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Local Search Heuristics for the Multidimensional
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Abstract

The Multidimensional Assignment Problem (MAP) (abbrestht-AP in the case of dimensions) is an extension of
the well-known assignment problem. The most studied cad¢Ad® is 3-AP, though the problems with larger values
of s also have a large number of applications. We consider dekmmern neighborhoods, generalize them and propose
some new ones. The heuristics are evaluated both thedetical experimentally and dominating algorithms are
selected. We also demonstrate a combination of two neigiolodis may yield a heuristics which is superior to both of
its components.
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1 Introduction

The Multidimensional Assignment Proble(lWlAP) (abbreviatecs-AP in the case ok dimensions, also
called(axial) Multi Index Assignment ProblemIAP, [5,29]) is a well-known optimization problem. Itis
an extension of thAssignment Problef®P), which is exactly the two dimensional case of MAP. Wil
can be solved in the polynomial time [25}AP for everys > 3 is NP-hard([13] and inapproximable [Eb]
The most studied case of MAP is the case of three dimendigr® [|,[11) 20 37] though the problem
has a host of applications for higher numbers of dimensiergs, in matching information from several
sensors (data association problem), which arises in ptaoking [27/30], computer vision [39] and some
others[[3|.5, 7], in routing in meshes [5], tracking elementarticles[[33], solving systems of polynomial
equations([6], image recognition [14], resource alloaajiA], etc.

For a fixeds > 2, the problenms-AP is stated as follows. LeX; = X5, = ... = X, = {1,2,...,n}.
We will consider only vectors that belong to the Cartesiandpct X = X; x X5 x ... x X;. Each
vectore € X is assigned a non-negative weighte). For a vectore € X, the componen¢; denotes
its jth coordinate, i.e.¢; € X;. A collection A of t < n vectorsA!, A2, ..., A® is a(feasible) partial
assignmenif A;ﬂ #* A;? holds for each # k andj € {1,2,...,s}. Theweightof a partial assignmem

isw(A) = Zle w(A?). An assignmentor full assignmentis a partial assignment with vectors. The
objective ofs-AP is to find an assignment of minimal weight.

*A preliminary version of this paper was published in GolumBestschrift, volume 5420 of Lect. Notes Comput. Sci., page
100-115, Springer, 2009.

TRoyal Holloway, University of Londonyutin@cs.rhul.ac.uk

tRoyal Holloway, University of Londonjaniel . karapetyan@gmail .com
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We also provide germutation formof the assignment which is sometimes more convenient. Let
m, T, ..., Ts DE permutations of(y, Xo, ..., X, respectively. Thenrym, ... w4 is an assignment with
the weight) """ | w(m (i)m2(i) ... ms(i)).

It is obvious that one permutation, say the first one, may keglfixithout any loss of generalityr; =
1., wherel,, is the identity permutation of size. Then the objective of the problem is as follows:

A graph formulation of the problem is as follows. Havingsapartite graphG with partsX;, Xo, ...,
X, where| X;| = n, find a set of: disjoint cliques inG of the minimal total weight if every cliquein G
is assigned a weighi(e).

Finally, an integer programming formulation of the problsnas follows.

min Z w(iy ... is) * Tiy .4,

11E€X1,..,1s€Xs

subject to

Z Tiy.iy = 1 \Vlll S X1 s

i2€EX2,...,is€EX,
Z Tiy. i, =1 Vis € X5,
11€X1,..,0s—1€Xs-1
wherez;, ;. € {0,1}forall iy, ...,isand|X;|=... = |X,| =n.
Sometimes the problem is formulated in a more general wayif = n1, | Xa| = no, ..., | Xs| = ns

and the requirement; = ny = ... = n, is omitted. However this case can be easily transformedimo

problem described above by complementing the weight m&drann x n x ... x n matrix with zeros,
wheren = max; n;.

The problem was studied by many researchers. Several kpas&s of the problem were intensively
studied in the literature (see_[26] and references theré)fanfew classes of instances polynomial time
exact algorithms were found, see, e.gl[[8, 9, 21]. In masgsMAP remains hard to solve [26]36]. For
example, if there are three sets of points of sizen a Euclidean plain and the objective is to findriples
of points, one from each set, such that the total circumfaren area of the corresponding triangles is
minimal, the corresponding 3-AP is still NP-hard[[36]. Theymptotic properties of some special instance
families are studied ir [14].

As regards the solution methods, apart from exact and appation algorithms([4, 11, 26, 31, B2],
several heuristics including construction heuristicslgl/23] 28], greedy randomized adaptive search pro-
cedures|[l, 274, 28, 35], metaheuristics|[10, 20] and parfadlaristics [28] are presented in the literature.
Several local search procedures are proposed and disdngdgd, 5,9/ 10, 20, 28, 35].

The difference between the construction heuristics andllsearch is sometimes crucial. While a
construction heuristic generates a solution from scratah &hus, has some solution quality limitation,
local search is intended to improve an existing solution émas, can be used after a construction heuristic
or as a part of a more sophisticated heuristic, so calledhmatéstic.

The contribution of our paper is in collecting and genemagjizall local search heuristics known from
the literature, proposing some new ones and detailed ttiemrand evaluating them both theoretically and
experimentally. For the purpose of experimental evalmatie also thoroughly discuss, classify the existing
instance families and propose some new ones.
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In this paper we consider only the general case of MAP and, thllithe heuristics which rely on the
special structures of the weight matrix are not includedh@domparison. We also assume that the number
of dimensionss is a small fixed constant while the sizecan be arbitrary large.

2 Heuristics

In this section we discuss some well known and some new MARI leearch heuristics as well as their
combinations.

2.1 Dimensionwise Variations Heuristics

The heuristics of this group were first introduced by Bandedl. [5] for MAP with decomposable costs.
However, having a very large neighborhood (see below), #teyery efficient even in the general case.
The fact that this approach was also used by Huang and Limasabhdearch procedure for their memetic
algorithm [20] confirms its efficiency.

The idea of the dimensionwise variation heuristics is aefa. Consider the initial assignmentin
the permutation formd = m 7, ... 7, (See Sectiohl1). Lei(A, p1, po, - - ., ps) be an assignment obtained
from A by applying the permutations, ps, . . ., ps t0 71, o, . . ., s respectively:

P(A, p1,p2, .-+, ps) = p1(m1)p2(m2) . .. ps(Ts) - (1)

Letpp(A, p) be an assignmem( A, p1, p2, .. ., ps), Wherep; = pif j € D andp; = 1,, otherwise (,, is
the identity permutation of size):

- p ifleD p if2eD p ifseD
po(A,p) =p (A’ {1n otherwise’ | 1,, otherwise’ """’ | 1,, otherwise/ ° @

On every iteration, the heuristic selects some nonemptpset{1,2,..., s} of dimensions and searches
for a permutation such thatv(pp (A, p)) is minimized.

For every subset of dimensioig, there aren! different permutationg but the optimal one can be
found in the polynomial time. Letwap(u, v, D) be a vector which is equal to vectarin all dimensions
j€{1,2,...,s}\ D and equal to vectar in all dimensiong € D:

v, ifjeD forj=1,2,...,s. 3)

swap(u, v, D); = {

Let matrix[M; ;] xn be constructed as
M, ;= w(swap(Ai, A7, D)). (4)

It is clear that the solution of the corresponding 2-AP iso#lyethe required permutatiop. Indeed, as-
sume there exists some permutatigrsuch thatv(pp (4, p’)) < w(pp(A4, p)). Observe thapp (4, p) =
{swap(A?, A?%) D) : iec{1,2,...,n}}. Then we have

Zw(swap(Ai, AP0 DY) < Zw(swap(Ai, APD D)),

i=1 =1

Sincew(swap(A*, AP D)) = M, ), the sumy_"" | w(swap(A’, A?), D)) is already minimized to
the optimum and ng’ can exist.
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The neighborhood of a dimensionwise heuristic is as follows
Nov(A) = {pp(A,p) : D€ D andpis apermutatioh (5)
whereD includes all dimension subsets acceptable by a certaindtieuObserve that

pD(Avp) = pE(Avp_l) ) (6)
wherep~(p) = p(p~!) = 1,andD = {1,2,...,s} \ D, and, hence,

{pp(A,p): pisapermutatioh = {ps(4,p): pisapermutatioh (7

for any D. From [7) and the obvious fact thag (A4, p) = p1.2.... 1 (4, p) = A for anyp we introduce the
following restrictions forD:

DeD=D¢D and 2,{1,2,...,8}¢D. (8)

With these restrictions, one can see that for any pair ofintissetsD;, Do € D the equationp, (4, p1) =
pp, (A, p2) holds if and only ifp; = p2 = 1,,. Hence, the size of the neighborhabgy (A) is

[Nov(A)| = D[ (n! = 1)+ 1. )

In [5] it is decided that the number of iterations should netdxponential with regards to neither
nor s while the size of the maximur® is |D| = 2°~! — 1. Therefore two heuristics, LS1 and LS2, are
evaluated in[[b]. LS1 includes only singleton valuesiofi.e., D = {D : |D| = 1}; LS2 includes
only doubleton values oD, i.e.,D = {D : |D| = 2}. ltis surprising but according to bothI[5] and
our computational experience, the heuristic LS2 produaasevsolutions than LS1 though it obviously
has larger neighborhood and larger running times. We imgthe heuristic by allowingD| < 2, i.e.,

D = {D: |D| < 2}. This does not change the theoretical time complexity offlgerithm but improves
its performance. The heuristic LS1 is calledV in our paper; LS2 witHD| < 2 is called2Dv. We also
assume (see Secti@h 1) that the value & a small fixed constant and, thus, introduce a heurigic¢

which enumerates all feasible (recéll ())c {1,2,...,s}.

The order in which the heuristics take the valdeg D in our implementations is as follows. FobV
itis{1},{2},...,{s}. 2DV begins adDV and then takes all pairs of dimensiogs; 2}, {1,3}, ..., {1, s},
{2,3},...,{s— 1, s}. Note that because dfl(8) it enumerates no pairs of vectors$03, and fors = 4 it
only takes the following pairsf2, 3}, {2,4} and{3, 4}. sDV takes first all set® of size 1, then all set®
of size 2 and so on up td| = [s/2]. If s is even then we should take only half of the sbtef sizes/2
(recall [X)); for this purpose we take all the subset®of {2,3,...,s}, |D| = s/2 in the similar order as
before.

It is obvious thatVipy(A) C Nopy(A) C Nypv(A) for any s however fors = 3 all the neighborhoods
are equal and fog = 4 2DV andsDV also coincide.

According to [8) and{9), the neighborhood sizelb¥ is

|N1Dv(A)| =S- (TL' — 1) +1 ,

of 2DV is 2 )-(nl=1)+1 if {3,4}
s—1 __ . (n! — + IT s € 5
INzov(A)|={ () +s)-(n=1)+1 ifs>5 ’
and ofsDV is
[Naow(4) = (2" = 1)~ (n! = 1) + 1.

The time complexity of every run of DV i©(|D| - n?) as every 2-AP take®(n?) and, hence, the time
complexity of1DV is O(s - n?), of 2DV is O(s? - n3) and of MDV isO(25~1 - n?).
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2.2 k-opt

The k-opt heuristic for 3-AP fork = 2 andk = 3 was first introduced by Balas and Saltzmah [4] as a
pairwiseandtriple interchange heuristic2-opt as well as its variations were also discussed in [1[ 10, 27,
28,31/35] and some other papers. We generalize the heddsarbitrary values ok ands.

The heuristic proceeds as follows. For every subsgtactors taken in the assignmeit removes all
these vectors froml and inserts some nekvvectors such that the assignment feasibility is presermed a

its weight is minimized. Another definition is as followsrfevery set of distinct vectoes, e?, ..., eF € A
let X} = {e],e3,... el forj =1,2,... k. Let A" = {e",¢?,... ¢'*} be the solution of this-AP of
sizek. Replace the vectoes, €2, . . ., ¥ in the initial assignmentl with e’ e’2, ..., e/~

The time complexity ok-opt is obviouslyO ((}) - k!*~1); for k < n it can be replaced wit®(n" -
k's=1). It is a natural question if one can use some faster solveneryéteration. Indeed, according to
Sectior1 it is possible to solveAP of sizek in O(k!*=2 - k3). However, it is easy to see that*~! <
k!*=2 . k3 for everyk up to 5, i.e., it is better to use the exhaustive search foreagonablé. One can
doubt that the exact algorithm actually takés 2 - k2 operations but even for the lower boudk!*—2 - k2)
the inequalityk!*—! < k!*=2 . k2 holds for anyk < 3, i.e., for all the values of we actually consider.

Now let us find the neighborhood of the heuristic. For som&said a subset C 7 let a permutation
p of elements inZ be anI-permutationif p(i) = i for everyi € 7\ I, i.e., if p does not move any

elements except elements from Let E = {e!,e?,...,eF} C A be a set ofk distinct vectors inA.
Forj = 2,3,...,s let p; be anE;-permutation, wherdZ; = {e},e3,...,e5}. Then a setV (A, E) of

all assignments which can be obtained franby swapping coordinates of vectakscan be described as
follows:

W(A,E) = {p(A,1,,p2,p3,...,ps) : pjisankE;-permutationforj =2,3,...,s} .

Recall thatl,, is the identity permutation of sizeandp(A, p1, p2, - - ., ps) is defined byl[(lL).
The neighborhoodV;,.opi(A) is defined as follows:

Neo(A) = |J W(AE). (10)
ECA,|E|=k

LetY, Z C AsuchthatY| = |Z| = k. Observe thalV (A, Y)NW (A, Z) is nonempty and apart from
the initial assignmen# this intersection may contain assignments which are mabifigdy in the common
vectorsY N Z. To calculate the size of the neighborhood:afpt let us introducéV’ (A, E) as a set of all
assignments ifl’ (A, E) such that every vector i’ is modified in at least one dimension, wheéfeC A
is the set ofc selected vectors in the assignment

W'(AE) = {A’ EWAE): [ANA|=n- k} )
Then the neighborhoaly,.opi(A) of k-opt is

Niop(4A)= | W'(AE) (11)
ECA,|E|<LEk

and sincédV(A,Y)NW(A,Z) =g if Y # Z we have

M= 3w ni=3 (1) 12)

k
ECA,|E|<k i=0
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whereN® = |W (A, E)| for any E with |E| = i. Observe that
W/(A,E)=W(A,E)\ | W(AE)
E'CE
and|W (A, E)| = k!*~* for |E| = k and, hence,
NFE = 5=t — kf (k) Nt (13)
=0 ¢

It is obvious thatN® = 1 since one can obtain exactly one assignment (the given gnehanging no
vectors. From this an@{13) we had&' = 0, N2 = 25~! —1andN? = 65~ — 3. 25~ 4 2. From this
and [12) follows

| Noopl(A)] = 1 + (;‘) (271 — 1), (14)
| Naopt(A) =1+ <g’> 271 = 1)+ (g) (651 —3.271 49 (15)

In our implementation, we skip an iteration if the corresgiog set of vectord either consists of the
vectors of the minimal weight{(e) = min.cx w(e) for everye € E) or all these vectors have remained
unchanged during the previous runiebpt.

It is assumed in the literaturgl[4,131,135] thabpt for £ > 2 is too slow to be applied in practice.
However, the neighborhoall;.opt do not only includes the neighborhoddq,, _1.opt but also grows expo-
nentially with the growth ok and, thus, becomes very powerful. We decided to inclidpt and3-opt in
our research. Greater valueskofire not considered in this paper because of nonpracticaldomplexity
(observe that the time complexity #fopt is O(n? - 245~1)) and evers-opt with all the improvements de-
scribed above still takes a lot of time to proceed. Howestept is more robust when used in a combination
with some other heuristic (see Section2.4).

It is worth noting that our extension of the pairwise (triglgerchange heuristic[4] is not typical. Many
papers[[1, 10, 27, 31, B5] consider another neighborhood:

Ni-opt+(A) = {pp(A4,p) : D C{1,2,...,s},|D| =1 andp moves at most elements ,

wherepp is defined in[(2). The size of such neighborhoo@¥g.ope:(A)| = s - (}) - (k! — 1) + 1 and
the time complexity of one run of-opt* in the assumptiot < n is O(s - n* - k!), i.e., unlikek-opt, it is
not exponential with respect to the number of dimensionich is considered to be important by many
researchers. However, as it is stated in Sedflon 1, we asthateis a small fixed constant and, thus, the
time complexity ofk-opt is still reasonable. At the same time, observe tNabp(A) C Nipv(A) for
anyk < n, i.e., 1DV performs as good asopt* with the time complexity oB-opt*. Only in the case of
k = 2 the heuristi-opt* is faster in theory however it is known|[7] that the expeciatttcomplexity of
AP is significantly less tha®(n?) and, thus, the running times fopt* and1DV are similar whilelDV is
definitely more powerful. Because of this we do not considept* in our comparison.
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2.3 Variable Depth Interchange (v-opt)

The Variable Depth Interchang@/DI) was first introduced by Balas and Saltzman for 3-AP agaristic
based on the well known Lin-Kernighan heuristic for the élawg salesman problemli[4]. We provide
here a natural extensiaropt of the VDI heuristic for thes-dimensional case, > 3, and then improve this
extension. Our computational experiments show that thedugul version of-opt is superior to the natural
extension of VDI with respect to solution quality at the cobt reasonable increase in running time. In
what follows,v-opt refers to the improved version of the heuristic unless etrser specified.

In [4], the heuristic is described quite briefly. Our contitibn is not only in the extending, improving
and analyzing it but also in a more detailed and, we beliekgrer explanation of it. We describe the
heuristic in a different way to the description provided4, [however, both versions of our algorithm are
equal to VDI in case of = 3. This fact was also checked by reproduction of the compariatievaluation
results reported ir [4].

Further we will use functiorU (u, v) which returns a set of swaps between vectorandv. The
difference between the two versionswbpt is only in theU (u, v) definition. For the natural extension of
VDI, let U(u,v) be a set of all the possible swaps (d€e (3)) in at most one diorebetween the vectors
andv, where the coordinates in at most one dimension are swapped:

U(u,v) = {swap(u,v,D) : Dc{l,2,...,s}and|D| < 1} .

For the improved version of-opt, let U(u,v) be a set of all the possible swaps in at mpst2|
dimensions between the vecterandw:

U(u,v) = {swap(u,v,D) : D C{1,2,...,s}and|D| < s/2} .

The constraintD| < s/2 guarantees that at least half of the coordinates of everp araequal to the
first vector coordinates. The computational experimentsvstnat removing this constraint increases the
running time and decreases the average solution quality.

Let vectoru(u, v) be the minimum weight swap between vecto@ndu:

p(u,v) = argmin w(e) .
eeU (u,v)

Let A be an initial assignment.

1. Forevery vector € A do the rest of the algorithm.

2. Initialize thetotal gain G = 0, thebest assignmempest = A, and a set of available vectofs =
A\ {c}.

3. Find vectorm € L such thatw(u(c, m)) is minimized. Sev = u(c,m) andv; = {c;,m;} \ {v;}
foreveryl < j <s. Noww € U(c,m) is the minimum weight swap afwith some other vecton
in the assignment, andis the complementary vector.

4. SetG = G + w(c) —w(v). If now G < 0, setA = Apestand go to the next iteration (Step 1).

5. Markm as an unavailable for the further swaps: = L \ {m}. Note thatc is already marked
unavailablec ¢ L.

6. Replacen andc with v andv. Setc = w.

7. Ifw(A) < w(Apes), Save the new assignment as the best ahgsi= A.
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8. Repeat from Stdgd 3 while the total gain is positive (sep@jandL # .

The heuristic repeats until no improvement is found duringra The time complexity of one run of
v-optis O(n3-25~1). The time complexity of the natural extension of VDIi%n? - s), and the computation
experiments also show a significant difference betweenuhgring times of the improved and the natural
extensions. However, the solution quality of the naturaéesion fors > 7 is quite poor, while for the
smaller values of it produces solutions similar to or even worse tBai solutions at the cost of much
larger running times.

The neighborhoodV,.qpi(A) is not fixed and depends on the MAP instance and initial asségA.
The number of iterations (runs of Step 3) of the algorithm eary fromn to n2. Moreover, there is no
guarantee that the algorithm selects a better assignmemnifete corresponding swap isif(c, m). Thus,
we do not provide any results for the neighborhood-opt.

2.4 Combined Neighborhood

We have already presented two types of neighborhoods ipdier, let us sagimensionwiséSectiori 2.1
andvectorwisg(Section§ 2P anld 2.3). The idea of the combined heuristi isse the dimensionwise and
the vectorwise neighborhoods togeather, combining thémsimcalled Variable Neighborhood Searich [38].
The combined heuristic improves the assignment by movingatthe local optimum with respect to the
dimensionwise neighborhood, then it improves it by movingithe local minimum with respect to the
vectorwise neighborhood. The procedure is repeated hetdssignment occurs in the local minimum with
respect to both the dimensionwise and the vectorwise neitjlolods.

More formally, the combined heuristidV,,: consists of a dimensionwise heurisfitV’ (either 1DV,
2DV or sDV) and a vectorwise heuristigt (either2-opt, 3-opt or v-opt). DV proceeds as follows.

1. Apply the dimensionwise heuristi¢ = DV (A).
2. Repeat:

(a) Save the assignment weight w(A) and apply the vectorwise heuristic= opt(A).

(b) If w(A) = z stop the algorithm.

(c) Save the assignment weight= w(A) and apply the dimensionwise heuristic= DV (A).
(d) If w(A) = z stop the algorithm.

Step1 of the combined heuristic is the hardest one. Indeéedtyipical that it takes a lot of iterations
to move a bad solution to a local minimum while for a good sohutt takes just a few iterations. Hence,
the first of the two heuristics should be the most efficient @areg it should perform quickly and produce a
good solution. In this case the dimensionwise heuristieweore efficient because, having approximately
the same as vectorwise heuristics time complexity, thegcheauch larger neighborhoods. The fact that
the dimensionwise heuristics are more efficient than théovetse ones is also confirmed by experimental
evaluation (see Sectifmh 4).

Itis clear that the neighborhood of a combined heuristieiingd as follows:

NDVopt(A) = Npv (A) U Nopt(A) , (16)

whereNpy (A) andNop(A) are neighborhoods of the corresponding dimensionwise aecimvise heuris-
tics respectively. To calculate the size of the neighbothdgy,,(A) we need to find the size of the
intersection of these neighborhoods. Observe that

Nov(A) N Niopt(A) = {pp(A,p) : D € Dandp moves at mosk elements , a7
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wherepp (A, p) is defined by[(R). This means thatyjf is the number of permutations arelements which
move at most elements, the intersectidn {17) has size

|Nov(A) N Ng-opt(A)| = D] - (1 — 1) + 1. (18)

The number;, can be calculated as
k

n
7“1@—;(2.) “d; , (19)
whered; is the number of derangements oaelements, i.e., permutations oelements such that none of
the elements appear on their placés=i! - >, _(—=1)"/m! [19]. Fork = 2,7, = 1+ (}); for k = 3,
rs =14 (5) +2(3). From [9), (12),[(I6) and(18) we immediately have

> (1)

whereN* andr, are calculated according to (13) afd](19) respectively.sBuwiting the value of, we
have:

‘NDVk-opt(A)| =1+ |D| ' (n' - 1) + - |D| : (Tk - 1) ) (20)

[Novea )] = L4121 (0t = 1)+ ()@ =) =121 (5)  and (21)

2

T (;‘) (6°=1 —3.2°71 +2) — DI - [(Z) + 2(2)] (22)

One can easily substitul®| = s, |D| = (3) and|D| = 2°~! —1 to (2]) or [22) to get the neighborhood
sizes ofLlDV,, 2DV, sDV,, 1DV3, 2DV3 andsDV3. We will only show the results fosDV,:

‘NDVs-om(A)‘ =1+|D|-(n!—1)+ (n) (2271 — 1)

Nepv,(A)| = 14 (277" = 1) (nl = 1) + (Z) @ - -2 -1 (Z)

=14+@2 =1 -(n!=1), (23)

i.e.,|Nspv,(A4)] = |Nspv(A)|. SinceNgpy(A) C Nypy,(A) (seeldB)), we can conclude thiltpy,(A4) =
N,pv(4). Indeed, the neighborhood Bfopt can be defined as follows:

No.opt= {pp(A4,p) : D C{2,3,..., s} andp swaps at most two elemerts

which is obviously a subset df,py (A) (seel(d)). Hence, the combined heuristi/; is of no interest.

For other combinations the intersecti@nl(17) is signifisasmaller than both neighborhoodg,y (A)
ande_Opt(A) (recall that the neighborhodd,.qp: has a variable structure). Indeédpy (A)| > |Nov(A4)N
Ni-opt(A)| becauséD|-(n!—1) > |D|-(ry —1) for k < n. Similarly, | No-opi(A)| > [Nov(A) N Ni-opt(A)]
becausd}) (21 — 1) > |D| - (3) if |D| < 257!, which is the case fatDV and2DV if s is large enough.
Finally, | N3.opt(A)| > [Nov(A) N Niopt(A)| because(h) (257 — 1) + (5) (657! — 3 - 2571 4+ 2) >
|- [(5) +2(3)], which is true even fofD| = 2°71, i.e., forsDV.

The time complexity of the combined heuristiadgn"* - k!*~! + |D| - n®) in case ofopt = k-opt and
O(n3 - (2571 +|D|)) if opt = v-opt. The particular formulas are provided in the follogitable:
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2-opt 3-opt v-opt
1DV O(2* t-n?2+s-n3)  O@6°1-n3) O2° n?)
2DV 027t -n?2+s%-n3) O@6°1-n3) O(2°-n?)
sDV  (no interest) O6°~1-n3)  O(2° n3)

Note that all the combinations witbropt andv-opt have equal time complexities; this is because the
time complexities oB-opt andv-opt are dominant. Our experiments show that the actual runimmegstof
3-opt andv-opt are really much higher then even tkiav running time. This means that the combinations
of these heuristics witkDV are approximately as fast as the combinations of thesestiesrwith light di-
mensionwise heuristickDV and2DV. Moreover, as it was noticed above in this section, the dsioenwise
heuristic, being executed first, simplifies the job for theteewise heuristic and, hence, the increase of
the dimensionwise heuristic power may decrease the ruriniregof the whole combined heuristic. At the
same time, the neighborhoods of the combinations viithare significantly larger than the neighborhoods
of the combinations witiDV and2DV. We can conclude that the ‘light’ heuristie®V3, 2DV, 1DV, and
2DV, are of no interest because the ‘heavy’ heuristidg; and sDV,, having the same theoretical time
complexity, are more powerful and, moreover, outperfortiedlight’ heuristics in our experiments with
respect to both solution quality and running time on avegagkin most of single experiments.

2.5 Other algorithms
Here we provide a list of some other MAP algorithms preseintéke literature.

e A host of local search procedures and construction hecsisthich often have some approximation
guarantee(([5,19, 11, 21, 26,/127] and some others) are prdposspecial cases of MAP (usually with
decomposable weights, see Section 3.2) and exploit théfisganf these instances. However, as it
was stated in Sectidd 1, we consider only the general casé\&f Me., all the algorithms included in
this paper do not rely on any special structure of the weigdtrim

e A number of construction heuristics are intended to geresatutions for general case MAP] [4,
16,[23,[28]. While some of them are fast and low quality, leedy, some, likeMax-Regret,
are significantly slower but produce much better solutiohsspecial class of construction heuris-
tics, Greedy Randomized Adaptive Search Procedure (GRA&R) also investigated by many re-
searchers |1, 27, 28, B5].

e Several metaheuristics, including a simulated annealioggaiurel[10] and a memetic algorithm[20],
were proposed in the literature. Metaheuristics are stiphted algorithms intended to search for the
near optimal solutions in a reasonably large time. Procegfdir much longer than local search and
being hard for theoretical analysis of the running time erreighborhood, metaheuristics cannot be
compared straightforwardly to local search procedures.

e Some weak variations af-opt are considered in |1, 27, B1,135]. While our heuritiopt tries all
possible recombinations of a pair of assignment vectaes,25~! combinations, these variations
only try the swaps in one dimension at a time, isscombinations for every pair of vectors. We have
already decided that these variations have no practicst, for details see Section|2.2.

3 Test Bed

While the theoretical analysis can help in heuristic dessghection of the best approaches requires empir-
ical evaluation[[18, 34]. In this section we discuss the best and in Sectidnl 4 the experimental results are
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reported and discussed.

The question of selecting proper test bed is one of the magsbiitant questions in heuristic experi-
mental evaluation [34]. While many researchers focusechstainces with random independent weights
(13,14,[24 ] 31] and some others) and random instances witlefireed solutions [10, 15, 23], several more
sophisticated models are of greater practical interedd|,[81,[12] 26]. There is also a number of papers
which consider real-world and pseudo real-world instaifi@e27,/30] but the authors of this paper suppose
that these instances do not well represent all the instdaseas and building a proper benchmark with the
real-world instances is a subject for another research.

In this paper we group all the instance families into two ®tss instances with independent weights
(Section3.11) and instances with decomposable weightdi¢B¢8.2). Later we show that the heuristics
perform differently on the instances of these classes and, this devision helps us in correct experimental
analysis of the local search algorithms.

3.1 Instances With Independent Weights

One of the most studied class of instances for MAR#@dom Instance Familyin Random, the weight
assigned to a vector is a random uniformly distributed irgkgalue in the intervala,b — 1]. Random
instances were used in [1,[3/4] 32] and some others.

Since the instances are random and quite large, it is pessildstimate the average solution value for
the Random Instance Family. The previous research in thas[@d] show that if: tends to infinity than the
problem solution approaches the bound i.e., the minimal possible assignment weight (observettiea
minimal assignment includesvectors of weight:). Moreover, an estimation of the mean optimal solution
is provided in [14] but this estimation is not accurate erfofay our experiments. 1 [18] we prove that it
is very likely that every big enougRandom instance has at least one-assignment, where-assignment
means an assignment of weight

Let o be the number of assignments of weightand letc = b — a. We would like to have an upper
bound on the probabilitfr(c = 0). Such an upper bound is given in the following theorem whasefp
(seel[18]) is based on the Extended Jansen Inequality (ssardin 8.1.2 of [2]).

Theorem 1. For anyn such thatn > 3 and

n—1 s—1 L
20'2"71a (24)

e

B n—2 (n)'ck
— 35 — k
we havePr(a = 0) < e~ 2+, whereo kgl CRCES R CEeE Tt

The lower bounds dPr(a > 0) for different values ot andn and forb — a = 100, are reported below.

s=4 s=05 5s=06 s=7
n Pr(a>0) n Pr(a>0) n Pr(a>0) n Pr(a >0)
15 0.575 10 0.991 8 1.000 7 1.000
20 0.823 11 0.998
25 0.943 12 1.000
30 0.986
35 0.997

40 1.000
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One can see that a 4-ARandom instance has afun)-assignment with the probability which is very
close to 1 ifn > 40; a 5-AP instance has gan)-assignment with probability very close to 1 for> 12,
etc.; so, the optimal solutions for all tlRandom instances used in our experiments (see Settion 4) are very
likely to be of weightan. Fors = 3 Theorenill does not provide a good upper bound, but we areable t
use the results from Table Il in][4] instead. Balas and Sadtzneport that in their experiments the average
optimal solution of 3-AP forRandom instances reduces very quickly and has a small value even$o26.
Since the smalleRandom instance we use in our experiments has size 150, we assume that all 3-AP
Random instances considered in our experiment are very likely te@l@an-assignment.

Useful results can also be obtained from (11).in [14] whichrisupper bound for the average optimal
solution. Grundel, Oliveira and Pardalds|[14] considergame instance family except the weights of the
vectors are real numbers uniformly distributed in the wekfa, b]. However the results from [14] can be
extended to our discrete case. kéfe) be a real weight of the vecterin a continuous instance. Consider
a discrete instance witlr(e) = |w'(e)] (if w'(e) = b, setw(e) = b — 1). Note that the weightv(e) is
a uniformly distributed integer in the intervia, b — 1]. The optimal assignment weight of this instance is
not larger than the optimal assignment weight of the cowntisinstance and, thus, the upper bound for the
average optimal solution for the discrete case is correct.

In fact, the upper bound; (see [14]) for the average optimal solution is not accurateugh. For
examplez! ~ an + 6.9 for s = 3, n = 100 andb — a = 100, andz; ~ an + 3.6 for s = 3, n = 200
andb — a = 100, so it cannot be used for = 3 in our experiments. The upper bousfl gives a better
approximation for larger values &f e.g.,z} ~ an + 1.0 for s = 4, n = 40 andb — a = 100, however,
Theorent ] provides stronger resula(a > 0) = 1.000 for this case).

Another class of instances with almost independent weigh@GP Instance Familywhich contains
pseudo-random instances with predefined optimal solutiG®sinstances are generated by an algorithm
produced by Grundel and Pardalds![15]. The generator igaibtwesigned fors-AP for arbitrary large
values ofs andn. However, it is relatively slow and, thus, it was impossiloigenerate largéP instances.
Nevertheless, this is what we need since finally we have ot §GP) and large Random) instances with
independent weights with known optimal solutions.

3.2 Instances With Decomposable Weights

In many cases it is not easy to define a weight fos-duple of objects but it is possible to define a relation
between every pair of objects from different sets. In thisecane should usgecomposable weighf37]
(or decomposable costs.e., the weight of a vectar should be defined as follows:

wie) = f (d1,2 dL3 ds—Ls

€1,€e27 7e1,e3’ " " ) 6571765) ) (25)
whered"’ is a distance matrix between the s&tsand X; and f is some function.

The most natural instance family with decomposable weigt@sique, which defines the functiofi as
the sum of all arguments:

n—1 n
we(e) =Y > di, (26)
i=1 j=i+1

The Clique instance family was investigated inl [5./11) 12] and somersthi was proven [11] that MAP
restricted tcClique instances remains NP-hard.

A special case oflique is Geometric Instance Familyin Geometric, the setsXy, Xo, ..., X, corre-
spond to sets of points in Euclidean space, and the distagtee2bn two points € X; andv € X; is
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defined as Euclidean distance; we consider the two dimealditurclidean space:

dg(u,0) = \/ (e = 02)2 + (1 — )2

Itis proven|[36] that th&eometric instances are NP-hard to solve foe 3 and, thusGeometric is NP-hard
for everys > 3.

In this paper, we propose a new special case of the deconlpaseights,SquareRoot. It is a modifi-
cation of theClique instance family. Assume we hayeadars and: planes and each radar observes all the
planes. The problem is to assign signals which come froremdifft radars to each other. It is quite natural to
define a distance function between each pair of signals fiifferent radars, and for a set of signals which
correspond to one plane the sum of the distances should Hesen{@8) is a good choice. However, it is
not actually correct to minimize the total distance betwdenassigning signals but one should also ensure
that none of these distances is too large. Same requirermgpesr in a number of other applications. We
propose a weight function which can leads to both small wittence between the assigned signals and
small dispersion of the distances:

wd) = |3 (dide,)" (27)

i=1 j=i+1

Similar approach is used i [R6] though they do not use squrg i.e., a vector weight is just a sum of
squares of the edge weights in a clique. In addition, the edgghts in [26] are calculated as distances
between some nodes in a Euclidean space.

Another special case of the decomposable weidghtsjuct, is studied in[[9]. Burkard et al. consider
3-AP and define the weight(e) asw(e) = al, - a2, - a2,, wherea', a® anda® are random vectors of
positive numbers. Itis easy to show that fiveduct weight function can be represented in the fofnd (25). It
is proven that the minimization problem for tReoduct instances is NP-hard in case= 3 and, thus, itis

NP-hard for every > 3.

4 Computational Experimentation

In this section, the results of empirical evaluation areortegrd and discussed. The experiments were con-
ducted for the following instances (for instance family diions see Sectidd 3):

e Random instances where each weight was randomly chos€dn,ig, ..., 100}, i.e.,a = 1 andb =
101. According to Subsectidn 3.1, the optimal solutions of ladl tonsidere@kandom instances are
very likely to bean = n.

e GP instances with predefined optimal solutions (see Settifin 3.

e Cligue andSquareRoot instances, where the weight of each edge in the graph wasmdpndelected
from{1,2,...,100}. Instead of the optimal solution value we use the best kn@irtisn value.

e Geometric instances, where both coordinates of every point were rahdselected fror{1, 2, ...,100}.
The distances between the points are calculated precisely the weight of a vector is rounded to
the nearest integer. Instead of the optimal solution vale@ise the best known solution value.

e Product instances, where every valué was randomly selected frofi, 2,...,10}. Instead of the
optimal solution value we use the best known solution value.
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An instance name consists of three parts: the numhdrdimensions, the type of the instance (‘gp’
for GP, ‘r’ for Random, ‘c’ for Clique, ‘g’ for Geometric, ‘p’ for Product and ’'sr’ for SquareRoot), and
the sizen of the instance. For exampler40 means a five dimensionBandom instance of size 40. For
every combination of instance size and type we generatedlstérices, using the numbheled = s+n +1
as a seed of the random number sequences, whsran index of the instance of this type and size,
1 € {1,2,...,10}. Thereby, every experiment is conducted for 10 differestances of some fixed type
and size, i.e., every number reported in the tables belowesage for 10 runs for 10 different instances.

The sizes of all buGP instances are selected such that every algorithm couldepsothem all in
approximately the same time. TIl&P instances are included in order to examine the behavior ef th
heuristics on smaller instances (recall tBatis the only instance set for which we know the exact solutions
for small instances).

All the heuristics are implemented in Visual C++. The evétaplatform is based on AMD Athlon 64
X2 3.0 GHz processor.

Further, the results of the experiments of three differgo$ are provided and discussed:

e In Subsectiof 411, the local search heuristics are appid¢itet assignments generated by some con-
struction heuristic. These experiments allow us to exclkmleeral local searches from the rest of
the experiments, however, the comparison of the resultsrigpticated because of the significant
difference in both the solution quality and the running time

¢ In Subsectiof 412, two simple metaheuristics are used tatedhe running times of different heuris-
tics. This is done by varying of number of iterations of thetaheuristics.

e In Subsectiof4]3, the results of all the discussed appesaaie gathered in two tables to find the most
successful solvers for the instance with independent andrdposable weights for every particular
running time.

4.1 Pure Local Search Experiments

First, we run every local search heuristic for every instaegactly once. The local search is applied to
solutions generated with one of the following constructiemristics:

1. Trivial, which was first mentioned in [4] adiagonal Trivial construction heuristic simply assigns
Al =iforeveryi=1,2,...,nandj =1,2,...,s.

2. Greedy heuristic was discussed in many papers, see,[€.0l [4] 9.71681 23]. It was prover [16]
that in the worst caséreedy produces the unique worst solution; however, it was showhtHat in
some caseGreedy may be a good selection as a fast and simple heuristic.

3. Max-Regret was discussed in a number of papers, see, eld.! [4]9, 165P3A8 for Greedy, it is
proven [16] that in the worst cas@ax-Regret produces the unique worst solution however many
researchers$ [4, 23] noted thaax-Regret is quite powerful in practice.

4. ROM was first introduced in_[16] as a heuristic of a large domoratiumber. On every iteration,
the heuristic calculates the total weight for every set @ftees with the fixed first two coordinates:
M;j =3 cx er=ier—; W(€). Thenitsolvesa 2-AP for the weight matriX and reorders the second
dimension of the assignment according to this solution &edfitst dimension of the assignment.
The procedure is repeated recursively for the subproblearevtine first dimension is excluded. For
details see [16, 23].
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We will begin our discussion from the experiments startedtftrivial assignments. The results reported
in Table$? andl3 are averages for 10 experiments since exgfthese tables corresponds to 10 instances
of some fixed type and size but of different seed values (seeeabThe tables are split into two parts; the
first part contains only the instances with independent tsi¢sP and Random) while the second part
contains only the instances with decomposable weidgtigue, Geometric, Product andSquareRoot). The
average values for different instance families and numbfatBnensions are provided at the bottom of each
part of each table. The tables are also split vertically ediog to the classes of heuristics. The winner in
every row and every class of heuristics is underlined.

The value of the solution error is calculated(@as(A) /w(Apes) — 1) - 100%, whereA is the obtained
assignment andyes;is the optimal assignment (or the best known one, see above).

In the group of the vectorwise heuristics the most powenfidl © definitely3-opt. v-opt outperforms it
only in a few experiments, mostly three dimensional onesaff¢hat the neighborhood @fopt increases
exponentially with the increase of the number of dimensi)nés it was expected®-opt never outperforms
3-opt since No.opt C N3.opt (Se€ Section 212). The tendencies for the independent wiegances and for
the decomposable weight instances are similar; the onfgrdifice which is worth to note is that all but
v-opt heuristics of this group solve thi&oduct instances very well. Note that the dispersion of the weights
in Product instances is really high and, thwusgpt, which minimizes the weight of only one vector in every
pair of vectors while the weight of the complementary veatay increase arbitrary, cannot be efficient for
them.

As one can expectpV is more successful thabVv and2DV is more successful tharbv with respect
to the solution quality (obviously, all the heuristics ofstlyroup perform equally for 3-AP argbv and
sDV are also equal for 4-AP, see Sectionl 2.1). However, for thites with decomposable weights all
the dimensionwise heuristics perform very similarly andrefor the larges, sDV is not significantly more
powerful thanlDV or 2DV which means that in case of decomposable instances the ffiosid iterations
are wher|D| = 1. We can assume thatdfis the number of edges connecting the fixed and unfixed parts of
the clique, then an iteration of a dimensionwise heuristiather efficient when is small. Observe that,
e.g., forClique the diversity of values in the weight mati/; ;],.<» (seel(#)) decreases with the increase
of the number and, hence, the space for optimization on every iteratideéeasing. Observe also that in
the case = 1 the iteration leads to the optimal match between the fixediafided parts of the assignment
vectors.

All the combined heuristics show improvements in the sotlutjuality over each of their components,
i.e., over both corresponding vectorswise and dimensiseacal searches. In particulapv, outper-
forms both2-opt and 1DV, 2DV, outperforms botl2-opt and2DV, sDV; outperforms bott8-opt and sDV
and sDV, outperforms botlv-opt andsDV. Moreover,sDV; is significantly faster thag-opt and sDV, is
significantly faster tham-opt. Hence, we will not discuss the single heurisBespt andv-opt in the rest of
the paper. The heuristia®V, and2DV,, obviously, perform equally for 3-AP instances.

While for the instances with independent weights the coiimn of the dimensionwise heuristics with
the vectorwise ones significantly improves the solutionligyat is not the case for the instances with
decomposable weights (observe thal performs almost as well as the most powerful heurishes)
which shows the importance of the instances division. Weclemte that the vectorwise neighborhoods are
not efficient for the instances with decomposable weights.

Next we conducted the experiments starting from the othestcoction heuristics. But first we com-
pared the construction heuristics themselves, see TaliésInot surprising thatrivial produces the worst
solutions. However, one can see tfidtial outperformssreedy andMax-Regret for everyProduct instance.
The reason is in the extremely high dispersion of the weiigh®soduct. Both Greedy andMax-Regret con-
struct the assignments by adding new vectors to it. The idecighich vector should be added does not
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depend (or does not depend enough in caséaatRegret) on the rest of the vectors and, thus, at the end of
the procedure only the vectors with huge weights are aMeildfor other instance familieSreedy, Max-
Regret andROM perform similarly though the running time of the heuristiesery different.Max-Regret

is definitely the slowest construction heuristiteedy is very fast for theRandom instances (this is because
of the large number of vectors of the weightind the implementation features, see [23] for details) and
relatively slow for the rest of the instancd®®M’s running time almost does not depend on the instance
and is constantly moderate.

Starting fromGreedy (Table[4) significantly improves the solution quality. Thigstly influenced the
weakest heuristics, e.@®;opt average error decreased in our experiments from 59% and 2% and
6% for independent and decomposable weights respectitielygh, e.g., the most powerful heuristidv;
error also noticeably decreased (from 2.8% and 5.8% to 2:/08@&%). As regards the running time,
Greedy is slower than most of the local search heuristics and, timgstunning times of all bu¢Dv; and
sDVy heuristics are very similar. The best of the rest of the fstigs in this experiment isDV though1DV,
and2DV, perform similarly.

Starting fromMax-Regret improves the solution quality even more but at the cost of lemge running
times. In this case the difference in the running time of theal search heuristics almost disappears and
sDV3z, the best one, reaches the average error values 1.3% andf@.28tlependent and decomposable
weights respectively. Starting froROM improves the quality only for the worst heuristics. Thislislpably
because all the best heuristics contsidv which does a good vectorwise optimization (recall tRatv
exploits a similar to the dimensionwise neighborhood idéajhe same time, starting froROM increases
the running time of the heuristics significantly; the resfr bothMax-Regret andROM are excluded from
the paper; one can find them on the web [22].

It is clear that the construction heuristics are quite slemparing to the local search and we should
answer the following question: is it worth to spend so mugteton the initial solution construction or there
is some way to apply local search several times in order todrgpthe assignments iteratively? It is known
that the algorithms which apply local search several tinmescalled metaheuristics. There is a number of
different metaheuristic approaches such as tabu searckmetit algorithms, but this is not the subject of
this paper. In what follows, we are going to use two simpleahetristicsChain andMultichain.

4.2 Experiments With Metaheuristics

It is obvious that there is no sense in applying a local seprobedure to one solution several times be-
cause the local search moves the solution to a local minimitmn&spect to its neighborhood, i.e., the
second exploration of this neighborhood is useless. Inraaapply the local search several times, one
should perturb the solution obtained on the previous i@natT his idea immediately brings us to the first
metaheuristic, let us saghain:

1. Initialize an assignment;
2. SetApesi= A;
3. Repeat:
(a) Apply local searctd = LS(A);
(b) If w(A) < w(Apes) S€tApesi= A;
(c) Perturb the assignmeAt= Perturb(A).

In this algorithm we use two subroutindsS(A) and Perturb(A). The first one is some local search
procedure and the second one is an algorithm which remogeag\thn assignment from the local minimum
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by a random perturbation of it. The perturbation should benst enough such that the assignment will
not come back to the previous position on the next iterati@metime though it should not be too strong
such that the results of the previous search would be tadelyroyed. Our perturbation procedure selects
p = [n/25] + 1 vectors in the assignment and perturbs them randomly. kretbrds,Perturb(A) is just
a random move of thp-opt heuristic. The parameters of the procedure are obtainetiesrily.

One can doubt i€hain is good enough for large running times and, thus, we intredulittle bit more
sophisticated metaheuristigultichain. Unlike Chain, Multichain maintains several assignments on every
iteration:

1. Initialize assignmentipes;

2. SetP = & and repeat the following(c + 1)/2 times:
P = PU{LS(Perturb(Apesy)}
(recall thatPerturb(A) produces a different assignment every time);

3. Repeat:

(a) Save the besgtassignments fron® into C1, Cy, . .., C. such thatw(C;) < w(Cit1);
(b) If w(C1) < w(Chesy) SEtApest= C1.

(c) SetP = @ and for everyi = 1,2,...,c repeat the following: — ¢ 4+ 1 times: P = P U
{LS(Perturb(C;))}.

The parametee is responsible for the power dfultichain; we usec = 5 and, thus, the algorithm
performsc(c + 1)/2 = 15 local searches on every iteration.

The results of the experiments witthain running for 5 and 10 seconds are provided in Tables and 6
respectively. The experiments are repeated for three mantisin heuristics]Trivial, Greedy andROM. It
was not possible to includ¢ax-Regret in the comparison because it takes much more than 10 seconds f
some of the instances.

The diversity in solution quality of the heuristics dece@svith the usage of a metaheuristic. This is
because the fast heuristics are able to repeat more timeshbalow ones. Note thabvs, which is the
most powerful single heuristic, is now outperformed by otieuristics. The most successful heuristics for
the instances with independent and decomposable weighi®ér and1DV respectfully, thoughDV, and
2DV, are slightly more successful thanv, for theGP instances. This result also holds faaltichain, see
Tables¥ anfll8. The successi@lV confirms again that a dimensionwise heuristic is most ssfgeshen
|D| = 1 if the weights are decomposable and that it is more efficeenépeat these iterations many times
rather than tryD| > 1. For the explanation of this phenomenon see Setfidn 4.1sli¢twess oiDV, and
2DV, for GP means existence of a certain structure in the weight matdtéese instances.

One can see that the initialization of the assignment ismuaial for the final solution quality. However,
using Greedy instead ofTrivial clearly improves the solutions for almost every instance lacal search
heuristic. In contrast t@reedy, using ofROM usually does not improve the solution quality. It only
influences2-opt which is the only pure vectorwise local search in the congoarirecall thaROM has a
dimensionwise structure and, thus, it is good in combimatith vectorwise heuristics).

The Multichain metaheuristic, given the same time, obtains better rethdtsChain. However,Multi-
chain fails for some combinations of slow local search and harthimse because it is not able to complete
even the first iteration in the given timehain, having much easier iterations, do not have this disadganta

Giving more time to a metaheuristic also improves the sotugjuality. Therefore, one is able to obtain
high quality solutions using metaheuristics with largenimg times.
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4.3 Solvers Comparison

To compare all the heuristics and metaheuristics disclingbis paper we produced Tablds 9 10. These
tables indicate which heuristics should be chosen to sa@vicplar instances in the given time limitations.
Several best heuristics are selected for every combinafitire instance and the given time. A heuristic is
included in the table if it was able to solve the problem inghen time, and if its solution quality is not
worse tharl.1 - w(Apesy) and its running time is not larger thanl - tpes; WhereApestis the best assignment
produced by the considered heuristics aRgis the time spent to producé,es;

The following information is provided for every solver inAlad9 and 1l0:

e Metaheuristic type for Chain, M C for Multichain or empty if the experiment is single).

e Local search procedure-ppt, 1DV, 2DV, sDV, 1DV,, 2DV,, sDV; sDV, or empty if no local search
was applied to the initial solution).

e Construction heuristic the experiment was started with (1-R or empty if the assignment was
initialized by Trivial).

e The solution error in percent.
The following solvers were included in this experiment:
e Construction heuristicGreedy, Max-Regret andROM.

e Single heuristicg-opt, 1DV, 2DV, sDV, 1DV,, 2DV,, sDV3; andsDV,started from eithefrivial, Greedy,
Max-Regret or ROM.

e Chain andMultichain metaheuristics for eithex-opt, 1DV, 2DV, sDV, 1DV,, 2DV,, sDV; or sDV, and
started from eitheTrivial, Greedy, Max-Regret or ROM. The metaheuristics proceeded until the given
time limitations.

Note that for certain instances we exclude duplicatingesslyrecall that all the dimensionwise heuris-
tics perform equally for 3-AP as well &bV and sDV perform equally for 4-AP, see Sectibn2.1). The
common rule is that we leawdV rather thareDV and2DV rather tharLDV. For example, if the list of suc-
cessful solvers for some 3-AP instance cont&rDV Gr, C 2DV Gr andC sDV Gr, then onlyC sDV Gr
will be included in the table. This is also applicable to tleenbined heuristics, e.g, having 1BWR and
2DV, R for a 3-AP instance, we include only 2BYR in the final results.

The last row in every table indicates the heuristics whighthe most successful on average, i.e., the
heuristics which can solve all the instances with the bestaage results.

Single construction heuristics are not presented in tHe$abingle local search procedures appear only
for the small allowed times when all other heuristics takeertone to run; the most of the best solvers
are the metaheuristicsultichain seems to be more suitable th@hain for large running times; however,
Multichain does not appear for the instances with small This is probably because the power of the
perturbation degree increases with the decrease of trentessize (note thakerturb(A) perturbs at least
two vectors in spite of.).

The most successful heuristics for the assignment irdaéibn areTrivial and Greedy; Trivial is useful
rather for small running times4ax-Regret andROM appear only a few times in the tables.

The success of a local search depends on the instance typaendst successful local search heuristic
for the instance with independent weights is definitédy,. The sDV heuristic also appears several times
in Table[9, especially for the small running times. For th&admces with decomposable weights, the most
successful are the dimensionwise heuristics and, in pdatidDV.
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5 Conclusions

Several neighborhoods are generalized and discussed ethéer. An efficient approach of joining different
neighborhoods is successfully applied; the yielded hgcsishowed that they combine the strengths of
their components. The experimental evaluation for a satsihnces of different types show that there are
several superior heuristic approaches suitable for @iffekinds of instances and running times. Two kinds
of instances are selected: instances with independentitgesmd instances with decomposable weights.
The first ones are better solvable by a combined heukiBtiG; the second ones are better solvableLby.
In both cases, it is good to initialize the assignment withGhreedy construction heuristic if there is enough
time; otherwise one should use a trivial assignment as itialione. The results can also be significantly
improved by applying metaheuristic approaches for as Iqupasible.

Thereby, it is shown in the paper that metaheuristics apgpdiehe fast heuristics dominate slow heuris-
tics and, thus, further research of some more sophisticagtdheuristics such as memetic algorithms is of
interest.
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Tab. 1: Construction heuristics comparison.

Solution error, %

Running times, ms

Inst. Best Trivial Greedy Max-Regret ROM Trivial Greedy MRegret ROM
3gp100 504.4 157 _6 6 10 0 40 799 9
3r150 150.0 4997 54 _29 34 0 14 4253 26
4gp30 145.2 158 9 9 2 0 35 206 7
4r80 80.0 4985 74 49 76 0 12 27285 278
5gp12 66.2 147 13 ~9 9 0 6 36 2

5r40 40.0 4911 159 116 169 0 6 37214 686
6gp8 41.8 143 25 1 14 0 5 33 2

6r22 22.0 5180 295 ~ 218 310 0 6 24750 861
79p5 25.6 157 27 _6 20 0 1 8 1

7r14 14.0 5116 _377 454 396 0 2 17032 805
8gp4 19.2 113 21 7 28 0 1 8 1

8r9 9.0 5262 579 514 543 0 2 5604 342
All avg. 2610 137 ~118 134 0 11 9769 252
GP avg. 146 17 6 14 0 15 182 4
Rand. avg. 5075 256 _ 230255 0 7 19356 500
3-AP avg. 2577 30 17 22 0 27 2526 17
4-AP avg. 2571 41 29 39 0 23 13745 142
5-AP avg. 2529 86 62 89 0 6 18625 344
6-AP avg. 2662 160 110 162 0 5 12391 432
7-AP avg. 2637 202 230 208 0 2 8520 403
8-AP avg. 2687 300 _ 261 286 0 1 2806 171
3cql50 1738.5 1219 41 _ 20 37 0 56 4388 27
39150 1552.0 865 19 27 3 0 53 4226 28
3p150 14437.2 76 215 122 7 0 580 4318 37
3sr150 1077.8 1250 42 _ 21 43 0 60 4363 29
4cq50 3034.8 400 27 22 32 0 156 3713 161
4950 1705.2 492 21 29 2 0 217 3828 148
4p50 20096.8 103 484 278 _ 8 0 1030 3725 151
4sr50 1496.6 367 25 20 32 0 193 3847 150
5cq30 4727.1 218 20 _17 24 0 640 9636 583
5930 2321.8 340 26 33 _3 0 936 9650 604
5p30 55628.5 137 1017 646 _ 8 0 2711 9536 619
5sr30 1842.0 196 16 13 28 0 666 9627 615
6cql8 5765.5 142 15 15 18 0 426 6758 267
6918 2536.0 260 26 27 _3 0 563 6802 262
6p18 135515.3 163 2118 1263 8 0 1098 6758 323
6srl8 1856.3 121 13 13 19 0 420 6775 261
7cql2 6663.7 91 14 _11 15 0 1037 6653 924
7912 3267.2 156 19 23 2 0 1217 6614 944
7pl2 558611.7 346 3162 1994 9 0 1872 6463 335
7sr12 1795.7 78 9 ~9 15 0 980 6510 268
8cqg8 7004.9 62 10 10 _ 10 0 465 2416 130
898 3679.5 105 15 21 _1 0 569 2446 120
8p8 2233760.0 177 3605 2309 _ 9 0 710 2413 140
8sr8 1622.1 52 7 7 10 0 474 2448 132
All avg. 309 457 290 _14 0 714 5580 302
Clique avg. 355 21 _16 23 0 463 5594 349
Geom. avg. 370 21 27 2 0 593 5594 351
Product avg. 167 1767 1102 _ 8 0 1334 5536 268
SR avg. 344 19 14 24 0 465 5595 242
3-AP avg. 853 79 47 _22 0 187 4324 30
4-AP avg. 340 139 87 _19 0 399 3778 152
5-AP avg. 223 270 177 _15 0 1238 9612 605
6-AP avg. 171 543 329 _12 0 627 6773 278
7-AP avg. 168 801 509 10 0 1276 6560 618
8-AP avg. 99 909 587 _ 8 0 555 2431 131
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Tab. 2: Local search heuristics started from Trivial.

Solution error, %

Inst. Best 2-opt 3-opt v-opt 1DV 2DwDV 1DV, 2DV, sDV3 sDVy
3gp100 504.4 19.6_10.019.8 49 49 49 49 49 46 49
3r150 150.0 1345 160 15 24 24 24 24 24 21 07
4gp30 145.2 17.4 42134 111 79 7.9 107 79 42 715
4r80 80.0 1150 73 20 205 115115 189 115 41 16
5gp12 66.2 106 _2.1 85 125 6.9 6.9 101 69 1.8 6.9
5r40 40.0 1045 43 _3.8 63.0 343343 473 343 35 53
6gp8 41.8 6.7 24 53 12.4 5.7 5.0 65 55 24 438
6r22 22.0 1055 _0.9 8.6 125.0 62.3 545 809 555 1.8 9.1
79p5 25.6 6.3 _3.910.2 215 9.0 5.9 59 51 39 55
r14 14.0 95.7 _0.036.4 2443 111.4_72.1 921 70.0 0.7 16.4
8gp4 19.2 6.8 _5.210.9 172 94 6.2 78 6.8 52 6.2
8r9 9.0 81.1 0.067.8 323.3 173.3 60.0 73.3 77.8 0.0 40.0
All avg. 58.6 4.7 15.7 715 36.6_226 301 240 29 91
GP avg. 112 46113 133 73 6.1 76 6.2 37 6.0
Rand. avg. 106.1 4.720.0 129.8 65.9_39.1 525 419 2.0 122
3-AP avg. 77.1 13.0 10.6 36 36 3.6 36 36 33 28
4-AP avg. 66.2 5.7 7.7 158 9.7 9.7 148 9.7 42 46
5-AP avg. 575 32 6.1 37.8 20.620.6 28.7 206 2.7 6.1
6-AP avg. 56.1 1.7 6.9 68.7 34.0_29.8 43.7 305 21 6.9
7-AP avg. 51.0 2.0233 1329 60.2_39.0 49.0 375 2.3 109
8-AP avg. 439 2.6394 170.3 914 _33.1 406 423 _2.6 23.1
3cql150 1738.5 125.1 49.9 22.8 20.1 20.1 20.1 20.1 20.1 199 18.9
39150 1552.0 _0.0 0.0 59 0.0 0.0 0.0 00 00 00 0.0
3p150 14437.2 0.1 0.015.0 0.0 0.0 0.0 0.0 0.0 0.0 00
3sr150 1077.8 144.2 64.0 28.0 22.0 22.0 22.0 220 22.0 218 21.3
4cq50 3034.8 525 31.3_30.3 233 23.123.1 23.2 231 214 _20.1
4950 1705.2 _0.0 0.0 1112 0.2 0.0 0.0 00 00 00 0.0
4p50 20096.8 0.0 _0.049.6 0.1 0.0 0.0 01 0.0 0.0 0.0
4sr50 1496.6 56.8 30.631.9 27.2 24.824.8 27.2 24.8 23.4 239
5cq30 4727.1 30.9 18.721.4 16.9 16.616.6 16.8 16.6 15.5 16.1
5g30 2321.8 _0.0 0.0 9.2 0.2 0.0 0.0 00 00 00 0.0
5p30 55628.5 0.0 _0.053.2 0.1 0.0 0.0 0.0 00 0.0 0.0
5sr30 1842.0 38.3_19.023.9 21.7 20.420.4 211 204 17.6 18.3
6cql8 5765.5 17.6 12.216.1 11.5 10.311.6 11.3 10.3 10.111.1
6918 2536.0 0.0 0.0 154 0.5 0.0 0.0 00 00 0.0 00
6p18 135515.3 0.0 _0.098.3 0.2 0.0 _0.0 0.0 00 0.0 0.0
6sr18 1856.3 209 119174 12.7 139 13.6 12,7 139 _11512.6
7cql2 6663.7 119 5.310.4 80 7.0 59 71 6.9 57 58
7912 3267.2 ~0.0 0.0 99 0.1 0.0 0.0 00 00 0.0 0.0
7p12 558611.7 0.0 0.023.6 02 0.0 0.0 0.0 0.0 0.0 00
7sr12 1795.7 12.1 _7.611.0 85 10.1 7.1 83 101 59 7.0
8cq8 7004.9 6.4 _3.0 85 64 44 48 53 41 22 47
898 3679.5 0.0 0.0 91 02 0.0 0.0 00 00 0.0 0.0
8p8 2233760.0 0.0 0.043.8 0.1 0.0 0.0 0.0 0.0 0.0 00
8sr8 1622.1 6.6 _26 7.4 57 5.0 47 49 44 35 47
All avg. 21.8 10.7 32.2 78 74 1.3 75 74 66 6.9
Clique avg. 40.7 20.0_18.2 14.4 13.613.7 14.0 135 _12512.8
Geom. avg. _0.0 0.0 101 0.2 0.0 _0.0 00 00 00 0.0
Product avg. 0.0 0.080.6 0.1 0.0 0.0 0.0 0.0 0.0 00
SR avg. 46.5 22.6_199 16.3 16.1 15.4 16.0 16.0 _13.9 14.7
3-AP avg. 67.3 285_179 10.5 10.5 10.5 105 105 104 101
4-AP avg. 27.3 _15530.7 12.7 12.012.0 126 120 11.2 _11.0
5-AP avg. 17.3 9.426.9 9.7 9.3 93 95 93 83 86
6-AP avg. 9.6 _6.036.8 6.2 6.1 6.3 6.0 6.1 54 6.0
7-AP avg. 6.0 3.238.7 42 43 3.2 38 43 29 32
8-AP avg. 3.2 141422 31 24 24 26 21 14 24
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Tab. 3: Local search heuristics started from Trivial.

Running time, ms

Inst. 2-opt 3-opt v-opt 1DV 2DVsDV 1DV, 2DV, sDV3 sDVy

3gp100 6.2 820.6 181.8 14.3 14.016.5 18.4 _16.7 430.6 79.0
3r150 19.81737.9 65.7 17.6 18.7 _17.1 22.7 18.9 147.8 454
4gp30 15 150.3 45.0 0712 11 14 14 1169 175
4r80 10.5 9875 645 _7.918.0 15.3 11.2 18.4 344.8 98.2
5gp12 0.3 385 3.6 0.2 04 05 05 05 306 16
5r40 16.9 4259 343 2372 63 46 86 3869 353
6gp8 0.2 572 25 0.2 0.3 04 04 05 420 13
6r22 2.2 2189 16.7 0926 39 19 43 259.0 227
79p5 0.1 489 0.9 0.1 02 03 0.1 03 400 09
14 1.4 2371 120 0416 29 18 3.0 2109 155
8gp4 0.1 1175 0.8 0.2 03 06 0.2 03 723 09
8r9 0.9 1919 6.7 0311 23 10 31 1777 71
All avg. 5.0 4194 36.2 3855 56 53 6.3 1883 27.1
GP avg. 1.4 2055 39.1 2.6 27 32 3.5 3.3 1221 169
Rand. avg. 8.6 633.2 333 4982 79 7.2 9.4 2545 37.4
3-AP avg. 13.01279.2 123.8  16.016.4 16.8 20.5 17.8289.2 62.2
4-AP avg. 6.0 568.9 547 4396 82 6.3 9.9 2308 578
5-AP avg. 8.6 2322 19.0 1338 34 25 45 2087 185
6-AP avg. 1.2 138.1 9.6 0515 21 11 24 1505 12.0
7-AP avg. 0.7 143.0 6.5 0309 16 1.0 16 1255 8.2
8-AP avg. 0.5 154.7 3.8 0307 14 0.6 1.7 1250 4.0
3cql50 22.14366.5 1388.4 42.1 39.3 349 41.0 46.0 1503.9 497.6
39150 119.02229.3 780.0 26.2 28.1 25,5 37.2 33.01299.5 201.2
3p150 15.42149.7 847.1  82.089.8 89.7 _96.0101.9 1730.1 458.6
3sr150 121.73949.9 11575  36.B7.5 37.9 41.2 47.1 1400.9 469.6
4cq50 6.1 872.0 308.9 3885 73 6.1 10.8 468.0 167.2
4950 5.3 5429 251.2 3759 59 6.7 _6.6 273.0 87.3
4p50 5.7 586.6 251.2 _7.314.2 13.6 13.4 15.7 4415 955
4sr50 5.61009.3 296.4 3374 6.2 6.0 7.9 4243 1116
5cq30 4.61087.3 177.7 2052 55 33 6.0 560.0 63.5
5g30 3.7 6739 1825 1841 40 3.6 57 3198 418
5p30 4.5 762.8 103.6 27101 95 6.1 12.2 580.3 44.1
5sr30 4.81115.4 163.5 1947 45 3.6 6.3 667.7 63.2
6cql8 3512059 634 1027 37 15 31 6302 26.6
6918 2.0 7316 552 0918 27 19 24 3463 181
6p18 3.1 9298 311 1338 54 25 52 6583 19.9
6sr18 2.31369.7 59.9 0929 30 15 34 7784 344
7cql2 1.71658.3 317 0620 34 12 29 7285 126
7912 1410483 282 0613 24 11 2.0 5554 11.1
7p12 2113244 175 0824 64 1.8 3910889 146
7srl2 1.91622.4 409 0720 35 11 25 9656 11.0
8cq8 1121123 133 0515 28 1.0 2.019095 85
898 1.016755 15.6 0408 21 08 12 7285 7.2
8p8 1.72051.4 7.6 0412 31 0.9 1814929 79
8sr8 1324399 164 0313 29 1.0 1812527 8.1
All avg. 5.91563.1 262.0 9.211.6 11.9 ~11.7 13.8 866.8 103.4
Clique avg. 6.51883.7 330.6 8399 96 9.0 11.8 966.7 129.4
Geom. avg. _5.41150.2 218.8 5670 7.1 8.5 85 5871 611
Product avg. ~5.4300.8 209.7 15.820.2 21.3 20.1 23.4 998.7 106.8
SR avg. 6.31917.8 289.1 7293 97 9.1 115 9149 116.3
3-AP avg. 19.53173.8 1043.3 46.648.7 47.0 53.8 57.0 1483.6 406.8
4-AP avg. 5.7 752.7 276.9 4590 82 8.0 10.2 401.7 115.4
5-AP avg. 4.4 909.9 156.8 2160 59 42 75 5320 53.2
6-AP avg. 2.71059.2 524 1028 37 19 35 6033 2438
7-AP avg. 1.71413.4 296 0719 39 1.3 2.8 8346 123
8-AP avg. 1.22069.7 132 0412 27 0.9 1713459 79
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Tab. 4: Local search heuristics started from Greedy.

Solution error, %

Running times, ms

Inst. 2-opt 1DV 2DV sDV 1DV, 2DV, sDVs sDV,  2-opt 1DV 2DV sDV 1DV, 2DV, sDV3 sDVy

3gp100 43 34 34 34 34 34 3334 004004 004 004 005 005 0.36 0.09
3r150 6.7 1.2 1.2 12 12 12 08 07 0.02 0.02 0.02 0.03 0.02 003 011 0.5
4gp30 45 37 36 36 36 36 2636 004 003004 004 004 004 011 0.05
4r80 158 79 61 61 7.9 61 26_ 15 001002 002 002 002 002 021 0.08
5gp12 54 63 45 45 53 45 1845 001001 0.01 0.01 001 001 003 001
5r40 185 19.8 135 135 150 135 2335  0.010.01 001 001 001 001 0.18 0.04
6gp8 41 89 55 43 60 45 2438 001001 001 001 001 001 0.04 0.01
6r22 259 441 28.6 26.4 268 27.3 2786  0.010.01 001 001 001 001 021 0.02
79p5 55 113 70 59 66 59 3551 000 0.000.00 0.00 0.00 0.00 0.04 0.00
7r14 37.9 886 557 33.6 514 4430050  0.00 0.000.00 0.00 0.00 0.00 0.14 0.01
8gp4 42 115 52 36 42 36 3136  0.00000 000 0.00 000 000 0.07 0.00
8r9 40.0 158.9 107.8 54.4 656 656 0.80.0  0.00 0.000.00 0.00 0.00 0.00 0.13 0.01
All avg. 15.2 305 202 134 164 153 2169  0.01001 001 001 001 001 0.14 0.03
GP avg. 47 75 49 42 48 43 2840  0.02002 002 002 002 002 0.11 0.03
Rand. avg. 258 53.4 355 225 28.0 263 1.9 001001 0.01 0.01 001 001 0.16 0.03
3-AP avg. 105 23 23 23 23 23 21_ 20 003003 003 004 004 004 024 007
4-AP avg. 101 58 49 49 57 49 26 25 0.02003 003 003 003 003 0.16 0.06
5-AP avg. 12.0 130 90 9.0 101 90 2040  0.01001 001 001 001 001 0.1 0.02
6-AP avg. 15.0 265 17.1 153 164 159 2662  0.010.01 001 001 001 001 0.13 0.1
7-AP avg. 217 499 314 19.7 290 251 1.80.0  0.00 0.000.00 0.00 0.00 0.00 0.09 0.01
8-AP avg. 221 852 565 29.0 349 346 1.66.8  0.00 _0.000.00 0.00 0.00 0.00 0.10 0.01
3cq150 268 81 81 81 81 81 80_ 80 0.07007 007 007 008 008 1.18 0.26
39150 00 00 00 00 00 00 00 00 0.7 007 0.07 0.07 0.08 008 1.09 0.22
3p150 02 00 00 00 00 00 0000 061065 066 0.66 066 066 192 0.96
3sr150 299 98 98 98 98 98 94 9.1 0.07 007 007 007 008 009 1.49 0.26
4cq50 19.0 116 11.6 11.6 11.6 11.6 11.31.6  0.16 0.160.16 0.16 0.16 0.16 0.44 0.1
4950 00 03 00 00 00 00 00 00 022022022 022 022 022 043 0.29
4p50 01 02 01 01 01 01 0001  1.04 1.041.04 1.04 1.04 1.05 1.39 1.12
45150 20.0 109 11.3 11.3 109 11.3 10.31.0  0.190.19 0.20 020 020 0.20 0.47 0.25
5cq30 142 96 95 95 96 95 9394 064 0.640.64 0.64 064 064 1.03 0.68
5g30 00 04 00 00 00 00 00 00 094 094094 094 094 094 126 0.97
5p30 00 02 00 00 00 00_0000 272271272 272 272 272 323 276
5sr30 11.7 89 85 85 83 85 7185  0.67 0.670.67 0.67 067 067 123 0.69
6cq18 98 82 78 75 79 78 6373 043 043043 043 043 043 1.08 0.44
6918 00 05 00 00 00 00 00 00 056 056056 057 056 057 090 0.58
6p18 00 02 00 00 00 00_0000 110 1.101.10 1.10 1.10 1.10 1.69 1.12
6sr18 97 86 82 82 85 82 6578 042 042042 042 042 042 1.15 0.44
7cq12 71 57 50 51 51 50 4049 104 1.041.04 1.04 104 104 220 1.05
7912 00 05 01 00 00 00 00 00 122 122122 122 122 122 177 1.23
7p12 00 04 00 00 00 00_0000 1.88 1.871.87 1.88 1.87 1.88 290 1.89
7sr12 65 57 51 52 56 51 _4050 0098 0.980.98 098 098 098 2.15 0.99
8cq8 47 41 31 28 37 27 2226 047 0.470.47 047 047 047 197 0.47
898 00 07 00 00 00 00 00 00 057 057057 057 057 057 1.38 0.58
8p8 00 02 00 00 00 00 0000 071071071 071 071 071 211 0.72
8sr8 32 37 28 26 26 25_2124 047 047047 048 047 048 172 0.8
All avg. 68 41 38 38 38 38 3437 072072 072 072 072 072 151 0.78
Clique avg. 136 7.9 75 74 7.6 75_ 6873 047047 047 047 047 047 1.32 052
Geom. avg. 00 04 00 00 00 00 00 00 060 0.600.60 0.60 0.60 0.60 1.14 0.65
Product avg. 01 02 00 00 00 00 0000 134135135 1.35 135 135 221 143
SR avg. 135 7.9 76 76 7.6 76 6673 047047 047 047 047 047 1.37 052
3-AP avg. 142 45 45 45 45 45 44 43 020022 022 022 022 023 142 043
4-AP avg. 98 57 57 57 56 57_5457 040 040041 041 040 041 068 0.47
5-AP avg. 65 4.8 45 45 45 45 4145 124 124124 124 124 124 169 1.27
6-AP avg. 49 44 40 39 41 40 3238 063 0.630.63 063 063 063 1.21 0.64
7-AP avg. 34 31 26 26 27 25 2025 128 1.281.28 1.28 128 128 226 1.29
8-AP avg. 20 22 15 14 16 13 1113 056 0.550.56 0.56 0.56 0.56 1.80 0.56
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Tab. 5: Chain metaheuristic started from Trivial, Greedy and ROMe&onds given. 1 — 2-opt, 2 — 1DV,
3—2DV,4—sDV, 5 —1DV,, 6 — 2DV,, 7 —sDV3, 8 — sDV,,.

Solution error, %

Trivial Greedy ROM

Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
3gp100 153 181818 1818 28 25 53 1.7 117 18182923 98_191919 1919 26 23
3r150 77.7 000000 0.00.0 0.1 00 414 0.0 0000 000.00000 336 00 0000 000.0 0.0 0.0
4gp30 70 16 1111 1811 08.4 63 19 0.8.0.818090.814 22 17 0909 1.7 1.0_0.814
4r80 550 44 1919 4123 04 00 416 46 1616 4518 080.0 570 43 2020 4320 09 00
5gp12 1515 1515 1515 15 15 15 15 1515 15151515 15 15 1515 1515 15 15
5r40 40.8 185 8.0 8.0 16.3 8.0 0.@.0 34.0 19.3 8.0 8.0 13.5 85 000 40.3 19.3 8.0 8.0 158 8.8 0.5 0.0
6gp8 24 24 2424 2424 24 24 24 24 2424 24242424 24 24 2424 2424 24 24
6r22 20.5 30.0 109 6.4 155 8.2 0.0.0 19.1 27.7 11.8 55 155 9.1 0@0  15.5 32.7 13.6 8.6 15.0 9.5 0.0.0
79p5 39 39 3939 3939 39 39 3.1 35 3535 3531535 3539 3939 3939 39 39
7rl4 29 336 11421 64 36 0®.0 3.6 33.6 10.7 2.1 5.7 2.1 000 43 357 7.9 0.7 2.1 3.6_0.00.0
8gp4 2152 4742 2136 52 52 0531 3131 26163126 1047 4736 2642 47 4.7
8r9 0.025.6 4.4.0.0 0.00.0 0.0 0.0 0.022.2 2.2.0.00.00.00.00.0 0.026.7 4.4.0.0 0.00.0 0.0 0.0
All avg. 19.1 10.7 4328 4630 14 14 132101 4025 44271211 143112 4328 4332 14 13
GP avg. 54 27 2625_224 28 28 32 24 2222 23138423 34 27 2524_235 26 27
Rand. avg. 328187 6131 7037 01 00233179 5729 65360100 251198 6.03.2 6240 02 0.0
3-AP avg. 46,5 0.90.909 0909 14 12 233 09 089 09091411 21.7_ 090909 1010 13 11
4-AP avg. 310 30 1515 3.017 08.7 239 33 1212 31130807 296 30 1414 3015 08 0.7
5-AP avg. 21.1 100 48 48 8948 0.8.8 17.8 104 48 48 7.5 5.0 08.8 209 104 48 48 8651 10 0.8
6-AP avg. 114 162 6.7 44 8953 122 107151 7139 8957122 89 176 8.055 8.7 6.0_1.21.2
7-AP avg. 34187 7.73.0 5237 2@0 33185 7.128 4626 1838 3.9 19.8 59 23 3.03.7_202.0
8-AP avg. 1.0154 4621 _1.01.8 2.6 2.6 03127 2716 13081613 _0%.7 4618 1321 23 23
3cq150 80.7 6.26.26.2 6.7 6.7 170 9.8 382 6.06.06.0 6.1 6.0 84 6.3 368 6.46.46.4 6.5 6.5 15.8 11.3
39150 0.0 0.0 000.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 0.0 0.00.0 000.0 0.0 0.0
3p150 0.0 00 0.00.0 000.0 0Mm0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0_0.00.0
3sr150 96.0 _707.07.1 7.6 7.6 183 118 41.0_7.4474 79799174 428 6.7 6.76.8 7.07.217.8 114
4cq50 27.7 545858 566.1127 95 225 54757 61589874 264 51 5.256.456 130 8.0
4950 0.0 0.0 000.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 0.0 0.00.0 000.0 0.0 0.0
4p50 0.0 0.0 0.00.0 0.00.0 0.m.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0_0.00.0
4sr50 319 647171 7374144 838 233 661272 76749276 30.0_6.5.171 7.3 73135 104
5cq30 116 2.7 25242725 83 44 11.8_2327 26 29 2.8 5.6 3.9 119 262826 2931 9.0 438
5930 0.0 0.0 000.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 0.0 0.00.0 000.0 0.0 0.0
5p30 0.0 0.0 0.00.0 0.00.0 0.m.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0_0.00.0
5sr30 153 4.1 4.1 3.85.1 42 105 6.6 135 42480 4942746.0 149 4347 45 46 47 98 59
6cql8 32 03_024 0503 59 14 33 03 084 04054415 27 04 0304 06085 13
6918 0.0 0.0 0000 0.00.0 00 00 0.0 0.0 0000 0.00.00000 0.0 0.0 0000 0.00.0 0.0 0.0
6p18 0.0 0.0 0.00.0 0.00.0 0.m.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0_0.00.0
6sr18 41 0.7 098 1211 76 19 40 1.0 09009 095725 42 11 01710 1207 71 24
7cql2 0.5 _0.00.00.0 0.00.0 38 0.3 0.4 _0.00.0 0.0 0.00.0 2.7 0.4 04 _000.001 000.0 43 0.2
7912 0.0 0.0 0000 0.00.0 00 00 0.0 0.0 000.0 0.00.00000 0.0 0.0 0000 0.00.0 0.0 0.0
7pl2 0.0 0.0 0.000_000 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0O 0.0 0.0 0.00.0 0.00.0 0.0 0.0
7srl2 0.6 0.0 0.00.0 0.1 0.0 46 04 0.7 0.00.00.1 0.00.1340.6 04 00 0.00.1 OmM1 51 0.3
8cq8 0.0 0.0 0000 0000 20 0.0 0.0 0.0 0.00.0 0.00.0250.0 0.0 0.0 0.00.0 0.00.0 1.9 0.0
898 0.0 0.0 0000 0.00.0 00 00 0.0 0.0 000.0 000.00000 0.0 0.0 0000 0.00.0 0.0 0.0
8p8 0.0 0.0 0.00.0_0®0 0.0 00 0.0 0.0 0.0.0.0 0.00.00.00.0 0.0 0.0 0.0 0.0_0.0.0 0.0 0.0
8sr8 0.0 00 000.0 0000 20 00  0.000 0000 00001700 0.0 00 000.0 0000 24 0.0
All avg. 113 14 1414 1515 45 23 66 141414 15152918 71 141414 1515 44 23
Clique avg. 206 242425 2626 83 4.2 127 2.4 25 26 2556 32 13.0 24 2422626 84 43
Geom. avg. _0.00.0 000.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 00 0.00.0 0.00.0 0.0 0.0
Product avg. 0.0 0.0 0000 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0_0.00.0
SR avg. 246 303131 3534 96 49 13.7_3.23.232 35346140 154 3.13.2 3.2 3433 93 50
3-AP avg. 442 333333 3636 88 54 19.8_3.43434 35354434 19.9_3.33.333 3434 84 57
4-AP avg. 149 3.03.232 3234 6.8 46 114 3.08.2 3.2 34334838 141 28130 3232 6.6 46
5-AP avg. 6.7 1.7 171619 17 47 27 6.3 161716 20183225 6.7 181918 1919 47 27
6-AP avg. 1.8 03 _0.23 0403 34 038 1.8 03 03033032510 1.7 04 0304 05034 09
7-AP avg. 0.3 0.0_0m0 0000 21 0.2 0.3 0.0_000 0.00.0 1.50.2 0.2 0.0 0.00.0 0W 24 0.1

8-AP avg. 0.0 0.0 0000 000 1.0 00 0.0 00 000000001100 00 00 0000 00.0 1.1 00
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Tab. 6: Chain metaheuristic started from Trivial, Greedy and ROM.s&conds given. 1 — 2-opt, 2 —
1DV, 3 — 2DV, 4 —sDV, 5 — 1DV,, 6 — 2DV,, 7 —sDV3, 8 — sDV,.

Solution error, %

¢}

Trivial Greedy ROM

Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
3gp100 151 1.6.61.6 1.7 1.7 23 22 53 1.6 1.6 1.61.6 1.6 2.5 2.1 98 161616 1.817 2221
3r150 75.3 0.00.00.0 000.0 0.0 0.0 414 00 0.000 0.00.00.00.0 336 0.0 0.000 000.0 0.00.0
4gp30 65 140808 1310 073 62 17 0808 15080711 22 14 0808 1408_012
4r80 521 391110 3611 01 00 414 39 1010 43110400 550 40 1111 3413 0400
5gp12 15151515 1515 15 15 15 15 1515 15151515 15 15 1515 1515 1515
5r40 36.5 16.3 6.5 5.8 13.0 6.8 0.0.0 32.3 188 7.0 7.0 13.0 7.0 000 36.8 16.5 6.8 6.8 13.8 7.3 0.0.0
6gp8 24 242424 2424 24 24 24 24 2424 24242424 24 24 2424 2424 2424
6r22 16.8 27.7 9.1 5.0 123 7.7_0.@.0 155 26.8 11.4 45 13.2 82 0@0 14.1 30.0 10.5 5.9 12.3 8.6_ 000
79p5 35393939 3939 39 39 _3135 3535 35313535 2739 3939 3935 3939
7rl4 142937114 2929 0.0.0 0.7 31.4 6.4 0.7 4.3 0.0.00.0 2.9 293 5707 021 0.00.0
8gp4 16 524736 11 52 36 0531 2126 16162626 1047 4736 1021 4242
8r9 0.023.31.1.0.0 0000 0.0 0.0 0.0156 1.1.0.0 0.00.00.00.0 0.022.2 4.40.00.00.0 0.00.0
All avg. 177 973323 3626 13 12 125 92 3221 39231111 135 98 3624 3526 1313
GP avg. 51 272523_2R1 27 25 32 23 2021 2018222 33 26 2523 2020525
Rand. avg. 304 16.7 42 22 5331 00 0.0219 161 4522 58270100 237170 4724 4932 0100
3-AP avg. 452 0.80.80.8 0909 11 1.1 23.3 0.8 0.8 0.8.808 1310 21.7_0.80.808 0909 1111
4-AP avg. 293 271009 2510 04.7 238 2.8 0909 2909 066 286 2.7 1010 2410 066
5-AP avg. 19.0 894036 7341 08.8 16.9 10.1 4.3 43 7.3 430838 191 9.0 4141 7644 0838
6-AP avg. 9.6 151 57 3.7 7351 12.2 89 146 6.9 35 7853122 82 16.2 6442 7355 122
7-AP avg. 25 16.6 55 2.7 3434 2.0 19175 5021 39168818 2.8 16.6 4.8 23_2.08 2.020
8-AP avg. 0.8 143 2918_050 26 1.8 0393 1613 08081313 _0535 4618 0510 2121
3cql150 79.8 54.454 5959 133 8.3 38.2 565656 57587961 36.8 6.1_5989 6.3 6.2 12.7 8.2
39150 0.00.0000.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 0.0 0.00.0 000.0 0.00.0
3p150 0.0 0.0 0.0 0.0 0.0 0.0_0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.00.0 0.00.0_0.0.0
3sr150 939 _6.3%.36.3 6.7 6.7 15.8 10.2 41.0_6.26.26.2 6.6 6.6 8.3 7.2 428 6.6_6.6.5 6.7 6.7 145 9.1
4cg50 26.2 5.05.0495253 99 6.5 224 495352 54558970 255 464848 5249113 7.1
4950 0.0 0.00.00.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 0.0 0.00.0 000.0 0.00.0
4p50 0.0 0.0 0.0 0.0 0.0 0.0 0.m.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0_0.00
4sr50 30.8 5.86.6 6.6 6.5 6.9 11.2 8.2 233 64565 6.7 6.6 89 6.7 29.3 6.2 681 6.9 6.7 11.3 9.2
5cq30 109 22120 2021 69 4.2 11.0_1922 22 23255134 114 24 283 2424 7337
5930 0.0 0.00.00.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 0.0 0.00.0 000.0 0.00.0
5p30 0.0 0.0 0.0 0.0 0.0 0.0 0.m.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0_0.00
5sr30 13.8 3.7 353.23.935 89 5.0 12.2 39_38.5 4.03.7 6.3 4.9 140 4.0 4.040 382 86 4.8
6cql8 25 020103 0402 41 038 27 03 020M®m2 043508 23 02_002 0202 4810
6918 0.0 0.0000.0 0.00.0 00 00 0.0 0.0 000.0 0.00.00000 0.0 0.0 000.0 0.00.0 0.00.0
6pl8 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.00.0 0.0 0.0 0.0 0.0 0.0 0.0_0.00
6srl8 34 0404040708 51 10 34 0.7 0.7 0.30.6 0.6 4.8 2.0 3.8 050605 0806 5518
7cql2 0.2 _0.00.0 0.0 0.0.0.027 0.1 0.2 0.0 0.0 0.0 0.00.0 2.1 0.1 0.2 _0.00.00.0 0.0 0.0 34 0.1
7912 00 0.00000 000.0 0.0 0.0 0.0 0.0 0000 0.00.00.000 00 0.0 0.00.0 000.0 0.00.0
7p12 0.0 0.0 0.00.0_0.0.0 0.0 0.0 0.0 0.0 0.0 0.0_0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0m®0
7sr12 0.2 0.00.00.0 0.00.0 35 0.1 0.5 0.00.00.1 0.0 0.02.4 0.2 0.3 0.00.00.1 0.00.0 41 0.2
8cq8 0.0 0.00.00.0 0.00.0 1.4 00 0.0 0.0 0.00.0 00001400 0.0 0.0 0.00.0 0.00.0 1.4 0.0
898 0.0 000.00.0 0000 00 0.0 0.0 00 0.00.0 00000000 0.0 00 0.00.0 0.000 0.00.0
8p8 0.0 0.0 0.00.00.00.0 0.0 0.0 0.0 0.0 0.0.0.0 0.00.00.00.0 0.0 0.0 0.0 0.0 0.00.0_0.00
8sr8 0.0 000000 000.0 1.4 00 00 0.0 0000 00001400 00 0.0 0.000 0.000 210.0
All avg. 109 1212121313 35 19 65 13 131213132516 69 13 133 1413 3619
Clique avg. 199 21221 2223 64 33 124 2122 22 23244829 127 22 222 2423 6.8 33
Geom. avg. _000.00.00.0 000.0 0.0 0.0 0.0 0.0 0.00.0 0.00.00.00.0 0.0 0.0 0.00.0 000.0 0.00.0
Product avg. 0.0 0.0 0.00.0 0.0 0.0_0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.00.0 0.00.0_0.0.0
SR avg. 237 272827 3.030 77 41 134 29 2.828.0295335 150 29 292%B030 7.7 4.2
3-AP avg. 434 22929 3131 73 46 19.8_3.03.03.0 3.1 3.1 40 3.3 199 3.2_3.31 3232 6843
4-AP avg. 142 272929 2931 53 37 114 282929 30304434 13.7_ 2727 27 3.029 5741
5-AP avg. 6.2 1513131514 39 23 58 15 141416162821 64 16 16 1616 1.7 4.0 2.1
6-AP avg. 15 010102 0303 23 05 15 0.2 0.20D0.203210.7 1.5 0.2 0.202.30.2 26 0.7
7-AP avg. 0.1 0.0 0.00.0 0.00.005 0.1 0.2 0.0 _0.m0 0.000 1101 0.1 0.0 0.00.0 0.00090.1
8-AP avg. 0.0 0.0 0.0 0.00.00.0 0.7 0.0 0.0 0.0 0.00.0 0.00.00.7 0.0 0.0 0.0 0.0 0.0_0.0.0 0.9 0.0
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Tab. 7: Multichain metaheuristic started from Trivial, Greedy &@M. 5 seconds given. 1 — 2-opt, 2 —
1DV, 3 — 2DV, 4 —sDV, 5 — 1DV,, 6 — 2DV,, 7 —sDV3, 8 — sDV,,.

Solution error, %

Trivial Greedy ROM

Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
3gp100 11.8 1.11.2 1.1 1.3 1.3 1569 2.0 53 1.21211.4 13 6 22 9.7 12212 1313 98 20
3r150 68.1 000.000 0000 0.0 00 414 000000 0000 00 00 336 000000 0.00.0 00 0.0
4gp30 3.0 09077 0807 07 11 3.1 08.0.70.7 1.007 0.7 1.0 21 0.70.70.7 0707 0.8 1.0
4r80 453 341514 2315 0.4_0.0 389 330909 3109 08 _00 446 241010 2611 453 0.0
5gp12 15151515 1515 15 15 15 151515 1515 15 15 15 151515 1515 15 15
5r40 26.0 15.3 5.3 5.5 10.8 6.3 516.8_ 0.0 26.8 14.5 5.3 58 10.0 5.0 _ 0.00.0 28.3 15.3 6.8 6.8 11.0 7.0 152.5 0.0
6gp8 24 242424 2424 24 24 24 242424 2424 24 24 24 242424 2424 24 24
6r22 8.6 20.0 6.8 45 7.759 _ 0.00.0 912097727 7345 _0.00.0 6.4 20.5 8.6 55 9.55.0 30.0_0.0
79p5 39 39359 3939 39 39 35353535 3535 35 35 39 393939 393539 39
7rl4 0.0186 7.1 0.7 0.021 0.0 0.0 0023686 1.4 0729 00 0.0 0.021.4 7.1 21 0.021 0.0 0.0
8gp4 21524742 2142 36 4.2 16362626 2116 36 31 05475242 2647 47 36
8r9 0.0144220.00000 00 0.0 0.017.8 22 0.0 0.00.0 0.0 0.0 0.014.4 22 0.0 0.00.0 0.0 0.0
All avg. 144 723122 2725 572_13 111 783019 2720 15_11 111 743424 3025 209 12
GP avg. 41 252323_2R3 282 25 29 222020 201829 23 34 242523_224 38 24
Rand. avg. 247 119 3820 3526 86.2 0.019.4 1334118 3522 0.1 0.0 188 123 4326 3.9 25 38.0_ 0.0
3-AP avg. 40.0 _0.60.6 0.6 0.6 0.6 785 1.0 23.3 0.6 0.6 0.80.7 0.7 28 11 21.7_00.606 0707 49 1.0
4-AP avg. 241 211110 1511 _ 0506 21.0 2.0 0808 2.0 0.8 0.7 05 233 150808 1709 230 05
5-AP avg. 13.8 843435 6139 2591 08141 803436 5833 _080.8 149 844141 6343 77.0 0.8
6-AP avg. 55112 46 35 5142 _ 1212 571175126 4835 _121.2 441145539 6037 162 1.2
7-AP avg. 2.011.2 5323 200 20 20 181356025 2132 _18 18 2.012.7 55 3.0 2028 2.0 2.0
8-AP avg. 1.0983521 1021 18 21 _0.810.7 24 1.3 1008 18 16 03963721 1323 23 18
3cql150 75.2 3.9 3.8 3.74.4 4.3 1219.1 491.9 38.2 252585 3130 411 209 36.8 3.9 3.8 3.4.8 48 36.8 24.2
39150 000.0000.0 000.0 8653 0.0 0.0 000000 000.0 195 00 0.0 000.000 0.00.0 29 00
3p150 0.0 0.00.00.0 0.00.0 76.3 76.3 0.0 0.0 0.0 0.00.0 0.0 215.3 215.3 0.0_0.0000 0000 72 72
3sr150 85.8 4.5 4.3.5 5.6 55 1249.7 630.5 41.0 32232 3433 419 74 428 40390 4949 428 327
4cg50 12.7 2844 42 3.6 48 2836 9.7 106 129 29 2535 139 6.6 135 3.8 332 38 3.6 284 9.6
4950 0.0 0.0000.0 0000 0.0 0.0 0.0 0.00.00.0 0000 0.0 0.0 0.0 000.00.0 0.00.0 0.0 0.0
4p50 0.0 0.0 0.0 0.0_0.0.0 102.7 0.0 0.0 0.0 0.0 0.0 OO 4842 0.0 0.0 0.0 0.0 0.0 O@MO 83 0.0
4sr50 16.4 _3.03.4 35 3.1 3.9 1554 10.7 13.7 23031 2234 195 71 159 3482 40 3948 292 105
5cq30 34 2114143016 1545 4.4 36_2@222 2322 202 32 41 22222 2723 212 46
5930 0.0 0.00.00.0 0000 0.0 0.0 0.0 00000.0 0000 23 0.0 0.0 000.00.0 0.00.0 0.0 00
5p30 0.0 0.0 0.00.0 0.0 0.0 137.2 0.0 0.0 0.0 0.M.0 0.0 0.01016.7 0.0 0.0 0.0 000 0000 7.6 0.0
5sr30 6.0 243434 27 36 1956 53 46 232322 2 158 4.2 47 343B2 3934 276 64
6cql8 28 2120141818 1419 3.0 19 161515 1.7 1.2154 23 27 221918_121 181 23
6918 0.0 000000 0.00.0 260.1 00 0.0 000000 0.00.0 263 00 00 00000.0 0000 26 0.0
6p18 0.0 0.0 0.0 0.0 0.00.0 1629 0.0 0.0 0.0 0.0 0.0 00021177 00  0.00.0 0.0 0.0 0.000 7.8 0.0
6srl8 3.8 192422 2323 1207 35 30 20212121 132 26 39 231821 271191 3.0
7cql2 09 101.010_069 915 12 0.7 0.6 0.706 0804138 06 1.1 08029 0803 148 1.1
7912 0.0 000000 0.00.0 1564 0.0 0.0 000000 0.00.0 189 00 0.0 00000.0 0.00.0 24 0.0
7p12 0.0 0.0 0.00.0_0.0.0 346.1 0.0 0.0 0.0 0.0 0.0_0@O 3161.5 0.0 0.0 0.0 0.00.0 0@ 9.2 0.0
7srl2 11 140912 1011 777_09 14 101111 _0.80.7 94 1.2 1.8 11008 1010 149 1.2
8cq8 01 030202 004 623 0.2 0.2 020102 0101104 03 0.2 030203 020299 03
898 0.0 000.00.0 0000 1045 0.0 00 000.00.0 0000 149 0.0 00 0.00.00.0 0000 14 00
8p8 0.0 0.00.00.0 0000 176.7 0.0 _0.0 0.0 0.0.0.0 0.00.03604.6 0.0 0.0 0.0 0.0 0.0 _0.0.0 9.0 00
8sr8 05 020304 _0D2 519 03 0.2 050404 0@3 6.6 0.6 03 050306 023 98 04
All avg. 87 111111 1213 2580 516 50 0@B9 09 0.9 0.9 4543 113 53 1.2 1111 1312 138 43
Clique avg. 159 2.0 21 2022 23 3255 851 92 18717 1817 191 56 9.7 22180 2322 215 7.0
Geom. avg. _000.0000.0 000.0 231.1 0.0 0.0 000000 000.0 136 00 0.0 000.000 0000 15 00
Product avg. 0.0 0.0 0.00.0 _0@0 167.0 127 0.0 0.0 0.0 0.0_0MO 1766.7 35.9 0.0 0.0 0.00.0 0O 82 1.2
SR avg. 189 2.5 25 25 2.8 3085 108.5 10.7 182020 28 177 39 116 25224 2827 239 9.0
3-AP avg. 402 21 2@1 2524 8526 299.7 198 141414616 794 609 199 20199 2424 224 16.0
4-AP avg. 73 152019 1722 1354 51 6.1 1D515 1217 1294 34 74 1918 189 21 165 5.0
5-AP avg. 23 121212 1413 1218 24 21 11111 1112 2638 1.8 22 141134 1614 141 28
6-AP avg. 16 1011091010 1714 16 12 090909 1008431 1.2 17 11090 1010 119 13
7-AP avg. 05 0.6 0506_085 1679 05 05 040404 0403009 05 0.7 05024 0503 103 0.6
8-AP avg. 0.2 010101_0.02 989 0.1 0.1 0.20.10.2_001 909.1 0.2 0.1 020102 0a1 75 0.2
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Tab. 8: Multichain metaheuristic started from Trivial, Greedy &R@M. 10 seconds given. 1 — 2-opt, 2
— 1DV, 3 — 2DV, 4 —sDV, 5 — 1DV,, 6 — 2DV,, 7 — sDV3, 8 —sDV,,.
Solution error, %
Trivial Greedy ROM
Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
3gp100 11.2 1.1.01011 11 25 17 53100101111 2.8 18 9.7 100901211 23 17
3r150 653 0.00.00.00.00.0 0.0 0.0 414 0000000000 0000 336 0.00.00.00.000 0.0 0.0
4gp30 29 0707070707 07 1.0 26 0807070707 0709 21 0707070707 0.7 0.8
4r80 438 2509092110 02 00381 2306062306 0500 424 2008 0.8 2.0 0.8 0.5_0.0
5gp12 151515151515 15 15 15 1515151515 1515 15 1515151515 15 15
5r40 25.8 125 4.0 4.0 9.0 40 _ 0.@.0 23513348 459048 _0.00 25.8 14.3 55 5.5 9.8 5.5_ 0.00.0
6gp8 24 2424242424 24 24 24 2424242424 2424 2.4 2424242424 24 24
6r22 6418259 276450 _0M0 6418264235027 _000 5917368 3.6 55 4.5_0.00.0
7gp5 39 3935393939 _3B9 353535353535 3535 39 393539393539 39
7rl4 0.016.4 4.3 0.00.00.0 0.0 0.0 0.0 19.3 5.0 0.00.0 1.4  0.00.0 0.0 17.9 5.0 0.00.0 0.0 0.0 0.0
8gp4 0.0 5247 36 16 2.6 36 42 108126 21.1.01.6 3.6 21 004752361636 42 26
8r9 0.013.3 000.00000 0.0 00 0013300000000 0000 00100 110.00.000 0.0 0.0
All avg. 136 6524172419 _121.2 105 6624162217 1310 106 6328 1.9 2420 13_11
GP avg. 37 242322180 23 24 27 2120191%8 2420 33 242422181 25 22
Rand. avg. 23510525132917 00 0018211128 1.227 16 0100 179 102 3.2 1.6 29 1.8 0.1L_0.0
3-AP avg. 382 095050606 13 09 233_085050605 1409 216 050850605 1.2 09
4-AP avg. 233 1608081408 _ 0.5 204 150.7 0.7 15 0.7 06 04 222 130.70.7 1307 06_04
5-AP avg. 136 7.0 28 285328 _ 0.8.8 125 7431305331 _0838 136 7.9 3.5 3.5 5.6 3.5_0.80.8
6-AP avg. 44103 42 26 4437 __12.2 4410344233726 _122 42 984630 3.935_121.2
7-AP avg. 2010239202020 __180 1811443181825 1818 20 10.9 43 2.0 2.0 1.820 20
8-AP avg. 009323180813 18 21 _0521310058 1810 007332180818 21 13
3cq150 714 191.7.8 3.029 1219.1 8.8 382 1B3132020 41.16.0 36.8 24 223 3.0 2.9 36.8 10.1
39150 0.0 0.00.00.00.00.0 8653 0.0 0.0 0.00.00.00.00.0 19500 0.0 0.00.00.00.00.0 29 0.0
3p150 0.0 0000000000 763 00  00_00.0000000 215300 0.0 _0.0.00.00.0 00 7.2 0.0
3sr150 82.1 3.0 3.1 280 39 1249.7 105 41.0_199 10 2.8 28 419 6.2 428 2.9 2.8 28 3.7 42.8 10.3
4cq50 111 2.63.4 333238 113 738 10.3 _1A7 2.7 2.4 2.8 8.6 4.6 11.1 2.8 288 3.5 3.1 123 7.3
4950 0.0 0.00.00.0000.0 0.0 0.0 0.0 0.00.00.00.00.0 0.00.0 0.0 0.00.00.00.00.0 0.0 0.0
4p50 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.00.@00.00.0 0.0 0.0
4150 146 2.02.7 2.6 2.6 32 129 81 125 212323 2B 9150 147 3.6 3.4 3.4 335 126 7.8
5¢430 22 211312413 80 35 28_122221822 5026 30 222022522 80 4.2
5930 0.0 0.00.00.0000.0 0.0 0.0 0.0 0.00.00.0000.0 0.00.0 0.0 0.00.00.00.00.0 0.0 0.0
5p30 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.@.0 809.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0_0.0.0
55130 46 2233332634 96 43 36 191M0 2020 6632 35 312993629137 46
6cq18 28 212014817 56 24 19 1615151512 4219 20 221918149 58 23
6918 000000000000 0.0 00 00 000.00.00.000 0000 0.0 0.00.00.0000.0 0.0 0.0
6p18 0.0 0.0 0.0.0.00.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1038.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 @®
6sr18 3.5 1.824 20 23 23 6.5 3.2 3.0 2021121 21 5.3 23 39 231821261867 26
7cql2 09 101010069 386 12 07 0607060804 7704 10 0802080803 92 0.9
7912 00 000000000.0 0.0 00 00 000.00.00.000 0000 0.0 0.00.0000.00.0 0.0 0.0
7p12 0.0 0.00.0 00000 3461 00 0.0 0.0 0.0 0000 3161500 00 0.0 0.0 0,0 0@O 9.2 0.0
7sr12 10 1409111011 624 09 10 101111 0.680.7 9.4 1.2 16 1.100.8 1.0 0.9 13.0 1.1
8cq8 0.1 020202004 623 0.2 0.2 0.20.10.20.10.1104 0.3 0.2 03020302029 03
898 0.0 0000000000 1045 00 00 0.000000000 14900 00 0000000000 14 00
8p8 0.0 0.0 0.0 0.0 0.0.0 176.7 00 _0.00.0 0.0.0.00.0 0.0 3604.6 0.0 0.0 0.0 0.0 0.0_0.00.0 9.0 0.0
8sr8 05 020304002 519 0.2 0.2 050404023 6.6 0.6 03 050306003 98 04
All avg. 8.1 0909091010 1794 21 48 00.8 0.8 0.8 0.8 3758 1.4 50 1.00Mm9 11 10 88 22
Clique avg. 148 1716158 1.8 2241 4.0 90_114141415 12826 9.0 18 1%7 19 1.8 13.7 4.2
Geom. avg. 0.00.00.00.00.00.0 1616 0.0 0.0 0.00.00.00000 5700 0.0 0.00.00.00.00.0 0.7 0.0
Product avg. 0.0 0.00.0 00 0@ 99.8 00 0.0 00 0.0 00000 1471.6 0.0 0.0 0.0 0.0 0.0 0,0 0.8.2 0.0
SR avg. 17.7 _1.82.1 202124 2322 45 102 1B6 1.6 1.6 1.8 132 3.1 111 2.2 201 2.4 2.2 164 45
3-AP avg. 384 121212717 852.6 48 19.8_08.808 1212 79431 199 1311317 1.6 224 5.1
4-AP avg. 6.4 1215151417 6.1 4.0 57_0982121114 4.4 2.4 6.4 16 16 1167 1.7 6.2 3.8
5-AP avg. 17 1111111312 44 1.9 16_080 111011 2053 15 16 1311231513 54 22
6-AP avg. 16 101109.01.0 30 14 1.2 0.9 0.9 0.9 0.9 0.262.0 1.0 15 110910100281 1.2
7-AP avg. 05 060505085 111.8 05 04 040404 040394704 06 050D40503 7.8 05

8-AP avg.

02 010101002 989 0.1

0.1 0.20.1020a1 909.10.2

0.1 020102041 75 02
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Tab. 9: Heuristics comparison for the instances with independeighis.

Inst. < 10 ms < 30ms < 100 ms < 300 ms < 1000 ms
C sbv 0.0
C 2DV, 0.0
C sbv Gr 1.4 C sDVy 0.0
3r150 — C sbv 15 C sDVy 0.3 C sDv, Gr 0.0 (no better solutions)
C 2DV, 15 C sDV R 0.0
C2DV,R 0.0
CsbVy R 0.0
C sDVy 0.0
4180 civ 258 SOV ST 01 Dv,Gr15  CsDVGr 03 CsDV,Gr 00
2 : CsDVyR 0.0
2DV Gr 13.5
5r40 1DV, Gr 15.0 sDV Gr 13.5 C sDVy 1.2 C sDVy 0.0 (no better solutions)
2DV, Gr 13.5
C 2DV 46.4 .
6r22 C <DV 473 2-opt Gr 25.9 CsDV, Gr 1.4 Csbvy Gr 0.0 (no better solutions)
C sDV, 0.0
7rl4 C 2-opt Gr 28.6 C sDV, Gr 13.6 C sDhVy 1.4 MC sDVy 0.0 (no better solutions)
C sDhV, Gr 0.0
C 2-optGr 22.2 . .
8r9 c 2-ogt 244 C sDVy 122 Csbvy 0.0 (no better solutions)  (no better solutions)
C sbhV Gr 18.6
C sDVy 0.0
Total — C 2DV, Gr 19.3 C sbhV, Gr 4.8 Csbhvy Gr 0.1 C sDV, Gr 0.0

C sbv 20.2
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Tab. 10: Heuristics comparison for the instances with decomposabights.
Inst. < 100 ms < 300 ms < 1000 ms < 3000 ms < 10000 ms

C sDV Gr 7.8 MC sDV Gr 6.6 MC sDV Gr 3.1
3¢q150 sDV.Gr 81 copyv,Gr7.8 MC2DV,Gr 7.1 MC2DV,Gr 34 MCsDVGr 13

C sDV Gr 9.6
sDV Gr 9.8 C sDV Gr 8.4
3sr150 1DV, Gr 9.8 C 2DV, Gr 8.4 MC sDV Gr 6.6 MC sDV Gr 35 MC sDV Gr 2.0

C 2DV, Gr 10.2

MC 1DV Gr 4.7

C 1DV 9.7 MC 1DV, Gr 4.9
4cq50 MC 1DV 10.0 mg igx cr gg MC 1DV 5.0 MC 1DV Gr 2.7 MC 1DV Gr 15
C1bv, 103 ’ MC sDV R 5.1

MC1DV,R 5.1

MC 1DV, Gr 2.0
C 1bv 11.7 MC 1DV Gr 7.0 MC 1DV Gr 4.7 MC 1DV Gr 2.6 MC 1DV 2.0

4sr50 MC 1DV 122 MC 1bV 77 MCI1DV,Gr 50 MCI1DV,Gr 2.7 MC 1DV Gr 21
MC 1DV M-R 2.1

MC 2DV 2.6 MC sDV 1.3

5cq30 Mg igx gi MC 1DV 3.2 MC 1bV 2.6 mg ig\\; i; MC 2DV 13
’ MC sDV 2.7 ’ MC 2DV> 13

MC 1DV, Gr 2.4 MC 2DV Gr 1.9

MC 2DV Gr 25 MC 1DV Gr 1.9
55130 MCIDV. 7.9 Mcipvy 39 MC 1DV 32 MCsDV Gr 25 MC sDV Gr 2.0

cibv. 83 MC 1DV 25 MC2DVoGr 2.0
MC2DV,Gr 2.6 MC1DV,Gr 2.0
6cq18 Civ 21 CiDV 10 C1DV 07 C2DVGr 03  CsDVGr 00

MC 1DV 3.8 MC 1Dbv 21 C 2bv 1.4
6sr18 C 1DV 38 C 1DV 21 C2DV,R 15 C 1bv 0.8 C sDV Gr 0.3

C 1DV 0.0
C 2DV, 0.0
C 1DV Gr 0.0
C 1DV, Gr 0.0

7cql2 C 1DV 0.7 C 1DV 0.2 C 1DV, 0.1 C 1DV 0.0 ¢ 1DV R 00

C 2DV R 0.0

C sDV R 0.0

C2DV2R 0.0

C 1DV 0.5 )

7sr12 C 1DV 1.2 C 1DVs 05 C1DVR 0.1 C 2DV 0.0 (no better solutions)

8cq8 C 1DV 0.0 C 1DV 0.0 (no better solutions)  (no better solutions)  (no bettertsmhs)
C 1DV 0.0
C 2DV 0.0

ciDV, 0.0
c2DV, 0.0
C 1DV Gr 0.0
c 1DV 0.0 C1DV,Gr 0.0
c2DvV 0.0 C2DV,Gr 0.0
C2-0ptR 0.0
CIDVR 0.0
C2DVR 0.0
C1DV;R 0.0
C2DV;R 0.0

MC 1DV 35 MC 1DV Gr 1.9
C 1DV 4.5 MC 2DV 3.7 MC 2DV Gr 2.1
Total C 1bv 6.4 C 2DV 5.0 C 2DV 37 MC sDV Gr 2.1 MC 1DV Gr 1.3

MC 1IDVR 38 MCI1DV,Gr 2.1

8sr8 C 1DV 0.3 (no better solutions)  (no better solutions)
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