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Local Search Heuristics for the Multidimensional
Assignment Problem∗

Gregory Gutin† Daniel Karapetyan‡

Abstract

The Multidimensional Assignment Problem (MAP) (abbreviateds-AP in the case ofs dimensions) is an extension of
the well-known assignment problem. The most studied case ofMAP is 3-AP, though the problems with larger values
of s also have a large number of applications. We consider several known neighborhoods, generalize them and propose
some new ones. The heuristics are evaluated both theoretically and experimentally and dominating algorithms are
selected. We also demonstrate a combination of two neighborhoods may yield a heuristics which is superior to both of
its components.
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1 Introduction

The Multidimensional Assignment Problem(MAP) (abbreviateds-AP in the case ofs dimensions, also
called(axial) Multi Index Assignment Problem, MIAP, [5, 29]) is a well-known optimization problem. It is
an extension of theAssignment Problem(AP), which is exactly the two dimensional case of MAP. WhileAP
can be solved in the polynomial time [25],s-AP for everys ≥ 3 is NP-hard [13] and inapproximable [9]1.
The most studied case of MAP is the case of three dimensions [1, 3, 4, 11, 20, 37] though the problem
has a host of applications for higher numbers of dimensions,e.g., in matching information from several
sensors (data association problem), which arises in plane tracking [27, 30], computer vision [39] and some
others [3, 5, 7], in routing in meshes [5], tracking elementary particles [33], solving systems of polynomial
equations [6], image recognition [14], resource allocation [14], etc.

For a fixeds ≥ 2, the problems-AP is stated as follows. LetX1 = X2 = . . . = Xs = {1, 2, . . . , n}.
We will consider only vectors that belong to the Cartesian productX = X1 × X2 × . . . × Xs. Each
vectore ∈ X is assigned a non-negative weightw(e). For a vectore ∈ X , the componentej denotes
its jth coordinate, i.e.,ej ∈ Xj . A collectionA of t ≤ n vectorsA1, A2, . . . , At is a (feasible) partial
assignmentif Ai

j 6= Ak
j holds for eachi 6= k andj ∈ {1, 2, . . . , s}. Theweightof a partial assignmentA

is w(A) =
∑t

i=1 w(A
i). An assignment(or full assignment) is a partial assignment withn vectors. The

objective ofs-AP is to find an assignment of minimal weight.

∗A preliminary version of this paper was published in Golumbic Festschrift, volume 5420 of Lect. Notes Comput. Sci., pages
100–115, Springer, 2009.
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1 Burkard et al. show it for a special case of 3-AP and since 3-APis a special case ofs-AP the result can be extended to the general
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We also provide apermutation formof the assignment which is sometimes more convenient. Let
π1, π2, . . . , πs be permutations ofX1, X2, . . . , Xs respectively. Thenπ1π2 . . . πs is an assignment with
the weight

∑n
i=1 w(π1(i)π2(i) . . . πs(i)).

It is obvious that one permutation, say the first one, may be fixed without any loss of generality:π1 =
1n, where1n is the identity permutation of sizen. Then the objective of the problem is as follows:

min
π2,...,πs

n
∑

i=1

w(iπ1(i) . . . πs(i)) .

A graph formulation of the problem is as follows. Having ans-partite graphG with partsX1, X2, . . . ,
Xs, where|Xi| = n, find a set ofn disjoint cliques inG of the minimal total weight if every cliquee in G
is assigned a weightw(e).

Finally, an integer programming formulation of the problemis as follows.

min
∑

i1∈X1,...,is∈Xs

w(i1 . . . is) · xi1...is

subject to
∑

i2∈X2,...,is∈Xs

xi1...is = 1 ∀i1 ∈ X1 ,

. . .
∑

i1∈X1,...,is−1∈Xs−1

xi1...is = 1 ∀is ∈ Xs ,

wherexi1...is ∈ {0, 1} for all i1, . . . , is and|X1| = . . . = |Xs| = n.
Sometimes the problem is formulated in a more general way if|X1| = n1, |X2| = n2, . . . , |Xs| = ns

and the requirementn1 = n2 = . . . = ns is omitted. However this case can be easily transformed intothe
problem described above by complementing the weight matrixto ann × n × . . . × n matrix with zeros,
wheren = maxi ni.

The problem was studied by many researchers. Several special cases of the problem were intensively
studied in the literature (see [26] and references there) and for few classes of instances polynomial time
exact algorithms were found, see, e.g., [8, 9, 21]. In many cases MAP remains hard to solve [26, 36]. For
example, if there are three sets of points of sizen on a Euclidean plain and the objective is to findn triples
of points, one from each set, such that the total circumference or area of the corresponding triangles is
minimal, the corresponding 3-AP is still NP-hard [36]. The asymptotic properties of some special instance
families are studied in [14].

As regards the solution methods, apart from exact and approximation algorithms [4, 11, 26, 31, 32],
several heuristics including construction heuristics [4,16, 23, 28], greedy randomized adaptive search pro-
cedures [1, 27, 28, 35], metaheuristics [10, 20] and parallel heuristics [28] are presented in the literature.
Several local search procedures are proposed and discussedin [1, 4, 5, 9, 10, 20, 28, 35].

The difference between the construction heuristics and local search is sometimes crucial. While a
construction heuristic generates a solution from scratch and, thus, has some solution quality limitation,
local search is intended to improve an existing solution and, thus, can be used after a construction heuristic
or as a part of a more sophisticated heuristic, so called metaheuristic.

The contribution of our paper is in collecting and generalizing all local search heuristics known from
the literature, proposing some new ones and detailed theoretical and evaluating them both theoretically and
experimentally. For the purpose of experimental evaluation we also thoroughly discuss, classify the existing
instance families and propose some new ones.
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In this paper we consider only the general case of MAP and, thus, all the heuristics which rely on the
special structures of the weight matrix are not included in the comparison. We also assume that the number
of dimensionss is a small fixed constant while the sizen can be arbitrary large.

2 Heuristics

In this section we discuss some well known and some new MAP local search heuristics as well as their
combinations.

2.1 Dimensionwise Variations Heuristics

The heuristics of this group were first introduced by Bandeltet al. [5] for MAP with decomposable costs.
However, having a very large neighborhood (see below), theyare very efficient even in the general case.
The fact that this approach was also used by Huang and Lim as a local search procedure for their memetic
algorithm [20] confirms its efficiency.

The idea of the dimensionwise variation heuristics is as follows. Consider the initial assignmentA in
the permutation formA = π1π2 . . . πs (see Section 1). Letp(A, ρ1, ρ2, . . . , ρs) be an assignment obtained
fromA by applying the permutationsρ1, ρ2, . . . , ρs to π1, π2, . . . , πs respectively:

p(A, ρ1, ρ2, . . . , ρs) = ρ1(π1)ρ2(π2) . . . ρs(πs) . (1)

Let pD(A, ρ) be an assignmentp(A, ρ1, ρ2, . . . , ρs), whereρj = ρ if j ∈ D andρj = 1n otherwise (1n is
the identity permutation of sizen):

pD(A, ρ) = p

(

A,

{

ρ if 1 ∈ D
1n otherwise

,

{

ρ if 2 ∈ D
1n otherwise

, . . . ,

{

ρ if s ∈ D
1n otherwise

)

. (2)

On every iteration, the heuristic selects some nonempty setD ( {1, 2, . . . , s} of dimensions and searches
for a permutationρ such thatw(pD(A, ρ)) is minimized.

For every subset of dimensionsD, there aren! different permutationsρ but the optimal one can be
found in the polynomial time. Letswap(u, v,D) be a vector which is equal to vectoru in all dimensions
j ∈ {1, 2, . . . , s} \D and equal to vectorv in all dimensionsj ∈ D:

swap(u, v,D)j =

{

uj if j /∈ D
vj if j ∈ D

for j = 1, 2, . . . , s. (3)

Let matrix[Mi,j ]n×n be constructed as

Mi,j = w(swap(Ai, Aj , D)) . (4)

It is clear that the solution of the corresponding 2-AP is exactly the required permutationρ. Indeed, as-
sume there exists some permutationρ′ such thatw(pD(A, ρ′)) < w(pD(A, ρ)). Observe thatpD(A, ρ) =
{swap(Ai, Aρ(i), D) : i ∈ {1, 2, . . . , n}}. Then we have

n
∑

i=1

w(swap(Ai, Aρ′(i), D)) <
n
∑

i=1

w(swap(Ai, Aρ(i), D)) .

Sincew(swap(Ai, Aρ(i), D)) = Mi,ρ(i), the sum
∑n

i=1 w(swap(A
i, Aρ(i), D)) is already minimized to

the optimum and noρ′ can exist.
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The neighborhood of a dimensionwise heuristic is as follows:

NDV(A) =
{

pD(A, ρ) : D ∈ D andρ is a permutation
}

, (5)

whereD includes all dimension subsets acceptable by a certain heuristic. Observe that

pD(A, ρ) = pD(A, ρ−1) , (6)

whereρ−1(ρ) = ρ(ρ−1) = 1s andD = {1, 2, . . . , s} \D, and, hence,
{

pD(A, ρ) : ρ is a permutation
}

=
{

pD(A, ρ) : ρ is a permutation
}

(7)

for anyD. From (7) and the obvious fact thatp∅(A, ρ) = p{1,2,...,s}(A, ρ) = A for anyρ we introduce the
following restrictions forD:

D ∈ D ⇒ D /∈ D and ∅, {1, 2, . . . , s} /∈ D . (8)

With these restrictions, one can see that for any pair of distinct setsD1, D2 ∈ D the equationpD1
(A, ρ1) =

pD2
(A, ρ2) holds if and only ifρ1 = ρ2 = 1n. Hence, the size of the neighborhoodNDV(A) is

|NDV(A)| = |D| · (n!− 1) + 1 . (9)

In [5] it is decided that the number of iterations should not be exponential with regards to neithern
nor s while the size of the maximumD is |D| = 2s−1 − 1. Therefore two heuristics, LS1 and LS2, are
evaluated in [5]. LS1 includes only singleton values ofD, i.e., D = {D : |D| = 1}; LS2 includes
only doubleton values ofD, i.e., D = {D : |D| = 2}. It is surprising but according to both [5] and
our computational experience, the heuristic LS2 produces worse solutions than LS1 though it obviously
has larger neighborhood and larger running times. We improve the heuristic by allowing|D| ≤ 2, i.e.,
D = {D : |D| ≤ 2}. This does not change the theoretical time complexity of thealgorithm but improves
its performance. The heuristic LS1 is called1DV in our paper; LS2 with|D| ≤ 2 is called2DV. We also
assume (see Section 1) that the value ofs is a small fixed constant and, thus, introduce a heuristicsDV
which enumerates all feasible (recall (8))D ⊂ {1, 2, . . . , s}.

The order in which the heuristics take the valuesD ∈ D in our implementations is as follows. For1DV
it is {1}, {2}, . . . ,{s}. 2DV begins as1DV and then takes all pairs of dimensions:{1, 2}, {1, 3}, . . . ,{1, s},
{2, 3}, . . . ,{s− 1, s}. Note that because of (8) it enumerates no pairs of vectors for s = 3, and fors = 4 it
only takes the following pairs:{2, 3}, {2, 4} and{3, 4}. sDV takes first all setsD of size 1, then all setsD
of size 2 and so on up to|D| = ⌊s/2⌋. If s is even then we should take only half of the setsD of sizes/2
(recall (7)); for this purpose we take all the subsets ofD ⊂ {2, 3, . . . , s}, |D| = s/2 in the similar order as
before.

It is obvious thatN1DV(A) ⊆ N2DV(A) ⊆ NsDV(A) for anys however fors = 3 all the neighborhoods
are equal and fors = 4 2DV andsDV also coincide.

According to (8) and (9), the neighborhood size of1DV is

|N1DV(A)| = s · (n!− 1) + 1 ,

of 2DV is

|N2DV(A)| =

{

(2s−1 − 1) · (n!− 1) + 1 if s ∈ {3, 4}
((

s
2

)

+ s
)

· (n!− 1) + 1 if s ≥ 5
,

and ofsDV is
|NsDV(A)| = (2s−1 − 1) · (n!− 1) + 1 .

The time complexity of every run of DV isO(|D| · n3) as every 2-AP takesO(n3) and, hence, the time
complexity of1DV isO(s · n3), of 2DV isO(s2 · n3) and of MDV isO(2s−1 · n3).
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2.2 k-opt

The k-opt heuristic for 3-AP fork = 2 andk = 3 was first introduced by Balas and Saltzman [4] as a
pairwiseandtriple interchange heuristic. 2-opt as well as its variations were also discussed in [1, 10, 27,
28, 31, 35] and some other papers. We generalize the heuristic for arbitrary values ofk ands.

The heuristic proceeds as follows. For every subset ofk vectors taken in the assignmentA it removes all
these vectors fromA and inserts some newk vectors such that the assignment feasibility is preserved and
its weight is minimized. Another definition is as follows: for every set of distinct vectorse1, e2, . . . , ek ∈ A
let X ′

j = {e1j , e
2
j , . . . , e

k
j } for j = 1, 2, . . . , k. LetA′ = {e′1, e′2, . . . , e′k} be the solution of thiss-AP of

sizek. Replace the vectorse1, e2, . . . , ek in the initial assignmentA with e′1, e′2, . . . , e′k.
The time complexity ofk-opt is obviouslyO

((

n
k

)

· k!s−1
)

; for k ≪ n it can be replaced withO(nk ·
k!s−1). It is a natural question if one can use some faster solver on every iteration. Indeed, according to
Section 1 it is possible to solves-AP of sizek in O(k!s−2 · k3). However, it is easy to see thatk!s−1 <
k!s−2 · k3 for everyk up to 5, i.e., it is better to use the exhaustive search for anyreasonablek. One can
doubt that the exact algorithm actually takesk!s−2 ·k3 operations but even for the lower boundΩ(k!s−2 ·k2)
the inequalityk!s−1 < k!s−2 · k2 holds for anyk ≤ 3, i.e., for all the values ofk we actually consider.

Now let us find the neighborhood of the heuristic. For some setI and a subsetI ⊂ I let a permutation
ρ of elements inI be anI-permutationif ρ(i) = i for every i ∈ I \ I, i.e., if ρ does not move any
elements except elements fromI. Let E = {e1, e2, . . . , ek} ⊂ A be a set ofk distinct vectors inA.
For j = 2, 3, . . . , s let ρj be anEj-permutation, whereEj = {e1j , e

2
j , . . . , e

k
j }. Then a setW (A,E) of

all assignments which can be obtained fromA by swapping coordinates of vectorsE can be described as
follows:

W (A,E) =
{

p(A, 1n, ρ2, ρ3, . . . , ρs) : ρj is anEj -permutation forj = 2, 3, . . . , s
}

.

Recall that1n is the identity permutation of sizen andp(A, ρ1, ρ2, . . . , ρs) is defined by (1).
The neighborhoodNk-opt(A) is defined as follows:

Nk-opt(A) =
⋃

E⊂A,|E|=k

W (A,E) . (10)

LetY, Z ⊂ A such that|Y | = |Z| = k. Observe thatW (A, Y )∩W (A,Z) is nonempty and apart from
the initial assignmentA this intersection may contain assignments which are modified only in the common
vectorsY ∩ Z. To calculate the size of the neighborhood ofk-opt let us introduceW ′(A,E) as a set of all
assignments inW (A,E) such that every vector inE is modified in at least one dimension, whereE ⊂ A
is the set ofk selected vectors in the assignmentA:

W ′(A,E) =
{

A′ ∈ W (A,E) : |A ∩ A′| = n− k
}

.

Then the neighborhoodNk-opt(A) of k-opt is

Nk-opt(A) =
⋃

E⊂A,|E|≤k

W ′(A,E) (11)

and sinceW (A, Y ) ∩W (A,Z) = ∅ if Y 6= Z we have

|Nk-opt(A)| =
∑

E⊂A,|E|≤k

|W ′(A,E)| =
k

∑

i=0

(

n

i

)

N i , (12)
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whereN i = |W (A,E)| for anyE with |E| = i. Observe that

W ′(A,E) = W (A,E) \
⋃

E′(E

W ′(A,E′)

and|W (A,E)| = k!s−1 for |E| = k and, hence,

Nk = k!s−1 −

k−1
∑

i=0

(

k

i

)

N i . (13)

It is obvious thatN0 = 1 since one can obtain exactly one assignment (the given one) by changing no
vectors. From this and (13) we haveN1 = 0, N2 = 2s−1 − 1 andN3 = 6s−1 − 3 · 2s−1 + 2. From this
and (12) follows

|N2-opt(A)| = 1 +

(

n

2

)

(2s−1 − 1) , (14)

|N3-opt(A)| = 1 +

(

n

2

)

(2s−1 − 1) +

(

n

3

)

(6s−1 − 3 · 2s−1 + 2) . (15)

In our implementation, we skip an iteration if the corresponding set of vectorsE either consists of the
vectors of the minimal weight (w(e) = mine∈X w(e) for everye ∈ E) or all these vectors have remained
unchanged during the previous run ofk-opt.

It is assumed in the literature [4, 31, 35] thatk-opt for k > 2 is too slow to be applied in practice.
However, the neighborhoodNk-opt do not only includes the neighborhoodN(k−1)-opt but also grows expo-
nentially with the growth ofk and, thus, becomes very powerful. We decided to include2-opt and3-opt in
our research. Greater values ofk are not considered in this paper because of nonpractical time complexity
(observe that the time complexity of4-opt is O(n4 · 24s−1)) and even3-opt with all the improvements de-
scribed above still takes a lot of time to proceed. However,3-opt is more robust when used in a combination
with some other heuristic (see Section 2.4).

It is worth noting that our extension of the pairwise (triple) interchange heuristic [4] is not typical. Many
papers [1, 10, 27, 31, 35] consider another neighborhood:

Nk-opt*(A) =
{

pD(A, ρ) : D ⊂ {1, 2, . . . , s}, |D| = 1 andρ moves at mostk elements
}

,

wherepD is defined in (2). The size of such neighborhood is|Nk-opt*(A)| = s ·
(

n
k

)

· (k! − 1) + 1 and
the time complexity of one run ofk-opt* in the assumptionk ≪ n is O(s · nk · k!), i.e., unlikek-opt, it is
not exponential with respect to the number of dimensionss which is considered to be important by many
researchers. However, as it is stated in Section 1, we assumethats is a small fixed constant and, thus, the
time complexity ofk-opt is still reasonable. At the same time, observe thatNk-opt*(A) ⊂ N1-DV(A) for
anyk ≤ n, i.e., 1DV performs as good asn-opt* with the time complexity of3-opt*. Only in the case of
k = 2 the heuristic2-opt* is faster in theory however it is known [7] that the expected time complexity of
AP is significantly less thanO(n3) and, thus, the running times of2-opt* and1DV are similar while1DV is
definitely more powerful. Because of this we do not consider2-opt* in our comparison.
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2.3 Variable Depth Interchange (v-opt)

TheVariable Depth Interchange(VDI) was first introduced by Balas and Saltzman for 3-AP as a heuristic
based on the well known Lin-Kernighan heuristic for the traveling salesman problem [4]. We provide
here a natural extensionv-opt of the VDI heuristic for thes-dimensional case,s ≥ 3, and then improve this
extension. Our computational experiments show that the improved version ofv-opt is superior to the natural
extension of VDI with respect to solution quality at the costof a reasonable increase in running time. In
what follows,v-opt refers to the improved version of the heuristic unless otherwise specified.

In [4], the heuristic is described quite briefly. Our contribution is not only in the extending, improving
and analyzing it but also in a more detailed and, we believe, clearer explanation of it. We describe the
heuristic in a different way to the description provided in [4], however, both versions of our algorithm are
equal to VDI in case ofs = 3. This fact was also checked by reproduction of the computational evaluation
results reported in [4].

Further we will use functionU(u, v) which returns a set of swaps between vectorsu and v. The
difference between the two versions ofv-opt is only in theU(u, v) definition. For the natural extension of
VDI, let U(u, v) be a set of all the possible swaps (see (3)) in at most one dimension between the vectorsu
andv, where the coordinates in at most one dimension are swapped:

U(u, v) =
{

swap(u, v,D) : D ⊂ {1, 2, . . . , s} and|D| ≤ 1
}

.

For the improved version ofv-opt, let U(u, v) be a set of all the possible swaps in at most⌊s/2⌋
dimensions between the vectorsv andw:

U(u, v) =
{

swap(u, v,D) : D ⊂ {1, 2, . . . , s} and|D| ≤ s/2
}

.

The constraint|D| ≤ s/2 guarantees that at least half of the coordinates of every swap are equal to the
first vector coordinates. The computational experiments show that removing this constraint increases the
running time and decreases the average solution quality.

Let vectorµ(u, v) be the minimum weight swap between vectorsu andv:

µ(u, v) = argmin
e∈U(u,v)

w(e) .

Let A be an initial assignment.

1. For every vectorc ∈ A do the rest of the algorithm.

2. Initialize thetotal gainG = 0, thebest assignmentAbest = A, and a set of available vectorsL =
A \ {c}.

3. Find vectorm ∈ L such thatw(µ(c,m)) is minimized. Setv = µ(c,m) andvj = {cj,mj} \ {vj}
for every1 ≤ j ≤ s. Now v ∈ U(c,m) is the minimum weight swap ofc with some other vectorm
in the assignment, andv is the complementary vector.

4. SetG = G+ w(c) − w(v). If now G ≤ 0, setA = Abestand go to the next iteration (Step 1).

5. Mark m as an unavailable for the further swaps:L = L \ {m}. Note thatc is already marked
unavailable:c /∈ L.

6. Replacem andc with v andv. Setc = v.

7. If w(A) < w(Abest), save the new assignment as the best one:Abest= A.
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8. Repeat from Step 3 while the total gain is positive (see Step 4) andL 6= ∅.

The heuristic repeats until no improvement is found during arun. The time complexity of one run of
v-opt isO(n3 ·2s−1). The time complexity of the natural extension of VDI isO(n3 ·s), and the computation
experiments also show a significant difference between the running times of the improved and the natural
extensions. However, the solution quality of the natural extension fors ≥ 7 is quite poor, while for the
smaller values ofs it produces solutions similar to or even worse thansDV solutions at the cost of much
larger running times.

The neighborhoodNv-opt(A) is not fixed and depends on the MAP instance and initial assignmentA.
The number of iterations (runs of Step 3) of the algorithm canvary fromn to n2. Moreover, there is no
guarantee that the algorithm selects a better assignment even if the corresponding swap is inU(c,m). Thus,
we do not provide any results for the neighborhood ofv-opt.

2.4 Combined Neighborhood

We have already presented two types of neighborhoods in thispaper, let us saydimensionwise(Section 2.1)
andvectorwise(Sections 2.2 and 2.3). The idea of the combined heuristic isto use the dimensionwise and
the vectorwise neighborhoods togeather, combining them into so called Variable Neighborhood Search [38].
The combined heuristic improves the assignment by moving itinto the local optimum with respect to the
dimensionwise neighborhood, then it improves it by moving it to the local minimum with respect to the
vectorwise neighborhood. The procedure is repeated until the assignment occurs in the local minimum with
respect to both the dimensionwise and the vectorwise neighborhoods.

More formally, the combined heuristicDVopt consists of a dimensionwise heuristicDV (either1DV,
2DV or sDV) and a vectorwise heuristicopt (either2-opt, 3-opt or v-opt). DVopt proceeds as follows.

1. Apply the dimensionwise heuristicA = DV (A).

2. Repeat:

(a) Save the assignment weightx = w(A) and apply the vectorwise heuristicA = opt(A).

(b) If w(A) = x stop the algorithm.

(c) Save the assignment weightx = w(A) and apply the dimensionwise heuristicA = DV (A).

(d) If w(A) = x stop the algorithm.

Step 1 of the combined heuristic is the hardest one. Indeed, it is typical that it takes a lot of iterations
to move a bad solution to a local minimum while for a good solution it takes just a few iterations. Hence,
the first of the two heuristics should be the most efficient one, i.e., it should perform quickly and produce a
good solution. In this case the dimensionwise heuristics are more efficient because, having approximately
the same as vectorwise heuristics time complexity, they search much larger neighborhoods. The fact that
the dimensionwise heuristics are more efficient than the vectorwise ones is also confirmed by experimental
evaluation (see Section 4).

It is clear that the neighborhood of a combined heuristic is defined as follows:

NDVopt(A) = NDV(A) ∪Nopt(A) , (16)

whereNDV(A) andNopt(A) are neighborhoods of the corresponding dimensionwise and vectorwise heuris-
tics respectively. To calculate the size of the neighborhood NDVopt(A) we need to find the size of the
intersection of these neighborhoods. Observe that

NDV(A) ∩Nk-opt(A) =
{

pD(A, ρ) : D ∈ D andρ moves at mostk elements
}

, (17)
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wherepD(A, ρ) is defined by (2). This means that, ifrk is the number of permutations onn elements which
move at mostk elements, the intersection (17) has size

|NDV(A) ∩Nk-opt(A)| = |D| · (rk − 1) + 1 . (18)

The numberrk can be calculated as

rk =

k
∑

i=0

(

n

i

)

· di , (19)

wheredi is the number of derangements oni elements, i.e., permutations oni elements such that none of
the elements appear on their places;di = i! ·

∑i
m=0(−1)m/m! [19]. Fork = 2, r2 = 1 +

(

n
2

)

; for k = 3,
r3 = 1+

(

n
2

)

+ 2
(

n
3

)

. From (9), (12), (16) and (18) we immediately have

∣

∣NDVk-opt(A)
∣

∣ = 1 + |D| · (n!− 1) +

[

k
∑

i=2

(

n

i

)

N i

]

− |D| · (rk − 1) , (20)

whereN i andrk are calculated according to (13) and (19) respectively. Substituting the value ofk, we
have:

∣

∣NDV2-opt(A)
∣

∣ = 1 + |D| · (n!− 1) +

(

n

2

)

(2s−1 − 1)− |D| ·

(

n

2

)

and (21)

∣

∣NDV3-opt(A)
∣

∣ = 1 + |D| · (n!− 1) +

(

n

2

)

(2s−1 − 1)

+

(

n

3

)

(6s−1 − 3 · 2s−1 + 2)− |D| ·

[(

n

2

)

+ 2

(

n

3

)]

(22)

One can easily substitute|D| = s, |D| =
(

s
2

)

and|D| = 2s−1−1 to (21) or (22) to get the neighborhood
sizes of1DV2, 2DV2, sDV2, 1DV3, 2DV3 andsDV3. We will only show the results forsDV2:

|NsDV2(A)| = 1 + (2s−1 − 1) · (n!− 1) +

(

n

2

)

(2s−1 − 1)− (2s−1 − 1) ·

(

n

2

)

= 1 + (2s−1 − 1) · (n!− 1) , (23)

i.e., |NsDV2(A)| = |NsDV(A)|. SinceNsDV(A) ⊆ NsDV2(A) (see (16)), we can conclude thatNsDV2(A) =
NsDV(A). Indeed, the neighborhood of2-opt can be defined as follows:

N2-opt =
{

pD(A, ρ) : D ⊂ {2, 3, . . . , s} andρ swaps at most two elements
}

,

which is obviously a subset ofNsDV(A) (see (5)). Hence, the combined heuristicsDV2 is of no interest.
For other combinations the intersection (17) is significantly smaller than both neighborhoodsNDV(A)

andNk-opt(A) (recall that the neighborhoodNv-opt has a variable structure). Indeed,|NDV(A)| ≫ |NDV(A)∩

Nk-opt(A)| because|D|·(n!−1) ≫ |D|·(rk−1) for k ≪ n. Similarly, |N2-opt(A)| ≫ |NDV(A)∩Nk-opt(A)|
because

(

n
2

)

(2s−1 − 1) ≫ |D| ·
(

n
2

)

if |D| ≪ 2s−1, which is the case for1DV and2DV if s is large enough.
Finally, |N3-opt(A)| ≫ |NDV(A) ∩ Nk-opt(A)| because

(

n
2

)

(2s−1 − 1) +
(

n
3

)

(6s−1 − 3 · 2s−1 + 2) ≫

|D| ·
[(

n
2

)

+ 2
(

n
3

)]

, which is true even for|D| = 2s−1, i.e., forsDV.
The time complexity of the combined heuristic isO(nk · k!s−1 + |D| · n3) in case ofopt = k-opt and

O(n3 · (2s−1 + |D|)) if opt = v-opt. The particular formulas are provided in the following table:
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2-opt 3-opt v-opt

1DV O(2s−1 · n2 + s · n3) O(6s−1 · n3) O(2s · n3)
2DV O(2s−1 · n2 + s2 · n3) O(6s−1 · n3) O(2s · n3)
sDV (no interest) O(6s−1 · n3) O(2s · n3)

Note that all the combinations with3-opt andv-opt have equal time complexities; this is because the
time complexities of3-opt andv-opt are dominant. Our experiments show that the actual running times of
3-opt andv-opt are really much higher then even thesDV running time. This means that the combinations
of these heuristics withsDV are approximately as fast as the combinations of these heuristics with light di-
mensionwise heuristics1DV and2DV. Moreover, as it was noticed above in this section, the dimensionwise
heuristic, being executed first, simplifies the job for the vectorwise heuristic and, hence, the increase of
the dimensionwise heuristic power may decrease the runningtime of the whole combined heuristic. At the
same time, the neighborhoods of the combinations withsDV are significantly larger than the neighborhoods
of the combinations with1DV and2DV. We can conclude that the ‘light’ heuristics1DV3, 2DV3, 1DVv and
2DVv are of no interest because the ‘heavy’ heuristicssDV3 andsDVv, having the same theoretical time
complexity, are more powerful and, moreover, outperformedthe ‘light’ heuristics in our experiments with
respect to both solution quality and running time on averageand in most of single experiments.

2.5 Other algorithms

Here we provide a list of some other MAP algorithms presentedin the literature.

• A host of local search procedures and construction heuristics which often have some approximation
guarantee ([5, 9, 11, 21, 26, 27] and some others) are proposed for special cases of MAP (usually with
decomposable weights, see Section 3.2) and exploit the specifics of these instances. However, as it
was stated in Section 1, we consider only the general case of MAP, i.e., all the algorithms included in
this paper do not rely on any special structure of the weight matrix.

• A number of construction heuristics are intended to generate solutions for general case MAP [4,
16, 23, 28]. While some of them are fast and low quality, likeGreedy, some, likeMax-Regret,
are significantly slower but produce much better solutions.A special class of construction heuris-
tics, Greedy Randomized Adaptive Search Procedure (GRASP), was also investigated by many re-
searchers [1, 27, 28, 35].

• Several metaheuristics, including a simulated annealing procedure [10] and a memetic algorithm [20],
were proposed in the literature. Metaheuristics are sophisticated algorithms intended to search for the
near optimal solutions in a reasonably large time. Proceeding for much longer than local search and
being hard for theoretical analysis of the running time or the neighborhood, metaheuristics cannot be
compared straightforwardly to local search procedures.

• Some weak variations of2-opt are considered in [1, 27, 31, 35]. While our heuristic2-opt tries all
possible recombinations of a pair of assignment vectors, i.e., 2s−1 combinations, these variations
only try the swaps in one dimension at a time, i.e.,s combinations for every pair of vectors. We have
already decided that these variations have no practical interest, for details see Section 2.2.

3 Test Bed

While the theoretical analysis can help in heuristic design, selection of the best approaches requires empir-
ical evaluation [18, 34]. In this section we discuss the testbed and in Section 4 the experimental results are
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reported and discussed.
The question of selecting proper test bed is one of the most important questions in heuristic experi-

mental evaluation [34]. While many researchers focused on instances with random independent weights
([3, 4, 24, 31] and some others) and random instances with predefined solutions [10, 15, 23], several more
sophisticated models are of greater practical interest [5,9, 11, 12, 26]. There is also a number of papers
which consider real-world and pseudo real-world instances[6, 27, 30] but the authors of this paper suppose
that these instances do not well represent all the instance classes and building a proper benchmark with the
real-world instances is a subject for another research.

In this paper we group all the instance families into two classes: instances with independent weights
(Section 3.1) and instances with decomposable weights (Section 3.2). Later we show that the heuristics
perform differently on the instances of these classes and, thus, this devision helps us in correct experimental
analysis of the local search algorithms.

3.1 Instances With Independent Weights

One of the most studied class of instances for MAP isRandom Instance Family. In Random, the weight
assigned to a vector is a random uniformly distributed integral value in the interval[a, b − 1]. Random
instances were used in [1, 3, 4, 32] and some others.

Since the instances are random and quite large, it is possible to estimate the average solution value for
the Random Instance Family. The previous research in this area [24] show that ifn tends to infinity than the
problem solution approaches the boundan, i.e., the minimal possible assignment weight (observe that the
minimal assignment includesn vectors of weighta). Moreover, an estimation of the mean optimal solution
is provided in [14] but this estimation is not accurate enough for our experiments. In [18] we prove that it
is very likely that every big enoughRandom instance has at least onean-assignment, wherex-assignment
means an assignment of weightx.

Let α be the number of assignments of weightan and letc = b − a. We would like to have an upper
bound on the probabilityPr(α = 0). Such an upper bound is given in the following theorem whose proof
(see [18]) is based on the Extended Jansen Inequality (see Theorem 8.1.2 of [2]).

Theorem 1. For anyn such thatn ≥ 3 and

(

n− 1

e

)s−1

≥ c · 2
1

n−1 , (24)

we havePr(α = 0) ≤ e−
1

2σ , whereσ =
n−2
∑

k=1

(nk)·c
k

[n·(n−1)···(n−k+1)]s−1 .

The lower bounds ofPr(α > 0) for different values ofs andn and forb− a = 100, are reported below.

s = 4 s = 5 s = 6 s = 7

n Pr(α > 0)

15 0.575
20 0.823
25 0.943
30 0.986
35 0.997
40 1.000

n Pr(α > 0)

10 0.991
11 0.998
12 1.000

n Pr(α > 0)

8 1.000

n Pr(α > 0)

7 1.000
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One can see that a 4-APRandom instance has an(an)-assignment with the probability which is very
close to 1 ifn ≥ 40; a 5-AP instance has an(an)-assignment with probability very close to 1 forn ≥ 12,
etc.; so, the optimal solutions for all theRandom instances used in our experiments (see Section 4) are very
likely to be of weightan. For s = 3 Theorem 1 does not provide a good upper bound, but we are able to
use the results from Table II in [4] instead. Balas and Saltzman report that in their experiments the average
optimal solution of 3-AP forRandom instances reduces very quickly and has a small value even forn = 26.
Since the smallestRandom instance we use in our experiments has sizen = 150, we assume that all 3-AP
Random instances considered in our experiment are very likely to have anan-assignment.

Useful results can also be obtained from (11) in [14] which isan upper bound for the average optimal
solution. Grundel, Oliveira and Pardalos [14] consider thesame instance family except the weights of the
vectors are real numbers uniformly distributed in the interval [a, b]. However the results from [14] can be
extended to our discrete case. Letw′(e) be a real weight of the vectore in a continuous instance. Consider
a discrete instance withw(e) = ⌊w′(e)⌋ (if w′(e) = b, setw(e) = b − 1). Note that the weightw(e) is
a uniformly distributed integer in the interval[a, b − 1]. The optimal assignment weight of this instance is
not larger than the optimal assignment weight of the continuous instance and, thus, the upper bound for the
average optimal solution for the discrete case is correct.

In fact, the upper bound̄z∗u (see [14]) for the average optimal solution is not accurate enough. For
example,̄z∗u ≈ an + 6.9 for s = 3, n = 100 andb − a = 100, andz̄∗u ≈ an + 3.6 for s = 3, n = 200
andb − a = 100, so it cannot be used fors = 3 in our experiments. The upper boundz̄∗u gives a better
approximation for larger values ofs, e.g.,z̄∗u ≈ an + 1.0 for s = 4, n = 40 andb − a = 100, however,
Theorem 1 provides stronger results (Pr(α > 0) ≈ 1.000 for this case).

Another class of instances with almost independent weightsis GP Instance Familywhich contains
pseudo-random instances with predefined optimal solutions. GP instances are generated by an algorithm
produced by Grundel and Pardalos [15]. The generator is naturally designed fors-AP for arbitrary large
values ofs andn. However, it is relatively slow and, thus, it was impossibleto generate largeGP instances.
Nevertheless, this is what we need since finally we have both small (GP) and large (Random) instances with
independent weights with known optimal solutions.

3.2 Instances With Decomposable Weights

In many cases it is not easy to define a weight for ans-tuple of objects but it is possible to define a relation
between every pair of objects from different sets. In this case one should usedecomposable weights[37]
(or decomposable costs), i.e., the weight of a vectore should be defined as follows:

w(e) = f
(

d1,2e1,e2
, d1,3e1,e3

, . . . , ds−1,s
es−1,es

)

, (25)

wheredi,j is a distance matrix between the setsXi andXj andf is some function.
The most natural instance family with decomposable weightsis Clique, which defines the functionf as

the sum of all arguments:

wc(e) =

n−1
∑

i=1

n
∑

j=i+1

di,jei,ej . (26)

TheClique instance family was investigated in [5, 11, 12] and some others. It was proven [11] that MAP
restricted toClique instances remains NP-hard.

A special case ofClique is Geometric Instance Family. In Geometric, the setsX1, X2, . . . ,Xs corre-
spond to sets of points in Euclidean space, and the distance between two pointsu ∈ Xi andv ∈ Xj is
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defined as Euclidean distance; we consider the two dimensional Euclidean space:

dg(u, v) =
√

(ux − vx)2 + (uy − vy)2 .

It is proven [36] that theGeometric instances are NP-hard to solve fors = 3 and, thus,Geometric is NP-hard
for everys ≥ 3.

In this paper, we propose a new special case of the decomposable weights,SquareRoot. It is a modifi-
cation of theClique instance family. Assume we haves radars andn planes and each radar observes all the
planes. The problem is to assign signals which come from different radars to each other. It is quite natural to
define a distance function between each pair of signals from different radars, and for a set of signals which
correspond to one plane the sum of the distances should be small so (26) is a good choice. However, it is
not actually correct to minimize the total distance betweenthe assigning signals but one should also ensure
that none of these distances is too large. Same requirementsappear in a number of other applications. We
propose a weight function which can leads to both small totaldistance between the assigned signals and
small dispersion of the distances:

wsq(e) =

√

√

√

√

n−1
∑

i=1

n
∑

j=i+1

(

di,jei,ej

)2

. (27)

Similar approach is used in [26] though they do not use squareroot, i.e., a vector weight is just a sum of
squares of the edge weights in a clique. In addition, the edgeweights in [26] are calculated as distances
between some nodes in a Euclidean space.

Another special case of the decomposable weights,Product, is studied in [9]. Burkard et al. consider
3-AP and define the weightw(e) asw(e) = a1e1 · a2e2 · a3e3 , wherea1, a2 anda3 are random vectors of
positive numbers. It is easy to show that theProduct weight function can be represented in the form (25). It
is proven that the minimization problem for theProduct instances is NP-hard in cases = 3 and, thus, it is
NP-hard for everys ≥ 3.

4 Computational Experimentation

In this section, the results of empirical evaluation are reported and discussed. The experiments were con-
ducted for the following instances (for instance family definitions see Section 3):

• Random instances where each weight was randomly chosen in{1, 2, . . . , 100}, i.e.,a = 1 andb =
101. According to Subsection 3.1, the optimal solutions of all the consideredRandom instances are
very likely to bean = n.

• GP instances with predefined optimal solutions (see Section 3.1).

• Clique andSquareRoot instances, where the weight of each edge in the graph was randomly selected
from {1, 2, . . . , 100}. Instead of the optimal solution value we use the best known solution value.

• Geometric instances, where both coordinates of every point were randomly selected from{1, 2, . . . , 100}.
The distances between the points are calculated precisely while the weight of a vector is rounded to
the nearest integer. Instead of the optimal solution value we use the best known solution value.

• Product instances, where every valueaji was randomly selected from{1, 2, . . . , 10}. Instead of the
optimal solution value we use the best known solution value.
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An instance name consists of three parts: the numbers of dimensions, the type of the instance (‘gp’
for GP, ‘r’ for Random, ‘c’ for Clique, ‘g’ for Geometric, ‘p’ for Product and ’sr’ for SquareRoot), and
the sizen of the instance. For example,5r40 means a five dimensionalRandom instance of size 40. For
every combination of instance size and type we generated 10 instances, using the numberseed = s+n+ i
as a seed of the random number sequences, wherei is an index of the instance of this type and size,
i ∈ {1, 2, . . . , 10}. Thereby, every experiment is conducted for 10 different instances of some fixed type
and size, i.e., every number reported in the tables below is average for 10 runs for 10 different instances.

The sizes of all butGP instances are selected such that every algorithm could process them all in
approximately the same time. TheGP instances are included in order to examine the behavior of the
heuristics on smaller instances (recall thatGP is the only instance set for which we know the exact solutions
for small instances).

All the heuristics are implemented in Visual C++. The evaluation platform is based on AMD Athlon 64
X2 3.0 GHz processor.

Further, the results of the experiments of three different types are provided and discussed:

• In Subsection 4.1, the local search heuristics are applied to the assignments generated by some con-
struction heuristic. These experiments allow us to excludeseveral local searches from the rest of
the experiments, however, the comparison of the results is complicated because of the significant
difference in both the solution quality and the running time.

• In Subsection 4.2, two simple metaheuristics are used to equate the running times of different heuris-
tics. This is done by varying of number of iterations of the metaheuristics.

• In Subsection 4.3, the results of all the discussed approaches are gathered in two tables to find the most
successful solvers for the instance with independent and decomposable weights for every particular
running time.

4.1 Pure Local Search Experiments

First, we run every local search heuristic for every instance exactly once. The local search is applied to
solutions generated with one of the following constructionheuristics:

1. Trivial, which was first mentioned in [4] asDiagonal. Trivial construction heuristic simply assigns
Ai

j = i for everyi = 1, 2, . . . , n andj = 1, 2, . . . , s.

2. Greedy heuristic was discussed in many papers, see, e.g. [4, 9, 16, 17, 18, 23]. It was proven [16]
that in the worst caseGreedy produces the unique worst solution; however, it was shown [17] that in
some casesGreedy may be a good selection as a fast and simple heuristic.

3. Max-Regret was discussed in a number of papers, see, e.g., [4, 9, 16, 23, 35]. As for Greedy, it is
proven [16] that in the worst caseMax-Regret produces the unique worst solution however many
researchers [4, 23] noted thatMax-Regret is quite powerful in practice.

4. ROM was first introduced in [16] as a heuristic of a large domination number. On every iteration,
the heuristic calculates the total weight for every set of vectors with the fixed first two coordinates:
Mi,j =

∑

e∈X,e1=i,e2=j w(e). Then it solves a 2-AP for the weight matrixM and reorders the second
dimension of the assignment according to this solution and the first dimension of the assignment.
The procedure is repeated recursively for the subproblem where the first dimension is excluded. For
details see [16, 23].
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We will begin our discussion from the experiments started from trivial assignments. The results reported
in Tables 2 and 3 are averages for 10 experiments since every row of these tables corresponds to 10 instances
of some fixed type and size but of different seed values (see above). The tables are split into two parts; the
first part contains only the instances with independent weights (GP andRandom) while the second part
contains only the instances with decomposable weights (Clique, Geometric, Product andSquareRoot). The
average values for different instance families and numbersof dimensions are provided at the bottom of each
part of each table. The tables are also split vertically according to the classes of heuristics. The winner in
every row and every class of heuristics is underlined.

The value of the solution error is calculated as
(

w(A)/w(Abest) − 1
)

· 100%, whereA is the obtained
assignment andAbest is the optimal assignment (or the best known one, see above).

In the group of the vectorwise heuristics the most powerful one is definitely3-opt. v-opt outperforms it
only in a few experiments, mostly three dimensional ones (recall that the neighborhood ofk-opt increases
exponentially with the increase of the number of dimensionss). As it was expected,2-opt never outperforms
3-opt sinceN2-opt ⊂ N3-opt (see Section 2.2). The tendencies for the independent weight instances and for
the decomposable weight instances are similar; the only difference which is worth to note is that all but
v-opt heuristics of this group solve theProduct instances very well. Note that the dispersion of the weights
in Product instances is really high and, thus,v-opt, which minimizes the weight of only one vector in every
pair of vectors while the weight of the complementary vectormay increase arbitrary, cannot be efficient for
them.

As one can expect,sDV is more successful than2DV and2DV is more successful than1DV with respect
to the solution quality (obviously, all the heuristics of this group perform equally for 3-AP and2DV and
sDV are also equal for 4-AP, see Section 2.1). However, for the instances with decomposable weights all
the dimensionwise heuristics perform very similarly and even for the larges, sDV is not significantly more
powerful than1DV or 2DV which means that in case of decomposable instances the most efficient iterations
are when|D| = 1. We can assume that ifc is the number of edges connecting the fixed and unfixed parts of
the clique, then an iteration of a dimensionwise heuristic is rather efficient whenc is small. Observe that,
e.g., forClique the diversity of values in the weight matrix[Mi,j ]n×n (see (4)) decreases with the increase
of the numberc and, hence, the space for optimization on every iteration isdecreasing. Observe also that in
the casec = 1 the iteration leads to the optimal match between the fixed andunfixed parts of the assignment
vectors.

All the combined heuristics show improvements in the solution quality over each of their components,
i.e., over both corresponding vectorswise and dimensionwise local searches. In particular,1DV2 outper-
forms both2-opt and1DV, 2DV2 outperforms both2-opt and2DV, sDV3 outperforms both3-opt andsDV
andsDVv outperforms bothv-opt andsDV. Moreover,sDV3 is significantly faster than3-opt andsDVv is
significantly faster thanv-opt. Hence, we will not discuss the single heuristics3-opt andv-opt in the rest of
the paper. The heuristics1DV2 and2DV2, obviously, perform equally for 3-AP instances.

While for the instances with independent weights the combination of the dimensionwise heuristics with
the vectorwise ones significantly improves the solution quality, it is not the case for the instances with
decomposable weights (observe that1DV performs almost as well as the most powerful heuristicsDV3)
which shows the importance of the instances division. We conclude that the vectorwise neighborhoods are
not efficient for the instances with decomposable weights.

Next we conducted the experiments starting from the other construction heuristics. But first we com-
pared the construction heuristics themselves, see Table 1.It is not surprising thatTrivial produces the worst
solutions. However, one can see thatTrivial outperformsGreedy andMax-Regret for everyProduct instance.
The reason is in the extremely high dispersion of the weightsin Product. BothGreedy andMax-Regret con-
struct the assignments by adding new vectors to it. The decision which vector should be added does not
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depend (or does not depend enough in case ofMax-Regret) on the rest of the vectors and, thus, at the end of
the procedure only the vectors with huge weights are available. For other instance families,Greedy, Max-
Regret andROM perform similarly though the running time of the heuristicsis very different.Max-Regret
is definitely the slowest construction heuristic;Greedy is very fast for theRandom instances (this is because
of the large number of vectors of the weighta and the implementation features, see [23] for details) and
relatively slow for the rest of the instances;ROM’s running time almost does not depend on the instance
and is constantly moderate.

Starting fromGreedy (Table 4) significantly improves the solution quality. Thismostly influenced the
weakest heuristics, e.g.,2-opt average error decreased in our experiments from 59% and 20% to 15% and
6% for independent and decomposable weights respectively,though, e.g., the most powerful heuristicsDV3

error also noticeably decreased (from 2.8% and 5.8% to 2.0% and 2.5%). As regards the running time,
Greedy is slower than most of the local search heuristics and, thus,the running times of all butsDV3 and
sDVv heuristics are very similar. The best of the rest of the heuristics in this experiment issDV though1DV2

and2DV2 perform similarly.
Starting fromMax-Regret improves the solution quality even more but at the cost of very large running

times. In this case the difference in the running time of the local search heuristics almost disappears and
sDV3, the best one, reaches the average error values 1.3% and 2.2%for independent and decomposable
weights respectively. Starting fromROM improves the quality only for the worst heuristics. This is probably
because all the best heuristics containsDV which does a good vectorwise optimization (recall thatROM
exploits a similar to the dimensionwise neighborhood idea). At the same time, starting fromROM increases
the running time of the heuristics significantly; the results for bothMax-Regret andROM are excluded from
the paper; one can find them on the web [22].

It is clear that the construction heuristics are quite slow comparing to the local search and we should
answer the following question: is it worth to spend so much time on the initial solution construction or there
is some way to apply local search several times in order to improve the assignments iteratively? It is known
that the algorithms which apply local search several times are called metaheuristics. There is a number of
different metaheuristic approaches such as tabu search or memetic algorithms, but this is not the subject of
this paper. In what follows, we are going to use two simple metaheuristics,Chain andMultichain.

4.2 Experiments With Metaheuristics

It is obvious that there is no sense in applying a local searchprocedure to one solution several times be-
cause the local search moves the solution to a local minimum with respect to its neighborhood, i.e., the
second exploration of this neighborhood is useless. In order to apply the local search several times, one
should perturb the solution obtained on the previous iteration. This idea immediately brings us to the first
metaheuristic, let us sayChain:

1. Initialize an assignmentA;

2. SetAbest= A;

3. Repeat:

(a) Apply local searchA = LS(A);

(b) If w(A) < w(Abest) setAbest= A;

(c) Perturb the assignmentA = Perturb(A).

In this algorithm we use two subroutines,LS(A) andPerturb(A). The first one is some local search
procedure and the second one is an algorithm which removes the given assignment from the local minimum
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by a random perturbation of it. The perturbation should be strong enough such that the assignment will
not come back to the previous position on the next iteration every time though it should not be too strong
such that the results of the previous search would be totallydestroyed. Our perturbation procedure selects
p = ⌈n/25⌉+1 vectors in the assignment and perturbs them randomly. In other words,Perturb(A) is just
a random move of thep-opt heuristic. The parameters of the procedure are obtained empirically.

One can doubt ifChain is good enough for large running times and, thus, we introduce a little bit more
sophisticated metaheuristic,Multichain. Unlike Chain, Multichain maintains several assignments on every
iteration:

1. Initialize assignmentAbest;

2. SetP = ∅ and repeat the followingc(c+ 1)/2 times:
P = P ∪ {LS(Perturb(Abest))}
(recall thatPerturb(A) produces a different assignment every time);

3. Repeat:

(a) Save the bestc assignments fromP intoC1, C2, . . . , Cc such thatw(Ci) ≤ w(Ci+1);

(b) If w(C1) < w(Cbest) setAbest= C1.

(c) SetP = ∅ and for everyi = 1, 2, . . . , c repeat the followingc − i + 1 times: P = P ∪
{LS(Perturb(Ci))}.

The parameterc is responsible for the power ofMultichain; we usec = 5 and, thus, the algorithm
performsc(c+ 1)/2 = 15 local searches on every iteration.

The results of the experiments withChain running for 5 and 10 seconds are provided in Tables 5 and 6
respectively. The experiments are repeated for three construction heuristics,Trivial, Greedy andROM. It
was not possible to includeMax-Regret in the comparison because it takes much more than 10 seconds for
some of the instances.

The diversity in solution quality of the heuristics decreased with the usage of a metaheuristic. This is
because the fast heuristics are able to repeat more times than the slow ones. Note thatsDV3, which is the
most powerful single heuristic, is now outperformed by other heuristics. The most successful heuristics for
the instances with independent and decomposable weights aresDVv and1DV respectfully, though1DV2 and
2DV2 are slightly more successful thansDVv for theGP instances. This result also holds forMultichain, see
Tables 7 and 8. The success of1DV confirms again that a dimensionwise heuristic is most successful when
|D| = 1 if the weights are decomposable and that it is more efficient to repeat these iterations many times
rather than try|D| > 1. For the explanation of this phenomenon see Section 4.1. Thesuccess of1DV2 and
2DV2 for GP means existence of a certain structure in the weight matrices of these instances.

One can see that the initialization of the assignment is not crucial for the final solution quality. However,
usingGreedy instead ofTrivial clearly improves the solutions for almost every instance and local search
heuristic. In contrast toGreedy, using ofROM usually does not improve the solution quality. It only
influences2-opt which is the only pure vectorwise local search in the comparison (recall thatROM has a
dimensionwise structure and, thus, it is good in combination with vectorwise heuristics).

The Multichain metaheuristic, given the same time, obtains better resultsthanChain. However,Multi-
chain fails for some combinations of slow local search and hard instance because it is not able to complete
even the first iteration in the given time.Chain, having much easier iterations, do not have this disadvantage.

Giving more time to a metaheuristic also improves the solution quality. Therefore, one is able to obtain
high quality solutions using metaheuristics with large running times.
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4.3 Solvers Comparison

To compare all the heuristics and metaheuristics discussedin this paper we produced Tables 9 and 10. These
tables indicate which heuristics should be chosen to solve particular instances in the given time limitations.
Several best heuristics are selected for every combinationof the instance and the given time. A heuristic is
included in the table if it was able to solve the problem in thegiven time, and if its solution quality is not
worse than1.1 ·w(Abest) and its running time is not larger than1.1 · tbest, whereAbest is the best assignment
produced by the considered heuristics andtbest is the time spent to produceAbest.

The following information is provided for every solver in Tables 9 and 10:

• Metaheuristic type (C for Chain, MC for Multichain or empty if the experiment is single).

• Local search procedure (2-opt, 1DV, 2DV, sDV, 1DV2, 2DV2, sDV3 sDVv or empty if no local search
was applied to the initial solution).

• Construction heuristic the experiment was started with (Gr, M-R or empty if the assignment was
initialized byTrivial).

• The solution error in percent.

The following solvers were included in this experiment:

• Construction heuristicsGreedy, Max-Regret andROM.

• Single heuristics2-opt, 1DV, 2DV, sDV, 1DV2, 2DV2, sDV3 andsDVvstarted from eitherTrivial, Greedy,
Max-Regret or ROM.

• Chain andMultichain metaheuristics for either2-opt, 1DV, 2DV, sDV, 1DV2, 2DV2, sDV3 or sDVv and
started from eitherTrivial, Greedy, Max-Regret or ROM. The metaheuristics proceeded until the given
time limitations.

Note that for certain instances we exclude duplicating solvers (recall that all the dimensionwise heuris-
tics perform equally for 3-AP as well as2DV andsDV perform equally for 4-AP, see Section 2.1). The
common rule is that we leavesDV rather than2DV and2DV rather than1DV. For example, if the list of suc-
cessful solvers for some 3-AP instance containsC 1DV Gr, C 2DV Gr andC sDV Gr, then onlyC sDV Gr
will be included in the table. This is also applicable to the combined heuristics, e.g, having 1DV2 R and
2DV2 R for a 3-AP instance, we include only 2DV2 R in the final results.

The last row in every table indicates the heuristics which are the most successful on average, i.e., the
heuristics which can solve all the instances with the best average results.

Single construction heuristics are not presented in the tables; single local search procedures appear only
for the small allowed times when all other heuristics take more time to run; the most of the best solvers
are the metaheuristics.Multichain seems to be more suitable thanChain for large running times; however,
Multichain does not appear for the instances with smalln. This is probably because the power of the
perturbation degree increases with the decrease of the instance size (note thatperturb(A) perturbs at least
two vectors in spite ofn).

The most successful heuristics for the assignment initialization areTrivial andGreedy; Trivial is useful
rather for small running times.Max-Regret andROM appear only a few times in the tables.

The success of a local search depends on the instance type. The most successful local search heuristic
for the instance with independent weights is definitelysDVv. ThesDV heuristic also appears several times
in Table 9, especially for the small running times. For the instances with decomposable weights, the most
successful are the dimensionwise heuristics and, in particular,1DV.
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5 Conclusions

Several neighborhoodsare generalized and discussed in this paper. An efficient approach of joining different
neighborhoods is successfully applied; the yielded heuristics showed that they combine the strengths of
their components. The experimental evaluation for a set of instances of different types show that there are
several superior heuristic approaches suitable for different kinds of instances and running times. Two kinds
of instances are selected: instances with independent weights and instances with decomposable weights.
The first ones are better solvable by a combined heuristicsDVv; the second ones are better solvable by1DV.
In both cases, it is good to initialize the assignment with theGreedy construction heuristic if there is enough
time; otherwise one should use a trivial assignment as the initial one. The results can also be significantly
improved by applying metaheuristic approaches for as log aspossible.

Thereby, it is shown in the paper that metaheuristics applied to the fast heuristics dominate slow heuris-
tics and, thus, further research of some more sophisticatedmetaheuristics such as memetic algorithms is of
interest.
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Tab. 1: Construction heuristics comparison.
Solution error, % Running times, ms

Inst. Best Trivial Greedy Max-Regret ROM Trivial Greedy Max-Regret ROM

3gp100 504.4 157 6 6 10 0 40 799 9
3r150 150.0 4 997 54 29 34 0 14 4 253 26
4gp30 145.2 158 9 9 2 0 35 206 7
4r80 80.0 4 985 74 49 76 0 12 27 285 278
5gp12 66.2 147 13 9 9 0 6 36 2
5r40 40.0 4 911 159 116 169 0 6 37 214 686
6gp8 41.8 143 25 1 14 0 5 33 2
6r22 22.0 5 180 295 218 310 0 6 24 750 861
7gp5 25.6 157 27 6 20 0 1 8 1
7r14 14.0 5 116 377 454 396 0 2 17 032 805
8gp4 19.2 113 21 7 28 0 1 8 1
8r9 9.0 5 262 579 514 543 0 2 5 604 342

All avg. 2 610 137 118 134 0 11 9 769 252

GP avg. 146 17 6 14 0 15 182 4
Rand. avg. 5 075 256 230 255 0 7 19 356 500

3-AP avg. 2 577 30 17 22 0 27 2 526 17
4-AP avg. 2 571 41 29 39 0 23 13 745 142
5-AP avg. 2 529 86 62 89 0 6 18 625 344
6-AP avg. 2 662 160 110 162 0 5 12 391 432
7-AP avg. 2 637 202 230 208 0 2 8 520 403
8-AP avg. 2 687 300 261 286 0 1 2 806 171

3cq150 1738.5 1 219 41 20 37 0 56 4 388 27
3g150 1552.0 865 19 27 3 0 53 4 226 28
3p150 14437.2 76 215 122 7 0 580 4 318 37
3sr150 1077.8 1 250 42 21 43 0 60 4 363 29
4cq50 3034.8 400 27 22 32 0 156 3 713 161
4g50 1705.2 492 21 29 2 0 217 3 828 148
4p50 20096.8 103 484 278 8 0 1 030 3 725 151
4sr50 1496.6 367 25 20 32 0 193 3 847 150
5cq30 4727.1 218 20 17 24 0 640 9 636 583
5g30 2321.8 340 26 33 3 0 936 9 650 604
5p30 55628.5 137 1 017 646 8 0 2 711 9 536 619
5sr30 1842.0 196 16 13 28 0 666 9 627 615
6cq18 5765.5 142 15 15 18 0 426 6 758 267
6g18 2536.0 260 26 27 3 0 563 6 802 262
6p18 135515.3 163 2 118 1 263 8 0 1 098 6 758 323
6sr18 1856.3 121 13 13 19 0 420 6 775 261
7cq12 6663.7 91 14 11 15 0 1 037 6 653 924
7g12 3267.2 156 19 23 2 0 1 217 6 614 944
7p12 558611.7 346 3 162 1 994 9 0 1 872 6 463 335
7sr12 1795.7 78 9 9 15 0 980 6 510 268
8cq8 7004.9 62 10 10 10 0 465 2 416 130
8g8 3679.5 105 15 21 1 0 569 2 446 120
8p8 2233760.0 177 3 605 2 309 9 0 710 2 413 140
8sr8 1622.1 52 7 7 10 0 474 2 448 132

All avg. 309 457 290 14 0 714 5 580 302

Clique avg. 355 21 16 23 0 463 5 594 349
Geom. avg. 370 21 27 2 0 593 5 594 351
Product avg. 167 1 767 1 102 8 0 1 334 5 536 268
SR avg. 344 19 14 24 0 465 5 595 242

3-AP avg. 853 79 47 22 0 187 4 324 30
4-AP avg. 340 139 87 19 0 399 3 778 152
5-AP avg. 223 270 177 15 0 1 238 9 612 605
6-AP avg. 171 543 329 12 0 627 6 773 278
7-AP avg. 168 801 509 10 0 1 276 6 560 618
8-AP avg. 99 909 587 8 0 555 2 431 131
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Tab. 2: Local search heuristics started from Trivial.
Solution error, %

Inst. Best 2-opt 3-opt v-opt 1DV 2DVsDV 1DV2 2DV2 sDV3 sDVv

3gp100 504.4 19.6 10.019.8 4.9 4.9 4.9 4.9 4.9 4.6 4.9
3r150 150.0 134.5 16.0 1.5 2.4 2.4 2.4 2.4 2.4 2.1 0.7
4gp30 145.2 17.4 4.213.4 11.1 7.9 7.9 10.7 7.9 4.2 7.5
4r80 80.0 115.0 7.3 2.0 20.5 11.5 11.5 18.9 11.5 4.1 1.6
5gp12 66.2 10.6 2.1 8.5 12.5 6.9 6.9 10.1 6.9 1.8 6.9
5r40 40.0 104.5 4.3 3.8 63.0 34.3 34.3 47.3 34.3 3.5 5.3
6gp8 41.8 6.7 2.4 5.3 12.4 5.7 5.0 6.5 5.5 2.4 4.8
6r22 22.0 105.5 0.9 8.6 125.0 62.3 54.5 80.9 55.5 1.8 9.1
7gp5 25.6 6.3 3.9 10.2 21.5 9.0 5.9 5.9 5.1 3.9 5.5
7r14 14.0 95.7 0.0 36.4 244.3 111.4 72.1 92.1 70.0 0.7 16.4
8gp4 19.2 6.8 5.2 10.9 17.2 9.4 6.2 7.8 6.8 5.2 6.2
8r9 9.0 81.1 0.0 67.8 323.3 173.3 60.0 73.3 77.8 0.0 40.0

All avg. 58.6 4.7 15.7 71.5 36.6 22.6 30.1 24.0 2.9 9.1

GP avg. 11.2 4.6 11.3 13.3 7.3 6.1 7.6 6.2 3.7 6.0
Rand. avg. 106.1 4.720.0 129.8 65.9 39.1 52.5 41.9 2.0 12.2

3-AP avg. 77.1 13.0 10.6 3.6 3.6 3.6 3.6 3.6 3.3 2.8
4-AP avg. 66.2 5.7 7.7 15.8 9.7 9.7 14.8 9.7 4.2 4.6
5-AP avg. 57.5 3.2 6.1 37.8 20.6 20.6 28.7 20.6 2.7 6.1
6-AP avg. 56.1 1.7 6.9 68.7 34.0 29.8 43.7 30.5 2.1 6.9
7-AP avg. 51.0 2.0 23.3 132.9 60.2 39.0 49.0 37.5 2.3 10.9
8-AP avg. 43.9 2.6 39.4 170.3 91.4 33.1 40.6 42.3 2.6 23.1

3cq150 1738.5 125.1 49.9 22.8 20.1 20.1 20.1 20.1 20.1 19.9 18.9
3g150 1552.0 0.0 0.0 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3p150 14437.2 0.1 0.015.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3sr150 1077.8 144.2 64.0 28.0 22.0 22.0 22.0 22.0 22.0 21.8 21.3
4cq50 3034.8 52.5 31.3 30.3 23.3 23.1 23.1 23.2 23.1 21.4 20.1
4g50 1705.2 0.0 0.0 11.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0
4p50 20096.8 0.0 0.049.6 0.1 0.0 0.0 0.1 0.0 0.0 0.0
4sr50 1496.6 56.8 30.631.9 27.2 24.824.8 27.2 24.8 23.4 23.9
5cq30 4727.1 30.9 18.721.4 16.9 16.616.6 16.8 16.6 15.5 16.1
5g30 2321.8 0.0 0.0 9.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0
5p30 55628.5 0.0 0.053.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
5sr30 1842.0 38.3 19.023.9 21.7 20.420.4 21.1 20.4 17.6 18.3
6cq18 5765.5 17.6 12.216.1 11.5 10.311.6 11.3 10.3 10.1 11.1
6g18 2536.0 0.0 0.0 15.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0
6p18 135515.3 0.0 0.098.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
6sr18 1856.3 20.9 11.917.4 12.7 13.9 13.6 12.7 13.9 11.512.6
7cq12 6663.7 11.9 5.310.4 8.0 7.0 5.9 7.1 6.9 5.7 5.8
7g12 3267.2 0.0 0.0 9.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0
7p12 558611.7 0.0 0.0123.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0
7sr12 1795.7 12.1 7.611.0 8.5 10.1 7.1 8.3 10.1 5.9 7.0
8cq8 7004.9 6.4 3.0 8.5 6.4 4.4 4.8 5.3 4.1 2.2 4.7
8g8 3679.5 0.0 0.0 9.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0
8p8 2233760.0 0.0 0.0143.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0
8sr8 1622.1 6.6 2.6 7.4 5.7 5.0 4.7 4.9 4.4 3.5 4.7

All avg. 21.8 10.7 32.2 7.8 7.4 7.3 7.5 7.4 6.6 6.9

Clique avg. 40.7 20.0 18.2 14.4 13.6 13.7 14.0 13.5 12.5 12.8
Geom. avg. 0.0 0.0 10.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Product avg. 0.0 0.0 80.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SR avg. 46.5 22.6 19.9 16.3 16.1 15.4 16.0 16.0 13.9 14.7

3-AP avg. 67.3 28.5 17.9 10.5 10.5 10.5 10.5 10.5 10.4 10.1
4-AP avg. 27.3 15.5 30.7 12.7 12.012.0 12.6 12.0 11.2 11.0
5-AP avg. 17.3 9.4 26.9 9.7 9.3 9.3 9.5 9.3 8.3 8.6
6-AP avg. 9.6 6.0 36.8 6.2 6.1 6.3 6.0 6.1 5.4 6.0
7-AP avg. 6.0 3.2 38.7 4.2 4.3 3.2 3.8 4.3 2.9 3.2
8-AP avg. 3.2 1.4 42.2 3.1 2.4 2.4 2.6 2.1 1.4 2.4



Local Search Heuristics for the Multidimensional Assignment Problem 23

Tab. 3: Local search heuristics started from Trivial.
Running time, ms

Inst. 2-opt 3-opt v-opt 1DV 2DVsDV 1DV2 2DV2 sDV3 sDVv

3gp100 6.2 820.6 181.8 14.3 14.016.5 18.4 16.7 430.6 79.0
3r150 19.81 737.9 65.7 17.6 18.7 17.1 22.7 18.9 147.8 45.4
4gp30 1.5 150.3 45.0 0.7 1.2 1.1 1.4 1.4 116.9 17.5
4r80 10.5 987.5 64.5 7.918.0 15.3 11.2 18.4 344.8 98.2
5gp12 0.3 38.5 3.6 0.2 0.4 0.5 0.5 0.5 30.6 1.6
5r40 16.9 425.9 34.3 2.3 7.2 6.3 4.6 8.6 386.9 35.3
6gp8 0.2 57.2 2.5 0.2 0.3 0.4 0.4 0.5 42.0 1.3
6r22 2.2 218.9 16.7 0.9 2.6 3.9 1.9 4.3 259.0 22.7
7gp5 0.1 48.9 0.9 0.1 0.2 0.3 0.1 0.3 40.0 0.9
7r14 1.4 237.1 12.0 0.4 1.6 2.9 1.8 3.0 210.9 15.5
8gp4 0.1 117.5 0.8 0.2 0.3 0.6 0.2 0.3 72.3 0.9
8r9 0.9 191.9 6.7 0.3 1.1 2.3 1.0 3.1 177.7 7.1

All avg. 5.0 419.4 36.2 3.8 5.5 5.6 5.3 6.3 188.3 27.1

GP avg. 1.4 205.5 39.1 2.6 2.7 3.2 3.5 3.3 122.1 16.9
Rand. avg. 8.6 633.2 33.3 4.9 8.2 7.9 7.2 9.4 254.5 37.4

3-AP avg. 13.01 279.2 123.8 16.016.4 16.8 20.5 17.8 289.2 62.2
4-AP avg. 6.0 568.9 54.7 4.3 9.6 8.2 6.3 9.9 230.8 57.8
5-AP avg. 8.6 232.2 19.0 1.3 3.8 3.4 2.5 4.5 208.7 18.5
6-AP avg. 1.2 138.1 9.6 0.5 1.5 2.1 1.1 2.4 150.5 12.0
7-AP avg. 0.7 143.0 6.5 0.3 0.9 1.6 1.0 1.6 125.5 8.2
8-AP avg. 0.5 154.7 3.8 0.3 0.7 1.4 0.6 1.7 125.0 4.0

3cq150 22.14 366.5 1 388.4 42.1 39.3 34.9 41.0 46.0 1 503.9 497.6
3g150 19.02 229.3 780.0 26.2 28.1 25.5 37.2 33.01 299.5 201.2
3p150 15.42 149.7 847.1 82.089.8 89.7 96.0101.9 1 730.1 458.6
3sr150 21.73 949.9 1 157.5 36.037.5 37.9 41.2 47.1 1 400.9 469.6
4cq50 6.1 872.0 308.9 3.8 8.5 7.3 6.1 10.8 468.0 167.2
4g50 5.3 542.9 251.2 3.7 5.9 5.9 6.7 6.6 273.0 87.3
4p50 5.7 586.6 251.2 7.314.2 13.6 13.4 15.7 441.5 95.5
4sr50 5.61 009.3 296.4 3.3 7.4 6.2 6.0 7.9 424.3 111.6
5cq30 4.61 087.3 177.7 2.0 5.2 5.5 3.3 6.0 560.0 63.5
5g30 3.7 673.9 182.5 1.8 4.1 4.0 3.6 5.7 319.8 41.8
5p30 4.5 762.8 103.6 2.710.1 9.5 6.1 12.2 580.3 44.1
5sr30 4.81 115.4 163.5 1.9 4.7 4.5 3.6 6.3 667.7 63.2
6cq18 3.51 205.9 63.4 1.0 2.7 3.7 1.5 3.1 630.2 26.6
6g18 2.0 731.6 55.2 0.9 1.8 2.7 1.9 2.4 346.3 18.1
6p18 3.1 929.8 31.1 1.3 3.8 5.4 2.5 5.2 658.3 19.9
6sr18 2.31 369.7 59.9 0.9 2.9 3.0 1.5 3.4 778.4 34.4
7cq12 1.71 658.3 31.7 0.6 2.0 3.4 1.2 2.9 728.5 12.6
7g12 1.41 048.3 28.2 0.6 1.3 2.4 1.1 2.0 555.4 11.1
7p12 2.11 324.4 17.5 0.8 2.4 6.4 1.8 3.9 1 088.9 14.6
7sr12 1.91 622.4 40.9 0.7 2.0 3.5 1.1 2.5 965.6 11.0
8cq8 1.12 112.3 13.3 0.5 1.5 2.8 1.0 2.0 1 909.5 8.5
8g8 1.0 1 675.5 15.6 0.4 0.8 2.1 0.8 1.2 728.5 7.2
8p8 1.7 2 051.4 7.6 0.4 1.2 3.1 0.9 1.8 1 492.9 7.9
8sr8 1.32 439.9 16.4 0.3 1.3 2.9 1.0 1.8 1 252.7 8.1

All avg. 5.9 1 563.1 262.0 9.211.6 11.9 11.7 13.8 866.8 103.4

Clique avg. 6.51 883.7 330.6 8.3 9.9 9.6 9.0 11.8 966.7 129.4
Geom. avg. 5.41 150.2 218.8 5.6 7.0 7.1 8.5 8.5 587.1 61.1
Product avg. 5.41 300.8 209.7 15.820.2 21.3 20.1 23.4 998.7 106.8
SR avg. 6.31 917.8 289.1 7.2 9.3 9.7 9.1 11.5 914.9 116.3

3-AP avg. 19.53 173.8 1 043.3 46.648.7 47.0 53.8 57.0 1 483.6 406.8
4-AP avg. 5.7 752.7 276.9 4.5 9.0 8.2 8.0 10.2 401.7 115.4
5-AP avg. 4.4 909.9 156.8 2.1 6.0 5.9 4.2 7.5 532.0 53.2
6-AP avg. 2.71 059.2 52.4 1.0 2.8 3.7 1.9 3.5 603.3 24.8
7-AP avg. 1.71 413.4 29.6 0.7 1.9 3.9 1.3 2.8 834.6 12.3
8-AP avg. 1.22 069.7 13.2 0.4 1.2 2.7 0.9 1.7 1 345.9 7.9
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Tab. 4: Local search heuristics started from Greedy.
Solution error, % Running times, ms

Inst. 2-opt 1DV 2DV sDV 1DV2 2DV2 sDV3 sDVv 2-opt 1DV 2DV sDV 1DV2 2DV2 sDV3 sDVv

3gp100 4.3 3.4 3.4 3.4 3.4 3.4 3.3 3.4 0.04 0.04 0.04 0.04 0.05 0.05 0.36 0.09
3r150 16.7 1.2 1.2 1.2 1.2 1.2 0.8 0.7 0.02 0.02 0.02 0.03 0.02 0.03 0.11 0.05
4gp30 4.5 3.7 3.6 3.6 3.6 3.6 2.6 3.6 0.04 0.030.04 0.04 0.04 0.04 0.11 0.05
4r80 15.8 7.9 6.1 6.1 7.9 6.1 2.6 1.5 0.01 0.02 0.02 0.02 0.02 0.02 0.21 0.08
5gp12 5.4 6.3 4.5 4.5 5.3 4.5 1.8 4.5 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01
5r40 18.5 19.8 13.5 13.5 15.0 13.5 2.33.5 0.01 0.01 0.01 0.01 0.01 0.01 0.18 0.04
6gp8 4.1 8.9 5.5 4.3 6.0 4.5 2.4 3.8 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01
6r22 25.9 44.1 28.6 26.4 26.8 27.3 2.78.6 0.01 0.01 0.01 0.01 0.01 0.01 0.21 0.02
7gp5 5.5 11.3 7.0 5.9 6.6 5.9 3.5 5.1 0.00 0.000.00 0.00 0.00 0.00 0.04 0.00
7r14 37.9 88.6 55.7 33.6 51.4 44.3 0.015.0 0.00 0.000.00 0.00 0.00 0.00 0.14 0.01
8gp4 4.2 11.5 5.2 3.6 4.2 3.6 3.1 3.6 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00
8r9 40.0 158.9 107.8 54.4 65.6 65.6 0.030.0 0.00 0.000.00 0.00 0.00 0.00 0.13 0.01

All avg. 15.2 30.5 20.2 13.4 16.4 15.3 2.1 6.9 0.01 0.01 0.01 0.01 0.01 0.01 0.14 0.03

GP avg. 4.7 7.5 4.9 4.2 4.8 4.3 2.8 4.0 0.02 0.02 0.02 0.02 0.02 0.02 0.11 0.03
Rand. avg. 25.8 53.4 35.5 22.5 28.0 26.3 1.49.9 0.01 0.01 0.01 0.01 0.01 0.01 0.16 0.03

3-AP avg. 10.5 2.3 2.3 2.3 2.3 2.3 2.1 2.0 0.03 0.03 0.03 0.04 0.04 0.04 0.24 0.07
4-AP avg. 10.1 5.8 4.9 4.9 5.7 4.9 2.6 2.5 0.02 0.03 0.03 0.03 0.03 0.03 0.16 0.06
5-AP avg. 12.0 13.0 9.0 9.0 10.1 9.0 2.0 4.0 0.01 0.01 0.01 0.01 0.01 0.01 0.11 0.02
6-AP avg. 15.0 26.5 17.1 15.3 16.4 15.9 2.66.2 0.01 0.01 0.01 0.01 0.01 0.01 0.13 0.01
7-AP avg. 21.7 49.9 31.4 19.7 29.0 25.1 1.810.0 0.00 0.000.00 0.00 0.00 0.00 0.09 0.01
8-AP avg. 22.1 85.2 56.5 29.0 34.9 34.6 1.616.8 0.00 0.000.00 0.00 0.00 0.00 0.10 0.01

3cq150 26.8 8.1 8.1 8.1 8.1 8.1 8.0 8.0 0.07 0.07 0.07 0.07 0.08 0.08 1.18 0.26
3g150 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.07 0.07 0.07 0.08 0.08 1.09 0.22
3p150 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.61 0.65 0.66 0.66 0.66 0.66 1.92 0.96
3sr150 29.9 9.8 9.8 9.8 9.8 9.8 9.4 9.1 0.07 0.07 0.07 0.07 0.08 0.09 1.49 0.26
4cq50 19.0 11.6 11.6 11.6 11.6 11.6 11.311.6 0.16 0.160.16 0.16 0.16 0.16 0.44 0.21
4g50 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.22 0.22 0.22 0.22 0.22 0.22 0.43 0.29
4p50 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1 1.04 1.041.04 1.04 1.04 1.05 1.39 1.12
4sr50 20.0 10.9 11.3 11.3 10.9 11.3 10.311.0 0.19 0.19 0.20 0.20 0.20 0.20 0.47 0.25
5cq30 14.2 9.6 9.5 9.5 9.6 9.5 9.3 9.4 0.64 0.640.64 0.64 0.64 0.64 1.03 0.68
5g30 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.94 0.94 0.94 0.94 0.94 0.94 1.26 0.97
5p30 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.72 2.712.72 2.72 2.72 2.72 3.23 2.76
5sr30 11.7 8.9 8.5 8.5 8.3 8.5 7.1 8.5 0.67 0.670.67 0.67 0.67 0.67 1.23 0.69
6cq18 9.8 8.2 7.8 7.5 7.9 7.8 6.3 7.3 0.43 0.430.43 0.43 0.43 0.43 1.08 0.44
6g18 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.56 0.56 0.56 0.57 0.56 0.57 0.90 0.58
6p18 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.10 1.101.10 1.10 1.10 1.10 1.69 1.12
6sr18 9.7 8.6 8.2 8.2 8.5 8.2 6.5 7.8 0.42 0.420.42 0.42 0.42 0.42 1.15 0.44
7cq12 7.1 5.7 5.0 5.1 5.1 5.0 4.0 4.9 1.04 1.041.04 1.04 1.04 1.04 2.20 1.05
7g12 0.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0 1.22 1.22 1.22 1.22 1.22 1.22 1.77 1.23
7p12 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 1.88 1.871.87 1.88 1.87 1.88 2.90 1.89
7sr12 6.5 5.7 5.1 5.2 5.6 5.1 4.0 5.0 0.98 0.980.98 0.98 0.98 0.98 2.15 0.99
8cq8 4.7 4.1 3.1 2.8 3.7 2.7 2.2 2.6 0.47 0.470.47 0.47 0.47 0.47 1.97 0.47
8g8 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.57 0.57 0.57 0.57 0.57 0.57 1.38 0.58
8p8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.71 0.710.71 0.71 0.71 0.71 2.11 0.72
8sr8 3.2 3.7 2.8 2.6 2.6 2.5 2.1 2.4 0.47 0.470.47 0.48 0.47 0.48 1.72 0.48

All avg. 6.8 4.1 3.8 3.8 3.8 3.8 3.4 3.7 0.72 0.72 0.72 0.72 0.72 0.72 1.51 0.78

Clique avg. 13.6 7.9 7.5 7.4 7.6 7.5 6.8 7.3 0.47 0.47 0.47 0.47 0.47 0.47 1.32 0.52
Geom. avg. 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.60 0.60 0.60 0.60 0.60 0.60 1.14 0.65
Product avg. 0.1 0.2 0.0 0.0 0.0 0.0 0.00.0 1.34 1.35 1.35 1.35 1.35 1.35 2.21 1.43
SR avg. 13.5 7.9 7.6 7.6 7.6 7.6 6.6 7.3 0.47 0.47 0.47 0.47 0.47 0.47 1.37 0.52

3-AP avg. 14.2 4.5 4.5 4.5 4.5 4.5 4.4 4.3 0.20 0.22 0.22 0.22 0.22 0.23 1.42 0.43
4-AP avg. 9.8 5.7 5.7 5.7 5.6 5.7 5.4 5.7 0.40 0.400.41 0.41 0.40 0.41 0.68 0.47
5-AP avg. 6.5 4.8 4.5 4.5 4.5 4.5 4.1 4.5 1.24 1.241.24 1.24 1.24 1.24 1.69 1.27
6-AP avg. 4.9 4.4 4.0 3.9 4.1 4.0 3.2 3.8 0.63 0.630.63 0.63 0.63 0.63 1.21 0.64
7-AP avg. 3.4 3.1 2.6 2.6 2.7 2.5 2.0 2.5 1.28 1.281.28 1.28 1.28 1.28 2.26 1.29
8-AP avg. 2.0 2.2 1.5 1.4 1.6 1.3 1.1 1.3 0.56 0.550.56 0.56 0.56 0.56 1.80 0.56
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Tab. 5: Chain metaheuristic started from Trivial, Greedy and ROM. 5seconds given. 1 — 2-opt, 2 — 1DV,
3 — 2DV, 4 —sDV, 5 — 1DV2, 6 — 2DV2, 7 — sDV3, 8 — sDVv.

Solution error, %

Trivial Greedy ROM

Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

3gp100 15.3 1.8 1.8 1.8 1.8 1.8 2.8 2.5 5.3 1.7 1.71.7 1.8 1.8 2.9 2.3 9.8 1.9 1.9 1.9 1.9 1.9 2.6 2.3
3r150 77.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 41.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4gp30 7.0 1.6 1.1 1.1 1.8 1.1 0.81.4 6.3 1.9 0.8 0.8 1.8 0.9 0.81.4 2.2 1.7 0.9 0.9 1.7 1.0 0.81.4
4r80 55.0 4.4 1.9 1.9 4.1 2.3 0.4 0.0 41.6 4.6 1.6 1.6 4.5 1.8 0.8 0.0 57.0 4.3 2.0 2.0 4.3 2.0 0.9 0.0
5gp12 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
5r40 40.8 18.5 8.0 8.0 16.3 8.0 0.00.0 34.0 19.3 8.0 8.0 13.5 8.5 0.00.0 40.3 19.3 8.0 8.0 15.8 8.8 0.5 0.0
6gp8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
6r22 20.5 30.0 10.9 6.4 15.5 8.2 0.00.0 19.1 27.7 11.8 5.5 15.5 9.1 0.00.0 15.5 32.7 13.6 8.6 15.0 9.5 0.00.0
7gp5 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.1 3.5 3.5 3.5 3.5 3.13.5 3.5 3.5 3.9 3.9 3.9 3.9 3.9 3.9 3.9
7r14 2.9 33.6 11.4 2.1 6.4 3.6 0.00.0 3.6 33.6 10.7 2.1 5.7 2.1 0.00.0 4.3 35.7 7.9 0.7 2.1 3.6 0.00.0
8gp4 2.1 5.2 4.7 4.2 2.13.6 5.2 5.2 0.5 3.1 3.1 3.1 2.6 1.6 3.1 2.6 1.04.7 4.7 3.6 2.6 4.2 4.7 4.7
8r9 0.0 25.6 4.4 0.0 0.0 0.0 0.0 0.0 0.0 22.2 2.2 0.0 0.0 0.0 0.0 0.0 0.0 26.7 4.4 0.0 0.0 0.0 0.0 0.0

All avg. 19.1 10.7 4.3 2.8 4.6 3.0 1.4 1.4 13.2 10.1 4.0 2.5 4.4 2.7 1.2 1.1 14.3 11.2 4.3 2.8 4.3 3.2 1.4 1.3

GP avg. 5.4 2.7 2.6 2.5 2.22.4 2.8 2.8 3.2 2.4 2.2 2.2 2.3 1.92.4 2.3 3.4 2.7 2.5 2.4 2.32.5 2.6 2.7
Rand. avg. 32.8 18.7 6.1 3.1 7.0 3.7 0.1 0.0 23.3 17.9 5.7 2.9 6.5 3.6 0.1 0.0 25.1 19.8 6.0 3.2 6.2 4.0 0.2 0.0

3-AP avg. 46.5 0.9 0.9 0.9 0.9 0.9 1.4 1.2 23.3 0.9 0.90.9 0.9 0.9 1.4 1.1 21.7 0.90.9 0.9 1.0 1.0 1.3 1.1
4-AP avg. 31.0 3.0 1.5 1.5 3.0 1.7 0.60.7 23.9 3.3 1.2 1.2 3.1 1.3 0.8 0.7 29.6 3.0 1.4 1.4 3.0 1.5 0.8 0.7
5-AP avg. 21.1 10.0 4.8 4.8 8.9 4.8 0.80.8 17.8 10.4 4.8 4.8 7.5 5.0 0.80.8 20.9 10.4 4.8 4.8 8.6 5.1 1.0 0.8
6-AP avg. 11.4 16.2 6.7 4.4 8.9 5.3 1.21.2 10.7 15.1 7.1 3.9 8.9 5.7 1.21.2 8.9 17.6 8.0 5.5 8.7 6.0 1.21.2
7-AP avg. 3.4 18.7 7.7 3.0 5.2 3.7 2.02.0 3.3 18.5 7.1 2.8 4.6 2.6 1.81.8 3.9 19.8 5.9 2.3 3.0 3.7 2.02.0
8-AP avg. 1.015.4 4.6 2.1 1.01.8 2.6 2.6 0.312.7 2.7 1.6 1.3 0.8 1.6 1.3 0.515.7 4.6 1.8 1.3 2.1 2.3 2.3

3cq150 80.7 6.2 6.2 6.2 6.7 6.7 17.0 9.8 38.2 6.06.0 6.0 6.1 6.0 8.4 6.3 36.8 6.46.4 6.4 6.5 6.5 15.8 11.3
3g150 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3p150 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
3sr150 96.0 7.0 7.0 7.1 7.6 7.6 18.3 11.8 41.0 7.47.4 7.4 7.9 7.9 9.1 7.4 42.8 6.7 6.7 6.8 7.0 7.2 17.8 11.4
4cq50 27.7 5.4 5.8 5.8 5.6 6.1 12.7 9.5 22.5 5.45.7 5.7 6.1 5.8 9.8 7.4 26.4 5.1 5.2 5.05.4 5.6 13.0 8.0
4g50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4p50 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
4sr50 31.9 6.4 7.1 7.1 7.3 7.4 14.4 8.8 23.3 6.67.2 7.2 7.6 7.4 9.2 7.6 30.0 6.57.1 7.1 7.3 7.3 13.5 10.4
5cq30 11.6 2.7 2.5 2.42.7 2.5 8.3 4.4 11.8 2.32.7 2.6 2.9 2.8 5.6 3.9 11.9 2.62.8 2.6 2.9 3.1 9.0 4.8
5g30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5p30 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
5sr30 15.3 4.1 4.1 3.85.1 4.2 10.5 6.6 13.5 4.2 4.04.0 4.9 4.2 7.4 6.0 14.9 4.34.7 4.5 4.6 4.7 9.8 5.9
6cq18 3.2 0.3 0.20.4 0.5 0.3 5.9 1.4 3.3 0.3 0.30.4 0.4 0.5 4.4 1.5 2.7 0.4 0.3 0.4 0.6 0.26.5 1.3
6g18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6p18 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
6sr18 4.1 0.7 0.50.8 1.2 1.1 7.6 1.9 4.0 1.0 0.9 0.70.9 0.9 5.7 2.5 4.2 1.1 0.71.0 1.2 0.7 7.1 2.4
7cq12 0.5 0.0 0.0 0.0 0.0 0.0 3.8 0.3 0.4 0.0 0.0 0.0 0.00.0 2.7 0.4 0.4 0.0 0.0 0.1 0.0 0.0 4.3 0.2
7g12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7p12 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7sr12 0.6 0.0 0.00.0 0.1 0.0 4.6 0.4 0.7 0.0 0.0 0.1 0.0 0.1 3.4 0.6 0.4 0.0 0.0 0.1 0.00.1 5.1 0.3
8cq8 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0
8g8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8p8 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0
8sr8 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0

All avg. 11.3 1.4 1.4 1.4 1.5 1.5 4.5 2.3 6.6 1.41.4 1.4 1.5 1.5 2.9 1.8 7.1 1.41.4 1.4 1.5 1.5 4.4 2.3

Clique avg. 20.6 2.4 2.4 2.5 2.6 2.6 8.3 4.2 12.7 2.32.4 2.5 2.6 2.5 5.6 3.2 13.0 2.4 2.4 2.42.6 2.6 8.4 4.3
Geom. avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Product avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
SR avg. 24.6 3.0 3.1 3.1 3.5 3.4 9.6 4.9 13.7 3.23.2 3.2 3.5 3.4 6.1 4.0 15.4 3.13.2 3.2 3.4 3.3 9.3 5.0

3-AP avg. 44.2 3.3 3.3 3.3 3.6 3.6 8.8 5.4 19.8 3.43.4 3.4 3.5 3.5 4.4 3.4 19.9 3.33.3 3.3 3.4 3.4 8.4 5.7
4-AP avg. 14.9 3.0 3.2 3.2 3.2 3.4 6.8 4.6 11.4 3.03.2 3.2 3.4 3.3 4.8 3.8 14.1 2.93.1 3.0 3.2 3.2 6.6 4.6
5-AP avg. 6.7 1.7 1.7 1.61.9 1.7 4.7 2.7 6.3 1.6 1.7 1.6 2.0 1.8 3.2 2.5 6.7 1.81.9 1.8 1.9 1.9 4.7 2.7
6-AP avg. 1.8 0.3 0.20.3 0.4 0.3 3.4 0.8 1.8 0.3 0.3 0.30.3 0.3 2.5 1.0 1.7 0.4 0.3 0.4 0.5 0.23.4 0.9
7-AP avg. 0.3 0.0 0.00.0 0.0 0.0 2.1 0.2 0.3 0.0 0.00.0 0.0 0.0 1.5 0.2 0.2 0.0 0.0 0.0 0.00.0 2.4 0.1
8-AP avg. 0.0 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.00.0 1.1 0.0
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Tab. 6: Chain metaheuristic started from Trivial, Greedy and ROM. 10 seconds given. 1 — 2-opt, 2 —
1DV, 3 — 2DV, 4 —sDV, 5 — 1DV2, 6 — 2DV2, 7 — sDV3, 8 — sDVv.

Solution error, %

Trivial Greedy ROM

Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

3gp100 15.1 1.61.6 1.6 1.7 1.7 2.3 2.2 5.3 1.6 1.6 1.61.6 1.6 2.5 2.1 9.8 1.6 1.6 1.6 1.8 1.7 2.2 2.1
3r150 75.3 0.00.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4gp30 6.5 1.4 0.8 0.8 1.3 1.0 0.71.3 6.2 1.7 0.8 0.8 1.5 0.8 0.71.1 2.2 1.4 0.8 0.8 1.4 0.8 0.71.2
4r80 52.1 3.9 1.1 1.0 3.6 1.1 0.1 0.0 41.4 3.9 1.0 1.0 4.3 1.1 0.4 0.0 55.0 4.0 1.1 1.1 3.4 1.3 0.4 0.0
5gp12 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
5r40 36.5 16.3 6.5 5.8 13.0 6.8 0.00.0 32.3 18.8 7.0 7.0 13.0 7.0 0.00.0 36.8 16.5 6.8 6.8 13.8 7.3 0.00.0
6gp8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
6r22 16.8 27.7 9.1 5.0 12.3 7.7 0.00.0 15.5 26.8 11.4 4.5 13.2 8.2 0.00.0 14.1 30.0 10.5 5.9 12.3 8.6 0.00.0
7gp5 3.5 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.13.5 3.5 3.5 3.5 3.13.5 3.5 2.7 3.9 3.9 3.9 3.9 3.5 3.9 3.9
7r14 1.4 29.3 7.1 1.4 2.9 2.9 0.00.0 0.7 31.4 6.4 0.7 4.3 0.00.0 0.0 2.9 29.3 5.7 0.7 0.02.1 0.0 0.0
8gp4 1.6 5.2 4.7 3.6 1.02.1 5.2 3.6 0.5 3.1 2.1 2.6 1.6 1.6 2.6 2.6 1.04.7 4.7 3.6 1.02.1 4.2 4.2
8r9 0.0 23.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 15.6 1.1 0.0 0.0 0.0 0.0 0.0 0.0 22.2 4.4 0.0 0.0 0.0 0.0 0.0

All avg. 17.7 9.7 3.3 2.3 3.6 2.6 1.3 1.2 12.5 9.2 3.2 2.1 3.9 2.3 1.1 1.1 13.5 9.8 3.6 2.4 3.5 2.6 1.3 1.3

GP avg. 5.1 2.7 2.5 2.3 2.02.1 2.7 2.5 3.2 2.3 2.0 2.1 2.0 1.82.2 2.2 3.3 2.6 2.5 2.3 2.0 2.02.5 2.5
Rand. avg. 30.4 16.7 4.2 2.2 5.3 3.1 0.0 0.0 21.9 16.1 4.5 2.2 5.8 2.7 0.1 0.0 23.7 17.0 4.7 2.4 4.9 3.2 0.1 0.0

3-AP avg. 45.2 0.80.8 0.8 0.9 0.9 1.1 1.1 23.3 0.8 0.8 0.80.8 0.8 1.3 1.0 21.7 0.80.8 0.8 0.9 0.9 1.1 1.1
4-AP avg. 29.3 2.7 1.0 0.9 2.5 1.0 0.40.7 23.8 2.8 0.9 0.9 2.9 0.9 0.50.6 28.6 2.7 1.0 1.0 2.4 1.0 0.50.6
5-AP avg. 19.0 8.9 4.0 3.6 7.3 4.1 0.80.8 16.9 10.1 4.3 4.3 7.3 4.3 0.80.8 19.1 9.0 4.1 4.1 7.6 4.4 0.80.8
6-AP avg. 9.6 15.1 5.7 3.7 7.3 5.1 1.21.2 8.9 14.6 6.9 3.5 7.8 5.3 1.21.2 8.2 16.2 6.4 4.2 7.3 5.5 1.21.2
7-AP avg. 2.5 16.6 5.5 2.7 3.4 3.4 2.02.0 1.9 17.5 5.0 2.1 3.9 1.61.8 1.8 2.8 16.6 4.8 2.3 2.02.8 2.0 2.0
8-AP avg. 0.8 14.3 2.9 1.8 0.51.0 2.6 1.8 0.3 9.3 1.6 1.3 0.8 0.8 1.3 1.3 0.513.5 4.6 1.8 0.51.0 2.1 2.1

3cq150 79.8 5.45.4 5.4 5.9 5.9 13.3 8.3 38.2 5.65.6 5.6 5.7 5.8 7.9 6.1 36.8 6.1 5.95.9 6.3 6.2 12.7 8.2
3g150 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3p150 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
3sr150 93.9 6.36.3 6.3 6.7 6.7 15.8 10.2 41.0 6.26.2 6.2 6.6 6.6 8.3 7.2 42.8 6.6 6.56.5 6.7 6.7 14.5 9.1
4cq50 26.2 5.0 5.0 4.95.2 5.3 9.9 6.5 22.4 4.95.3 5.2 5.4 5.5 8.9 7.0 25.5 4.64.8 4.8 5.2 4.9 11.3 7.1
4g50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4p50 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
4sr50 30.8 5.86.6 6.6 6.5 6.9 11.2 8.2 23.3 6.46.5 6.5 6.7 6.6 8.9 6.7 29.3 6.2 6.16.1 6.9 6.7 11.3 9.2
5cq30 10.9 2.2 1.92.0 2.0 2.1 6.9 4.2 11.0 1.92.2 2.2 2.3 2.5 5.1 3.4 11.4 2.4 2.32.3 2.4 2.4 7.3 3.7
5g30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5p30 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
5sr30 13.8 3.7 3.5 3.23.9 3.5 8.9 5.0 12.2 3.9 3.53.5 4.0 3.7 6.3 4.9 14.0 4.0 4.0 4.0 3.84.2 8.6 4.8
6cq18 2.5 0.2 0.10.3 0.4 0.2 4.1 0.8 2.7 0.3 0.2 0.00.2 0.4 3.5 0.8 2.3 0.2 0.10.2 0.2 0.2 4.8 1.0
6g18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6p18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
6sr18 3.4 0.4 0.4 0.4 0.7 0.8 5.1 1.0 3.4 0.7 0.7 0.30.6 0.6 4.8 2.0 3.8 0.5 0.6 0.5 0.8 0.6 5.5 1.8
7cq12 0.2 0.00.0 0.0 0.0 0.0 2.7 0.1 0.2 0.0 0.0 0.0 0.00.0 2.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 3.4 0.1
7g12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7p12 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
7sr12 0.2 0.00.0 0.0 0.0 0.0 3.5 0.1 0.5 0.0 0.0 0.1 0.0 0.02.4 0.2 0.3 0.0 0.0 0.1 0.0 0.0 4.1 0.2
8cq8 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0
8g8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
8sr8 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0

All avg. 10.9 1.2 1.2 1.2 1.3 1.3 3.5 1.9 6.5 1.3 1.3 1.21.3 1.3 2.5 1.6 6.9 1.3 1.31.3 1.4 1.3 3.6 1.9

Clique avg. 19.9 2.1 2.12.1 2.2 2.3 6.4 3.3 12.4 2.12.2 2.2 2.3 2.4 4.8 2.9 12.7 2.2 2.22.2 2.4 2.3 6.8 3.3
Geom. avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Product avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
SR avg. 23.7 2.72.8 2.7 3.0 3.0 7.7 4.1 13.4 2.9 2.8 2.83.0 2.9 5.3 3.5 15.0 2.9 2.9 2.93.0 3.0 7.7 4.2

3-AP avg. 43.4 2.92.9 2.9 3.1 3.1 7.3 4.6 19.8 3.03.0 3.0 3.1 3.1 4.0 3.3 19.9 3.2 3.13.1 3.2 3.2 6.8 4.3
4-AP avg. 14.2 2.72.9 2.9 2.9 3.1 5.3 3.7 11.4 2.82.9 2.9 3.0 3.0 4.4 3.4 13.7 2.72.7 2.7 3.0 2.9 5.7 4.1
5-AP avg. 6.2 1.5 1.3 1.31.5 1.4 3.9 2.3 5.8 1.5 1.4 1.41.6 1.6 2.8 2.1 6.4 1.6 1.6 1.61.6 1.7 4.0 2.1
6-AP avg. 1.5 0.1 0.10.2 0.3 0.3 2.3 0.5 1.5 0.2 0.2 0.10.2 0.3 2.1 0.7 1.5 0.2 0.2 0.20.3 0.2 2.6 0.7
7-AP avg. 0.1 0.0 0.0 0.0 0.0 0.01.5 0.1 0.2 0.0 0.00.0 0.0 0.0 1.1 0.1 0.1 0.0 0.0 0.0 0.0 0.01.9 0.1
8-AP avg. 0.0 0.0 0.0 0.00.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.00.0 0.9 0.0
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Tab. 7: Multichain metaheuristic started from Trivial, Greedy andROM. 5 seconds given. 1 — 2-opt, 2 —
1DV, 3 — 2DV, 4 —sDV, 5 — 1DV2, 6 — 2DV2, 7 — sDV3, 8 — sDVv.

Solution error, %

Trivial Greedy ROM

Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

3gp100 11.8 1.11.2 1.1 1.3 1.3 156.9 2.0 5.3 1.2 1.2 1.11.4 1.3 5.6 2.2 9.7 1.21.2 1.2 1.3 1.3 9.8 2.0
3r150 68.1 0.00.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4gp30 3.0 0.9 0.70.7 0.8 0.7 0.7 1.1 3.1 0.8 0.70.7 1.0 0.7 0.7 1.0 2.1 0.70.7 0.7 0.7 0.7 0.8 1.0
4r80 45.3 3.4 1.5 1.4 2.3 1.5 0.4 0.0 38.9 3.3 0.9 0.9 3.1 0.9 0.8 0.0 44.6 2.4 1.0 1.0 2.6 1.1 45.3 0.0
5gp12 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
5r40 26.0 15.3 5.3 5.5 10.8 6.3 516.8 0.0 26.8 14.5 5.3 5.8 10.0 5.0 0.0 0.0 28.3 15.3 6.8 6.8 11.0 7.0 152.5 0.0
6gp8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
6r22 8.6 20.0 6.8 4.5 7.7 5.9 0.0 0.0 9.1 20.9 7.7 2.7 7.3 4.5 0.0 0.0 6.4 20.5 8.6 5.5 9.5 5.0 30.0 0.0
7gp5 3.9 3.9 3.53.9 3.9 3.9 3.9 3.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.9 3.9 3.9 3.9 3.9 3.5 3.9 3.9
7r14 0.0 18.6 7.1 0.7 0.02.1 0.0 0.0 0.0 23.6 8.6 1.4 0.7 2.9 0.0 0.0 0.0 21.4 7.1 2.1 0.02.1 0.0 0.0
8gp4 2.1 5.2 4.7 4.2 2.14.2 3.6 4.2 1.6 3.6 2.6 2.6 2.1 1.6 3.6 3.1 0.5 4.7 5.2 4.2 2.6 4.7 4.7 3.6
8r9 0.0 14.4 2.2 0.0 0.0 0.0 0.0 0.0 0.0 17.8 2.2 0.0 0.0 0.0 0.0 0.0 0.0 14.4 2.2 0.0 0.0 0.0 0.0 0.0

All avg. 14.4 7.2 3.1 2.2 2.7 2.5 57.2 1.3 11.1 7.8 3.0 1.9 2.7 2.0 1.5 1.1 11.1 7.4 3.4 2.4 3.0 2.5 20.9 1.2

GP avg. 4.1 2.5 2.3 2.3 2.02.3 28.2 2.5 2.9 2.2 2.0 2.0 2.0 1.8 2.9 2.3 3.4 2.4 2.5 2.3 2.12.4 3.8 2.4
Rand. avg. 24.7 11.9 3.8 2.0 3.5 2.6 86.2 0.0 19.4 13.3 4.1 1.8 3.5 2.2 0.1 0.0 18.8 12.3 4.3 2.6 3.9 2.5 38.0 0.0

3-AP avg. 40.0 0.60.6 0.6 0.6 0.6 78.5 1.0 23.3 0.6 0.6 0.60.7 0.7 2.8 1.1 21.7 0.60.6 0.6 0.7 0.7 4.9 1.0
4-AP avg. 24.1 2.1 1.1 1.0 1.5 1.1 0.50.6 21.0 2.0 0.8 0.8 2.0 0.8 0.7 0.5 23.3 1.5 0.8 0.8 1.7 0.9 23.0 0.5
5-AP avg. 13.8 8.4 3.4 3.5 6.1 3.9 259.1 0.8 14.1 8.0 3.4 3.6 5.8 3.3 0.8 0.8 14.9 8.4 4.1 4.1 6.3 4.3 77.0 0.8
6-AP avg. 5.5 11.2 4.6 3.5 5.1 4.2 1.21.2 5.7 11.7 5.1 2.6 4.8 3.5 1.2 1.2 4.4 11.4 5.5 3.9 6.0 3.7 16.2 1.2
7-AP avg. 2.011.2 5.3 2.3 2.03.0 2.0 2.0 1.8 13.5 6.0 2.5 2.1 3.2 1.8 1.8 2.0 12.7 5.5 3.0 2.02.8 2.0 2.0
8-AP avg. 1.0 9.8 3.5 2.1 1.02.1 1.8 2.1 0.810.7 2.4 1.3 1.0 0.8 1.8 1.6 0.3 9.6 3.7 2.1 1.3 2.3 2.3 1.8

3cq150 75.2 3.9 3.8 3.74.4 4.3 1219.1 491.9 38.2 2.5 2.52.5 3.1 3.0 41.1 20.9 36.8 3.9 3.8 3.74.8 4.8 36.8 24.2
3g150 0.0 0.0 0.0 0.0 0.0 0.0 865.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0
3p150 0.0 0.00.0 0.0 0.0 0.0 76.3 76.3 0.0 0.0 0.0 0.00.0 0.0 215.3 215.3 0.0 0.00.0 0.0 0.0 0.0 7.2 7.2
3sr150 85.8 4.5 4.34.5 5.6 5.5 1249.7 630.5 41.0 3.23.2 3.2 3.4 3.3 41.9 7.4 42.8 4.0 3.94.0 4.9 4.9 42.8 32.7
4cq50 12.7 2.84.4 4.2 3.6 4.8 283.6 9.7 10.6 1.92.9 2.9 2.5 3.5 13.9 6.6 13.5 3.8 3.23.2 3.8 3.6 28.4 9.6
4g50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4p50 0.0 0.0 0.0 0.0 0.00.0 102.7 0.0 0.0 0.0 0.0 0.0 0.00.0 484.2 0.0 0.0 0.0 0.0 0.0 0.00.0 8.3 0.0
4sr50 16.4 3.03.4 3.5 3.1 3.9 155.4 10.7 13.7 2.13.0 3.1 2.2 3.4 19.5 7.1 15.9 3.84.2 4.0 3.9 4.8 29.2 10.5
5cq30 3.4 2.1 1.4 1.4 3.0 1.6 154.5 4.4 3.6 2.02.2 2.2 2.3 2.2 20.2 3.2 4.1 2.2 2.22.2 2.7 2.3 21.2 4.6
5g30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5p30 0.0 0.0 0.00.0 0.0 0.0 137.2 0.0 0.0 0.0 0.00.0 0.0 0.0 1016.7 0.0 0.0 0.0 0.00.0 0.0 0.0 7.6 0.0
5sr30 6.0 2.43.4 3.4 2.7 3.6 195.6 5.3 4.6 2.3 2.3 2.2 2.22.4 15.8 4.2 4.7 3.4 3.13.2 3.9 3.4 27.6 6.4
6cq18 2.8 2.1 2.0 1.4 1.8 1.8 141.9 3.0 1.9 1.6 1.5 1.5 1.7 1.215.4 2.3 2.7 2.2 1.9 1.8 1.42.1 18.1 2.3
6g18 0.0 0.0 0.0 0.0 0.0 0.0 260.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0
6p18 0.0 0.0 0.0 0.0 0.00.0 162.9 0.0 0.0 0.0 0.0 0.0 0.00.0 2117.7 0.0 0.0 0.0 0.0 0.0 0.00.0 7.8 0.0
6sr18 3.8 1.92.4 2.2 2.3 2.3 120.7 3.5 3.0 2.0 2.1 2.02.1 2.1 13.2 2.6 3.9 2.3 1.8 2.1 2.7 1.719.1 3.0
7cq12 0.9 1.0 1.0 1.0 0.50.9 91.5 1.2 0.7 0.6 0.7 0.6 0.8 0.4 13.8 0.6 1.1 0.8 0.20.9 0.8 0.3 14.8 1.1
7g12 0.0 0.0 0.0 0.0 0.0 0.0 156.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0
7p12 0.0 0.0 0.0 0.0 0.00.0 346.1 0.0 0.0 0.0 0.0 0.0 0.00.0 3161.5 0.0 0.0 0.0 0.0 0.0 0.00.0 9.2 0.0
7sr12 1.1 1.4 0.9 1.2 1.0 1.1 77.7 0.9 1.4 1.0 1.1 1.1 0.60.7 9.4 1.2 1.8 1.1 0.70.8 1.0 1.0 14.9 1.2
8cq8 0.1 0.3 0.2 0.2 0.10.4 62.3 0.2 0.2 0.2 0.1 0.2 0.1 0.1 10.4 0.3 0.2 0.3 0.2 0.3 0.2 0.2 9.9 0.3
8g8 0.0 0.0 0.0 0.0 0.0 0.0 104.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0
8p8 0.0 0.0 0.0 0.0 0.0 0.0 176.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3604.6 0.0 0.0 0.0 0.0 0.0 0.00.0 9.0 0.0
8sr8 0.5 0.2 0.3 0.4 0.10.2 51.9 0.3 0.2 0.5 0.4 0.4 0.20.3 6.6 0.6 0.3 0.5 0.3 0.6 0.20.3 9.8 0.4

All avg. 8.7 1.1 1.1 1.1 1.2 1.3 258.0 51.6 5.0 0.80.9 0.9 0.9 0.9 454.3 11.3 5.3 1.2 1.11.1 1.3 1.2 13.8 4.3

Clique avg. 15.9 2.0 2.1 2.02.2 2.3 325.5 85.1 9.2 1.51.7 1.7 1.8 1.7 19.1 5.6 9.7 2.2 1.92.0 2.3 2.2 21.5 7.0
Geom. avg. 0.0 0.0 0.0 0.0 0.0 0.0 231.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0
Product avg. 0.0 0.0 0.0 0.0 0.00.0 167.0 12.7 0.0 0.0 0.0 0.0 0.00.0 1766.7 35.9 0.0 0.0 0.0 0.0 0.00.0 8.2 1.2
SR avg. 18.9 2.32.5 2.5 2.5 2.8 308.5 108.5 10.7 1.8 2.0 2.0 1.82.0 17.7 3.9 11.6 2.5 2.32.4 2.8 2.7 23.9 9.0

3-AP avg. 40.2 2.1 2.02.1 2.5 2.4 852.6 299.7 19.8 1.4 1.4 1.41.6 1.6 79.4 60.9 19.9 2.0 1.91.9 2.4 2.4 22.4 16.0
4-AP avg. 7.3 1.52.0 1.9 1.7 2.2 135.4 5.1 6.1 1.01.5 1.5 1.2 1.7 129.4 3.4 7.4 1.9 1.8 1.81.9 2.1 16.5 5.0
5-AP avg. 2.3 1.21.2 1.2 1.4 1.3 121.8 2.4 2.1 1.11.1 1.1 1.1 1.2 263.8 1.8 2.2 1.4 1.31.4 1.6 1.4 14.1 2.8
6-AP avg. 1.6 1.0 1.1 0.91.0 1.0 171.4 1.6 1.2 0.9 0.9 0.9 1.0 0.8543.1 1.2 1.7 1.1 0.91.0 1.0 1.0 11.9 1.3
7-AP avg. 0.5 0.6 0.5 0.6 0.40.5 167.9 0.5 0.5 0.4 0.4 0.4 0.4 0.3800.9 0.5 0.7 0.5 0.20.4 0.5 0.3 10.3 0.6
8-AP avg. 0.2 0.1 0.1 0.1 0.00.2 98.9 0.1 0.1 0.2 0.1 0.2 0.10.1 909.1 0.2 0.1 0.2 0.1 0.2 0.10.1 7.5 0.2
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Tab. 8: Multichain metaheuristic started from Trivial, Greedy andROM. 10 seconds given. 1 — 2-opt, 2
— 1DV, 3 — 2DV, 4 —sDV, 5 — 1DV2, 6 — 2DV2, 7 — sDV3, 8 — sDVv.

Solution error, %

Trivial Greedy ROM

Inst. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

3gp100 11.2 1.01.0 1.0 1.1 1.1 2.5 1.7 5.3 1.01.0 1.0 1.1 1.1 2.8 1.8 9.7 1.0 0.91.0 1.2 1.1 2.3 1.7
3r150 65.3 0.00.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4gp30 2.9 0.70.7 0.7 0.7 0.7 0.7 1.0 2.6 0.8 0.70.7 0.7 0.7 0.7 0.9 2.1 0.70.7 0.7 0.7 0.7 0.7 0.8
4r80 43.8 2.5 0.9 0.9 2.1 1.0 0.2 0.0 38.1 2.3 0.6 0.6 2.3 0.6 0.5 0.0 42.4 2.0 0.8 0.8 2.0 0.8 0.5 0.0
5gp12 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
5r40 25.8 12.5 4.0 4.0 9.0 4.0 0.00.0 23.5 13.3 4.8 4.5 9.0 4.8 0.00.0 25.8 14.3 5.5 5.5 9.8 5.5 0.00.0
6gp8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
6r22 6.4 18.2 5.9 2.7 6.4 5.0 0.00.0 6.4 18.2 6.4 2.3 5.0 2.7 0.00.0 5.9 17.3 6.8 3.6 5.5 4.5 0.00.0
7gp5 3.9 3.9 3.5 3.9 3.9 3.9 3.13.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.9 3.9 3.53.9 3.9 3.5 3.9 3.9
7r14 0.0 16.4 4.3 0.00.0 0.0 0.0 0.0 0.0 19.3 5.0 0.00.0 1.4 0.0 0.0 0.0 17.9 5.0 0.00.0 0.0 0.0 0.0
8gp4 0.0 5.2 4.7 3.6 1.6 2.6 3.6 4.2 1.03.1 2.6 2.1 1.01.6 3.6 2.1 0.0 4.7 5.2 3.6 1.6 3.6 4.2 2.6
8r9 0.0 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 1.1 0.00.0 0.0 0.0 0.0

All avg. 13.6 6.5 2.4 1.7 2.4 1.9 1.21.2 10.5 6.6 2.4 1.6 2.2 1.7 1.3 1.0 10.6 6.3 2.8 1.9 2.4 2.0 1.3 1.1

GP avg. 3.7 2.4 2.3 2.2 1.92.0 2.3 2.4 2.7 2.1 2.0 1.9 1.71.8 2.4 2.0 3.3 2.4 2.4 2.2 1.92.1 2.5 2.2
Rand. avg. 23.5 10.5 2.5 1.3 2.9 1.7 0.0 0.0 18.2 11.1 2.8 1.2 2.7 1.6 0.1 0.0 17.9 10.2 3.2 1.6 2.9 1.8 0.1 0.0

3-AP avg. 38.2 0.50.5 0.5 0.6 0.6 1.3 0.9 23.3 0.50.5 0.5 0.6 0.5 1.4 0.9 21.6 0.5 0.50.5 0.6 0.5 1.2 0.9
4-AP avg. 23.3 1.6 0.8 0.8 1.4 0.8 0.50.5 20.4 1.5 0.7 0.7 1.5 0.7 0.6 0.4 22.2 1.3 0.7 0.7 1.3 0.7 0.6 0.4
5-AP avg. 13.6 7.0 2.8 2.8 5.3 2.8 0.80.8 12.5 7.4 3.1 3.0 5.3 3.1 0.80.8 13.6 7.9 3.5 3.5 5.6 3.5 0.80.8
6-AP avg. 4.4 10.3 4.2 2.6 4.4 3.7 1.21.2 4.4 10.3 4.4 2.3 3.7 2.6 1.21.2 4.2 9.8 4.6 3.0 3.9 3.5 1.21.2
7-AP avg. 2.0 10.2 3.9 2.0 2.0 2.0 1.62.0 1.8 11.4 4.3 1.81.8 2.5 1.8 1.8 2.0 10.9 4.3 2.0 2.0 1.82.0 2.0
8-AP avg. 0.0 9.3 2.3 1.8 0.8 1.3 1.8 2.1 0.58.2 1.3 1.0 0.50.8 1.8 1.0 0.0 7.3 3.2 1.8 0.8 1.8 2.1 1.3

3cq150 71.4 1.9 1.71.8 3.0 2.9 1219.1 8.8 38.2 1.31.3 1.3 2.0 2.0 41.1 6.0 36.8 2.4 2.22.3 3.0 2.9 36.8 10.1
3g150 0.0 0.0 0.0 0.0 0.0 0.0 865.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0
3p150 0.0 0.00.0 0.0 0.0 0.0 76.3 0.0 0.0 0.00.0 0.0 0.0 0.0 215.3 0.0 0.0 0.00.0 0.0 0.0 0.0 7.2 0.0
3sr150 82.1 3.0 3.1 2.94.0 3.9 1249.7 10.5 41.0 1.91.9 1.9 2.8 2.8 41.9 6.2 42.8 2.9 2.8 2.83.7 3.7 42.8 10.3
4cq50 11.1 2.63.4 3.3 3.2 3.8 11.3 7.8 10.3 1.52.7 2.7 2.4 2.8 8.6 4.6 11.1 2.8 2.82.8 3.5 3.1 12.3 7.3
4g50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4p50 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0
4sr50 14.6 2.02.7 2.6 2.6 3.2 12.9 8.1 12.5 2.1 2.3 2.3 2.02.8 9.1 5.0 14.7 3.6 3.4 3.4 3.33.5 12.6 7.8
5cq30 2.2 2.1 1.3 1.32.4 1.3 8.0 3.5 2.8 1.52.2 2.2 1.8 2.2 5.0 2.6 3.0 2.2 2.02.2 2.5 2.2 8.0 4.2
5g30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5p30 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 809.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
5sr30 4.6 2.23.3 3.3 2.6 3.4 9.6 4.3 3.6 1.9 1.92.0 2.0 2.0 6.6 3.2 3.5 3.1 2.92.9 3.6 2.9 13.7 4.6
6cq18 2.8 2.1 2.0 1.41.8 1.7 5.6 2.4 1.9 1.6 1.5 1.5 1.5 1.2 4.2 1.9 2.0 2.2 1.9 1.8 1.41.9 5.8 2.3
6g18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6p18 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1038.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0
6sr18 3.5 1.82.4 2.0 2.3 2.3 6.5 3.2 3.0 2.0 2.1 1.92.1 2.1 5.3 2.3 3.9 2.3 1.8 2.1 2.6 1.76.7 2.6
7cq12 0.9 1.0 1.0 1.0 0.50.9 38.6 1.2 0.7 0.6 0.7 0.6 0.8 0.4 7.7 0.4 1.0 0.8 0.20.8 0.8 0.3 9.2 0.9
7g12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7p12 0.0 0.0 0.0 0.0 0.00.0 346.1 0.0 0.0 0.0 0.0 0.0 0.00.0 3161.5 0.0 0.0 0.0 0.0 0.0 0.00.0 9.2 0.0
7sr12 1.0 1.4 0.9 1.1 1.0 1.1 62.4 0.9 1.0 1.0 1.1 1.1 0.60.7 9.4 1.2 1.6 1.1 0.70.8 1.0 0.9 13.0 1.1
8cq8 0.1 0.2 0.2 0.2 0.00.4 62.3 0.2 0.2 0.2 0.1 0.2 0.1 0.1 10.4 0.3 0.2 0.3 0.2 0.3 0.2 0.29.9 0.3
8g8 0.0 0.0 0.0 0.0 0.0 0.0 104.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0
8p8 0.0 0.0 0.0 0.0 0.00.0 176.7 0.0 0.0 0.0 0.0 0.00.0 0.0 3604.6 0.0 0.0 0.0 0.0 0.0 0.00.0 9.0 0.0
8sr8 0.5 0.2 0.3 0.4 0.10.2 51.9 0.2 0.2 0.5 0.4 0.4 0.20.3 6.6 0.6 0.3 0.5 0.3 0.6 0.10.3 9.8 0.4

All avg. 8.1 0.9 0.9 0.9 1.0 1.0 179.4 2.1 4.8 0.70.8 0.8 0.8 0.8 375.8 1.4 5.0 1.0 0.90.9 1.1 1.0 8.8 2.2

Clique avg. 14.8 1.7 1.6 1.51.8 1.8 224.1 4.0 9.0 1.11.4 1.4 1.4 1.5 12.8 2.6 9.0 1.8 1.61.7 1.9 1.8 13.7 4.2
Geom. avg. 0.0 0.0 0.0 0.0 0.0 0.0 161.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0
Product avg. 0.0 0.0 0.0 0.0 0.00.0 99.8 0.0 0.0 0.0 0.0 0.0 0.00.0 1471.6 0.0 0.0 0.0 0.0 0.0 0.0 0.04.2 0.0
SR avg. 17.7 1.82.1 2.0 2.1 2.4 232.2 4.5 10.2 1.61.6 1.6 1.6 1.8 13.2 3.1 11.1 2.2 2.02.1 2.4 2.2 16.4 4.5

3-AP avg. 38.4 1.2 1.2 1.21.7 1.7 852.6 4.8 19.8 0.80.8 0.8 1.2 1.2 79.4 3.1 19.9 1.3 1.31.3 1.7 1.6 22.4 5.1
4-AP avg. 6.4 1.21.5 1.5 1.4 1.7 6.1 4.0 5.7 0.91.2 1.2 1.1 1.4 4.4 2.4 6.4 1.6 1.6 1.61.7 1.7 6.2 3.8
5-AP avg. 1.7 1.11.1 1.1 1.3 1.2 4.4 1.9 1.6 0.81.0 1.1 1.0 1.1 205.3 1.5 1.6 1.3 1.21.3 1.5 1.3 5.4 2.2
6-AP avg. 1.6 1.0 1.1 0.91.0 1.0 3.0 1.4 1.2 0.9 0.9 0.9 0.9 0.8262.0 1.0 1.5 1.1 0.9 1.0 1.0 0.93.1 1.2
7-AP avg. 0.5 0.6 0.5 0.5 0.40.5 111.8 0.5 0.4 0.4 0.4 0.4 0.4 0.3794.7 0.4 0.6 0.5 0.20.4 0.5 0.3 7.8 0.5
8-AP avg. 0.2 0.1 0.1 0.1 0.00.2 98.9 0.1 0.1 0.2 0.1 0.2 0.10.1 909.1 0.2 0.1 0.2 0.1 0.2 0.10.1 7.5 0.2
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Tab. 9: Heuristics comparison for the instances with independent weights.
Inst. < 10 ms < 30 ms < 100 ms < 300 ms < 1000 ms

3r150 —
C
C
C

sDV
sDV
2DV2

Gr 1.4
1.5
1.5

C sDVv 0.3

C
C
C
C
C
C
C

sDV
2DV2

sDVv

sDVv

sDV
2DV2

sDVv

Gr
R
R
R

0.0
0.0
0.0
0.0
0.0
0.0
0.0

(no better solutions)

4r80 C 1DV 25.8
sDV
2DV2

Gr
Gr

6.1
6.1

sDVv Gr 1.5 C sDVv Gr 0.3
C
C
C

sDVv

sDVv

sDVv

Gr
R

0.0
0.0
0.0

5r40 1DV2 Gr 15.0
2DV
sDV
2DV2

Gr
Gr
Gr

13.5
13.5
13.5

C sDVv 1.2 C sDVv 0.0 (no better solutions)

6r22
C
C

2DV
sDV

46.4
47.3

2-opt Gr 25.9 C sDVv Gr 1.4 C sDVv Gr 0.0 (no better solutions)

7r14 C 2-opt Gr 28.6 C sDVv Gr 13.6 C sDVv 1.4
C

MC
C

sDVv

sDVv

sDVv Gr

0.0
0.0
0.0

(no better solutions)

8r9
C
C

2-opt
2-opt

Gr 22.2
24.4

C sDVv 12.2 C sDVv 0.0 (no better solutions) (no better solutions)

Total —
C
C
C

sDV
2DV2

sDV

Gr
Gr

18.6
19.3
20.2

C sDVv Gr 4.8 C sDVv Gr 0.1
C
C
sDVv

sDVv Gr
0.0
0.0
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Tab. 10: Heuristics comparison for the instances with decomposableweights.
Inst. < 100 ms < 300 ms < 1000 ms < 3000 ms < 10000 ms

3cq150 sDV Gr 8.1
C
C

sDV
2DV2

Gr
Gr

7.8
7.8

MC
MC

sDV
2DV2

Gr
Gr

6.6
7.1

MC
MC

sDV
2DV2

Gr
Gr

3.1
3.4

MC sDV Gr 1.3

3sr150

C

C

sDV
sDV
1DV2

2DV2

Gr
Gr
Gr
Gr

9.6
9.8
9.8

10.2

C
C

sDV
2DV2

Gr
Gr

8.4
8.4

MC sDV Gr 6.6 MC sDV Gr 3.5 MC sDV Gr 2.0

4cq50
C

MC
C

1DV
1DV
1DV2

9.7
10.0
10.3

MC
MC

1DV
1DV

Gr 6.4
6.9

MC
MC
MC
MC
MC

1DV
1DV2

1DV
sDV
1DV2

Gr
Gr

R
R

4.7
4.9
5.0
5.1
5.1

MC 1DV Gr 2.7 MC 1DV Gr 1.5

4sr50
C

MC
1DV
1DV

11.7
12.2

MC
MC

1DV
1DV

Gr 7.0
7.7

MC
MC

1DV
1DV2

Gr
Gr

4.7
5.0

MC
MC

1DV
1DV2

Gr
Gr

2.6
2.7

MC
MC
MC
MC

1DV2

1DV
1DV
1DV

Gr

Gr
M-R

2.0
2.0
2.1
2.1

5cq30
C

MC
1DV
1DV

6.3
6.4

MC 1DV 3.2
MC
MC
MC

2DV
1DV
sDV

2.6
2.6
2.7

MC
MC

2DV
sDV

1.7
1.7

MC
MC
MC

sDV
2DV
2DV2

1.3
1.3
1.3

5sr30
MC

C
1DV
1DV

7.9
8.3

MC 1DV 3.9 MC 1DV 3.2

MC
MC
MC
MC
MC

1DV2

2DV
sDV
1DV
2DV2

Gr
Gr
Gr

Gr

2.4
2.5
2.5
2.5
2.6

MC
MC
MC
MC
MC

2DV
1DV
sDV
2DV2

1DV2

Gr
Gr
Gr
Gr
Gr

1.9
1.9
2.0
2.0
2.0

6cq18 C 1DV 2.1 C 1DV 1.0 C 1DV 0.7 C 2DV Gr 0.3 C sDV Gr 0.0

6sr18
MC

C
1DV
1DV

3.8
3.8

MC
C

1DV
1DV

2.1
2.1

C
C

2DV
2DV2 R

1.4
1.5

C 1DV 0.8 C sDV Gr 0.3

7cq12 C 1DV 0.7 C 1DV 0.2 C 1DV2 0.1 C 1DV 0.0

C
C
C
C
C
C
C
C

1DV
2DV2

1DV
1DV2

1DV
2DV
sDV
2DV2

Gr
Gr
R
R
R
R

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

7sr12 C 1DV 1.2
C
C

1DV
1DV2

0.5
0.5

C 1DV R 0.1 C 2DV 0.0 (no better solutions)

8cq8 C 1DV 0.0 C 1DV 0.0 (no better solutions) (no better solutions) (no better solutions)

8sr8 C 1DV 0.3
C
C

1DV
2DV

0.0
0.0

C
C
C
C
C
C
C
C
C
C
C
C

1DV
2DV
1DV2

2DV2

1DV
1DV2

2DV2

2-opt
1DV
2DV
1DV2

2DV2

Gr
Gr
Gr
R
R
R
R
R

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

(no better solutions) (no better solutions)

Total C 1DV 6.4
C
C

1DV
2DV

4.5
5.0

MC
MC

C
MC

1DV
2DV
2DV
1DV R

3.5
3.7
3.7
3.8

MC
MC
MC
MC

1DV
2DV
sDV
1DV2

Gr
Gr
Gr
Gr

1.9
2.1
2.1
2.1

MC 1DV Gr 1.3
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