evaluate our framework from two aspects. Firstly,
we compare prediction performance running with the previ-
ous training methods and our thrashing-aware incremental-
learning-based page predictor. Secondly, we compare predic-
tion overhead sensitivity, IPC, reduction in thrashing, and
scalability running with our framework and a state-of-the-
art framework (UVMSmart) [3] which supports delayed page
migration, zero-copy, and tree-based page prefetching.

A. Evaluation Methodology

To compare with different learning-based methods, we
implement different model-based predictors in Pytorch. For
each GPGPU workload using the online methods, a single
neural model is trained with a group of 50 million instructions,
and we use this trained model to make predictions for the
subsequent group of 50 million instructions. And we keep this
routine until all the instructions are consumed (this method is

TABLE V
CONFIGURATION PARAMETERS OF GPGPU-SIM.

Simulator GPGPU-Sim UVM Smart
GPU Architecture NVIDIA GeForceGTX 1080Ti

Pascal-like
GPU Cores 28 SMs, 128 cores each @

1481 MHz
Shader Core Config Max 32 CTAs and 64 warps

per SM, 32 threads per warp
GTO scheduler

Page Size 4KB
Page Table Walk Latency 100 core cycles
CPU-GPU Interconnect PCI-e 3.0 16x, 8 GTPS per

channel per direction, 100
GPU core cycles latency

DRAM Latency 100 GPU core cycles
Zero-copy Latency 200 GPU core cycles
Far-fault Latency 45µs

similar to [7]). For each GPGPU workload using the offline
methods, we randomly select 50% of their total instructions as
the training set to train a single neural model, and then we use
the trained model to make predictions for all the instructions
in temporal order (this method is similar to [6]).

To compare with different memory strategies under over-
subscription, we use a GPGPU-Sim extension implemented
by Ganguly et al. [3] in our experiments. This extension
provides functional and timing simulation support for UVM.
Furthermore, this extension supports a smart runtime, which
is composed of (1) a detection engine to identify the pattern
in CPU-GPU interconnect traffic, (2) a dynamic policy engine
that chooses from a wide array of existing memory manage-
ment policies, and (3) an augmented memory management
module that adaptively switches between delayed page migra-
tion and pinning. This extension also provides a set of regular
and irregular GPU applications from Rodinia, Lonestar, and
Polybench benchmark suites. These benchmarks are modified
to use CUDA UVM APIs (cudaMallocManaged, cudaMem-
PrefetchAsync, and cudaDeviceSynchronize). Table V shows
the primary configuration of the simulator, and the configura-
tion associated with the UVM Smart runtime is the same as
in [3].

In order to hide the long latency of model training, we
randomly select 5 benchmark applications (ATAX, Backprop,
BICG, Hotspot, NW) and run them using different input data
sets compared to the simulations described in Section V. We
use 50% of each of these benchmarks’ simulation results to
build a corpus, and we train our predictor described in Section
IV-B on this corpus until its accuracy reaches a reasonable
range (≥0.85 in our experiments). We use this pre-trained
model to make predictions for each benchmark, and we fine-
tuned this model in each simulation every 50 million instruc-
tions to make it become adaptive in different program phases.
According to our statistics among 11 benchmarks, this training
method introduces a microsecond-level inference overhead for
each prediction. According to NVIDIA’s announcement [31],
the inference latency of BERT-large (with 345 million param-
eters) could be slashed to 1.2 ms by leveraging the TensorRT
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8.0 SDK. In addition, a new Transformer engine has been
built upon the latest NVIDIA Hopper tensor core [30]. This
engine uses FP8 and FP16 precisions to reduce memory
storage and increase performance. Since our solution is also
built upon the Transformer model (Section IV-B) using a
smaller precision than FP8 (Section IV-C), both the hardware
overhead and the prediction overhead of adopting our solution
are ideally negligible for the latest GPU architecture. Shi et
al. [7] also claim that their model (which is composed of
LSTMs and Transformers with a much larger model size than
our predictor) can make predictions every 18000 nanoseconds.
We believe that the prediction overhead can be improved by
more advanced hardware/software technologies, more fancy
equipment, and more sophisticated programming skills. How-
ever, these are out of the scope of this study. We conduct a
prediction overhead sensitivity test of our predictor (described
in SectionV-C), and we select one of the candidate overheads
to perform the simulation in the subsequent evaluation.

B. Prediction Performance

As described in Section VI-B, researchers have adopted dif-
ferent AI-based approaches to divergent computer architectural
problems. More precisely, some of these works [7, 18, 19, 20,
21, 32, 33, 34, 35] are targeting data prefetching problems
(beyond GPU UVM). Figure 10 shows the comparison results
of using different predictors to deliver page delta prediction
using online training. We can see that the Transformer-based
method delivers the best prediction performance compared
to the other methods (Convolution Neural Network, LSTM,
Multi-Layer Perceptron). Thus, we select Transformer as the
regular and irregular blocks’ neural model in our framework.

Fig. 10. Prediction performance using different page predictors.

Since offline training (profiling-based training) exploits fu-
ture memory access information for training. We take offline
training performance as the upper bound of the page pre-
diction, and Figure 11 shows the normalized top-1 accuracy
of both online training and our solution according to offline
training (described in Section V-A). Different workloads ex-
perience different levels of performance loss when the input
data arrives in temporal order (described in Section III-C).
Our solution alleviates this performance loss by introducing
incremental learning (Section IV-B) and pattern-aware predic-
tion scheme (Section IV-C) into the UVM page prediction.

Compared to the online training method, our solution achieves
a 6.45% top-1 accuracy improvement on average (41.2% at
most) in page delta prediction on a single GPGPU workload.

Fig. 11. Normalized top-1 accuracy of page delta prediction on a single
workload using online training, offline training, and our solution.

Figure 12 shows the prediction performance of the loss
function with or without the thrashing term (described in
Section IV-B). We select 4 applications (ATAX, BICG, NW,
Srad-v2) that experience the most serious page thrashing. By
leveraging the thrashing term (w. term), our solution achieves
an average 7.4% page thrashing reduction while causing a
minimal top-1 accuracy loss (1.2%) compared to the one
using only LUCIR loss (w/o. term). In our experiments, the
loss weight µ is adaptively adjusted ranging from (0, 1].
This variance is caused by the applications’ different memory
access patterns. For instance, a larger thrashing term value
benefits for the streaming access pattern where pages are
hardly re-referenced once they are accessed. On the other
hand, a smaller thrashing term value benefits the most repeti-
tive access pattern where pages are referenced multiple times
with different frequencies.

Fig. 12. Performance of the loss function with or without the thrashing term.

C. Prediction Overhead Sensitivity Tests

Figure 13 shows the normalized IPC results of the prediction
overhead sensitivity tests using 11 GPU benchmarks under
125% memory oversubscription. We vary the inference latency
from 1, 10, 20, 50, and 100 microseconds per prediction.
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Since the GPU core frequency is configured as 1481 MHz
in the simulator, these latency candidates roughly correspond
to 1500, 15000, 30000, 75000, 150000 cycle-per-prediction in
each simulation. We consider UVMSmart as a state-of-the-
art (SOTA) design. The average normalized IPC results under
different levels of prediction overheads are 1.52X (1 microsec-
ond), 1.32X (10 microseconds), 1.17X (20 microseconds),
0.91X (50 microseconds), and 0.71x (100 microseconds).
Compared to the SOTA design, our predictor can achieve a
50% average IPC improvement when the prediction overhead
is 1 microsecond, but this improvement vanishes and becomes
a 10% performance slowdown when the overhead grows to 50
microseconds. Such deterioration continues and turns into a
30% performance slowdown when the overhead grows to 100
microseconds. These results show that our predictor, as well as
other learning-based methods, are sensitive to the prediction
overhead. In our subsequent experiments, we assume that
our framework is situated at the UVM backend to make
predictions. We use 1 microsecond (1500 cycle) as the pre-
diction overhead, which is sharply distinct from the previous
works [6, 7] that consider zero prediction overhead while
exploiting deep learning models to boost the application’s IPC
performance. The training overhead of the pre-trained model
is not considered in the simulation, we assume that it can be
achieved offline in practice.

Fig. 13. Normalized IPC of 11 GPU benchmark applications using the revised
predictor with different levels of prediction overhead under 125% memory
oversubscription.

D. IPC

Figure 14 shows the normalized IPC of UVMSmart and
our solution across regular and irregular applications under
different memory oversubscription levels. When the memory
oversubscription level is 125%, our solution achieves per-
formance improvement for all the benchmarks ranging from
3% to 140%. When the memory oversubscription level is
150%, some of the benchmarks (ATAX, NW, 2DCONV) using
UVMSmart runtime crashed due to serious page thrashing.
Thanks to the power of deep learning, our solution prevents
these benchmarks from crashing through accurate prefetching
and pre-eviction, and our solution achieves performance im-
provement for most of the benchmarks ranging from 131% to
328%.

Overall, our solution improves IPC by an average of
52.53% (geometric mean) compared to UVMSmart under
125% memory oversubscription, and our solution improves
IPC by an average of 266.65% (geometric mean) compared to
UVMSmart under 150% memory oversubscription.

Fig. 14. Normalized IPC results using variant memory management strategies
under 125% and 150% memory oversubscription.

E. Reduction in thrashing

Table VI shows that our solution achieves the least number
of pages thrashed compared to other methods (Baseline,
Tree.+HPE, UVMSmart) involving both data prefetching and
eviction. Thanks to the more accurate page prefetching using
the learning-based method, the aggressiveness of the rule-
based prefetcher (e.g., tree-based prefetcher) are moderated.
The cooperation between the prefetching and the eviction
policy is also improved by applying a thrashing-aware neural
model and a shared data structure (Section IV-D). There is
still space to improve between our solution and the methods
(Demand.+HPE, Demand.+Belady) involving demand loads
and eviction policy. This result indicates that our solution
can not deliver perfect prediction, and there are still useless
prefetches within our page prediction that cause performance
loss compared to demand loads. It is worth noting that
demand load is not practical for workloads using GPUs with
unified memory (as discussed in Section II and Section III-B).
Without considering Tree.+HPE (which is malfunctioning
due to the poor cooperation between the prefetching and
the eviction policy) and the demand loads-based methods
(Demand.+HPE, Demand.+Belady), our solution achieves
a 64.4% reduction on average in pages thrashed compared
to the baseline under 125% memory oversubscription, while
the SOTA works (UVMSmart) achieves a 17.3% reduction
on average compared to the baseline. Page reduction under
150% memory oversubscription is not discussed in this section
because some of the benchmarks using UVMSmart are crashed
(Section V-D).

F. Scalability

Modern GPUs allow multiple kernels or applications to
share a single device concurrently [36]. This feature raises the
challenge for the intelligent framework, as well as the page
predictor, in handling memory oversubscription with an even
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TABLE VI
TOTAL NUMBER OF PAGES THRASHED USING VARIANT MEMORY MANAGEMENT STRATEGIES UNDER 125% MEMORY OVERSUBSCRIPTION.

Benchmark with Prefetching without Prefetching
Baseline Tree.+HPE UVMSmart Our solution Demand.+HPE Demand.+Belady.

AddVectors 0 377381 416 60 0 0
ATAX 4688 498928 1728 936 745 0

Backprop 0 14282372 0 1 0 0
BICG 8704 33797724 9952 8398 8385 2224

Hotspot 6144 97340 4416 31 0 0
MVT 2912 0 2736 0 0 0
NW 29952 8812785 23776 6651 3230 772

Pathfinder 0 1878699 160 7 0 0
Srad-v2 5632 44650411 5632 4209 3942 3667

2DCONV 0 566653 0 0 0 0
StreamTriad 0 3690578 0 0 0 0

larger amount of newly arriving classes and more complicated
memory access patterns (described in Section III-C) compared
with running with a single workload’s input. We test the
scalability of our solution by running multiple workloads
belonging to different categories (streaming, regular, mixed,
random) concurrently. Table VII (S.T. indicates StreamTriad,
Hot. indicates Hotspot) shows the results of these experiments.
Thanks to the incremental-learning-based predictor and the
framework’s pattern-awareness, our solution achieves a 10.2%
top-1 accuracy improvement on average (30.2% at most) in
page delta prediction on multiple GPGPU workloads.

TABLE VII
TOP-1 ACCURACY OF PAGE DELTA PREDICTION ON MULTIPLE
WORKLOADS USING ONLINE TRAINING AND OUR SOLUTION.

Online training Our solution
Streaming Regular Streaming Regular
2DCONV Srad-v2 2DCONV Srad-v2

Streaming S.T. 0.908 0.772 0.874 0.80
Regular Hot. 0.744 0.683 0.804 0.76
Mixed NW 0.560 0.478 0.849 0.78

Random ATAX 0.837 0.716 0.867 0.78

VI. RELATED WORKS

This paper is the first to propose an incremental-learning-
based approach for CPU-GPU UVM oversubscription man-
agement. We now discuss related works in UVM, and studies
that apply artificial intelligence to other parts of the microar-
chitecture.

A. CPU-GPU UVM Oversubscription Studies

UVM support in modern discrete CPU-GPU systems [37,
38] has been studied widely. Agarwal et al. [39] proposed
aggressive first-touch migration and prefetching neighboring
pages. Zheng et al. [12] studied different user-directed and
user-agnostic prefetchers to overlap data migration and kernel
execution. Ganguly et al. [2] uncovered the mechanism of
the tree-based prefetcher implemented in the NVIDIA GPU
driver. Pratheek et al. [40] proposed walk stealing to reduce
interference in page walks from concurrent tenants while also
ensuring high walker utilization. Chen et al. [41] proposed

an application-transparent framework for reducing memory
oversubscription overheads in GPUs. Kim et al. [42] proposed
a GPU runtime software and hardware solution that enables
efficient demanding paging for GPUs. Ganguly et al. proposed
a programmer-agnostic framework [43] and an application-
aware adaptive framework [3] to deal with memory oversub-
scription overhead stemming from page thrashing in irregular,
data-intensive GPU applications. Yu et al. [4] proposed a
hierarchical page eviction policy that addresses LRU’s inability
to handle thrashing access patterns while retaining LRU’s
advantages for LRU-friendly patterns. Yu et al. [44] proposed
a coordinated page prefetch and eviction design to manage
oversubscription for GPUs with unified memory.

B. Artificial Intelligence in Computer Architecture

Hashemi et al. [5] apply the RNN model to the analysis of
memory access patterns, which demonstrates higher precision
and recall than table-based approaches. Peled et al. [18]
proposed the context-based prefetcher, which employs the
contextual bandits model of reinforcement learning. Bhatia et
al. [19] introduced perceptron-based prefetch filtering which
acts as an independent check on the quality of predictions
made by the underlying prefetch engine. Shi et al. [6] ap-
plied deep learning to solve the cache replacement problem.
Doudali et al. [45] presented a page scheduler with machine
intelligence for applications that execute over hybrid memory
systems.

Peled et al. [20] use a fully-connected feed-forward net-
work instead, and they formulate prefetching as a regression
problem to train their neural network. Shi et al. [7] propose
a hierarchical model of data prefetching that accommodates
both delta patterns and addresses correlation. Bera et al. [21]
propose a customizable prefetching framework that formulates
prefetching as a reinforcement learning problem.

VII. CONCLUSION

In this paper, we have made a case for a learning-based
method to handle memory oversubscription in CPU-GPU
UVM. We first provide an in-depth analysis of the current
rule-based methods for oversubscription management and the
current learning-based methods on other hardware prediction
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issues. We identify the necessity of applying machine intelli-
gence for accurate data prefetching and eviction to improve the
rule-based methods, and we identify sources of performance
overhead for the current learning-based method are the explo-
sive growing number of classes and the non-pattern-awareness.
Then, we design a framework to solve the problems we found
in the analysis. We enable the pattern-awareness of the page
predictor by classifying the input data into different categories
according to their access patterns, and we train them with
a separate neural model. We introduce incremental learning
to help the predictor handle the continually growing number
of classes. We use a policy engine to deliver prefetching or
eviction decisions according to the prediction results. Finally,
the evaluation results show that our solution achieves higher
performance than the SOTA methods for oversubscription
management in CPU-GPU UVM.

Work remains in further improving the page predictor’s
accuracy. For example, data prefetching can be as accurate
as demand load. With the advance in technology, we believe
that learning-based methods will become practical and be
leveraged by hardware designers. We hope that this paper will
inspire the design of other studies which are trying to apply
learning-based methods in a heterogeneous systems like CPU-
GPU, and multi-GPUs.
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