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Particle Swarm Optimization for the Steiner Tree in Graph
and Delay-Constrained Multicast Routing Problems

Rong Qu Ying Xu  Juan P. Castro  Dario Landa-Silva

Abstract This paper presents the first investigation on applying a Particle Swarm Optimization (PSO) algorithm to
both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the
underlining models of many applications, have received significant research attention within the meta-heuristics
community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but
includes several promising approaches. Many interesting research issues still remain to be investigated, for
example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum
cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently
developed by Moreno-Perez et al. (2007), and also propose two novel local search heuristics within our PSO
framework. A path replacement operator has been used in particle moves to improve the positions of the particle
with regard to the structure of the tree. We test the performance of our PSO algorithm, and the effect of the
integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and
Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed
PSO algorithm over a number of other state-of-the-art approaches.

Keywords delay constrained multicast routing  Steiner tree problems  particle swarm optimization

1. Introduction

Multimedia applications such as video/audio conferencing and distance education demand multicast
communications, where data streams are sent from the source node to a set of destinations within the
same multicast group in computer networks. The objective is to maximize the multicast throughput
within limited and constrained resources. The quality of service (QoS) requirements in the underlying
computer network take into account several attributes such as cost, delay, delay variation, packet losses
and hop count. Due to the rapid increase in the demand of multimedia services, as well as to the
challenges related to the implementation of effective multicast communications, multicast routing
problems have recently attracted an increasing attention from the meta-heuristics research community in
both computer communications and operational research.

The underlying model for multicast routing problems and a number of other problems is the Steiner
tree problem (Hwang and Richards, 1992), a well known NP-hard combinatorial optimization problem
(Garey and Johnson, 1979). This problem has been widely studied for decades, and still presents a great
research challenge. When solving real life multicast routing problems, more constraints need to be
considered in addition to the problem of finding a Steiner tree. The two most common and important
QoS requirements when constructing multicast trees are the delay and the cost. The end-to-end delay is
the sum of the total delays long the paths from the source to each destination. In real time
communications, this delay should be within a certain delay bound. The cost of the multicast tree is the
sum of the cost of all links in the tree. A general form of the cost occurs from using and/or reserving
network resources, such as the bandwidth, when sending data streams via the network links. Other
specific costs can also be defined depending on the network being used in the problem.

In multicast routing problems, finding the multicast tree with the minimal cost while satisfying the
delay bound constraint is equivalent to the problem of finding a delay-constrained Steiner tree, thus the
former is also a NP-hard problem. The nature of the problem and the variety of constraints that exist in
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real life applications have motivated an increasing interest from the scientific community to developing
various optimization and search algorithms, including meta-heuristics, for this problem (Oliveira and
Pardalos, 2005).

In this paper, we investigate the Particle Swarm Optimization (PSO) algorithm (Kennedy and
Eberhart, 1995) for solving the Delay-Constrained Least-Cost (DCLC) multicast routing problem and
also the underlying Steiner tree problem. Based on the Jumping PSO (JPSO) recently developed by
Moreno-Perez et al. (2007), operations which take into account the structure and features of the tree are
carried out on selected paths within particle moves to reduce the cost of the tree. Two novel local search
algorithms have been hybridized to intensify the search to neighboring solutions. To the best of our
knowledge, no previous investigation has been carried out on using PSO (or other meta-heuristics) to
tackle both problems. Most related papers in the literature have mainly focused on one of them. On the
DCLC multicast routing problem, we compare our JPSO algorithm against the best known results
reported in the literature. On the Steiner tree problem, we assess the efficiency and effectiveness of our
JPSO algorithm by calculating the exact gap to the global optimal solutions known for the benchmark
datasets used. A large amount of experiments and simulations demonstrate that our JPSO algorithm
obtains the best quality solutions for the DCLC multicast routing problems and highly competitive
results for the Steiner tree benchmark problems considered in this work.

The rest of the paper is organized as follows. We first present the network model and formulations
for DCLC multicast routing problems and Steiner tree problems in Section 2. Related literature on both
problems is also reviewed. The JPSO algorithm and our proposed JPSO algorithm are presented in
Sections 3 and 4, and then evaluated through extensive experimentations in Section 5. Finally, Section 6
concludes the paper and proposes potential future work.

2. Problem Definitions and Related Work

2.1The Delay-Constrained Least Cost (DCLC) Multicast Routing Problem

The DCLC multicast routing problem can be defined by using a directed graph G = (V, E), where V is a
set of nodes and E is a set of links, respectively. The nodes in V include a source node s, a set of
destination nodes RV – {s} which receive data streams from the source, and a set of relay nodes which

are intermediate hops on the paths from the source s to the destinations R. The set of paths linking the
source to the destination nodes are also called multicast groups. The number of destination nodes | R | is
also called the group size.

Within the multicast network, each link e = (i ,j)E from node i to node j is associated with a link
cost C(e): E R+ and a link delay D(e): E R+, where R+ are nonnegative real numbers. In the general
case, computer networks are asymmetric, i.e. the links in G are bidirectional, and it is possible that C(e) ≠ 
C(e’) and D(e) ≠ D(e’), with e = (i ,j)E and e’ = (j, i)E, i, jV. A path P(u, v) from node u to node
v can be defined as an ordered set of links, P(u, v) = {(u, i), (i, j), …, (k, v)}.

A multicast tree T(s, R) is a tree rooted at the source s, spanning all destinations riR. We denote
PT(ri)T as the set of paths from the source s to all destinations riR in the multicast tree T. The delay

of the path from s to a destination ri, denoted by Delay(ri), can then be defined as the sum of the delays
on all links along the paths PT(ri):

Delay(ri) = 
 )(

)(
iT rPe

eD (1)

The delay of the overall multicast tree T(s, R), denoted by Delay(T), is the maximum delay among all
the paths PT(ri), riR:

Delay(T) = max{Delay(ri) | riR} (2)
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The total cost of the multicast tree, denoted by Cost(T), is the sum of the costs of all links on the paths
in the multicast tree:

Cost(T) = 
Te

eC )(
(3)

In real time computer network applications, different delay bounds δri may exist for paths to
different destinations riR. In DCLC multicast routing problems, the delay bound defines the upper
bound to the sum of delays on all links along the path from the source s to each destination riR. In this
paper and the other related work reviewed in Section 2.4, it is assumed that all destinations have the
same upper bound for all paths, denoted by ∆ = δri, riR.

Given the above definitions, the Delay-Constrained Least Cost (DCLC) multicast routing problem
can be formally defined as follows (Guo and Matta, 2000):

The Delay-Constrained Least Cost (DCLC) Multicast Routing Problem: Given a network G, a
source node s, a set of destination nodes riR, a link delay function D(·), a link cost function
C(·), and a delay bound ∆, the DCLC multicast routing problem is to construct a multicast tree 
T(s, R) such that the delay bound of the path is satisfied and the tree cost Cost(T) is minimized.
We can define the objective function of the DCLC multicast routing problem as follows:

Minimize {Cost(T) | T T(s, R)} s.t. Delay(ri) ≤ ∆,  ir R (4)

2.2The Steiner Tree Problem

The Steiner tree problem is the underlying model of the DCLC multicast routing problem and is defined
by an undirected graph G = (V, E), where V is a set of nodes and E is a set of links, respectively. Each
link e(i, j)E linking node i and node j is associated to a weight W(e): E R+. The triangle inequality
holds in Euclidean metric spaces, therefore W(e1) + W(e2) ≥ W(i, k), e1 = (i, j)E, e2 = (j, k)E,  i, j, k
V. Nodes in V can be partitioned into a set of required destination nodes R and the remaining nodes S,
V = R S. Then, the metric Steiner tree problem can be defined as follows:

The Steiner Tree Problem is to find a minimum weighted tree T in G, TE, that spans all

nodes in R and if necessary some additional nodes (the so called Steiner nodes) in S. The total

weight W(T) of the tree is the sum of the weights of all links in the tree T, i.e. 



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eWTW )()(

A collection of well known Steiner tree problems have been maintained in the OR library at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html, originally published in Beasley (1990).
During the years, these benchmark problems have been tested in the OR community by various meta-
heuristics and exact methods. Branch and cut methods with pre-processing, reduction techniques and
primal heuristics have been used to solve these instances to optimality (Koch and Martin, 1998). Such
techniques have also been widely studied on other variants of the Steiner tree problems (Barahona and
Ladanyi, 2006; Costa, Cordeau and Laporte, 2006).

The Steiner tree problem and its variants have also been widely tested by PSO algorithms in the
literature. Consoli et al. (2010) present a JPSO for the minimum labeling Steiner tree problem, where the
objective is to find a spanning tree with the smallest number of distinct labels on links, covering a given
subset of nodes. The algorithm outperforms an exact method, a pilot method and a multi-start approach
with and without local search, finding high quality solutions with short running times. Apart from the
JPSO by Consoli et al. (2010), the only other discrete PSO algorithm (for which explores in discrete
search space for solving combinatorial optimization problems) applied to the Steiner tree problems that
we are aware of is developed by Zhong et al. (2008). A complete graph is firstly created by using the
Floyd's algorithm (Floyd, 1962). A modified Prim’s algorithm is used to re-create the minimal spanning
tree, and a trimming operation is used to cut off redundant nodes. The algorithm compares well to a GA
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on both the B and C datasets in the OR library. We compare our JPSO algorithm with Zhong et al. (2008)
on the same datasets in Section 5. Other search algorithms developed for the Steiner tree problem can be
found in the review in Zachariasen (1999).

To our knowledge, there is no efficient exact method in the literature to solve the delay-bounded
multicast routing problem. Existing related work is only limited to heuristic and meta-heuristic
approaches. Our aim here is to demonstrate that the proposed JPSO can be applied to solve not only the
delay-constrained least cost multicast routing problems, but can also to outperform existing meta-
heuristics on solving some of the widely tested benchmark Steiner tree problems. Experimental
evaluations and comparisons with existing results on both of the benchmark problems in the literature
provide scientific justification of the JPSO algorithms proposed in our work.

2.3Particle Swarm Optimization for Different Multicast Routing Problems

A number of PSO algorithms have been developed in the literature for solving a range of multicast
routing problems with different constraints and features. These interesting multicast routing problems are
very different from the DCLC multicast routing problems considered in this work, and will be the subject
of our future work.

Yuan et al. (2004) formulate the energy-aware multicast routing problem in wireless ad-hoc
networks using an integer linear programming model, and apply a multi-phase discrete PSO to find
optimal solutions. Total transmission power is minimized with connection and broadcast constraints. A
symbiosis mechanism is used to handle the constraints and to allow both feasible and infeasible particles
to evolve in the swarm. Sun et al. (2006) have considered a multi-objective multicast routing problem
with a number of constraints including delay, bandwidth, cost, delay jitter, and packet losses. The
particles in their PSO algorithm use an integer coding that associates a position with a list of nodes from
the source to the destination. The PSO outperforms a GA on a small problem of 23 nodes.

In Wang et al. (2005) a hybrid approach between a GA and a PSO has been developed to minimize
the tree cost in multicast routing problems with a number of constraints including the bandwidth, delay,
and error rate in non-deterministic scenarios. The hybrid algorithm outperforms a GA on both the tree
cost and the convergence rate. Another hybrid approach between GA and PSO developed in Li et al.
(2007) has shown to outperform a standard GA on random multicast routing problems with two
objectives, to minimize the average delay and the link utilization (traffic vs. link capacity). The best half
of the GA population is firstly improved and then used as the starting positions for the particles in PSO.

2.4Heuristics and Meta-heuristics for DCLC Multicast Routing Problems

Our proposed JPSO algorithm and a large number of algorithms in the literature belong to the class of
source-based approaches, where each node in the multicast routing problem has all the necessary
information to construct the multicast tree. As opposed to source-based approaches, destination-based
approaches do not require that each node maintains the status information of the entire network, and
multiple nodes participate in constructing the multicast tree. Later in experiment simulations we compare
the performance of our proposed JPSO to all the algorithms reviewed in this section on a large number of
DCLC multicast routing test instances.

A number of early source-based heuristics developed for constructing low-cost multicast trees with
delay bounds are based on the well known Prim's shortest path heuristic (Prim, 1957; Cormen et al.,
2001) and the k-shortest path algorithm (Eppstein, 1998). The first source-based heuristic for DCLC
multicast routing problems is the Kompella-Pasquale-Polyzos (KPP) heuristic (Kompella et al., 1993),
which uses the Prim’s algorithm to obtain a minimum spanning tree with constrained paths, assuming
that the link delays and delay bounds are integers. The Bounded Shortest Multicast Algorithm (BSMA)
(Zhu et al., 1995), one of the best known delay-bounded multicast routing algorithms developed in the
1990s, iteratively refines the tree to lower costs based on the k-shortest path algorithm. Due to its good
performance on tree cost, it is still being frequently used to compare the performance of many recent
multicast routing algorithms. Although these early heuristics have very good performance with respect to
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the tree cost, based on the Prim’s algorithm or the k-shortest path algorithm, their computing times are
usually extremely high for larger networks.

A large amount of recent research has been carried out to develop meta-heuristics for different large
DCLC multicast routing problems. Several tabu search algorithms have been developed, where
Dijkstra’s algorithm has been widely used as the initialization method (Youssef et al., 2002; Skorin-
Kapov and Kos, 2006; Ghaboosi and Haghighat, 2007a). Wang et al. (2004) find that the main
disadvantage in the tabu mechanism is that the randomly selected paths often lead to a disjointed
multicast tree. In Ghaboosi and Haghighat (2007a), initial solutions are iteratively refined by using a
modified Prim’s algorithm to switch links chosen from a backup path set. A candidate list strategy is
used to intelligently select neighborhood moves and show to speed up the search and also improve the
solution quality. In Skorin-Kapov and Kos (2006), a tabu search is applied to improve the solution
quality within GRASP approach (Feo and Resende, 1995). The algorithm outperforms the KPP algorithm
(Kompella et al., 1993) and a tabu search (Skorin-Kapov and Kos, 2003) on the tested problems.

A number of population based algorithms have also been developed, including genetic algorithms
(Haghighat et al., 2004; Wang et al., 2001). Ghaboosi and Haghighat (2007b) develop a path relinking
algorithm where the worst solutions in a reference set of random solutions are iteratively replaced using a
path relinking process. Simulation results show that the path relinking algorithm outperforms other
existing algorithms with respect to the tree cost. However, repairing infeasible solutions generated during
the path relinking is time consuming as many infeasible solutions occur when the network size increases.

In our previous work (Qu et al., 2009), a variable neighborhood search algorithm has been
developed for the DCLC multicast routing problem. Three neighborhoods are designed by using path
replacement operators to iteratively replace high cost links in the tree. The algorithm outperforms a
number of algorithms in the literature in terms of both the computing time and the tree cost. It is
observed that the neighborhood design plays a crucial role in the performance of the algorithm, and
effective initialization method leads to better final solutions within a shorter computing time.

3. Variants of the Particle Swarm Optimization

3.1The Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired population-based stochastic global optimization
algorithm proposed by Kennedy and Eberhart (1995). It belongs to the class of swarm intelligence
algorithms (Bonabeau, Theraulaz and Dorigo 1999; Eberhart, Shi and Kennedy, 2001). PSO simulates
simplified natural social systems such as flocks of birds or schools of fish. A population (swarm) is made
up of simple agents (particles) and evolves by following very simple rules in a decentralized way.
Particles are typically modeled as entities moving in a multi-dimensional continuous space (search space)
and interact by sharing both local and global information about their own positions (solutions). During
the evolution (over iterations), the whole swarm evolves and complex behaviors emerge. For each
particle i in the swarm at iteration j, its position (solution) xi,j and velocity (rate of change) vi,j are updated
in the evolution by using the following two equations:

vi,j+1 = c0vi,j + c1r1(bi – xi,j) + c2r2(gj – xi,j) + c3r3(gi,j – xi,j) (5)

xi,j+1 = xi,j + vi,j+1 (6)

Equation (1) handles the velocity update by summing up four components:

- the first component, c0vi,j, is called inertia and enables the particle to keep the flow of its previous
movement, avoiding abrupt moves and premature convergence;

- the second component, c1r1(bi – xi,j), encourages the particle’s self-learning (cognition) ability by
using its best position achieved so far, bi, as a reference;
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- the third component, c2r2(gj – xi,j), is the social factor that leads the particle to the best position so far
within the swarm, gj, which remembers the best performance so far in the entire swarm;

- the fourth component, c3r3(gi,j – xi,j), uses the best location found so far by the particles belonging to a
“social neighborhood” of the particle, i.e. in a neighborhood sub-swarm gi,j. This is to enhance the
exploration capacity of the particles and also to prevent premature convergence within the swarm.

Each of the four components in Equation (1) is associated with a weight cx, x = 0, …, 3, and cx[0, 1], to
establish the importance of each component. Moreover, in order to confer a stochastic behavior, the latter
three components are scaled by random values R = (r1, r2, r3) drawn from an uniform [0,1] distribution.
Once the new velocity vi,j+1 is calculated using Equation (1), Equation (2) adds the new velocity to the
current position xi,j so that the particle moves to a new position.

PSO is relatively easy to understand and to implement. A number of variants exist in the literature
and have been highly successful on a range of problems (see more details in Eberhart, Shi and Kennedy,
2001). PSO variants remain as our future work based on a good understanding of the present work in this
paper. More information about developments of PSO can be found in (Kennedy and Eberhart, 1995) and
at http://www.swarmintelligence.org/.

3.2The Jumping Particle Swarm Optimization

While the original PSO algorithm has been designed for continuous optimization problems, a variant
called Discrete Particle Swarm Optimization (DPSO) has been designed to deal with combinatorial
optimization problems, where particles move in a multi-dimensional discrete exploration space. The first
DPSO approach was introduced by Kennedy and Eberhart (1997), where the positions of the particles are
encoded by using binary strings, while the velocity equation remained unchanged. By using a sigmoid
function, the velocity is mapped to a value in [0, 1]. If a quasi-random number sampled from a uniform
distribution between [0, 1] is greater than the mapped velocity, the position takes value 0, otherwise it
takes value 1. Since then, many variations of DPSO have been proposed and tested on a range of
problems including the travelling salesman problem (Onwubolu and Clerc, 2004), production scheduling
problems (Allahverdi and Al-Anzi, 2006; Sha and Hsu, 2006; Tasgetiren, 2007; Anghinolfi and Paolucci,
2009), and resource constrained project engineering (Zhang et al., 2006).

A particular DPSO strategy called Jumping Particle Swarm Optimization (JPSO) algorithm has
recently been introduced by Moreno-Perez et al. (2007) to solve combinatorial optimization problems.
Later, it has been used by Consoli et al. (2008) to tackle the minimum labeling Steiner tree problem and
Castro et al. (2009) to deal with the vehicle routing problem with time windows. The JPSO algorithm
does not use the concept of velocity to redefine how the swarm of particles moves in the search space.
Instead, the metaphor behind JPSO is that of a number of elements (particles) moving (jumping) from
position to position (solutions) in a discrete search space. If there is a particle with a good fitness in a
certain region of the space, the other particles in the swarm will be attracted to its position in order to
improve their own fitness.

In the original PSO, the four components in Equation (1) can be split to two parts. The first part c0vi,j

enables the particle to continue the exploration of its current position. The second part c1r1(bi – xi,j) +
c2r2(gj – xi,j) + c3r3(gi,j – xi,j) encourages the particle to move towards a better location with respect to
other particles' positions. Therefore, the particle that performs the move follows the other three different
attractors, and is thus named the follower in the literature.

Each of the attractors has a likelihood cx given by a weight vector,  xc = 1, x = 0, …, 3. In JPSO,

only one type of moves is triggered at each iteration. When a stopping criterion has not been met, the
algorithm generates a random number r uniformly distributed in [0, 1]. This number r along with the
weights cx determines how the particle moves as follows:

 If r[0, c0), the particle continues its current exploration (an inertial move);
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 If r[c0, c0+c1), the follower particle will move towards (be attracted to) the attractor bi, which is its
own best position achieved so far (a cognitive move);

 If r[c0+c1, c0+c1+c2), the follower particle will move towards the attractor gj, the best position in
the swarm so far (a social move);

 If r[c0+c1+c2, c0+c1+c2+c3 = 1], the follower particle will move towards the attractor gi,j, the best
positioned particle in its neighborhood sub-swarm at the current iteration (a global move).

In the end, there are four types of moves, one from each component in the original formula (1). The
swarm in JPSO jumps through the discrete space by following one of these four types of moves. One of
the main advantages of JPSO is that it retains the simplicity of the original PSO but works on a discrete
search space. Different components or techniques may be integrated in JPSO to improve the efficacy of
the particles’ movements. In the case of an inertial move, a mutation or neighborhood operator can be
employed to explore the current position and to prevent premature convergence. For the other three
follower-attractor moves, crossover operators may be used to partially imitate the structure of the
attractors. This makes JPSO algorithm a good option for solving complex combinatorial optimization
problems, and motivated our work on both Steiner tree and multicast routing problems in this paper.

4. The Proposed JPSO Algorithm

4.1The Overall JPSO Procedure

The pseudo-code of our proposed JPSO algorithm (hereinafter named JPSOMR) for solving both the
multicast routing problems and the Steiner tree problems is presented in Figure 1. A swarm of random
particles (randomly generated trees) is firstly created. Starting from the source node, a random tree is
constructed by randomly selecting the next link which connects to any on-tree node until all destination
nodes have been added to the tree.

As explained above, a particle in the swarm of JPSOMR does not possess a velocity component. Instead,
the swarm evolves based on different moves to the positions (solutions) of the particles. At every
iteration of the evolution, each particle moves either based on its current position (an inertial move) or
based on the position of the attractor which is chosen by using the weight vector (a cognitive, social or
global move). Once the particle has jumped to a new position, a local search is applied. The particle’s
best position and the swarm’s best position are then updated. The process is repeated until a stopping
condition is met, and the best position obtained by the swarm is returned as the final solution after the
evolution.
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Figure 1. The pseudo-code of the JPSOMR algorithm.

4.2The Representation

In our JPSOMR algorithm, the tree is represented by using a predecessor array with |V| = n elements
corresponding to the n nodes in the tree. The value of each element in the array is set to the index of the
node’s predecessor. Figure 2 presents an example of the representation of a tree, where the array (4-4-8-
0-5-x-3-1-6) represents the predecessor node of each corresponding node (node 0 to node 8) in the tree.

the predecessor array: 4 4 8 0 5 x 3 1 6

corresponding nodes: 0 1 2 3 4 5 6 7 8

Figure 2. An illustrative example of the representation of the tree, with three superpaths: (5-4), (4-0-3-6-8-2) and
(4-1-7). Values “a/b” denotes “cost/delay” of the links in the tree. Shaded nodes are the destination nodes, and node
5 is the source node (with no predecessor node, indicated by x).

JPSOMR(G = (V, E), s, R, ∆, c0, c1, c2, c3)
{ // s: the source node; R: the destination set; ∆ ≥ 0: the delay bound; cx: the weight vector;

// p.c: the current position of the particle; p.n: the new position of the particle;
// p.bn: the best neighboring position of the current particle;
// p.b: the best position found by the particle; g: the global best position found by the swarm.

Create |P| random initial feasible solutions for all particles in the swarm P
while (stopping condition not met) do

for each(particle p in swarm P) do
Generate a random number r (0, 1
case (r) { // moves, see section 5.4

r is in c0: p.n = RandomMove(p.c); // inertial move

r is in c1: p.bn = GetBestNeighborhood(p); // cognitive move

p.n = PathReplacement(p.bn, p.c);
r is in c2: p.n = PathReplacement(p.b, p.c); // social move

r is in c3: p.n = PathReplacement(g, p.c); // global move

}
Greedy or first improvement local search on the new position p.n // see section 5.5

Calculate the Cost and Delay of the new position p.n
if (((Cost(p.n) < Cost(p.b)) and (Delay(p.n) < ∆)) or  

(Cost(p.n) == Cost(p.b)) and (Delay(p.n) < Delay(p.b)))
then p.b = p.n; // update the particle’s best position

if (((Cost(p.n) < Cost(g)) and (Delay(p.n) < ∆)) or 
(Cost(p.n) == Cost(g)) and (Delay(p.n) < Delay(g)))

then g = p.n; // update the swarm’s best position

p.c = p.n;
end for

end while
return g;

}
RandomMove(p): a procedure that moves the particle p to a new position by choosing a superpath in the current
position and replacing it by a random new path.
GetBestNeighborhood(p): a procedure that returns the best position among the neighborhood particles of p.
PathReplacement(attractor, follower): a procedure that replaces the path from the source s to a destination in the

follower by choosing the best path in the attractor. See section 5.3.
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4.3The Path Replacement Operator

The path replacement operator is used to update a particle’s position based on that of a chosen attractor.
Figure 3 shows three trees corresponding to a follower particle T0, a chosen attractor particle Ta and the
newly generated particle T’. The path replacement operator firstly finds the cheapest path (5-4-1-7-8-2)
in the attractor tree Ta, and then uses it to replace the corresponding path (5-4-0-3-6-8-2) with the same
destination node 0 in the current particle T0. This newly generated tree T’ becomes the new position of
the follower particle.

Current tree T0 Attractor tree Ta New tree T’
Cost(T0) = 271 Cost(Ta) = 216 Cost(T’) = 230
Delay(T0) = 82 Delay(Ta) = 75 Delay(T’) = 75

Figure 3. The path replacement operator replaces the path (5-4-0-3-6-8-2) in T0 by using the cheapest path (5-4-1-7-
8-2) in Ta to create a new tree T’. Node 5 is the source node, and shaded nodes are destination nodes. The delay
bound ∆ = 82ms. Values “a/b” denotes “cost/delay” of the links in the tree.

In the path replacement operation, the selected path (to the same destination node of the cheapest path in
the attractor) is firstly removed from the follower particle. If a path PT(ri) to another destination ri is
included in the selected path, this path PT(ri) will not be removed from the follower particle tree. For
example, in the follower particle tree T0 in Figure 3, the path (5-4-0) to another destination node 0 within
the selected path (54-0-3-6-8-2) will remain in the tree. To avoid cycles in the generated tree, the path
replacement operator always replaces the old path by starting from the destination node of the new path
until the new path connects to an on-tree node. In Figure 3, the new path (5-4-1-7-8-2) in the attractor
particle tree Ta is added to follower T0 by starting from node 2, and adding node 8 until it connects to the
on-tree node 7.

For the DCLC multicast routing problem, the key constraint, the delay bound ∆, restricts the 
generation of the multicast trees. The smaller the delay bound, the tighter the problem is constrained. The
delay of path is always checked while implementing the path replacement to guarantee that the delay
bound is satisfied in the newly generated tree.

4.4Moves of Particles

In JPSOMR, there are two types of moves: moves towards an attractor and moves around the current
position (no attractor involved). Depending on where the sampled random value r falls within the
intervals defined by the weight vector cx, a specific attractor (or none) is selected to influence how the
particle moves from its current position to a new position. The particle moves as follows:

- If r[0, c0), no attractor is selected, thus the particle moves around its current position. This is done
by randomly removing a superpath in the current tree, and reconnecting the resulting two sub-trees
by using a random link.

As in our previous work in (Qu et al., 2009), superpath has been used in operations within the
inertial particle moves to reduce the tree cost (see Sections 4.4 below). The superpath is the longest
simple path between two end nodes in the tree, where all internal nodes, except the two end nodes of
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the path, have the node degree of 2. In the tree presented in Figure 2, there are three superpaths
which may be involved in the inertial particle moves.

- If r[c0, c0+c1), the best position achieved by the particle so far (bi) is chosen as the attractor. If
r[c0+c1, c0+c1+c2), the attractor is the best position achieved by the whole swarm so far (gj). If
r[c0+c1+c2, 1], the best located particle in the neighborhood of the current particle (gi,j) acts as the
attractor.

Once the attractor is selected, the path replacement operator adds the cheapest path from the source
to the destination in the selected attractor and removes the corresponding path in the follower (see
Section 4.3 above). The added path should not be already in the follower particle; otherwise a
random move is applied to the follower particle.

Based on the predecessor array representation, the movements of the particles are implemented by
replacing the predecessors of the nodes in the original path by the nodes in the new selected link/path.

4.5Local Search Heuristics

After each move, a local search is applied to improve the new particle’s position. In the local search
implemented here, a simple neighborhood operator operates upon the nodes in the tree. A neighbor of the
current tree is obtained by removing a non-destination node and creating a new spanning tree of the
remaining nodes using the Prim’s spanning tree algorithm (Betsekas and Gallager, 1992). Two variants
of local search have been tested in our JPSOMR algorithm. The first local search uses a greedy heuristic
to select the best neighbor from all neighboring solutions of the current tree. The second uses a first
improvement heuristic, where the first improving neighbor solution is selected.

If the newly generated particle after the local search corresponds to a better tree, this new particle
replaces its best position and/or the best global position so far. A tree is seen as better if it has a lower
cost and satisfies the delay bound constraint, or it has the same cost and with a smaller delay. Therefore,
the particle in JPSOMR finishes its jump by updating its best position and the best global position so far.

5. Performance Evaluation

5.1Simulation Environment for Steiner Tree and DCLC Multicast Problems

We implement and evaluate our JPSOMR algorithm by using the multicast routing problem simulator
(MRSIM), which is adopted based on the generator developed by Salama et al. (1997). The simulator
generates random network topologies by using a graph generation algorithm (Waxman, 1988).

For the DCLC multicast routing problems, the link delay function D(e) is defined within the
simulator as the propagation delay of the link. We assume that queuing and transmission delays are
negligible. The link cost function C(e) is defined as the current total bandwidth on the links in the
computer network. The network nodes are randomly positioned over a simulated rectangular area of size
4000×4000 km2. The Euclidean metric is used to determine the distance l(u, v) between pairs of
connected nodes (u, v). Within the simulator, links e = (u, v) connecting nodes u and v are placed with a
probability Pu,v given by:

Pu,v = ß e-l(u, v) / α L α, β (0,1] (7)

L in (7) is the upper bound of the distance between two nodes in the network. The parameters α and β are
used to generate different DCLC multicast routing problems within the desired networks of a range of
characteristics. For example, setting a large β value gives nodes a higher average degree, and setting a
large α value gives short distances between nodes. More details can be found in Salama et al. (1997). In
our simulations, we set α = 0.25 and β = 0.40. Different values of the delay bound ∆ are set in our tests as 
reported below.
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The simulator not only produces a wide range of network topologies with different characteristics,
but also provides a unified framework for fair and sound comparisons. As mentioned in Section 2.4, in
the literature different algorithms have been developed and tested using different datasets of DCLC
multicast routing problems. Simulations have been run on different platforms thus making it difficult to
run fair comparisons. To warrant a fair comparison, the JPSOMR algorithm and the selected competitor
multicast algorithms from the literature have been re-implemented in this work within the same
simulation environment and compared on exactly the same set of simulated DCLC multicast routing
problems instances generated in the simulator.

For the Steiner tree problem, we selected two sets of problem instances from the OR library,
focusing on instance sets B and C, and used them to test our algorithm and the existing algorithms in the
literature. Although a large number of new instances have been added to the library later (Koch et al.,
2002), during the years, these benchmark datasets still serve as the most widely tested problems in the
OR community and motivated the development of meta-heuristic algorithms. Since in the problems the
links are assigned only a cost function, we generated their delay values randomly in the simulator. The
delay bound is set as infinity in the simulator so no delay restriction is enforced, i.e. the generated
network is a true Steiner tree problem. All our simulations have been run 30 times for the small category
B instances and 20 times on larger category C instances.

All experiments have been run on a Windows XP PC with an Intel Core 2 Duo E8500 3.16GHZ
processor and 8GB of RAM. In addition to reporting the comparison results on the solution quality and
the computing time from of our proposed JPSOMR algorithm in this paper, to encourage scientific
comparisons, we also provide the details of all the problem instances tested and the experimental results
at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm.

5.2Experimental Results on Steiner Tree Problems

We first evaluate our JPSOMR algorithm on the benchmark categories B and C Steiner tree problems in
the OR library. The category B instances are based on networks with 50, 75 and 100 nodes with 63 to
200 links, and the category C instances include a set of larger networks with 500 nodes with 625 to
12500 links. Details of their characteristics are given in Tables 1 and 2. The optimal solutions have been
obtained in (Beasley, 1990) by incorporating the lower bound and problem reduction tests derived from
the original problems within a tree search. Due to the different computing platform used to run this exact
method, the computing time to find the optimal solution is not provided here as a reference. More details
can be found in Beasley (1990).

Table 1. The characteristics of category B instances from the OR-library. |V|: the number of nodes; |E|: the number
of links; |R|: the number of destinations in the instances; Opt.: the cost of the optimal solution.

|V| |E| |R| Opt. |V| |E| |R| Opt. |V| |E| |R| Opt.
B01 50 63 9 82 B07 75 94 13 111 B13 100 125 17 165
B02 50 63 13 83 B08 75 94 19 104 B14 100 125 25 235
B03 50 63 25 138 B09 75 94 38 220 B15 100 125 50 318
B04 50 100 9 59 B10 75 150 13 86 B16 100 200 17 127
B05 50 100 13 61 B11 75 150 19 88 B17 100 200 25 131
B06 50 100 25 122 B12 75 150 38 174 B18 100 200 50 218

Table 2. The characteristics of category C instances from the OR-library. |V|: the number of nodes; |E|: the number
of links; |R|: the number of destinations in the instances; Opt.: the cost of the optimal solution.

No. |V| |E| |R| Opt. No. |V| |E| |R| Opt. No. |V| |E| |R| Opt. No. |V| |E| |R| Opt.
C01 500 625 5 85 C06 500 1000 5 55 C11 500 2500 5 32 C16 500 12500 5 11
C02 500 625 10 144 C07 500 1000 10 102 C12 500 2500 10 46 C17 500 12500 10 18
C03 500 625 83 754 C08 500 1000 83 509 C13 500 2500 83 258 C18 500 12500 83 113
C04 500 625 125 1079 C09 500 1000 125 707 C14 500 2500 125 323 C19 500 12500 125 146
C05 500 625 250 1579 C10 500 1000 250 1093 C15 500 2500 250 556 C20 500 12500 250 267

5.2.1 The Size of the Swarm
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To evaluate the impact of the swarm size in JPSOMR, in the first group of experiments, we compare
JPSOMR with 6 different swarm sizes (|P| = 1, 2, 5, 10, 20, 30) on the smaller category B Steiner tree
instances. Note that the special case of when |P| = 1 may be seen as a local search rather than a PSO, and
thus this experiment also compares the performance of local search against PSO with different swam
sizes. Weight vector is set as c0 = c1 = c2 = c3 = 0.25, and the number of iterations in the evolution is set
to 100. No local search is applied to obtain an unbiased view of the impact of the swarm size. The
average tree costs are given in Table 3.

Table 3. JPSOMR with different swarm sizes and no local search. The best results are presented in bold. Opt.: the
optimal values for each instance; ∆cost = (cost - Opt.)/Opt.; δ* = the relative deviation δ to the optimum, i.e. δ/Opt.

Prob. Opt.
|P| = 1 |P| = 2 |P| = 5 |P| = 10 |P| = 20 |P| = 30

∆cost δ* ∆cost δ* ∆cost δ* ∆cost δ* ∆cost δ* ∆cost δ*

B01 82 0.172 0.194 0.052 0.075 0 0 0 0 0 0 0 0

B02 83 0.420 0.172 0.176 0.090 0.113 0.062 0.099 0.041 0.084 0 0.084 0

B03 138 0.265 0.069 0.192 0.056 0.171 0.040 0.149 0.004 0.110 0.039 0.118 0.026

B04 59 0.693 0.183 0.505 0.069 0.439 0.043 0.383 0.055 0.305 0.047 0.266 0.058

B05 61 0.415 0.200 0.249 0.132 0.100 0.046 0.090 0.045 0.062 0.019 0.049 0.013

B06 122 0.501 0.150 0.290 0.043 0.244 0.039 0.203 0.024 0.191 0.032 0.175 0.031

B07 111 0.303 0.172 0.233 0.109 0.039 0.035 0.076 0.031 0.025 0.013 0.016 0.013

B08 104 0.418 0.182 0.194 0.102 0.188 0.096 0.090 0.033 0.085 0.019 0.091 0.020

B09 220 0.153 0.072 0.105 0.048 0.055 0.009 0.059 0.008 0.050 0.007 0.045 0

B10 86 0.893 0.197 0.573 0.170 0.605 0.118 0.437 0.035 0.424 0.007 0.424 0.010

B11 88 1.013 0.203 0.750 0.112 0.681 0.071 0.591 0.023 0.563 0.013 0.522 0.029

B12 174 0.611 0.128 0.447 0.114 0.343 0.056 0.317 0.032 0.289 0.014 0.301 0.010

B13 165 0.356 0.112 0.253 0.098 0.112 0.046 0.088 0.031 0.069 0.043 0.051 0.015

B14 235 0.219 0.032 0.196 0.032 0.171 0.019 0.157 0.019 0.142 0.016 0.129 0.028

B15 318 0.173 0.045 0.147 0.038 0.112 0.009 0.108 0.006 0.100 0.008 0.097 0.011

B16 127 0.776 0.202 0.461 0.145 0.422 0.105 0.276 0 0.266 0.018 0.276 0

B17 131 0.858 0.277 0.466 0.343 0.163 0.097 0.092 0.016 0.092 0.005 0.092 0

B18 218 0.582 0.166 0.416 0.139 0.249 0.011 0.250 0.013 0.234 0 0.231 0.004

We carried out the paired t-test (Montgomery, 2005) to analyze the statistical difference between
JPSOMR with different swarm sizes. If the p-value obtained from the t-test is smaller than 0.05,
comparison results are usually referred as significantly different. This gives a better insight, compared to
the average results, in justifying statistical difference between algorithm performances. The p-value on
results of JPSOMR with |P| = 10 and |P| = 20 is 2.3E-6, indicating that JPSOMR with |P| = 20 is
significantly better than that of with |P| = 10. However, the p-value of JPSOMR with |P| = 20 and |P| =
30 is 0.05, indicating that JPSOMR with |P| = 20 and |P| = 30 show no significant differences. Since the
computing time of JPSOMR with |P| = 20 is much less than that of |P| = 30 (see Figure 4), we use |P| =
20 as an appropriate swarm size for our problems.

The average computing time is presented Figure 4, clearly showing the increasing computing time
for larger swarm size in JPSOMR. It can be seen that instance B13 requires much less time compared to
other instances, indicating that difficult Steiner tree problems are not necessarily of large size. Across all
other instances, computing times are stable with small standard deviations in JPSOMR with larger swarm
sizes |P| = 20 and 30.
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Figure 4. Computing time of JPSOMR of different swarm sizes without local search on small category B instances

Additional tests that we ran using JPSOMR and the greedy local search showed that, although no
obvious difference has been found on small instances, JPSOMR with population size of |P| = 20
performed the best (compared against |P| = 30) on large instances. Although more particles are helpful
for obtaining good results, a too large swarm actually hinders the algorithm’s performance.

5.2.2 The Cooperation between Particles

A key feature of PSO is that during the search, particles in the swarm cooperate by sharing information
of local or global better positions in order to better explore the search space. Our second set of
experiments is conducted to find out if this is actually happening in our JPSOMR. Recall that the values
in the weight vector cx = (c0, c1, c2, c3) determine the extent to which a particle updates its position based
on its own behavior or that of the other attractor particles in the swarm. For example, setting cx = (1, 0, 0,
0) means that the particles do not cooperate but make their next move based on only their own previous
positions. The JPSOMR is thus equivalent to a multi-start local search (since a local search is applied at
the end of each particle move), where each particle carries out its very own search by inertial
movements. When all c0, c1, c2, c3 take values which are different from zero, particles cooperate by using
both inertial and attractor movements within a true JPSOMR process.

Based on the observation from the first set of experiments, we set the swarm size |P| = 20, and
compared JPSOMR with two different weight vectors (c0 = 1, c1 = c2 = c3 = 0) and (c0 = c1 = c2 = c3 =
0.25), and with two different local search strategies. For a fair comparison, we set the same computing
time for all the four variants of JPSOMR, namely 30 seconds for small instances B01-B12 and 120
seconds for large instances B13-B18. The average tree costs by JPSOMR variants on the category B
instances are given in Table 4.

Table 4. JPSOMR using different settings of cooperation between particles and different local search strategies. The
best results are presented in bold. Opt.: the optimal values for each instance; LS1: first improvement local search;
LS2: greedy local search; ∆cost = (cost - Opt.)/Opt. Computing time = 30 seconds for B01-B12, 120 seconds for
B13-B18.

|P| = 20
Average Tree ∆cost

|P| = 20
Average Tree ∆cost

c0 = 1 cx = 0.25 c0 = 1 cx = 0.25

Prob. Opt. LS1 LS2 LS1 LS2 Prob. Opt. LS1 LS2 LS1 LS2

B01 82 0 0 0 0 B10 86 0.012 0.042 0.012 0

B02 83 0.010 0.011 0 0 B11 88 0 0.012 0 0

B03 138 0 0 0 0 B12 174 0.041 0.040 0.005 0

B04 59 0.034 0.027 0.008 0 B13 165 0.024 0.024 0.024 0

B05 61 0 0 0 0 B14 235 0.029 0.029 0.019 0.008

B06 122 0.031 0.039 0.011 0 B15 318 0.035 0.028 0.011 0.006

B07 111 0.008 0.008 0.005 0 B16 127 0.013 0 0.009 0

B08 104 0.034 0.040 0.004 0 B17 131 0.028 0.027 0.014 0.006
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B09 220 0.014 0.013 0.004 0 B18 218 0.051 0.049 0.005 0

It is obvious that JPSOMR with local search strategies achieves much better results than that of JPSOMR
without local search, and we thus did not present the results of the latter in Table 4 (see the column “|P| =
20” in Table 3 for detailed results). We can see that JPSOMR with cooperation (cx = 0.25) and the greedy
local search performs the best among the four JPSOMR variants with different settings. The p-value
obtained from a paired t-test on JPSOMR with and without cooperation is 4.5E-4, showing that JPSOMR
with cooperation is significantly better than JPSOMR without cooperation. These results clearly
demonstrate that the cooperation among particles can greatly improve the performance of JPSOMR to
achieve better results than its multi-start variant.

5.2.3 The Evolution of the Swarm

In this set of experiments we investigate the evolution of the swarm over the iterations on three instances
of different sizes: instance B12 with network size 75, instance B16 with network size 100 and instance
C01 with network size 500. We show the evolution of the best particle in the swarm of JPSOMR for
these three instances in Figure 5, Figure 6 and Figure 7.

Figure 5 shows that instance B12 is easy to solve regardless of the different settings in JPSOMR,
although the optimum is found earlier by the algorithm with greedy local search. For the medium size
instance B16, Figure 6 shows that although JPSOMR reaches the optimum with different settings, the
variant with the cooperation and greedy local search is the fastest, while the variant with no cooperation
and greedy local search is the slowest. For the large instance C01, Figure 7 shows again that cooperation
and greedy local search provide the fastest convergence to the optimum. In this case, the slowest
algorithm is the JPSOMR with cooperation and without greedy local search. This demonstrates that
particularly for the large instance, greedy local search contributes to a better performance in JPSOMR
with or without the cooperation.
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problem of small size (network size = 75, instance B12)
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tree problem of large size (network size = 500, instance C01).

Instance B12 in Figure 5 is an easy problem thus the local search seems to do much of the work and the
cooperative nature of JPSOMR is not obvious. However, it is interesting to see that, without the
cooperation, JPSOMR with the first improvement local search is presents a slower convergence to the
optimum. Instance B16 in Figure 6 is harder to solve, and it is clear that the cooperation within the
swarm helps the search to converge to the optimum. For the hardest instance C01 in Figure 7, the greedy
local search is clearly beneficial. For all instances, the local search has shown to highly affect the
performance of JPSOMR. No matter what cooperation between particles in the swarm is applied, the
JPSOMR algorithm with greedy local search converges faster than JPSOMR with the non-greedy local
search. On the other hand, JPSOMR with cx = 0.25 finds the optimal solution faster compared with
JPSOMR with c0 = 1 in Figure 6 and Figure 7. This indicates that particles cooperation is also important
to the performance of JPSOMR, i.e. it performs better if particles cooperate (cx = 0.25) rather than just
randomly move (c0 = 1) in the swarm.

5.3Comparing JPSOMR with Other Approaches in the Literature

After studying the behavior of the proposed JPSOMR on selected instances, we now conduct extensive
experiments to evaluate the overall performance of the proposed JPSOMR to other algorithms in the
literature. We set (c0 = c1 = c2 = c3 = 0.25), with swarm size of |P| = 20 and the greedy local search in
JPSOMR.



16

5.3.1 JPSOMR and Other Approaches on Steiner Tree Problems

The JPSOMR algorithm is firstly compared with the GRASP algorithm developed by Skorin-Kapov and
Kos (2006) on the category B instances. The stopping condition is set to a pre-defined number of
iterations, namely 100 and 10 for category B and category C instances, respectively. To obtain
comparable results we re-implemented the GRASP algorithm with the same parameters as in Skorin-
Kapov and Kos (2006), i.e. the number of iterations is 5, the parameter α to manage the restricted
candidate list is set as 5, and the number of iterations without improvement of the local search procedure
is 2.

Table 5 presents the average tree cost, the best cost and the average computing time of the two
algorithms on the category B instances. The average cost obtained by JPSOMR is better than that of
GRASP in eight instances, however, by consuming more computing time. The proposed JPSOMR
performs better than GRASP, and is able to find the optimal solution at each run, with only one
exception (B15).

Table 5. Comparison between JPSOMR and GRASP (Skorin-Kapov and Kos, 2006) approaches on smaller
category B instances. The best results are presented in bold. Opt.: the optimal values for each instance; ∆Mean = 
(mean – Opt.) / Opt.; ∆Best = (best – Opt.) / Opt.  

∆ = ∞ JPSOMR GRASP ∆ = ∞ JPSOMR GRASP

Prob. Opt. ∆Mean∆BestTime(s) ∆Mean∆BestTime(s) Prob. Opt. ∆Mean∆BestTime(s) ∆Mean∆BestTime(s)

B01 82 0 0 0.002 0 0 0.086 B10 86 0 0 1.469 0 0 2.394

B02 83 0.03 0 2.935 0 0 0.101 B11 88 0 0 1.141 0.002 0 0.646

B03 138 0 0 0.048 0 0 0.136 B12 174 0 0 0.8 0 0 1.255

B04 59 0 0 0.063 0 0 0.067 B13 165 0 0 93.421 0.039 0 2.099

B05 61 0 0 0.815 0 0 0.108 B14 235 0.001 0 239.922 0.002 0 1.816

B06 122 0 0 0.618 0.018 0 0.496 B15 318 0.005 0 320.513 0.012 0.006 5.178

B07 111 0 0 0.213 0 0 0.183 B16 127 0 0 10.503 0.018 0 1.611

B08 104 0 0 0.697 0 0 0.424 B17 131 0.002 0 159.33 0 0 1.799

B09 220 0 0 0.199 0 0 0.641 B18 218 0 0 1.136 0.001 0 4.502

We then test the computational expenses of JPSOMR and GRASP algorithms, the average time needed
to find the optimal solution is presented in Table 6. If the algorithm failed to find the optimal solution
within a limited time of 60 seconds, the best result obtained and the corresponding time is provided. For
small instances (B1-B12) in category B, our JPSOMR spends less time to find the optimal solution for
seven out of 12 instances. For larger instances, GRASP performs slightly better than our JPSOMR,
although the differences are mostly very small.

Table 6. Comparison between JPSOMR and GRASP (Skorin-Kapov and Kos, 2006) on category B instances. The
best results obtained are presented in bold. Opt.: the optimal values for each instance; ∆cost = (cost – Opt.) / Opt. 

∆ = ∞ JPSOMR GRASP ∆ = ∞ JPSOMR GRASP

Prob. Opt. ∆cost Time(s) ∆cost Time(s) Prob. Opt. ∆cost Time(s) ∆cost Time(s)

B01 82 0 0.029 0 0.086 B10 86 0 1.771 0 0.442

B02 83 0.030 2.935 0 0.101 B11 88 0 0.964 0 0.811

B03 138 0 0.045 0 0.136 B12 174 0 1.073 0 1.257

B04 59 0 0.066 0 0.067 B13 165 0.015 43.432 0 15.163

B05 61 0 0.086 0 0.108 B14 235 0.003 41.803 0 2.557

B06 122 0 0.824 0 1.201 B15 318 0.006 43.946 0.001 27.484

B07 111 0 0.31 0 0.183 B16 127 0 11.525 0 2.557

B08 104 0 0.538 0 0.431 B17 131 0.005 49.862 0 1.81

B09 220 0 0.214 0 0.644 B18 218 0 1.056 0 7.945
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We further test JPSOMR compared against GRASP and another recent algorithm, DPSO by Zhong et al.
(2008), on the larger and harder category C instances. The DPSO algorithm was set to stop after 1250
iterations, or after 250 continuous generations where no better results can be found. To enable the
comparison among the three algorithms, we therefore set the same number of iterations (iterations = 10)
in both JPSOMR and GRASP, which is much smaller than that of DPSO, and compare their results on
category C instances in Table 7. For 12 of the 20 category C instances, JPSOMR successfully found the
optimal solutions at least once. Although the DPSO algorithm found the best tree in 16 of 20 problems,
the JPSOMR approach found smaller tree cost in seven of 20 problems using a much smaller number of
iterations.

Table 7. Comparison between JPSOMR, GRASP (Skorin-Kapov and Kos, 2006) and DPSO (Zhong et al., 2008)
approaches on larger category C instances.

∆ = ∞ JPSO GRASP DPSO

Prob. Opt. Mean Best Worst Mean Best Worst Mean Best Worst

C01 85 0.012 0 0.035 0 0 0 2.0 0 0

C02 144 0.035 0.014 0.056 0 0 0 2.0 0 0

C03 754 0.009 0.007 0.011 0.009 0.008 0.009 2.001 0 0.005

C04 1079 0.004 0.001 0.006 0.018 0.007 0.021 2.0 0 0.001

C05 1579 0 0 0 0.005 0.005 0.005 2.0 0 0

C06 55 0 0 0 0 0 0 2.0 0 0

C07 102 0.007 0 0.010 0 0 0 2.0 0 0

C08 509 0.001 0 0.002 0.017 0.016 0.018 2.002 0 0.006

C09 707 0.005 0.003 0.007 0.010 0.008 0.011 2.003 0.001 0.006

C10 1093 0.001 0 0.001 0.003 0 0.004 2.001 0 0.005

C11 32 0.009 0 0.031 0.019 0 0.031 2.003 0 0.031

C12 46 0 0 0 0.009 0 0.022 2.0 0 0

C13 258 0.002 0 0.004 0.017 0.008 0.023 2.010 0.004 0.019

C14 323 0.003 0 0.003 0.015 0.006 0.025 2.005 0.003 0.009

C15 556 0 0 0 0.001 0 0.005 2.001 0 0.004

C16 11 0.091 0.091 0.091 0.036 0 0.091 2.036 0 0.091

C17 18 0.011 0 0.056 0.044 0 0.056 2.022 0 0.056

C18 113 0.024 0.018 0.027 0.044 0.027 0.053 2.027 0.018 0.053

C19 146 0.014 0.014 0.014 0.037 0.034 0.041 2.010 0 0.021

C20 267 0 0 0.004 0.009 0.004 0.015 2.0 0 0

5.3.2 JPSOMR and Other Approaches on DCLC Multicast Problems

We now compare JPSOMR to other algorithms for the DCLC multicast problem in the literature. Details
of these algorithms can be found in Section 2.4. Three random topologies have been generated for each
network size of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 nodes, where the link cost depends on the
length of the link, and all the link delays are set to 1. The group size (number of destinations) is set as =
30% × network size. Different delay bounds ∆ are set depend on the network size (∆ = 7ms for network
sizes of 10-30, ∆ = 8ms for network size 40-60, ∆ = 10ms for network size 70-80, and ∆ = 12ms for
network size 90-100). This setting is the same as in the simulations designed by Ghaboosi and Haghighat
(2007b) and Qu et al. (2009). The simulation has been run 10 times on each random network. The
average tree cost for all the random networks are shown in Table 8.

Table 8. Average tree costs from existing approaches in the literature on DCLC multicast routing problems with
random networks of 10-100 nodes. The lowest tree costs are in bold.

Algorithms Average Tree Cost
Heuristics KPP (Kompella et al., 1993) 905.581



18

BSMA (Zhu et al., 1995) 872.681
GA-based

Algorithms
Wang et al. (2001)
Haghighat et al. (2004)

815.969
808.406

TS-based
Algorithms

Skorin-Kapov and Kos (2003)
Youssef et al. (2002)
Wang et al. (2004)
Ghaboosi and Haghighat (2007a)

897.875
854.839
869.291
739.095

Path Relinking Ghaboosi and Haghighat (2007b) 691.434
VNSMR Qu et al. (2009) 680.067
GRASP Skorin-Kapov and Kos (2006) 669.880

JPSOMR Our proposed JPSOMR algorithm 662.100

It is clear from Table 8 that JPSOMR outperformed all existing algorithms in the literature, producing the
best average tree cost amongst all the algorithms tested. The GRASP and our previous VNSMR
algorithm are the closest competitors. Note that in the literature all the other work had reported the
average results on all problem instances of different sizes and thus we provided such comparison in
Table 8.

To make a closer comparison between these three best approaches, Table 9 provides details of the
average tree cost for each of the individual network of different size. Computing time is set as 60 seconds
to all three competitor algorithms. The lowest tree costs highlighted in bold clearly show that JPSOMR
has the best overall performance, obtaining the smallest tree costs on five of the largest network sizes,
and the same best tree costs on the other two smaller networks. On only three of the networks, one of the
other algorithms achieves better result than JPSOMR.

Table 9. Average tree cost of JPSOMR on 10 network sizes compared with VNSMR and GRASP in Table 8.
Computing time = 60 seconds.

Network Size VNSMR GRASP JPSOMR

10 94.667 94.667 94.667

20 282.333 270.667 270.667

30 415.667 394.667 395.667

40 518 526.467 526

50 726.667 697.067 687.333

60 812.333 761.133 748.667

70 805.333 797.533 785.667

80 922.333 902.667 889.667

90 1182.67 1201.933 1194

100 1040.67 1052 1028.667

6. Conclusions and Future Work

In this paper, we have presented a discrete particle swarm optimization algorithm to solve both the
Steiner Tree problem in the OR Library and the Delay Constraint Least Cost multicast routing problems.
The proposed JPSOMR algorithm has been developed based on the Jumping Particle Swarm
Optimization (JPSO) developed in the literature. Particles in the swarm jump from one position to
another in the discrete search space by making changes to the tree represented by their current position.
This has been carried out by using path replacement operations which have been designed with regard to
the specific structure and features of the multicast/Steiner tree. A local search is used to further improve
solutions after the move of the particles.

We conducted an extensive set of experimentation on the benchmark Steiner tree problems to
understand the behavior of our proposed JPSOMR algorithm with respect to the cooperation between
particles, the size of the swarm and the effect of the different local search strategies. We found that the
cooperative nature of JPSOMR is an important factor to its success in solving the problems in this study,
and a good number of particles (20 in our case) are required for the algorithm to succeed. Further
experiments have also been carried out to assess the performance of JPSOMR on solving a set of Delay
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Constraint Least Cost multicast routing problems. Compared with several existing algorithms in the
literature which have been re-implemented within the same simulation environment, the JPSOMR
algorithm shows a very robust performance, and provides comparable or better results than those of the
considered competitors on the exact same benchmark problem instances. We believe this is the first
study that provides an extensive investigation of a JPSO algorithm on both the Steiner tree and the
DCLC multicast routing problems tested in the literature. Comparative results and details of the problem
instances have been made publicly available at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm for
scientific comparisons.

We conclude that swarm optimization is a good technique to tackle multicast routing problems and
the underlying Steiner tree problems. The proposed JPSOMR has shown to be a very successful for
solving both problems. In our future work, we intend to consider a wider range of multicast routing
problems with multiple objectives and more real life features and constraints.
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