
https://doi.org/10.1007/s10723-023-09718-2

RESEARCH

Cost-Availability Aware Scaling: Towards Optimal Scaling
of Cloud Services

Andre Bento · Filipe Araujo ·
Raul Barbosa

Received: 24 May 2023 / Accepted: 14 November 2023
© The Author(s) 2023

Abstract Cloud services have become increasingly
popular for developing large-scale applications due to
the abundance of resources they offer. The scalability
and accessibility of these resources have made it eas-
ier for organizations of all sizes to develop and imple-
ment sophisticated and demanding applications tomeet
demand instantly. As monetary fees are involved in the
use of the cloud, one of the challenges for applica-
tion developers and operators is to balance their bud-
get constraints with crucial quality attributes, such as
availability. Industry standards usually default to sim-
plified solutions that cannot simultaneously consider
competing objectives. Our research addresses this chal-
lenge by proposing a Cost-Availability Aware Scaling
(CAAS) approach that uses multi-objective optimiza-
tion of availability and cost. We evaluate CAAS using
two open-source microservices applications, yielding
improved results compared to the industry standard
CPU-based Autoscaler (AS). CAAS can find optimal
system configurationswith higher availability, between
1 and 2 nines on average, and reduced costs, 6% on
average, with the first application, and 1 nine of avail-

A. Bento (B) · F. Araujo · R. Barbosa
Department of Informatics Engineering, Centre for
Informatics and Systems of the University of Coimbra,
3030-290 Coimbra, Portugal
e-mail: apbento@dei.uc.pt

F. Araujo
e-mail: filipius@dei.uc.pt

R. Barbosa
e-mail: rbarbosa@dei.uc.pt

ability on average, and reduced costs up to 18% on
average, with the second application. The gap in the
results between our model and the default AS suggests
that operators can significantly improve the operation
of their applications.

Keywords Cloud services · Microservices ·
Availability modeling · Cost-effectiveness ·
Multi-objective optimization · Autoscaling

1 Introduction

Organizations are increasingly deploying their soft-
ware on containerized environments, such asDocker [1]
and others [2], because these can easily run on avail-
able, on-demand, resources, e.g., directly on a public
cloud or via Kubernetes clusters [3]. Replicating appli-
cation components becomes much simpler, meeting
the demand instantly or cutting unnecessary resources,
rather than undergoing a complex and expensive update
to the infrastructure [4]. In addition, cloud-based envi-
ronments provide on-demand resources to ease the exe-
cution of workloads with nearly uninterrupted access
and high availability, usually a crucial request for appli-
cations [5].

To take advantage of this paradigm, organizations
shifted the development of applications from the tradi-
tionalmonolith, a singular, large computing component
with one code base that couples all the business logic,
to an architectural style known as microservices [6,7],

123

/ Published online: 7 December 2023

Journal of Grid Computing (2023) 21:80

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-023-09718-2&domain=pdf
http://orcid.org/0000-0002-5388-0342
http://orcid.org/0000-0002-1663-1937
http://orcid.org/0000-0002-2916-7571

where the system is decomposed into self-contained
standalone components that interact over the network,
through well-defined Application Programming Inter-
faces (APIs). The simplicity of each component entails
a better division of work among teams, while also
bringing some management advantages, as each com-
ponent is easier to develop, configure, integrate, and
deploy in Continuous Integration/Continuous Delivery
cycles. Nonetheless, this architectural style results in
more services, more connections between them, and
more connections to external services [8]. The result-
ing distributed systems are complex and more difficult
to manage and monitor.

These systems evolve organically and control is
usually decentralized [9]. Since services can scale in
and out, automatic mechanisms continuously monitor
some specific metric to meet diverse service require-
ments. As an example, Amazon Web Services Auto
Scaling [10] employ metrics that may encompass a
range of factors such as the average Central Process-
ing Unit (CPU) utilization, the average memory uti-
lization, network in and network out, request count,
and other custom metrics. Typically, the metric of pri-
mary concern is the CPU load of the replicas, to check
if the load exceeds or falls below a given threshold.
Should that happen, the autoscaler will either spawn
a new replica or remove an existing one, to adjust
the computational resources and ensure that the CPU
load stays within predetermined boundaries [11]. Even
though autoscalers may also resort to other metrics,
such as memory, network Input/Output, or latency, for
example, a decentralized approach will always have
many independent sources of control that may drive
the system to inefficient points of operation. The over-
all resultmay show limited consideration for the overall
cost involved in running whatever number of replicas
emerges from sequential, separate decisions, or even
for system availability if it runs out of resources. While
individual services can indeed prioritize their availabil-
ity, overseeing the overall cost is beyond their ability
to control.

The main problem with this decentralized approach
is that it is: 1) delayed, as they just apply configurations
when the system is already failing or not meeting the
objective, thus not enabling continuous control; and
2) local, as they provide configurations looking only
at one service at a time, thus offering cost-inefficient
alternatives for a local section of the entire system and

do not conduct a comprehensive analytical inspection
of all components and the complete system.

Passing from an uncoordinated control effort to a
centralized one that considers load and optimizes the
system for availability and cost is, therefore, a goal
worthwhile pursuing.Hence, choosing the optimal con-
figuration for all services, to simultaneously optimize
the two objectives of availability and cost remains an
open challenge, as the system resulting from numer-
ous components and respective interactions is usually
beyond the cognitive capacity of operators, the appli-
cation administrators responsible for managing and
ensuring the proper functioning of the applications,
who are unable to find some optimal configuration for
a given load [12].

In this paper, we propose to do exactly this, by for-
malizing an optimization problem based on the model
of a microservice application. To evaluate our method,
Cost-Availability Aware Scaling (CAAS)1, we moni-
tor and control twomicroservice-based applications, 1)
Robot Shop [13] and 2) Sock Shop [14]. Against the
most widely used approach in the industry, autoscaling
based on CPU utilization using the Kubernetes Hori-
zontal PodAutoscaler (HPA) [15], we can considerably
cut the cost of running the application while keeping
the availability within strict boundaries. Additionally,
finding a solution for the optimization problemwe pro-
pose is fast. These results are encouraging and show
that a centralized approach, even with a simple model
like the one we use, can result in significant gains for
the operators.

In this work, we make the following contributions:

• We model the availability of microservices work-
flows. Specifically, we merge Amdahl’s law [16]
into the Generalized Logistic Function (GLF),
enabling the modeling of non-linear variations as
the means to represent availability for a given load
and the number of replicas.

• Based on this model, we formalize an optimization
problem that incorporates the objectives of avail-
ability and cost. The experimental evaluation shows
that CAAS achieves better results than the industry
default autoscaling based on CPU utilization in two
case studies, Robot Shop and Sock Shop.

1 https://github.com/SysOBs/caas

123

80 Page 2 of 19 Journal of Grid Computing (2023) 21:80

https://github.com/SysOBs/caas

The remainder of the paper is organized as fol-
lows. Section 2 provides an overview of existing work
related to our research topic. Section 3 depicts the
problem statement for this research. Section 4 out-
lines the methodology we have developed for optimiz-
ing availability and cost in cloud services through a
multi-objective approach. Section 5 presents our case
study using two microservice-based applications as
examples. Section 6 provides a comparison of results
between CAAS and the CPU-based Kubernetes HPA,
along with a discussion and observations. Section 7
presents the limitations and potential threats to the
validity of our study. Section 8 summarizes the key
findings of our research and discusses potential future
work in this area.

2 Related Work

Cloud services have become a popular choice for devel-
oping large-scale applications due to the on-demand
resources and pay-per-use business models. However,
as the use of cloud services incursmonetary fees, one of
the key challenges for application developers and oper-
ators is to balance their budget constraints with crucial
non-functional requirements such as availability. In the
field of autoscaling approaches for cloud services, there
are three major groups: 1) Statistical-based autoscal-
ing, 2) Multi-objective optimization autoscaling and 3)
Machine learning-based autoscaling [17].

Statistical-based autoscaling leverages statistical
methods to determine theoptimalmoments for resource
allocation adjustments, whether through rule-based or
threshold-based strategies, to scale up or down the
resources effectively. Several works try to do this, such
as Bauer et al. present Chamulteon, an approach to
scale applications consisting of multiple services in a
coordinated manner [18], Srirama et al. present a strat-
egy to deploy the requested applications on the best-
fit lightweight containers, with minimum deployment
time, based on the resource requirements [19]. Singh et
al. proposeRobustHybridAuto-Scaler, an auto-scaling
technique designed with threshold-based rules [20].

Multi-objective optimization-based autoscaling
involves using optimization techniques to find the best
configuration for the system while considering mul-
tiple objectives such as performance and cost. The
number of potentially related works is not high at the

moment of writing; however, they present promising
results and are motivated by the good results obtained
in other resource management optimization problems.
Guerrero et al. propose a genetic algorithm approach
for multi-objective optimization of container alloca-
tion in cloud architecture [21], and Ali et al. propose a
multi-objective task-scheduling optimization problem
that minimizes both the makespans and total costs in a
fog-cloud environment [22].

Machine learning-based autoscaling, on the other
hand, uses machine learning algorithms to learn from
historical performance data to make predictions about
future resource needs [23]. Prachitmutita et al. pro-
posed an autoscaling framework using artificial recur-
rent neural networks for workload prediction [24]. Yu
et al. presented Microscaler, which combines online
learning and heuristics to identify scaling-needed ser-
vices and meet Service Level Agreements [25]. Other
works by Hanqing et al. [26] and Rzadca et al. [27]
use neural networks for resource requirement predic-
tion and employ reinforcement learning to optimize
resource allocation. Coulson et al. designed a prototype
auto-scaling system that learns from past service expe-
riences and uses a hybrid model to identify microser-
vices to scale [28]. Marie-Magdelaine et al. proposed a
proactive autoscaling framework using a Long Short-
Term Memory-based learning model to dynamically
adjust the resource pool, improving latency for cloud-
native applications [29]. Khaleq et al. introduced an
intelligent autonomous microservice autoscaling sys-
tem for Google Kubernetes Engine, achieving up to a
20% enhancement in microservice response time com-
pared to default autoscaling [30]. Horn et al. intro-
duced a hybrid auto-scaling mechanism that utilizes
machine learning to mitigate resource waste and main-
tain desired response times for microservices in Kuber-
netes [31]. However, machine learning-based autoscal-
ing, while promising, poses disadvantages such as 1)
Limited explainability, 2) Increased demand for com-
putational resources compared to other approaches,
and 3) Continuous model retraining, making it a more
complex and resource-intensive solution, particularly
in early stages of development. Hence, these solutions
are typically not deployed in production environments.

These works can be categorized into three approaches:
1) Delayed autoscaling responds to events like high CPU
load, 2) Immediate autoscaling takes action before
reaching thresholds, and 3) Hybrid autoscaling com-

123

Page 3 of 19 80Journal of Grid Computing (2023) 21:80

bines delayed and immediate strategies. Common
industry standards often default to simplified solutions.
For instance, they might monitor the average CPU uti-
lization of a group of services and scale the number of
replicas up or down based on this metric. However, it
is essential to note that solutions such as Amazon Web
Services Auto Scaling, provide a wide range of met-
rics beyond just averageCPUutilization. These include
metrics like average memory utilization, network in
and network out, request count, and even the flexibil-
ity to define and incorporate custom metrics. Despite
this rich array of metrics, the average CPU utilization
of resources typically remains the primary target for
scaling out replicas [32,33].

In this complex landscape, balancing competing
objectives while minimizing resource waste, remains
an open challenge and offers a potential avenue to
address these challenges while optimizing the overall
system behavior. In this context, our research aims to
address this challenge by proposing a multi-objective
optimization approach tomodel system availability and
cost globally, ensuring immediate and continuous opti-
mization for all services, and enabling it to take action
before reaching the thresholds.

3 Problem Statement

We consider an application comprised of multiple ser-
vices. One may replicate each one of these services
separately for improved availability, but each replica
entails a monetary cost. The application may consist
of various workflows that interact with different ser-
vices. Our primary focus is on one of these workflows,
which we aim to ensure is always available. We will
subsequently explore strategies for supportingmultiple
workflows. We define one workflow of the application
to be available if it responds to the client within a pre-
determined time limit, tlim . In addition to the response
time, the response must also be correct. Since we focus
on Hypertext Transfer Protocol (HTTP), we simplify
and assume that the request is successful if its response
time, tr , is faster than a threshold, tlim , i.e., tr < tlim
and the response error status is not in the 5xx class;
otherwise, the response is unsuccessful.

Since an unavailable microservice application is
useless [34], ensuring that services are available is very

important. We measure availability (A) as the ratio of
successful requests to total requests, as per equation
(1):

A = Successful requests

Total requests
(1)

We aim to achieve maximum availability while simul-
taneously minimizing costs. While defining a multi-
objective optimization problem is a possibility, an
approach we followed in [35], one needs an additional
policy to select one of the solutions in the Pareto front.
To simplify this process,we take amore direct approach
by combining the cost and availability objectives into
a single objective function. This simplifies the opti-
mization problem and yields a single optimal solution,
provided that the Pareto front is convex. A convex func-
tion has a unique global minimum, which ensures that
the optimal solution balances both objectives. By com-
bining the objectives into a convex function, we can
avoid the need for additional policies and streamline
the decision-making process. We combine availability
and cost into one metric, by assigning equal weights
to unavailability and cost, where unavailability, U, is
1 − A (refer to (2)), being A the availability of the
application. Unavailability can be caused by a lack of
resources or a faulty service, leading to an inability to
meet the Service-Level Objectives (SLOs) [36].

U = 1 − A (2)

The cost to run an application on the cloud can be
complex and influenced by various factors. Nonethe-
less, two of the dominating factors are the amount of
CPU and memory resources used [37]. Hence, our cost
model considers CPU and memory used across all ser-
vices, according to (3):

Ctotal =
n∑

i=1

(cc × cpui + cm × memi) × xi

where xi ∈ N0

(3)

The overall cost, Ctotal , is the sum of the costs for all
replicas of all services. It comprises the overall number
of Virtual Central Processing Units (vCPUs), cpui , in
units, for service i, the overall memory usage memi , in
GibiBytes, for service i, two coefficients, cc and cm ,

123

80 Page 4 of 19 Journal of Grid Computing (2023) 21:80

which are, respectively, the cost per vCPU and the cost
per GibiByte of memory, and the number of replicas
xi for each service i. We assume that all replicas in the
same service have similar configurations concerning
the number of vCPUs and memory.

Since we aim at combining unavailability and cost
in the same objective function, with similar weights,
to perform computations on the optimization step, we
normalize the value of cost to be between 0 and 1,
according to the expression C = Ctotal/Cmax, where
Cmax represents the maximum cost of the infrastruc-
ture. The value of Cmax is computed based on the max-
imum CPU and memory allowed by the infrastructure
sized by the application administrators responsible for
managing and ensuring the proper functioning of the
applications, i.e., the operators.

Simple approaches to determining the number of
replicas per service, xi , may be based on metrics that
are local to each service. These may fall onto local
optima, e.g., due to the use of some greedy approach
that only looks at occupied vCPU percentage. To over-
come this limitation, a global policy may compute the
overall best number of replicas for all services of the
entire application. Such a policymay consider the avail-
able resources and the impact that each service has on
the global latency.

Given an application with n services, our goal is to
determine the number of replicas,x = [x1, x2, . . . , xn],
for each of these services that minimizes application
unavailability and cost. Since hiring vCPU and mem-
ory entails a cost, the budget will limit the overall repli-
cation of the application services.

We assume that the application operators will also
impose constraints on the SLOs and, therefore, we add
another constraint for the unavailability to be at most
1−ASLO. The challenge is, therefore, to find an efficient
configuration, represented by a vector of replicas x,
that balances unavailability and cost. We formalize the
problem in equation (4):

Minimize U(x) + C(x)

s.t. 0 ≤ U(x) ≤ 1 − ASLO

0 ≤ C(x) ≤ 1

x = [x1 x2 . . . xn], xi ∈ N0

where C(x) = Ctotal(x)
Cmax

U (x) = 1 − A(x)

(4)

A linear combination of unavailability and cost offers
a versatile and intuitive approach to effectively balance
multiple conflicting objectives. This method works by
assigning weights to each objective and combining
them into a single objective function allowing us to
trade off one objective against the other, making it pos-
sible to find a compromise solution that meets both
objectives to some degree. A common practice for pri-
oritizing different objective contributions is to intro-
duce constant weight factors. Hence, we can multiply
U by ω1 and C by ω2 resulting in the following expres-
sion: Minimize ω1 ×U+ω2 ×C. Using this approach,
it is possible to consider cost alone setting ω1 = 0
and ω2 = 1, or, minimizing unavailability alone with
ω1 = 1 andω2 = 0. In this paper, we use equal weights
for both objective functions by defining ω1 = ω2 = 1.
In future work, exploring different weight configu-
rations and their effects on the optimization process
would be an interesting direction for research.

Theconstraints put a thresholdboth onU andC, which
prevents a solution that: 1)minimizes the unavailability
without considering an availability threshold, and 2)
exceeds the cost normalization threshold of 1.We leave
the formalization of U outside the problem statement.
We do this definition in Section 4.1.

4 Method

Software systems are constantly exposed to perfor-
mance degradation, failures, and load variations, which
can negatively impact the quality of service. These
issues can lead to resource exhaustion, resulting in
decreased availability and, in extreme cases, service-
level outages [38]. To optimize equation (4) and pre-
vent service outages from overloaded services while
managing costs, we propose a concrete approach for
computing the unavailability term, U, before using a
heuristic method for the optimization.

4.1 Availability Function

To model the availability of a workflow of a microser-
vices architecture, we consider that services execute in
sequence and that each one of themmayhavemore than a
single server running in parallel and receiving requests
according to a round-robin discipline. As shown in
Fig. 1, this system represents a scenario where users

123

Page 5 of 19 80Journal of Grid Computing (2023) 21:80

 System

Load (l)

Users

Service 1

Load (l1)

l1 = l x f1

Machine 1

Service 2
l2 = l x f2

Machine 2Load (l2)

Service N
lN = l x fN

Load (lN) Machine N
...

Fig. 1 Series system workflow

generate load with their requests, and each request runs
through the entire system from end to end. The failure
of any component leads to a service failure, hence, all
components are strictly necessary for a givenworkflow.

In cases where a service features multiple end-
points, our approach addresses this considering that
each request follows a sequential path through the
entire system; however, this approach does not con-
sider workflow cycles where services call themselves
using different endpoints.

Equation (5) shows the availability function for a
series system composed of n services, where A is the
availability of the system computed by multiplying the
availability of each service, Ai , and the availability of
each machine (virtual or otherwise), AMi , which is
agreed with the cloud provider and is usually docu-
mented in Service-Level Agreements (SLAs), and for
which we consider a constant value of 0.9999 [39] in
our evaluation:

A = A1 × AM1 × A2 × AM2 × ... × An × AMn (5)

Availability is highly dependent on the load, as a sys-
temmay struggle to respondwithin useful time limits if
the load is too high. Furthermore, servicesmust scale in
and out to accommodate the existing load. Hence, the
availability of equation (5) is a function of the ingress
load of the workflow, in requests per second. To maxi-
mize availability, we need to have some means to com-
pute the dependency of this metric with the number
of replicas of the internal services. Hence, we need to
first model the availability of the internal services as a
function of their replication.

To model the relationship between the load and the
availability of one service, Ai in equation (5), we use
the GLF, which we define in equation (6), a mathemati-
cal function often used tomodel growth and decay over
time [40]:

y (λ) = a + k − a
(
1 + qe−bλ

)1/v (6)

Equation (6) comprises six parameters: 1) λ, which
represents the load, 2) a, the left horizontal asymptote,
3) k, the right horizontal asymptote, 4) b, the growth
rate, 5) q, is related to the value y(0), and 6) v, themax-
imum growth near the asymptotes. Figure 2 shows an
example of a GLF with the parameters a = 0.999999,
k = 0, b = 0.8, q = 1, and v = 0.0005.

To demonstrate the suitability of the GLF, we
applied synthetic load and conducted a benchmark on
multiple services of the Robot Shop, one of our case
study microservice applications (refer to Section 5).
These benchmarks were executed on a single system
service with the remaining services scaled out to the
maximum number of replicas (to avoid bottlenecks)
and varying the service replication factor, r, between
1 and 5. For this case, each replica was allocated 1
vCPU and 2 GiB of memory to ensure accurate results.
We collected results of availability (i.e., response status
and response times) and requests per second, to create a
profile of the behavior of replicated services under dif-
ferent load conditions, allowing us to select the optimal
number of replicas for a given service under a given
load.

Fig. 2 GLF (a = 0.999999, k = 0, b = 0.8, q = 1, and
v = 0.0005)

123

80 Page 6 of 19 Journal of Grid Computing (2023) 21:80

Figure 3 presents the results of an experiment to
evaluate the relationship between the availability, the
number of replicas, and the load (in requests per sec-
ond) using the catalogue service of our case study
microservice application. The availability is measured
on a range [0, 1], where 1 represents a fully operational
service and 0 represents a completely unavailable ser-
vice.

Availability is quite high up to a certain load level,
where it degrades very quickly before reaching 0. As
more computational resources are available to attend
to the load, the availability of the service increases as
well, a clear indication that as the load on the service
increases, it becomes increasingly important to have
multiple replicas to maintain a higher level of avail-
ability. As we show experimentally, the GLF enables
the prediction of the behavior of the service under dif-
ferent loads (refer to Fig. 2), thus providing important
insights for determining the optimal number of replicas
for a given service.

Using an M/M/c queue, also known as Erlang-
C model, could also be a possibility for the model.
M/M/c refers to arrivals generated by a Poisson pro-
cess, exponential job service time distributions, and c
replicas. The availability of the service would be the
probability of having a response within some time con-
straint t . With only one server, i.e., c = 1, the avail-
ability would be as follows [41]:

y (λ) = P (W ≤ t) = 1 − e−(μ−λ)t

where λ ≤ μ and y (λ) = 0, for λ > μ
(7)

Fig. 3 Empirical observations of availability, the number of
replicas, and the load on the service catalogue of Robot Shop

Here, W is the sojourn time (time waiting in queue
plus time in the server), μ is the service rate, and λ is
the arrival rate of requests. This availability function
requires two branches and is not differentiable at λ =
μ. Figure 4 illustrates an M/M/c queue across a range
of scenarios, varying c from 1 to 4 servers (or replicas).
In each scenario, the arrival rate (λ) spans from 1 to 20,
while maintaining a constant service rate (μ = 5), for
the time limit of 1 (t = 1).

Moreover, this queuing-based approach presents a
fall of availability near λ = μ that is even sharper than
the one presented by the Generalized Logistic Func-
tion (GLF). The latter seems to be more in line with
our observations of Fig. 3. Finally, since supporting
multiple replicas, i.e., c > 1, involves a considerably
more complex expression when compared to the GLF,
we opted for this latter.

4.2 Modeling the Availability of Replicated Services

In our study of availability modeling for cloud ser-
vices, we observed a non-linear evolution of service
response time as the number of replicas increased. To
analyze the distribution of response time by the num-
ber of replicas, we performed experiments where we
applied load to one service for 5 minutes and collected
the response times of each request. The load was con-
stant during each experiment and varied from very low,
at a rate of 1 request per second, to very high, at a rate
of 5000 requests per second. The number of replicas
varied from 1 to 5 with a step of 1.

Fig. 4 M/M/c curves

123

Page 7 of 19 80Journal of Grid Computing (2023) 21:80

Figure 5a presents the distribution of the response
time, in milliseconds, by the number of replicas for
one service. Asmore replicas are added to a service, the
response timedecreases, reflecting the increased capac-
ity to handle requests; however, as the number of repli-
cas increases, the response time gain becomes less pro-
nounced. This non-linear behavior is likely due to the
complexity and overhead of coordinating requests and
responses among multiple replicas. Additionally, con-
tention for shared resources such as network bandwidth
and storage can also contribute to diminishing returns
in response time as the number of replicas increases.

Thus, our model needs to take into account the non-
linear response time evolution of service replicas to
accurately predict availability. Amdahl’s law states that

Fig. 5 Non-linear relationship of service response time and
resulting speedup for the service catalogue of Robot Shop. (a)
Response time distribution. (b) Response time speedup, with
(p = 0.8525)

the speedupof execution timedepends on the amount of
code that cannot be parallelized [16], and is computed
in equation (8), which comprises two parameters: 1) n,
the number of processors, or service replicas, and 2) p,
the percentage of code that can be made parallel:

S (n, p) = 1

1 − p + p
n

(8)

Figure 5b shows the non-linear relationship between
the number of replicas and the resulting response time
speedup of the service catalogue fromRobot Shop, one
of our case study applications. The x-axis represents
the number of replicas and the y-axis represents the
speedup.

To calculate the speedup for eachnumber of replicas,
we used the average response times for each number
of replicas and divided it by the average response time
with only 1 replica. The p value of 0.8525was obtained
by fitting equation (8) to the data points of the response
time distribution of Fig. 5a.

By merging (8) with the GLF, λ is replaced by
λ/S (n, p), and we obtain the following availability
function:

y(λ, n, p) = a + k − a

(1 + qe−b(λ/S(n,p)))1/v
(9)

The results from the availability function approxi-
mations using services fromour case study applications
are presented in Section 5.2.

5 Case Study

To evaluate the efficiency of CAAS, we performed
experiments with two case study applications, 1) Robot
Shop [13] and 2) Sock Shop [14], and compared results
of availability and costwith thewidely usedKubernetes
CPU-based Horizontal Pod Autoscaler (HPA). Robot
Shop microservices application is an online applica-
tion selling robots and products with artificial intelli-
gence, composed of 12 microservices. Sock Shop is
a microservices demo application to simulate a user-
facing part of an online shop that sells socks, composed
of 14 microservices.

For the first application, Robot Shop, we selected
three workflows: 1) List products, 2) Add item to the
cart, and 3) Rate item, and for the second application,

123

80 Page 8 of 19 Journal of Grid Computing (2023) 21:80

Fig. 6 Workflows of Robot
Shop microservices
application: 1) List
products, 2) Add item to the
cart, and 3) Rate item

2

3

1

Users

2web
(nginx)

2user
(nodejs)

catalogue
(nodejs)

cart
(nodejs)

2catalogue
(nodejs)

ratings
(php)

3catalogue
(nodejs)

3web
(nginx)

1web
(nginx)

Sock Shop, we selected three workflows: 1) List prod-
ucts, 2) Add item to the cart, and 3)Order an item. Our
solution optimizes one workflow at a time. Figures 6
and 7 depict these workflows for Robot Shop and Sock
Shop respectively.

RegardingRobot Shop, the first workflow,List prod-
ucts, is used to list all products available in the shop and
usesweb and catalogue services; The secondworkflow,
Add item to the cart, is used to add an item to the cart of
a user and uses web, user, catalogue and cart services;
and the third workflow, Rate item, is used to rate an item
in the shop and uses web, catalogue, and ratings services.

Regarding Sock Shop, the first workflow, List prod-
ucts, is used to list all products available in the shop
and uses front-end and catalogue services; The second
workflow, Add item to the cart, is used to add an item
to the cart of a user and uses front-end, user, catalogue
and carts services; the third workflow, Order an item,
is used to execute the whole process to order and buy
an item in the shop and uses front-end, user, catalogue,
carts, orders, shipping and payment services.

In our experiments, we used Locust [42], a load gen-
erator, to produce constant loads, in terms of requests
per second (rps), and emulate user behavior, to sim-
ulate the actions of real users browsing, listing, rating

and purchasing products on the platforms, as defined in
the workflows of Figs. 6 and 7. The experiments were
conducted in a local node running a Kubernetes cluster
with an Intel XeonGoldCPU6226Rwith a clock speed
of 2.90 GHz with 16 vCPUs and 128 GiB of RAM.

5.1 Implementation Details

To implement the method described in the previous
section, we need to code the problem as defined in
equation (4). For this, we resorted to Pymoo [43],
a framework that offers state-of-the-art optimization
algorithms for single, multi and many-objective prob-
lems. We selected the single-objective Genetic Algo-
rithm (GA) [44] which is suitable for our problem hav-
ing one objective and two constraints. However, our
problem involves discrete variables represented by the
number of replicas of services, with valid values rang-
ing from 0 to n (the maximum amount of replicas).
We were able to leverage the extensibility of the GA
class in the Pymoo framework and modify the sam-
pling, crossover and mutation operators to work with
integer values. This allowed us to tailor the algorithm
to our specific needs, ensuring that it handles the dis-

2

1

3Users

catalogue
(go)

orders
(java/.net)

payment
(go)

shipping
(java)

user
(go)

1

2front-end
(nodejs)

front-end
(nodejs)

3front-end
(nodejs)

2 2catalogue
(go)

carts
(java)

user
(go)

3 3catalogue
(go)

3carts
(java)

3 3

Fig. 7 Workflows of Sock Shop microservices application: 1) List products, 2) Add item to the cart, and 3) Order an item

123

Page 9 of 19 80Journal of Grid Computing (2023) 21:80

Table 1 GA algorithm parameters

Parameter Value

Population size 100

Number of offsprings 10

Sampling Random Integers ∈ N0

Crossover probability SBX with 0.9 [45]

Mutation probability PM with 1.0 [45]

Eliminate duplicates True

Return Least feasible solution True

crete nature of the replicas configuration output. Table 1
summarizes the parameters for the execution of theGA.

We defined the Problem, an object-oriented defi-
nition from Pymoo that allows one to specify details
such as the number of objectives, the number of con-
straints, and the number of variables of an optimiza-
tion problem and implement a method to evaluate a
set of solutions. The problem consists of one objec-
tive, n_obj = 1, where we want to minimize the linear
combination of unavailability and cost. Regarding con-
straints, the optimization is subject to two inequality
constraints, n_constr = 2. To achieve our optimiza-
tion goals, we minimize the problem using the built-
in Pymoo method minimize with the problem and the

aforementioned defined algorithm to compute the opti-
mal solution.

In our implementation, the connection between
CAAS and the microservices is established through
the use of the Kubernetes command-line tool to define
the number of replicas for each microservice. This is
accomplished by adjusting the size of the deployment,
which subsequently defines the number of microser-
vice replicas. The microservice architecture and the
resources allocated for one replica of eachmicroservice
are defined statically as a configuration within CAAS.

5.2 Availability Results

To evaluate our availability model, we profiled the end-
points of the 5 services of Robot Shop required for
the 3 workflows individually: cart, catalogue, ratings,
user, and web, and the 7 services of the Sock Shop
required for the 3 workflows individually: catalogue,
carts, front-end, user, orders, shipping and payment.

To profile Robot Shop, we conducted 1 run for each
service (5 services) and 1 run for each replica (ranging
from 1 to 5 with a step of 1) at each load level (40 load
levels from 1 request per second to 5000), resulting in a
total of 40 runs for each load level. In total, we executed
1000 runs (5 services × 5 replicas × 40 load levels).
To profile Sock Shop, we conducted 1 run for each

Fig. 8 Availability function fitting of two services of Robot Shop. (a) Cart service. (b) Catalogue service

123

80 Page 10 of 19 Journal of Grid Computing (2023) 21:80

service (7 services) and 1 run for each replica (ranging
from 1 to 5 with a step of 1) at each load level (65 load
levels from 1 request per second to 5000). In total, we
executed 2275 runs (7 services × 5 replicas × 65 load
levels).

Each run to profile one service had a duration of
10 minutes, 5 minutes of execution, and 5 minutes of
intervals between experiments to let the system pause,
restart all configurations, i.e., delete every deployment,
re-deploy and start a new run. Taking this into account,

the total duration of the profiling of each service of
Robot Shop was around 7 days and around 15 days for
Sock Shop.

During the profiling of each service, the replica-
tion factor was set to 1 and all the remaining com-
ponents were scaled out to the maximum allowed by
the infrastructure so that they would not influence the
results. Regarding resources, the replication factor set
to 1 states that each service of Robot Shop is configured
with the limit of 1 vCPU for the CPU and 2 GiB for

Table 2 Robot Shop: Availability estimation results using R-squared, MAE, and MSE

Service p n R-squared MAE MSE

cart 0.5932 1 0.9976 0.0074 0.0006

2 0.9774 0.0188 0.0052

3 0.9957 0.0115 0.0010

4 0.9953 0.0109 0.0011

5 0.9876 0.0163 0.0029

Average 0.9907 0.0130 0.0022

catalogue 0.8525 1 0.9187 0.0478 0.0191

2 0.9632 0.0389 0.0086

3 0.9778 0.0332 0.0047

4 0.9489 0.0393 0.0087

5 0.8266 0.0700 0.0204

Average 0.9270 0.0458 0.0123

ratings 0.3764 1 0.7985 0.0967 0.0409

2 0.9821 0.0396 0.0039

3 0.8418 0.0797 0.0338

4 0.9542 0.0476 0.0097

5 0.9739 0.0443 0.0057

Average 0.9101 0.0616 0.0188

user 0.6274 1 0.8856 0.0681 0.0274

2 0.9745 0.0404 0.0053

3 0.9483 0.0471 0.0092

4 0.9341 0.0462 0.0112

5 0.9629 0.0434 0.0074

Average 0.9411 0.0490 0.0121

web 0.8334 1 0.9337 0.0574 0.0107

2 0.9475 0.0447 0.0072

3 0.8746 0.0607 0.0268

4 0.9291 0.0516 0.0163

5 0.8774 0.0399 0.0091

Average 0.9083 0.0509 0.0140

123

Page 11 of 19 80Journal of Grid Computing (2023) 21:80

the memory by enforcement, i.e., the system prevents
the service within the container from ever exceeding
the configuration limits, and that each service of Sock
Shop is configured with the limit of 0.5 vCPU for the
CPU and 1 GiB for the memory.

This profiling allowed us to extract the value of the
variables for equation (9) and generate the model rep-
resentation of the availability of each service. With the
availability of each service modeled, we compared the
availability results with the model estimates and the
real system using the following metrics [46]: coeffi-
cient of determination, R-squared, the Mean Absolute
Error (MAE) and the Mean Squared Error (MSE) to
assess the results of the availability model estimates.

Figure 8a and b show the observed availability data,
marked with dots, and the model estimates, marked
with crosses, for two services, cart and catalogue of
Robot Shop. In these figures, the proximity of the
crosses to the dots illustrates the degree to which the
model aligns with the actual availability trends, provid-
ing a visual representation of the model’s fitting perfor-
mance.

Furthermore, Tables 2 and 3 show all results of avail-
ability model estimates for the 5 services of the Robot
Shop and the 7 services of the Sock Shop case study
applications. Each service has a p, which lists the per-
centage of code that can be made parallel and, in the
case of Table 2, an n, which lists the number of replicas
for each service used in the study, as well as averages of
R-squared, MAE, and MSE results. In the latter table,
we omitted the n column and computed averages of
R-squared, MAE, and MSE results for brevity.

R-squared lists the coefficient of determination
which is a measure of the goodness of fit of the model,
with a value of 1 indicating a perfect fit. MAE lists the
mean absolute error, a measure of the average mag-

nitude of the errors in a set of predictions. MSE lists
the mean squared error, a measure of the average of
the squares of the errors. Additionally, the consistently
lowMAEandMSEvalues across all replicas for all ser-
vices, evennegligible in somecases, further indicate the
models’ accuracy; however, some services may exhibit
lower R-squared values, implying a less precise fit.

The reasons behind these variations could be multi-
faceted. Factors like the complexity of the service, the
nature of the workload, or the availability of histori-
cal data may influence the model’s performance. Ser-
vices with inherently unpredictable or sporadic behav-
ior might naturally yield lower R-squared values. As
such, future refinements in the modeling approach may
be tailored to specific service characteristics, enabling
even better predictability in scenarioswhere themodels
exhibit lower R-squared values. Overall, results for all
services of both applications show that themodels have
a good fit and high accuracy regardless of the percent-
age of code that can be made parallel and the number
of replicas.

In summary, our analysis demonstrates that while
some services exhibit exceptional fit with our availabil-
ity model, others may present challenges due to their
unique characteristics. However, the overall results
indicate that ourmodel is capable of accurately predict-
ing the availability of services for the two case study
applications.

5.3 Cost Results

To determine the coefficients for the model and min-
imize the cost, we analyzed Amazon Web Services
(AWS) data tables for on-demand hourly rate instance
pricing of C5/R5 (compute optimized/memory opti-

Table 3 Sock Shop: Availability estimation results using averages of R-squared, MAE, and MSE

Service p R-squared MAE MSE

catalogue 0.7762 0.9378 0.0498 0.0829

carts 0.8525 0.9174 0.0484 0.0165

front-end 0.9017 0.9178 0.0487 0.0164

payment 0.0437 0.8409 0.0649 0.0172

orders 0.9462 0.8939 0.1041 0.0427

shipping 0.8862 0.9184 0.0480 0.0164

user 0.2189 0.9031 0.1158 0.0516

123

80 Page 12 of 19 Journal of Grid Computing (2023) 21:80

mized) instances of Elastic Compute Cloud (EC2). We
performed multiple linear regression on the relation-
ship between the dependent variable (hourly rate) and
two independent variables (vCPU and memory). The
results of the multiple linear regression on the AWS
data showed a regression statistic value of 1 for R2 and
3.07−7 for standard error, allowing for accurate pre-
dictions with a small error. The ANOVA significance
F value was approximately equal to zero, indicating
significant results. The coefficients found were 0.0427
cents per vCPU and 0.0039 cents per GiB of memory,
which replace cc and cm in the proposed cost equa-
tion (refer to equation (3)). The cost equation was then
utilized to compute the monetary cost of each config-
uration for every experiment in both case study appli-
cations, allowing for result comparisons (refer to Sec-
tion 6).

5.4 Performance Evaluation

The performance, i.e., execution time, of an algorithm
to control the number of replicas of a microservices’
application is important as it needs to be able to suggest
a configuration within an acceptable time. To evaluate
the performance of CAAS, we measure the results of
the execution time of the optimization step for each
experiment.

Table 4 presents the results of execution time for
CAAS for each application. The optimizationwas com-
puted in one node with an Intel Core i5-8279U CPU
with a clock speed of 2.40GHz with 4 vCPUs and
8 GiB of memory. The execution time to compute
the optimal configuration averaged 2.048 seconds for
Robot Shop and 2.297 seconds for Sock Shop; how-
ever, Sock Shop exhibited longer times, with its 75th
percentile and maximum execution times being higher,
owing to its more extensive workflows, which led to a

Table 4 Execution time (in milliseconds) of the optimization
step for each application

Robot Shop Sock Shop

mean 2048 2297

min 1488 1799

25% 1896 1928

75% 2202 2876

max 2636 3786

larger objective space to explore. By default, monitor-
ing applications installed in popular container manage-
ment systems, e.g., Kubernetes andOpenShift, are con-
figured to collect time series data every 15 seconds. The
autoscaler used by these management systems uses the
information collected by the monitoring mechanisms
and is thus limited to adapting the number of nodes
every 15 seconds. Taking this into account, we can state
that CAAS can suggest an optimal configuration below
the collection time of monitoring mechanisms used in
container management systems.

6 Comparative Analysis of Results

In this subsection, we present a comparison of our
method, CAAS, an optimization approach for cloud
services autoscaling, with the industry standard CPU-
based Kubernetes Horizontal Pod Autoscaler (HPA)
used in containerized applications, hereafter referred
to as Autoscaler (AS) for brevity.

To evaluate them, we obtained availability and cost
data and compared the results. For CAAS, we com-
puted the optimization using the system’s model for
each workflow of each application, conducting a total
of 120 experiments (40 load levels × 3 workflows)
for the Robot Shop and 195 experiments (65 load lev-
els × 3 workflows) for the Sock Shop, to produce the
optimal system configurations selected by the model.
From these configurations, we calculated the cost and
availability for each experiment. For the AS approach,
we defined and applied the autoscaler policies at the
application level using the Kubernetes HPA, and we
conducted an identical set of 120 experiments for the
Robot Shop and 195 experiments for the Sock Shop.
The AS was configured with a threshold of 80% for
each service, which means that the Central Processing
Unit (CPU) utilization is monitored and if it exceeds
the threshold of 80%, a new replica of the service is
initiated [47]. The maximum number of replicas was
set to the maximum allowed by the infrastructure for
both approaches, i.e., 16 vCPUs and 128 GiB of RAM.

Regarding the CPU threshold, we have chosen 80%
threshold for the Kubernetes HPA to have a balance
between cost and performance. Additionally, we have
experimentedwith 90, 70, and 20%.Regarding the 90%
threshold, the availability was very low, maybe due to
the services being close to the very limit of 100%. On
the contrary, when we tested with the 70% threshold,

123

Page 13 of 19 80Journal of Grid Computing (2023) 21:80

Fig. 9 Availability and Cost of both approaches, the AS and
CAAS

the costs started to increase notably, outweighing the
marginal benefits in terms of availability andworsening
the case for the Kubernetes HPA. Finally, we explored
a very low threshold of 20%; however, in this scenario,
the system availability was very low, and costs were con-
sistently maximized, i.e., the normalized cost was 1.0.

6.1 Availability and Cost Comparisons

Figure 9 depicts a comprehensive overview of the
results obtained for the Robot Shop application, com-
paring both the AS approach, denoted in blue dots,
and our proposed CAAS approach, denoted by crosses.
Our analysis revealed several key findings regarding
the effectiveness of these approaches. We found that,
regarding availability, both approaches delivered simi-
lar results. This suggests that the various configurations
and approaches tested were all successful in achieving
and maintaining high availability levels.

Consequently, it implies that further fine-tuning
in this area may not yield significant improvements;
however, a more detailed examination regarding cost,
uncovered instances where the AS approach encoun-
tered limitations (refer to Fig. 10 where we present
a more in-depth overview of the cost comparison
between both approaches). Notably, in certain sce-
narios, the AS algorithm fully allocated all available
resources, resulting in configurations that were not
well-suited to handle the imposed load level. These
points are represented on the far right side of the plot,
where the values of the normalized cost are high. This
disparity highlights the potential risks of relying solely

Fig. 10 Cost comparison between the AS and CAAS

on an autoscaler, as itmay lead to unexpected and costly
resource usage occupying the available resources while
only considering the CPU metric. In contrast, CAAS
achieves consistently lower costs while maintaining
high levels of availability.

Despite the similar availability values, our CAAS
approach consistently outperformed AS in terms of
cost-effectiveness achieving significantly cheaper con-
figurations, as indicated by the leftward shift of CAAS
data points.

This cost-efficiency advantage of CAAS is particu-
larly noteworthy since it demonstrates that it not only
achieves similar levels of availability but does so while
utilizing resources more effectively. The implication
here is thatCAASoptimizes the allocation of resources,
preventingover-provisioning and, consequently, reduc-
ing operational expenses.

In summary, while both approaches exhibited com-
parable availability results, CAAS demonstrated supe-
rior cost-effectiveness by avoiding resource exhaustion
and delivering more economically efficient configura-
tions.

6.2 The differences in Availability and Cost

To further compare Autoscaler (AS) to CAAS, we com-
puted differences in both availability and cost for both
approaches. For the availability values, we applied the
following formula to compute the gain in the number
of 9s (nines):

Again=− (
log10 (1−ACAAS)−log10 (1 − AAS)

)
(10)

123

80 Page 14 of 19 Journal of Grid Computing (2023) 21:80

Fig. 11 Availability gain and Cost savings of CAAS over the AS approach for both case study applications. (a) Robot Shop. (b) Sock
Shop

Equation (10) is used to compute the difference in
the number of 9s between the availability values of
the two approaches. This way we are able to compare
the availability values of both approaches in a more
intuitive way, as the number of 9s is a common metric
used to measure availability. For example, a difference
of 1 means that the availability of the CAAS approach
achieved 1 more 9 than the AS approach. A difference
of 0 means that both approaches achieved the same
availability, and a difference of -1 means that the AS
approach achieved 1 more 9 than the CAAS approach.

Figure 11a and b show the observations of the com-
puted differences between the availability and cost
results for both approaches for the Robot Shop and
Sock Shop respectively, on a plane divided into four
quadrants. These quadrants divide results into the fol-
lowing four cases:

• Upper right quadrant: CAAS has better Availability
and lower Cost than the AS approach.

• Upper left quadrant: CAAS has better Availability
but higher Cost than the AS approach.

• Lower left quadrant: CAAS has lower Availability
and higher Cost than the AS approach.

• Lower right quadrant: CAAShas lowerAvailability
but lower Cost than the AS approach.

The best scenario for CAAS is exemplified by obser-
vations within the first quadrant, where it achieves
both higher availability and lower cost. Following this,
observations within the second and fourth quadrants
show instances where CAAS is slightly better in either
higher availability or lower cost, at the expense of the
other objective. Finally, the third quadrant represents
the least favorable scenario for CAAS, characterized
by observations with lower availability and higher cost,
representing the cases where CAAS faces a disadvan-
tage. Table 5 presents a summary of the comparison of
the availability and cost differences of both approaches.

For Robot Shop, results show a mean improvement
of 1.61 9s of availability and cost savings of 5.84%.

Table 5 Comparison summary of CAAS with the AS

Robot Shop Sock Shop
Availability gain (Log10) Cost saving (%) Availability gain (Log10) Cost saving (%)

mean 1.61 5.84 1.15 17.97

min -1.47 -15.18 -2.31 -10.60

max 7.95 33.76 3.62 37.95

123

Page 15 of 19 80Journal of Grid Computing (2023) 21:80

For this application, in the worst-case scenarios, we
observed an availability detriment of 1.47 9s and an
increase in costs up to −15.18%. It is noteworthy that
the latter value can be considered an outlier (refer to the
upper left quadrant in Fig. 11b) with the majority of
worst-case scenarios showing only small differences.
Finally, regarding best-case scenarios, we observed an
improvement of up to 7.95 9s of availability, and cost
savings up to 33.76%.

For Sock Shop, results also reveal a notable increase
in availability, with a mean gain of approximately 1.15
9s and cost savings of 17.97%. These findings indi-
cate that CAAS effectively enhances both availabil-
ity and cost-effectiveness for the average case in this
application. In the most challenging scenarios encoun-
teredduringour experiments,weobserved adecrease in
availability, with the minimum availability gain reach-
ing as low as−2.31 9s. In these scenarios, cost savings
were also negatively impacted, with the minimum cost
saving recorded at −10.60%. Conversely, in the best-
case scenarios, we observed substantial improvements
in availability, with the maximum gain reaching 3.62
9s, while cost savings also demonstrated remarkable
performance, with the maximum recorded at 37.95%.

Table 6 shows the counting of the experiment results
grouped by quadrants. For Robot Shop, 82 of the 120
cases lie in quadrant 1, where CAAS wins on both cri-
teria. Quadrant 3, where CAAS loses on both criteria
has 18 cases. Quadrants 2 and 4, characterized by a
draw between both approaches, show 11 and 9 cases,
respectively. For Sock Shop, 142 of the 195 cases lie in
quadrant 1. Quadrant 3 has 3 cases. Finally, Quadrants
2 and 4, show 5 and 45 cases, respectively.

6.3 Discussion and Observations

Based on the values observed in the experiments for
the Robot Shop and Sock Shop applications, there are
several noteworthy points to discuss:

Availability improvement The results demonstrate
that, on average, CAAS leads to an increase in avail-
ability compared to the traditional approach (AS). This
suggests that CAAS has the potential to enhance the
overall system’s availability, which can be particularly
important for applications where uptime is critical.

Cost savings The cost savings achieved with CAAS
indicate that the approach can also be cost-effective.
This means that while maintaining or even improving
availability, it can do so at a reduced cost, which is an
important factor in optimizing resource allocation and
budget management.

Worst-case scenarios In the most challenging scenar-
ios, where system demands may be at their peak or
unusual conditions prevail, we observed a decrease in
availability when using CAAS. Additionally, in these
scenarios, therewere instances of negative cost savings.
It is important to highlight that these negative values fall
outside the typical range of cost savings. This suggests
that while CAAS generally performs well, there may
be exceptional cases where it could lead to temporary
dips in availability and unexpected cost increases.

Best-case scenarios On a more positive note, in
the best-case scenarios, CAAS showed substantial
improvements. This highlights the potential for signif-
icant performance enhancements and cost reductions
when the system operates under optimal conditions.

Table 6 Comparison with the AS: Evaluation of scenarios

Robot Shop Sock Shop
Quadrant Outcome Count % Count %

Upper right quadrant (Q1) Win 82 68.33 142 72.82

Upper left quadrant (Q2) Draw 11 9.17 5 2.56

Lower left quadrant (Q3) Loose 18 15.00 3 1.54

Lower right quadrant (Q4) Draw 9 7.50 45 23.08

123

80 Page 16 of 19 Journal of Grid Computing (2023) 21:80

In summary, the majority of cases show that CAAS
achieves better results when compared to the Cen-
tral Processing Unit (CPU)-based AS, demonstrating
the effectiveness in achieving cost-efficient resource
usage. These results underscore the value of a cost-
aware approach to resource management and show the
effectiveness of CAAS approach in achieving this goal
by being cost and availability-aware.

7 Limitations and Threats to Validity

In this section, we outline the limitations and potential
threats to the validity of CAAS, providing an overview
of factors that may impact the interpretation and gen-
eralization of our findings.
InstrumentationandmonitoringOne significant lim-
itation of CAAS is its reliance on extensive applica-
tion instrumentation and monitoring. This necessity
involves metrics such as the average response time
for each service and computing availability using these
values. However, not all applications are prepared for
this level of instrumentation, and some applications
may lack any instrumentation entirely. As a conse-
quence, implementing this method can become expen-
sive, both in terms of the initial investment required
to instrument the application and the ongoing mainte-
nance costs associated with collecting and analyzing
the necessary data.

Load scenario abstraction The load scenarios were
designed to mirror real user load patterns and behav-
iors; however, it is important to note that these tests
were executed without real users. While these scenar-
ios aim to simulate real-world conditions as accurately
as possible, the absence of real data may introduce a
level of abstraction that could impact the accuracy and
comprehensiveness of the test results.

Response time sensitivity to parameters Further-
more, it is important to recognize that response times
can be significantly influenced by the specific invoca-
tion parameters used during testing and variations in
these parameters, such as input data or request config-
urations, may lead to different performance outcomes.
Therefore, when interpreting response time data from
these tests, one needs to consider the potential impact of
parameter variations and acknowledge that real-world
usage may exhibit a wider range of response times due

to the dynamic nature of user inputs and system inter-
actions.

Service scope We excluded databases and queue ser-
vices from our analysis. While our focus on services
with Hypertext Transfer Protocol (HTTP) endpoints
addresses specific aspects of our research objectives,
we acknowledge this limitation. Additionally, we do
not consider workflow cycles where services call them-
selves using different endpoints. We intend to address
and incorporate these components as part of future
research to provide a more comprehensive analysis of
system performance.

8 Conclusion

In this paper,we presentCAAS, an efficient autoscaling
approach for cloud services that significantly improves
both availability and cost objectives in the majority of
cases, compared to the conventional CPU-based AS.
Evaluation results show an improvement between one
and two 9s in availability and a reduction of replication
costs of about 6% for the first case study application
(Robot Shop), and an average improvement of over
one 9 while reducing costs by approximately 18% for
the second case study application (Sock Shop). Also,
the CAAS approach improves both objectives simulta-
neously in around 68% of cases for Robot Shop, and
around 73% of cases for Sock Shop.

Moreover, in our evaluation, CAAS operates at a
faster pace than the frequently used collection period
of the monitoring system, allowing it to be applied to
scale cloud services. Our study suggests that CAAScan
be useful in practice for autoscaling cloud services. Fur-
ther research, including prioritizing objective functions
using weights, optimizing multiple workflows concur-
rently, and considering additionalmetrics such as queue
lengths and custom application metrics, might enhance
its performance in specific scenarios.

Acknowledgements The authors would like to thank the Cen-
tre for Informatics and Systems of the University of Coimbra
(CISUC) for providing the conditions for this work. This work
is funded in part by the Portuguese Foundation for Science and
Technology (FCT) through Doctoral Grant No. BD.06012.2021,
and in part by the FCT - Foundation for Science and Technol-
ogy, I.P./MCTES through national funds (PIDDAC), within the
scope of CISUC R&D Unit - UIDB/00326/2020 or project code
UIDP/00326/2020.

123

Page 17 of 19 80Journal of Grid Computing (2023) 21:80

Author contributions Andre Bento, Filipe Araujo and Raul
Barbosa conceptualized the solution proposed in the paper and
designed the experimental evaluation.While all have contributed
to the experimental design, Andre Bento executed the experi-
ments and obtained and processed the results. All authors dis-
cussed the objectives and the evaluation of results, the obser-
vations and the conclusions. Andre Bento drafted the complete
paper and Filipe Araujo and Raul Barbosa revised and updated
it. All authors approved the final manuscript.

Funding Open access funding provided by FCT|FCCN (b-on).
This work is funded by the project POWER (grant number
POCI-01-0247-FEDER-070365), co-financed by the European
Regional Development Fund (FEDER), through Portugal 2020
(PT2020), and by the Competitiveness and Internationalization
Operational Programme (COMPETE 2020).

Data Availability The datasets generated during the current
study are available from the corresponding author upon reason-
able request.

Declarations

Consent for Publication All authors gave their consent for this
publication.

Competing Interests The authors declare no competing inter-
ests.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Nickoloff, J., Kuenzli, S.: Docker in Action. Simon and
Schuster (2019)

2. Senthil Kumaran, S.: Practical LXC and LXD: Linux Con-
tainers for Virtualization and Orchestration. Springer (2017)

3. Luksa, M.: Kubernetes in Action. Simon and Schuster
(2017)

4. Qian, L., Luo, Z., Du, Y., Guo, L.: Cloud computing: an
overview. In: IEEE international conference on cloud com-
puting, pp. 626–631. Springer (2009)

5. Low, C., Chen, Y., Wu, M.: Understanding the determinants
of cloud computing adoption. Ind. Manag, Data Syst (2011)

6. Lewis, J., Fowler,M.:Microservices: a definition of this new
architectural term. https://martinfowler.com/ (2014)

7. Newman, S.: Building Microservices. O’Reilly Media, Inc.
(2021)

8. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M.,
Montesi, F., Mustafin, R., Safina, L.: Microservices: yester-
day, today, and tomorrow. In: Present and ulterior software
engineering, pp. 195–216 (2017)

9. Dragoni, N., Lanese, I., Larsen, S.T.,Mazzara,M.,Mustafin,
R., Safina, L.: Microservices: how to make your application
scale. In: Perspectives of system informatics: 11th interna-
tional Andrei P. Ershov informatics conference, PSI 2017,
Moscow, Russia, June 27-29, 2017, Revised Selected Papers
11, pp. 95–104. Springer (2018)

10. Amazon Web Services, Inc.: Amazon cloudwatch metrics
for Amazon EC2 auto scaling. https://docs.aws.amazon.
com/autoscaling/ec2/userguide/ec2-auto-scaling-metrics.
html

11. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy
of self-aware and self-adaptive cloud autoscaling systems.
ACM Comput. Surv. (CSUR) 51(3), 1–40 (2018)

12. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov,
S.: Microservices: The journey so far and challenges ahead.
IEEE Softw. 35(3), 24–35 (2018)

13. Instana: Robot shop: sample microservice application.
https://github.com/instana/robot-shop (2018). Accessed: 10
Feb 2023

14. Weaveworks: Sock shop: a microservice demo application.
https://microservices-demo.github.io (2017). Accessed: 17
Aug 2023

15. Nguyen, T.-T., Yeom, Y.-J., Kim, T., Park, D.-H., Kim, S.:
Horizontal pod autoscaling in Kubernetes for elastic con-
tainer orchestration. Sensors 20(16), 4621 (2020)

16. Amdahl, G.M.: Validity of the single processor approach to
achieving large scale computing capabilities. In: Proceed-
ings of the April 18-20, 1967, Spring Joint Computer Con-
ference AFIPS ’67 (Spring), pp. 483–485. Association for
Computing Machinery (1967)

17. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A
review of auto-scaling techniques for elastic applications in
cloud environments. J. Grid Comput. 12, 559–592 (2014)

18. Bauer, A., Lesch, V., Versluis, L., Ilyushkin, A., Herbst, N.,
Kounev, S.: Chamulteon: coordinated auto-scaling ofmicro-
services. In: 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), pp. 2015–2025.
IEEE (2019)

19. Srirama, S.N., Adhikari, M., Paul, S.: Application deploy-
ment using containers with auto-scaling for microservices
in cloud environment. J. Netw. Comput. Appl. 160, 102629
(2020)

20. Singh, P., Kaur, A., Gupta, P., Gill, S.S., Jyoti, K.: Rhas:
robust hybrid auto-scaling for web applications in cloud
computing. Clust. Comput. 24(2), 717–737 (2021)

21. Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-
objective optimization of container allocation in cloud archi-
tecture. J. Grid Comput. 16, 113–135 (2018)

22. Ali, I.M., Sallam, K.M., Moustafa, N., Chakraborty, R.,
Ryan, M., Choo, K.-K.R.: An automated task scheduling
model using non-dominated sorting genetic algorithm II
for fog-cloud systems. IEEE Trans. Cloud Comput. 10(4),
2294–2308 (2020)

123

80 Page 18 of 19 Journal of Grid Computing (2023) 21:80

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://martinfowler.com/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-metrics.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-metrics.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-metrics.html
https://github.com/instana/robot-shop
https://microservices-demo.github.io

23. Imdoukh, M., Ahmad, I., Alfailakawi, M.G.: Machine
learning-based auto-scaling for containerized applications.
Neural Comput. Appl. 32(13), 9745–9760 (2020)

24. Prachitmutita, I.,Aittinonmongkol,W., Pojjanasuksakul,N.,
Supattatham, M., Padungweang, P.: Auto-scaling microser-
vices on IaaS under SLA with cost-effective framework. In:
2018 Tenth International Conference on Advanced Compu-
tational Intelligence (ICACI), pp. 583–588. IEEE (2018)

25. Yu, G., Chen, P., Zheng, Z.: Microscaler: Automatic scaling
for microservices with an online learning approach. In: 2019
IEEE International Conference on Web Services (ICWS),
pp. 68–75. IEEE (2019)

26. Zhao, H., Lim, H., Hanif, M., Lee, C.: Predictive container
auto-scaling for cloud-native applications. In: 2019 Interna-
tionalConferenceon Information andCommunicationTech-
nology Convergence (ICTC), pp. 1280–1282 (2019)

27. Rzadca, K., Findeisen, P., Swiderski, J., Zych, P., Broniek,
P., Kusmierek, J., Nowak, P., Strack, B., Witusowski, P.,
Hand, S., et al: Autopilot: workload autoscaling at google.
In: Proceedings of the Fifteenth European Conference on
Computer Systems, pp. 1–16 (2020)

28. Coulson, N.C., Sotiriadis, S., Bessis, N.: Adaptive microser-
vice scaling for elastic applications. IEEE Internet Things J.
7(5), 4195–4202 (2020)

29. Marie-Magdelaine, N., Ahmed, T.: Proactive autoscaling
for cloud-native applications using machine learning. In:
GLOBECOM 2020-2020 IEEE Global Communications
Conference, pp. 1–7 (2020)

30. Khaleq, A.A., Ra, I.: Intelligent autoscaling of microser-
vices in the cloud for real-time applications. IEEE Access
9, 35464–35476 (2021)

31. Horn, A., Fard, H.M., Wolf, F.: Multi-objective hybrid
autoscaling of microservices in Kubernetes clusters. In:
European Conference on Parallel Processing, pp. 233–250.
Springer (2022)

32. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web appli-
cations in clouds: a taxonomy and survey. ACM Comput.
Surv. (CSUR) 51(4), 1–33 (2018)

33. Singh, P., Gupta, P., Jyoti, K., Nayyar, A.: Research on auto-
scaling of web applications in cloud: survey, trends and
future directions. Scalable Comput. Pract. Exp. 20(2), 399–
432 (2019)

34. Bauer, E., Adams, R.: Reliability and Availability of Cloud
Computing. Wiley (2012)

35. Bento, A., Soares, J., Ferreira, A., Duraes, J., Ferreira, J.,
Carreira, R., Araujo, F., Barbosa, R.: Bi-objective optimiza-

tion of availability and cost for cloud services. In: 2022 IEEE
21st International Symposium on Network Computing and
Applications (NCA), vol. 21, pp. 45–53 (2022)

36. Ding, J., Cao, R., Saravanan, I., Morris, N., Stewart, C.:
Characterizing service level objectives for cloud services:
realities and myths. In: 2019 IEEE International Confer-
ence on Autonomic Computing (ICAC), pp. 200–206. IEEE
(2019)

37. Bello, S.A., Oyedele, L.O., Akinade, O.O., Bilal, M., Del-
gado, J.M.D., Akanbi, L.A., Ajayi, A.O., Owolabi, H.A.:
Cloud computing in construction industry: use cases, bene-
fits and challenges. Autom. Constr. 122 (2021)

38. Kumar, M., Sharma, S.C., Goel, A., Singh, S.P.: A compre-
hensive survey for scheduling techniques in cloud comput-
ing. J. Netw. Comput. Appl. 143, 1–33 (2019)

39. AmazonWeb Services, Inc.: Amazon compute service level
agreement. https://aws.amazon.com/compute/sla/ (2022)

40. Richards, F.J.: A flexible growth function for empirical use.
J. Exp. Bot. 10(2), 290–301 (1959)

41. Adan, I., Resing, J.: Queueing theory. Eindhoven University
of Technology Eindhoven (2002)

42. Locust.io: Locust: what is locust. https://docs.locust.io/en/
stable/what-is-locust.html

43. Blank, J., Deb, K.: Pymoo: multi-objective optimization in
python. IEEE Access 8, 89497–89509 (2020)

44. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective opti-
mization using genetic algorithms: a tutorial. Reliab. Eng.
Syst. Saf. 91(9), 992–1007 (2006)

45. Deb, K., Sindhya, K., Okabe, T.: Self-adaptive simulated
binary crossover for real-parameter optimization. In: Pro-
ceedings of the 9th Annual Conference on Genetic and Evo-
lutionaryComputation (GECCO’07), pp. 1187–1194.Asso-
ciation for Computing Machinery (2007)

46. Chicco, D., Warrens, M.J., Jurman, G.: The coefficient of
determination R-squared is more informative than SMAPE,
MAE, MAPE, MSE and RMSE in regression analysis eval-
uation. PeerJ Comput. Sci. 7, 623 (2021)

47. Casalicchio, E., Perciballi, V.: Auto-scaling of containers:
the impact of relative and absolute metrics. In: 2017 IEEE
2nd International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W), pp. 207–214. IEEE (2017)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

Page 19 of 19 80Journal of Grid Computing (2023) 21:80

https://aws.amazon.com/compute/sla/
https://docs.locust.io/en/stable/what-is-locust.html
https://docs.locust.io/en/stable/what-is-locust.html

	Cost-Availability Aware Scaling: Towards Optimal Scaling of Cloud Services
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Method
	4.1 Availability Function
	4.2 Modeling the Availability of Replicated Services

	5 Case Study
	5.1 Implementation Details
	5.2 Availability Results
	5.3 Cost Results
	5.4 Performance Evaluation

	6 Comparative Analysis of Results
	6.1 Availability and Cost Comparisons
	6.2 The differences in Availability and Cost
	6.3 Discussion and Observations

	7 Limitations and Threats to Validity
	8 Conclusion
	Acknowledgements
	References

