
Noname manuscript No.
(will be inserted by the editor)

Backbone Guided Tabu Search for Solving the UBQP

Problem

Yang Wang · Zhipeng Lü · Fred

Glover · Jin-Kao Hao∗

Received: date / Accepted: date

Abstract We propose a backbone-guided tabu search (BGTS) algorithm for
the Unconstrained Binary Quadratic Programming (UBQP) problem that al-
ternates between two phases: (1) a basic tabu search procedure to optimize
the objective function as far as possible; (2) a strategy using the TS notion of
strongly determined variables to alternately fix and free backbone components
of the solutions which are estimated likely to share values in common with an
optimal solution. Experimental results show that the proposed method is ca-
pable of finding the best-known solutions for 21 large random instances with
3000 to 7000 variables and boosts the performance of the basic TS in terms of
both solution quality and computational efficiency.

keywords : Backbone-Guided Search, Tabu Search, UBQP, Strongly Deter-
mined Variables, Variable Fixing and Freeing.

Yang Wang
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
E-mail: yangw@info.univ-angers.fr

Zhipeng Lü
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
E-mail: lu@info.univ-angers.fr, zhipeng.lui@gmail.com

Fred Glover
OptTek Systems, Inc., 2241 17th Street Boulder, CO 80302, USA
E-mail: glover@opttek.com

Jin-Kao Hao (Corresponding author)
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
E-mail: hao@info.univ-angers.fr
http://www.info.univ-angers.fr/pub/hao/

2

1 Introduction

The unconstrained binary quadratic programming problem, denoted by UBQP,
can be formulated as follows:

f(x) = max

n∑

i=1

n∑

j=1

qijxixj (1)

where [qij] is an a n by n matrix of constants and x is an n-vector of binary
(zero-one) variables, i.e., xi ∈ {0, 1}, i = 1, . . . , n.

In addition to its theoretical significance as a canonical NP-hard problem
(Garey and Johnson (1979)), the UBQP is notable for its ability to formulate
a wide range of important problems, including those from computer aided de-
sign (Krarup and Pruzan (1978)), social psychology (Harary (1953)), financial
analysis (McBride and Yormark (1980)), machine scheduling (Alidaee et al
(1994)), cellular radio channel allocation (Chardaire and Sutter (1994)), the
vertex coloring problem (Kochenberger et al (2005)), the set packing problem
(Alidaee et al (2008)), the set-partitioning problem (Lewis et al (2008)) and
the linear ordering problem (Lewis et al (2009)).

The application potential of UBQP is much greater than might be imag-
ined, due to the ability to incorporate quadratic infeasibility constraints into
the objective function in an explicit manner. This re-formulation process en-
ables UBQP to serve as a common model for a wide range of combinato-
rial optimization problems. A review of additional applications and the re-
formulation procedures can be found in Kochenberger et al (2004) demon-
strating the utility of UBQP for a variety of applications.

Considering the relevance of the UBQP across a broad spectrum of prob-
lems, a number of exact algorithms have been proposed in the literature. The
typical approaches include those of Boros et al (2008); Horst et al (2000), using
branch and bound or branch and cut. However, due to the high computational
complexity of UBQP, a variety of problems arising from practical applications,
except those problems of sizes less than n = 100, have proved to be intractable
for these exact approaches.

For larger instances, exact methods become prohibitively expensive to ap-
ply. By contrast, variants of metaheuristic algorithms have been extensively
studied to solve UBQP and shown to be effective to find high-quality solu-
tions in a reasonable time. Some representative metaheuristic methods include
local search (Boros et al (2007)); Simulated Annealing (Katayama and Nar-
ihisa (2001)); adaptive memory approaches based on Tabu Search (Glover
et al (1998, 2010); Palubeckis (2004, 2006)); population-based approaches
such as Evolutionary Algorithms (Borgulya (2005)), Scatter Search (Amini
et al (1999)) and Memetic Algorithms (Lü et al (2010); Merz and Katayama
(2004)); and specially designed one-pass heuristics (Glover et al (2002)).

Among these procedures, Tabu Search (TS) represents one of the most
successful approaches. One of the first adaptive memory TS algorithms for the
UBQP (Glover et al (1998)), for instance, has been used to solve applications

3

arising in a wide variety of settings. Recently, several restart TS strategies
have been explored in Palubeckis (2004) which obtained good results on large
problem instances. A sequel further improves these results by an iterated tabu
search algorithm (Palubeckis (2006)). Furthermore, a recent diversification-
driven tabu search method (Glover et al (2010)) has been demonstrated to be
effective on a wide range of random UBQP problem instances.

The remaining part of the paper is organized as follows. In Section 2, we
present the ingredients of our backbone-guided tabu search (BGTS) algorithm
which includes a basic tabu search procedure and associated mechanisms for
the fixing and freeing variables. Section 3 is dedicated to computational results.
Section 4 investigates several essential components of the BGTS algorithm and
concluding remarks are given in Section 5.

2 Backbone-Guided Tabu Search for UBQP

The backbone terminology comes from the context of the well-known satisfia-
bility problem (SAT). Informally, the backbone of a SAT instance is the set of
literals 1 which are true in every satisfying truth assignment (Monasson et al
(1998); Kilby et al (2005)). Zhang (2004) presents an effective backbone-based
heuristic for SAT and an example of a similar strategy is reported for the multi-
dimensional knapsack problem in Wilbaut et al (2009). Such a strategy was
also proposed in connection with exploiting strongly determined and consis-

tent variables in Glover (1977), and has come to be one of the basic strategies
associated with tabu search. (Discussions of this strategy in multiple contexts
appear in Glover and Laguna (1997) and in Glover (2005).)

We restrict attention in this paper to the “strongly determined” aspect
of strongly determined and consistent variables, and borrow the “backbone”
terminology from the SAT literature as a vehicle for naming our procedure.
The SAT notion of a backbone refers to a set of variable assignments that are
shared by all the global optima of an instance. From a practical standpoint
this definition clearly has little utility since we do not know these global op-
tima in advance and our goal is to find one of them. Hence we instead take
an approach based on available knowledge by keeping track of one or more
solutions generated during the course of the search that exhibit the highest
quality, and use the criterion of being strongly determined as an indicator of
those assignments that likely to be shared in common with a global optimum.
In particular, we use a simplification of the notion of Glover (1977) by con-
sidering a variable to be strongly determined if changing its assigned value in
a high quality solution will cause the quality of that solution to deteriorate
significantly. Identifying a backbone according to this criterion, we then “in-
stantiate” the backbone by fixing the values of those variables that qualify for
membership.

1 A literal is a boolean variable or the negation of a boolean variable.

4

2.1 Main Scheme and General Idea

Algorithm 1 describes the main procedure of our BGTS algorithm. Starting
from a random initial solution xS , a basic TS procedure (See Section 2.2) is
executed to reach a local optimum (line 15) and one or more of the best solu-
tions obtained by TS during its run are recorded as the reference solution(s)
which are used for backbone identification (line 16). The algorithm decides
then to fix or free variables according to whether the best solution obtained
in the current run of TS is better than that of the last round (fp). If this is
the case, a variable fixing phase is launched where some variables are selected
to be fixed as backbone variables (lines 21-28). Otherwise, a freeing phase is
triggered to release some fixed backbone variables so that their values can be
changed (lines 30-36).

Once a set of variables is selected to be fixed or freed, a new round of
TS begins with the non-backbone variables randomly assigned. We employ
the original design for exploiting strongly determined variables by keeping the
variables fixed after passing a solution to the TS procedure, by compelling the
assigned values to remain fixed once the TS method is launched. (An option
would allow the fixed variables eventually to be freed within the TS procedure
after a chosen period. We include this option as one of the possibilities to
be examined in future studies.) If the TS method finds an improved solution
as a result of starting from a given backbone, then the size of the backbone
is increased, thus diminishing the number of variables that receive random
assignments the next time the TS method is executed. In reverse, if the TS
method fails to find an improved solution when starting from a given backbone,
then the backbone is reduced, thus increasing the number of variables that
receive random assignments on the next pass.

Therefore, the BGTS algorithm repeatedly alternates between a phase of
tabu search and a phase that either fixes or frees selected variables until a stop
criterion is satisfied. We call each round of these two phases a trial.

It should be noted that when f(x′) > fp is not satisfied in Algorithm 1,
it is possible that the backbone B is empty (nb = 0), and in this case the set
B(−) will be empty and the method simply launches another iteration with
an empty backbone (nd = nb = 0). However, if f(x′) > fp, our algorithm
guarantees that the set of freeing variables F is not empty (nf > 0) since we
employ a geometric ratio strategy to set the appropriate number of variables
to be fixed as backbones at each iteration (see Section 2.4.2).

2.2 TS Procedure

Our version of TS used in this work is a very simple tabu search procedure
implemented in Glover et al (2010). The neighborhood of a given configuration
is obtained by flipping the value of a single variable xi to its complementary
value 1− xi.

5

Algorithm 1 Pseudo-code of the BGTS algorithm for UBQP
1: Input: matrix Q

2: Output: the best binary n-vector x∗ found so far
3: // Tabu Search Procedure: line 15
4: // Reference Solution Construction: line 16
5: // Fixing Phase: lines 21-28
6: // Freeing Phase: lines 30-36
7: Initialization: B = {}, F = {x1, . . . , xn}, f(x∗) = 0, fp = 0
8: // B = index set for the Backbone variables, nb = |B|
9: // F = index set for the Free variables, nf = |F |
10: // Comment: B ∪ F = N (N = {1, . . . , n}), B ∩ F = ∅ and nb+ nf = n

11: repeat

12: Let xS denote the starting solution for each iteration of the algorithm
13: Let xB

i , for i ∈ B, denote the current values assigned to the backbone variables

14: xS
i
= xB

i
for i ∈ B, and xS

i
= Rand[0, 1] for i ∈ F

15: x′ ← Tabu Search(xS) /∗ Section 2.2 ∗/
16: Obtain the reference solution(s) P from current TS procedure /∗ Section 2.3.2 ∗/
17: if f(x′) > f(x∗) then

18: x∗ = x′

19: end if

20: if f(x′) > fp then

21: // Rule for Fixing Variables:

22: Order the elements i ∈ F so that score(i1) ≤ . . . ≤ score(inf) /∗ Section 2.4.1 ∗/
23: Let B(+) = {i1, . . . , ina} (na ≤ nf) /∗ Section 2.4.2 ∗/
24: // na = the number of variables to be added to the backbone when variables are fixed
25: B := B ∪ B(+) (nb := nb+ na)
26: F := F −B(+) (nf := nf − na)
27: xB

i
= x′

i
for i ∈ B(+) (xB

i
is already determined for i ∈ “previous B”:= B − B(+))

28: Fix the variables in B(+) as backbone variables /∗ Section 2.4.2 ∗/
29: else

30: // Rule for Freeing Variables:

31: Order the elements i ∈ B so that score(i1) ≥ . . . ≥ score(inb) /∗ Section 2.5.1 ∗/
32: Let B(−) = {i1, . . . , ind} (nd ≤ nb) /∗ Section 2.5.2 ∗/
33: // nd = the number of variables to be dropped from the backbone in variable freeing
34: B := B −B(−) (nb := nb− nd)
35: F := F ∪ B(−) (nf := nf + nd)
36: Free the variables in B(−) as non-backbone variables /∗ Section 2.5.2 ∗/
37: end if

38: fp = f(x′)
39: until a stop criterion is met

For large problem instances, it is necessary to be able to rapidly determine
the effect of a move on the objective function f(x). In our implementation,
this neighborhood uses a fast incremental evaluation technique introduced in
Glover et al (1998) and enhanced in Glover and Hao (2010) to calculate the
cost (move value) of transitioning to each neighboring solution. The procedure
maintains a data structure that stores the move value (change in f(x)) for each
possible move, and employs a streamlined calculation for updating this data
structure after each iteration. Specifically, once a move is performed, one only
needs to update a subset of move values affected by the move.

Our basic tabu search incorporates a tabu list as a “recency-based”memory
structure to assure that solutions visited within a certain span of iterations,

6

called the tabu tenure, will not be revisited (Glover and Laguna (1997)). In
our implementation, we elected to set

TabuTenure(i) = tl + rand(10) (2)

where tl is a given constant and rand(10) takes a random value from 1 to 10.
The TS algorithm then restricts consideration to variables which are not

forbidden by the tabu list, and selects a variable to flip that produces the best
(largest) incremental objective value, breaking ties randomly.

Together with this rule, a simple aspiration criterion is applied which allows
a move to be performed in spite of being tabu if it leads to a solution better
than the current best solution. Our TS procedure stops when the best solution
cannot be improved within a given number α of moves and we call this number
the improvement cutoff.

2.3 Basic Preliminaries

In this section we give some basic definitions used in our BGTS algorithm.

2.3.1 Contribution of a Variable

Definition 1. Relative to a given solution x′ = {x′
1, x

′
2, ..., x

′
n} and a

specific variable xi, i ∈ N , let σ = 1 if x′
i = 0 and let σ = −1 if x′

i = 1. Then
the (objective function) contribution of xi in relation to x′ is defined as:

V Ci(x
′) = σ(qii +

∑

j∈N\{i}

qijxj) (3)

As noted in Glover et al (1998) and in a more general context in Glover and
Hao (2010), V Ci(x

′) identifies the change in f(x) that results from changing
the value of x′

i to 1 - x′
i; i.e.,

V Ci(x
′) = f(x′′)− f(x′) (4)

where x′′
j = x′

j for j ∈ N − {i} and x′′
i = 1 − x′

i. We observe that under a
maximization objective if x′ is a locally optimal solution, as will typically be
the case where we select x′ to be a high quality solution, then V Ci(x

′) ≤ 0 for
all i ∈ N , and the current assignment xi = x′

i will be more strongly determined
as V Ci(x

′) is “more negative”.
Definition 2. Relative to a given population of solutionsX(P) = {x1, . . . , xp}

indexed by P = {1, . . . , p}, and relative to a chosen variable xi, let Pi(0) =
{k ∈ P : xk

i = 0} and Pi(1) = {k ∈ P : xk
i = 1}. Then the (objective function)

contribution of xi in relation to P is defined as follows.

Contribution for xi = 0:

V Ci(P : 0) =
∑

k∈Pi(0)

V Ci(x
k) (5)

7

Contribution for xi = 1:

V Ci(P : 1) =
∑

k∈Pi(1)

V Ci(x
k) (6)

We remark that Definition 2 is a straightforward generalization of Def-
inition 1 from the following perspective. Consider the situation where the
population X(P) = {x′}; i.e., x′ = x1 and P = {1}. Then if x′

i = 0 we
have V Ci(P : 0) = V Ci(x

′) and V Ci(P : 1) = 0, while if x′
i = 1 we have

V Ci(P : 1) = V Ci(x
′) and V Ci(P : 0) = 0 (where a summation over the

empty set is understood to be 0). The cases for setting xi = 0 when x′
i = 0 and

for setting xi = 1 when x′
i = 1 cause no change in f(x) (i.e., f(x′′)− f(x′) = 0

when x′′ = x′). Hence the stipulations V Ci(P : 1) = 0 when x′
i = 0 and

V Ci(P : 0) = 0 when x′
i = 1 may be taken as implicit (though irrelevant) in

Definition 1.

2.3.2 Reference Solution

During a run of TS, one or more best solutions are collected which are used as
reference solutions for the purpose of fixing or freeing variables. In our BGTS
algorithm, we obtain the reference solutions in two ways:

• Single Solution: Take a single best solution obtained by the current round
of TS as the reference solution.

• Solution Population: Take a given number p of the best but different
solutions from the current round of TS, which then constitute a solution
population. In our implementation, we take p = 20 as indicated in Table
1.

2.3.3 Two BGTS Variants

Our two key variants of BGTS consist of either using V Ci(x
′) (Single Solution)

or using V Ci(P : 0) and V Ci(P : 1) (Solution Population) to evaluate the
effect of changing the value of xi from x′

i to 1 − x′
i or, in general, the effect

of setting xi = 0 or 1. These two variants are respectively denoted by SS (for
Single Solution) and SP (for Solution Population).

2.4 Fixing Procedure

Given the reference solution(s), our fixing procedure operates according to
three steps:

1. Scoring: calculate a score for each non-backbone variable;
2. Selecting: choose a certain number of non-backbone variables;
3. Fixing: fix the assignments for the chosen variables so that these variables

are compelled to receive their indicated values upon launching the next
round of TS.

8

2.4.1 Non-Backbone Variable Scoring

We use a variable’s contribution value (defined in Section 2.3.1) to score all
the non-backbone variables, among which we select a certain number of vari-
ables as backbone variables to be fixed. The main idea is that the smaller the
contribution V Ci(x

′) made by variable xi according to Definition 1, then the
greater will be the amount of deterioration in f(x) caused by changing xi’s
value from xi = x′

i to xi = 1−x′
i, and hence the more strongly determined the

assignment xi = x′
i will be. Similarly, the smaller the value of V Ci(P : v) for

v = 0 or 1 in Definition 2, the more strongly determined we may consider the
assignment xi = v to be. In this case v = x′

i, referring to the 0 or 1 value taken
by xi in a specified solution x′. We normally understand x′ to correspond to
one of the solutions xk in the population X(P).

Rule 1. score(i) = V Ci(x
′)

Rule 2. score(i) = V Ci(P : x′
i)

2.4.2 Backbone Variable Selection and Fixing

When all the non-backbone variables are scored, we sort them according
to their scores in a non-decreasing order. Then, we decide how many non-
backbone variables with the smallest contribution scores should be fixed at
their associated values x′

i to become backbone variables at the current trial.
Based on the fact that in the initial stage, the number of non-backbone

variables is large while this number becomes smaller and smaller through a
series of passes when the TS method finds progressively improved solutions, we
employ a strategy that fixes a gradually reduced number of backbone variables
throughout such a succession of improvements. Specifically, the number of
backbone variables at the first fixing phase is relatively large and is then
gradually reduced with a geometric ratio when successive improvements occur,
as follows.

Let Fix(h) denote the number of new variables that are assigned fixed
values and added to the backbone at level h. We begin with a chosen value
Fix1 for Fix(1), referring to the first level at which a backbone is determined,
and then generate values for higher levels by making use of an “attenuation
fraction” g as follows.

Fix(1) = Fix1
Fix(h) = Fix(h− 1) · g for h > 1

We select the value Fix1 = 0.25n and the fraction g = 0.4 as indicated in
Table 1.

Within Algorithm 1, we implicitly start with h = 0 in the Initialization,
and then increment h by 1 at each application of the Rule for Fixing Variables.
To be precise, the value Fix(h) is embedded within Algorithm 1 as follows:

Beginning of Rule for Fixing Variables
h := h+ 1
na = Fix(h)

9

It should be noted that the number of variables selected to be fixed as
backbone variables is critical to our BGTS algorithm. If this number is too
large, the number of variables potentially fixed at incorrect values can be large
enough to prevent the current solution trial from finding a good (improved)
solution within a reasonable amount of time. If this number is too small, the
convergence of the search may be unacceptably slow.

2.5 Freeing Procedure

Our experiments indicate that in most cases, the fixed backbone variables
match well with the putative optimal solution. However, it is still possible that
some of these variables are wrongly fixed, resulting in a loss of effectiveness
of the algorithm. In order to tackle this problem, it is imperative to free the
wrongly-fixed backbone variables so that the search procedure can be put on
the right track.

Similar to the fixing procedure, our freeing procedure also consists of three
steps:

1. Scoring: give each current backbone variable a score;
2. Selecting: choose a certain number of current backbone variables;
3. Freeing: free the selected variables so that they are allowed to receive ran-

dom assignments upon launching the next round of TS.

2.5.1 Variable Scoring

The freeing procedure uses the same scoring methods as the fixing proce-
dure. The scored variables are then sorted according to their scores in a non-
increasing order. The obvious difference is that in the freeing phase we only
consider current backbone variables.

2.5.2 Variable Selection and freeing

Contrary to the fixing phase, the number of the backbone variables released
from their assignments at each freeing phase is not adjusted, due to the fact
that at each trial only a small number of backbone variables, generally less
than five, are wrongly fixed and need to be freed. Specifically, we set the
number nd of backbone variables to be freed to equal the value r, as shown
in Table 1. To be precise, the value nd is embedded within Algorithm 1 as
follows. Then, these selected backbone variables are free to receive new values
when initiating the next round of TS.

Beginning of Rule for Freeing Variables
nd = r

If nd > nb then
nd = nb

Endif

10

Table 1 Settings of important parameters

Parameters Section Description Value
tl 2.2 tabu tenure constant 0.007n
α 2.2 tabu search improvement cutoff 100000
p 2.3.2 size of the reference solution population 20
Fix1 2.4.2 number of backbone variables at the first fixing 0.25n
g 2.4.2 backbone geometric coefficient 0.4
r 2.5.2 number of freeing backbone variables 60

3 Computational Results

3.1 Problem Instances and Experimental Protocol

To assess the performance of our BGTS algorithm, we use a set of 21 large
and difficult random instances with 3000 to 7000 variables. These instances
are initially introduced in (Palubeckis (2004)) and recently used in (Glover
et al (2010); Lü et al (2010); Palubeckis (2006)) and several other studies. As
indicated in (Palubeckis (2004)), these instances are known to be much more
challenging than those from ORLIB.

Our BGTS algorithm is programmed in C and compiled using GNU GCC
on a PC running Windows XP with Pentium 2.83GHz CPU and 2GB RAM.
Table 1 gives the descriptions and settings of the parameters used in the BGTS
algorithm for the experiments. Given the stochastic nature of the algorithm,
each problem instance is independently solved 20 times.

In accordance with (Glover et al (2010); Lü et al (2010); Palubeckis (2004,
2006)), we use a time limit as our stopping condition. Specifically, the time
limit is set to be 5, 10, 30, 60, 60 minutes for instances with 3000, 4000, 5000,
6000 and 7000 variables.

3.2 Computational Results

We present in Table 2 the computational results of the two versions of BGTS
(which we denote by BGTS-SS and BGTS-SP). The first column identifies the
problem instance. The size of the instance is equal to the number appearing in
its name. Columns 2 and 3 respectively give the density (dens) and the previous
best objective values (f∗) reported in Glover et al (2010). The remaining
columns give the results of one of the two versions according to four criteria:
(1) the best solution gap, gbest, to the previous best known objective values
(i.e., gbest = f∗ − fbest where fbest denotes the best objective value obtained
by our algorithm), (2) the average solution gap, gavr, to the previous best
objective values (i.e., gavr = f∗ − favr where favr represents the average
objective value), (3) the success rate, suc, for reaching the best known result
f∗ and (4) the average CPU time, tavr (in seconds), for reaching the best
result f∗. Furthermore, the last row “Average” indicates the summary of the
algorithm’s average performance.

11

Table 2 Computational results on 21 large instances using the SS and SP Algorithms

BGTS-SS BGTS-SP
Instance dens f∗

gbest gavr suc tavr gbest gavr suc tavr
p3000.1 0.5 3931583 0 6 19 65 0 141 17 104
p3000.2 0.8 5193073 0 0 20 51 0 0 20 53
p3000.3 0.8 5111533 0 36 19 87 0 124 17 90
p3000.4 1.0 5761822 0 39 18 96 0 0 20 98
p3000.5 1.0 5675625 0 138 15 169 0 143 13 149
p4000.1 0.5 6181830 0 0 20 62 0 0 20 75
p4000.2 0.8 7801355 0 625 11 190 0 553 13 201
p4000.3 0.8 7741685 0 11 18 133 0 7 18 248
p4000.4 1.0 8711822 0 0 20 170 0 3 19 111
p4000.5 1.0 8908979 0 907 9 298 0 1125 8 336
p5000.1 0.5 8559680 0 600 4 556 0 663 3 729
p5000.2 0.8 10836019 0 542 7 1129 0 788 5 366
p5000.3 0.8 10489137 0 274 6 874 0 1049 2 786
p5000.4 1.0 12252318 0 912 1 379 0 1735 1 648
p5000.5 1.0 12731803 0 99 14 629 0 91 14 427
p6000.1 0.5 11384976 0 796 3 597 0 529 4 788
p6000.2 0.8 14333855 0 630 4 428 0 1735 3 944
p6000.3 1.0 16132915 0 1432 4 601 0 1954 4 1035
p7000.1 0.5 14478676 0 1606 2 1836 0 1835 2 2704
p7000.2 0.8 18249948 0 2387 2 1569 0 2192 1 1031
p7000.3 1.0 20446407 0 2316 5 703 0 1568 5 1197
Average 0 636 10.5 507 0 773 10.0 572

Table 2 shows that the two versions of our BGTS algorithm can easily reach
the previous best known objective values within the given time limit for all the
considered instances. Additionally BGTS-SS version performs slightly better
than BGTS-SP version relative to the other three criteria, i.e., in terms of the
average solution gaps, the success rate and the average CPU time for reaching
the best known solutions. In sum, both versions of our BGTS algorithm are
efficient in finding the best known objective values for these 21 large difficult
instances.

3.2.1 Comparison between BGTS and its underlying TS

We now assess the effect of backbone strategies on the performance of TS by
comparing our BGTS algorithm with its underlying TS procedure on the set
of 21 instances. For this purpose, we run TS procedure described in Section
2.2 under the same time limit as our BGTS algorithm. The results are shown
in Table 3. From Tables 2 and 3, one observes that the two versions of the
BGTS algorithm do boost the performance of the basic TS in terms of the
criteria (1)-(4) for almost all the instances.

Specifically, when it comes to the best solutions obtained, unlike BGTS-SS
and BGTS-SP, the basic TS cannot find the best known values for 4 instances
(5000.4, 6000.2, 7000.1 and 7000.2) and the best solution gap (gbest) is 118, in
comparison with BGTS-SS and BGTS-SP’s gap of 0. Furthermore, the average
CPU time for BGTS-SS and BGTS-SP to find the best solution is respectively
507 and 572 seconds which is 50% and 44% less than that of the basic TS.

12

Table 3 Computational results on 21 large instances using the basic TS Algorithm

Basic TS Algorithm
Instance dens f∗

fbest gbest gavr suc tavr
p3000.1 0.5 3931583 3931583 0 207 12 50
p3000.2 0.8 5193073 5193073 0 306 12 29
p3000.3 0.8 5111533 5111533 0 679 12 67
p3000.4 1.0 5761822 5761822 0 394 18 44
p3000.5 1.0 5675625 5675625 0 675 5 61
p4000.1 0.5 6181830 6181830 0 13 16 76
p4000.2 0.8 7801355 7801355 0 1766 5 108
p4000.3 0.8 7741685 7741685 0 526 9 204
p4000.4 1.0 8711822 8711822 0 175 14 231
p4000.5 1.0 8908979 8908979 0 1148 11 323
p5000.1 0.5 8559680 8559680 0 925 1 1650
p5000.2 0.8 10836019 10836019 0 1628 1 23
p5000.3 0.8 10489137 10489137 0 2799 2 869
p5000.4 1.0 12252318 12251403 915 2202 0 1800
p5000.5 1.0 12731803 12731803 0 1011 3 531
p6000.1 0.5 11384976 11384976 0 1097 4 1244
p6000.2 0.8 14333855 14333257 598 3180 0 3600
p6000.3 1.0 16132915 16132915 0 1642 6 2279
p7000.1 0.5 14478676 14477845 831 2400 0 3600
p7000.2 0.8 18249948 18249799 149 2875 0 3600
p7000.3 1.0 20446407 20446407 0 4426 2 1134
Average 118 1432 6.34 1025

In addition, BGTS-SS and BGTS-SP’s success rate (10.5 and 10 times over
20 runs) to reach the best-known values is about 67% higher than that of the
basic TS (6.34/20). Finally, BGTS-SS and BGTS-SP obtain better average
objective values (636 and 773 against 1432).

3.2.2 Comparison with an Iterated TS

We also provide a comparison between BGTS and an Iterated TS procedure
which reinforces the previous TS procedure with a perturbation-based diversi-
fication strategy. Specifically, after each TS run, ITS partially “dismantles”the
best local optimum solution obtained by TS, i.e., 1/3 of the variables of the
best solution obtained by TS are randomly flipped while keeping other re-
maining variables unchanged. Tables 2 and 4 show that the two versions of
the BGTS algorithm perform better than ITS in terms of three of the four cri-
teria (best solution gaps, average CPU time to find the best solutions and the
success rate in reaching best known objective values). This demonstrates the
advantage of using backbone information to guide the search over the random
perturbation strategy.

3.2.3 Performance comparison under longer time limit

We now investigate the performance of BGTS when a longer time limit is
allowed. In this experiment, we only consider the 11 instances with 5000 to

13

Table 4 Computational results on the 21 large instances using ITS Algorithm

ITS Algorithm
Instance dens f∗

fbest gbest gavr suc tavr
p3000.1 0.5 3931583 3931583 0 268 17 76
p3000.2 0.8 5193073 5193073 0 49 18 45
p3000.3 0.8 5111533 5111533 0 177 15 75
p3000.4 1.0 5761822 5761822 0 0 20 63
p3000.5 1.0 5675625 5675625 0 675 12 128
p4000.1 0.5 6181830 6181830 0 228 20 61
p4000.2 0.8 7801355 7801355 0 1014 10 166
p4000.3 0.8 7741685 7741685 0 133 14 149
p4000.4 1.0 8711822 8711822 0 123 16 225
p4000.5 1.0 8908979 8908979 0 63 17 247
p5000.1 0.5 8559680 8559355 325 853 0 1800
p5000.2 0.8 10836019 10836019 0 1084 1 370
p5000.3 0.8 10489137 10489137 0 1155 7 650
p5000.4 1.0 12252318 12251874 444 1295 0 1800
p5000.5 1.0 12731803 12731803 0 581 8 472
p6000.1 0.5 11384976 11384976 0 415 8 1961
p6000.2 0.8 14333855 14333855 0 292 6 978
p6000.3 1.0 16132915 16132915 0 793 8 1686
p7000.1 0.5 14478676 14478638 38 954 0 3600
p7000.2 0.8 18249948 18249844 104 1155 0 2304
p7000.3 1.0 20446407 20446407 0 1004 10 2283
Average 43 586 9.86 911

7000 variables. Each instance is independently solved 20 times with a time
limit three times that allowed in previous experiments, i.e., 90, 180 and 180
minutes respectively for instances with 5000, 6000 and 7000 variables. For the
two BGTS variants, the best solution gaps to the best known objective values
(gbest), the success rate to reach the best known objective values (suc) and
the average solution gaps to the best known objective values (gavr) are shown
in Table 5.

Table 5 shows that both BGTS versions can find all the best known objec-
tive values within the given time limit. Moreover, the success rate for finding
the best known objective values is further improved compared to the outcomes
in Table 2, equalling 6.4 and 5.5 out of 20 runs, respectively for SS and SP,
compared to 4.7 and 4.0 out of 20 runs for the shorter time limit. In addition,
the high performance of the BGTS algorithm is more pronounced in terms of
the average solution gaps. In fact, the two versions of our BGTS algorithm SS
and SP have an average solution gap of 468 and 608 against 1054 and 1285 of
the previous experiments in Table 2 for these 11 largest instances.

4 Discussion and Analysis

We now turn our attention to analyzing several important features of the
proposed BGTS algorithm, including the number of the backbone variables at
each fixing or freeing phase and the average gap to the best known objective
values.

14

Table 5 Computational results with longer time limit using SS and SP Algorithm

BGTS-SS BGTS-SP
Instance f∗

gbest suc gavr gbest suc gavr
p5000.1 8559680 0 4/20 446 0 1/20 486
p5000.2 10836019 0 12/20 204 0 7/20 384
p5000.3 10489137 0 6/20 206 0 7/20 273
p5000.4 12252318 0 4/20 581 0 4/20 530
p5000.5 12731803 0 19/20 7 0 18/20 20
p6000.1 11384976 0 9/20 152 0 6/20 174
p6000.2 14333855 0 2/20 368 0 3/20 191
p6000.3 16132915 0 3/20 1211 0 4/20 1313
p7000.1 14478676 0 2/20 659 0 2/20 984
p7000.2 18249948 0 1/20 1165 0 1/20 1023
p7000.3 20446407 0 8/20 153 0 8/20 1311
Average 0 6.4/20 468 0 5.5/20 608

4.1 Number of Fixing Backbone Variables

0

2

4

6

8

10

12

14

16

18

20

S
u
cc

es
s

R
at

e

0 2 4 6 8 10 12 14 16 18 20
Instance

20%
geomatric

30%

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

S
ol

u
ti

on
G

ap
(×

10
3
)

0 2 4 6 8 10 12 14 16 18 20
Instance

20%
geomatric

30%

Fig. 1 Succ Rate(L) and Average Gap(R) with different backbone fixing strategies

As indicated in Section 2.4.2, we set the number of backbone variables by
employing a geometric ratio reduction strategy. In order to make sure that
this strategy is meaningful, we conduct an experiment to compare this strat-
egy with two other linear percentage strategies. Specifically, at each trial the
number of backbone variables to be fixed is set to be a constant linear per-
centage of the total number of all non-backbone variables. In our experiment,
we use two linear percentage values: 20% and 30%. We compare the success
rate and the average gap to reach the best known values for all the 21 tested
instances using the geometric strategy and the two linear percentage strate-
gies, as shown in Figure 1(L). Note that this experiment is carried out using
the SS algorithm on all the 21 instances.

One notices that the geometric ratio strategy can obtain the best known
objective values (i.e. with a success rate larger than 0) for all the 21 instances,

15

while the two linear percentage strategies (denoted by 20% and 30%) fail
for two and three instances, respectively. In addition, for most of these 21
instances, the success rate of the geometric ratio strategy is greater than that
of the two linear percentage strategies, which implies that the geometric ratio
strategy is more stable in reaching the best known objective values.

When it comes to the average gaps to the best known objective values,
Figure 1(R) shows that the geometric ratio strategy outperforms the two linear
percentage strategies for almost all the 21 instances.

4.2 Evolving Average Solution Gap

0

1.2×103

2.4×103

3.6×103

4.8×103

6×103

7.2×103

8.4×103

9.6×103

1.1×104

1.2×104

A
ve

ra
ge

S
ol

u
ti

on
G

ap

0 2 4 6 8 10 12 14 16 18 20
Fixing or Loosing Phases

BGTS − SS

BGTS − SP

Fig. 2 Evolving solution gaps to the best known objective values

In this section, we carry out another experiment to verify whether the
best solution of our BGTS algorithm can be continuously improved with the
progress of the search. For this purpose, Figure 2 shows how the best solution
gap evolves with the iterations of fixing or freeing phases on the instance
p5000.4. This experiment is conducted with both the SS and SP versions of
BGTS. Specifically, we calculate the average of the best solution gap to the
best known objective value over 10 independent runs. (only the first 20 phases
of fixing or freeing variables are indicated).

Figure 2 discloses that the solution gaps for both SS and SP decrease dra-
matically during the first 6 phases. Moreover, in the remaining phases the
objective value is further improved, which indicates that our BGTS algorithm
can consistently improve the solution quality when the search progresses, show-
ing the strong search potential of the backbone-guided tabu search algorithm.

16

5 Conclusions

The backbone-guided tabu search algorithm for the UBQP problem alter-
nates between a basic TS procedure and a variable fixing/freeing phase guided
by backbone information based on identifying strongly determined variables.
While the TS phase ensures the exploitation of a search space, the variable
fixing (freeing) phase dynamically enlarges (reduces) the backbone of assigned
values that launches the TS exploration.

To choose the variables to be fixed or freed, the proposed method applies a
dedicated scoring mechanism to variables of reference solutions. A geometric
ratio strategy is incorporated to determine the appropriate number of back-
bone variables to be fixed. In total, two versions of the BGTS algorithm are
investigated that embody different possibilities for building reference solution.

Using a set of 21 well-known difficult instances with 3000 to 7000 variables,
we show that the BGTS algorithm obtains highly competitive outcomes in
comparison with the previous best known results from the literature. A direct
comparison between BGTS and the underlying TS procedure confirms that
incorporating backbone information boosts the performance of the basic TS
algorithm.

This research establishes the merit of our backbone guided search for solv-
ing the UBQP problem. Future studies can enhance the basic strategy in two
key ways by drawing further on the ideas underlying the original proposal for
exploiting strongly determined variables: (i) including consideration of con-
sistent variables by reference to the frequency that variables receive assigned
values in high quality solutions, and (ii) compelling variables to remain fixed
at their selected values for some period during the improving phase (medi-
ated here by tabu search) instead of simply using these values to launch the
improving phase.

Acknowledgment

The work is partially supported by a “Chaire d’excellence” from “Pays de la
Loire” Region (France) and regional RaDaPop and LigeRO projects (2009-
2012).

References

Alidaee B, Kochenberger GA, Ahmadian A (1994) 0-1 quadratic programming
approach for the optimal solution of two scheduling problems. International
Journal of Systems Science 25:401–408

Alidaee B, Kochenberger GA, Lewis K, Lewis M, Wang H (2008) A new ap-
proach for modeling and solving set packing problems. European Journal of
Operational Research 86(2):504–512

17

Amini M, Alidaee B, Kochenberger GA (1999) A scatter search approach to
unconstrained quadratic binary programs, McGraw-Hill, New York, pp 317–
330. New Methods in Optimization

Borgulya I (2005) An evolutionary algorithm for the binary quadratic prob-
lems. Advances in Soft Computing 2:3–16

Boros E, Hammer PL, Tavares G (2007) Local search heuristics for quadratic
unconstrained binary optimization (qubo). Journal of Heuristics 13:99–132

Boros E, Hammer PL, Sun R, Tavares G (2008) A max-flow approach to im-
proved lower bounds for quadratic 0-1 minimization. Discrete Optimization
5(2):501–529

Chardaire P, Sutter A (1994) A decomposition method for quadratic zero-one
programming. Management Science 41(4):704–712

Garey MR, Johnson DS (1979) Computers and intractability: A guide to the
theory of NP-completeness. Freeman, New York

Glover F (1977) Heuristics for integer programming using surrogate con-
straints. Decision Sciences 8(1):156–166

Glover F (2005) Adaptive memory projection methods for integer program-
ming. In: Rego C, Alidaee B (eds) Metaheuristic Optimization Via Memory
and Evolution, Kluwer Academic Publishers, pp 425–440

Glover F, Hao JK (2010) Efficient evaluations for solving large 0-1 uncon-
strained quadratic optimization problems. International Journal of Meta-
heuristics 1(1):3–10

Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers, Boston
Glover F, Kochenberger GA, Alidaee B (1998) Adaptive memory tabu search
for binary quadratic programs. Management Science 44:336–345

Glover F, Alidaee B, Rego C, Kochenberger GA (2002) One-pass heuristics
for large-scale unconstrained binary quadratic problems. European Journal
of Operational Research 137:272–287

Glover F, Lü Z, Hao JK (2010) Diversification-driven tabu search for uncon-
strained binary quadratic problems. 4OR-A Quarterly Journal of Operations
Research doi: 10.1007/s10732-010-9128-0

Harary F (1953) On the notion of balance of a signed graph. Michigan Math-
ematical Journal 2:143–146

Horst R, Pardalos PM, Thoai NV (2000) Introduction to Global Optimization.
Kluwer Academic Publishers, Boston

Katayama K, Narihisa H (2001) Performance of simulated annealing-based
heuristic for the unconstrained binary quadratic programming problem. Eu-
ropean Journal of Operational Research 134:103–119

Kilby P, Slaney JK, Thiebaux S, T (2005) Backbones and backdoors in satis-
fiablity. In: Proceedings of AAAI-2005, pp 1368–1373

Kochenberger GA, Glover F, Alidaee B, Rego C (2004) A unified modeling and
solution framework for combinatorial optimization problems. OR Spectrum
26:237–250

Kochenberger GA, Glover F, Alidaee B, Rego C (2005) An unconstrained
quadratic binary programming approach to the vertex coloring problem.
Annals of Operations Research 139:229–241

18

Krarup J, Pruzan A (1978) Computer aided layout design. Mathematical Pro-
gramming Study 9:75–94

Lewis M, Kochenberger GA, Alidaee B (2008) A new modeling and solution
approach for the set-partitioning problem. Computers and Operations Re-
search 35(3):807–813

Lewis M, Alidaee B, Glover F, Kochenberger GA (2009) A note on xqx as a
modelling and solution framework for the linear ordering problem. Interna-
tional Journal of Operational Research 5(2):152–162

Lü Z, Glover F, Hao JK (2010) A hybrid metaheuristic approach to solv-
ing the ubqp problem. European Journal of Operational Research doi:
10.1016/j.ejor.2010.06.039

McBride RD, Yormark JS (1980) An implicit enumeration algorithm for
quadratic integer programming. Management Science 26:282–296

Merz P, Katayama K (2004) Memetic algorithms for the unconstrained binary
quadratic programming problem. BioSystems 78:99–118

Monasson R, Zecchina R, Kirkpatrick S, Selman B, Troyansky L (1998) De-
termining computational complexity for characteristic ’phase transitions’.
Nature 400:133–137

Palubeckis G (2004) Multistart tabu search strategies for the unconstrained
binary quadratic optimization problem. Annals of Operations Research
131:259–282

Palubeckis G (2006) Iterated tabu search for the unconstrained binary
quadratic optimization problem. Informatica 17(2):279–296

Wilbaut C, Salhi S, Hanafi S (2009) An iterative variable-based fixation heuris-
tic for 0-1 multidimensional knapsack problem. European Journal of Oper-
ational Research 199:339–348

Zhang W (2004) Configuration landscape analysis and backbone guided local
search. part 1: Satisfiability and maximum satisfiability. Artificial Intelli-
gence 158:1–26

