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Abstract Thanks to their inherent properties, probabilistic graphical models are one 
of the prime candidates for machine learning and decision making tasks especially 
in uncertain domains. Their capabilities, like representation, inference and learning, 
if used effectively, can greatly help to build intelligent systems that are able to act 
accordingly in different problem domains. Evolutionary algorithms is one such dis­
cipline that has employed probabilistic graphical models to improve the search for 
optimal solutions in complex problems. This paper shows how probabilistic graphi­
cal models have been used in evolutionary algorithms to improve their performance 
in solving complex problems. Specifically, we give a survey of probabilistic model 
building-based evolutionary algorithms, called estimation of distribution algorithms, 
and compare different methods for probabilistic modeling in these algorithms. 

Keywords Probabilistic graphical model • Bayesian network • Evolutionary 
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1 Introduction 

Probability theory has provided a sound basis for many of scientific and engineer­
ing tasks. Artificial intelligence, and more specifically machine learning, is one of 
the fields that has exploited probability to develop new theorems and algorithms. 
A popular class of probabilistic graphical models (PGMs), Bayesian networks, first 



introduced by Pearl (1985), combine graph and probability theories to obtain a more 
comprehensible representation of the joint probability distribution. This tool can point 
out useful modularities in the underlying problem and help accomplish the reason­
ing and decision making tasks especially in uncertain domains. The application of 
these useful tools has been further improved by different methods proposed for PGM 
inference (Lauritzen and Spiegelhalter 1988) and automatic induction from a set of 
samples (Cooper and Herskovits 1992). 

Meanwhile, the difficult and complex problems existing in real-world applications 
have increased the demand for effective meta-heuristic algorithms that are able to 
achieve good (and not necessarily optimal) solutions by performing an intelligent 
search of the space of possible solutions. Evolutionary computation is one of the 
most successful of these algorithms that has achieved very good results across a wide 
range of problem domains. Applying their nature-inspired mechanisms, e.g., survival 
of the fittest or genetic crossover and mutation, on a population of candidate solutions, 
evolutionary approaches like genetic algorithms (Holland 1975) have been able to 
perform an effective and diverse search of the vast solution space of problems. 

Estimation of distribution algorithms (EDAs) (Muhlenbein and PaaB 1996; 
Bosman and Thierens 1999; Larranaga and Lozano 2001; Pelikan 2005; Lozano et al. 
2006) are a new class of evolutionary algorithms developed by fusing the two disci­
plines. They have proven to be promising optimization algorithms for many difficult 
problems with high computational complexity. These algorithms explore the search 
space by building a probabilistic model from a set of selected candidate solutions. 
This probabilistic model will be used to sample new solutions. As the result, these 
algorithms will provide a model expressing the regularities of the problem structure, 
as well as the final solutions. 

The aim of this paper is to review and discuss the most noteworthy part of EDAs, 
namely the probabilistic models and how they are employed for optimization. It 
should be evident that an EDA also involves other steps and parts (e.g. initial pop­
ulation, selection methods, diversity preservation techniques), that goes beyond the 
consideration of this paper. The rest of the paper is organized as follows. Section 2 
briefly introduces some basic terminology and concepts related to probabilistic mod­
els in the context of Bayesian networks and reviews some of the learning techniques 
for these probabilistic models. The main revision of different probabilistic models in 
EDAs is presented in Sect. 3. Finally, Sect. 4 concludes the paper. 

2 Probabilistic graphical models 

Different types of PGMs have been introduced in the literature: Bayesian networks 
(Pearl 1985), Markov networks, dependency networks (Heckerman et al. 2001), chain 
graphs (Frydenberg 1990). This section discusses some of the important concepts 
related to probabilistic modeling, mainly in the context of Bayesian networks, as one 
of the most prominent probabilistic models. It also gives a better understanding of 
how probabilistic modeling techniques are used in EDAs. For more information on 
PGMs, see Koller and Friedman (2009) and Larranaga and Moral (2011). 



2.1 Probability-related notations 

Let X = (Xi,..., X„) be a vector of random variables and x = (x i , . . . , x„) a possi­
ble value setting (configuration) for these variables, x; denotes a possible value of Xi, 
the ith component of X, and y denotes a possible value setting for the sub-vector 
Y = (X7l,..., XJk), J = {J i , . . . , h) c { 1 , . . . , n}. 

If all variables in X are discrete, P(X = x) (or simply P(x))is used to denote the 
joint probability mass of a specific configuration or for the variables. The conditional 
probability mass of a specific value x; of variable X; given that Xj = x;- is denoted 
by P(Xi = xi | Xj = XJ) (or simply P(xt | x ;)). Similarly, for continuous variables, 
the joint density function will be denoted as p(x) and the conditional density function 
by p(xi | x ; ) . When the nature of variables in X = (Xi , . . . , X„) is irrelevant, p(x) = 
p(xi,...,xn) will be used to represent the generalized joint probability. 

Let Y, Z and W be three disjoint sub-vectors of variables. Then, Y is said to be 
conditionally independent of Z given W (denoted by I(Y,Z\ W)), iff p(y \ z,w) = 
p(y | w), for any y, z and w. 

2.2 Bayesian networks 

A Bayesian network B(S, &) for a vector of variables X = (X\,..., Xn) consists of 
two components: 

- A structure S represented by a directed acyclic graph (DAG), expressing a set of 
conditional (in)dependences (Dawid 1979) between variables. 

- A set of local parameters & containing, for each variable, the conditional probabil­
ity distribution of its values given different value settings for its parents, according 
to structure S. 

Figure 1(a) shows an example of Bayesian network structure for a problem with 
six variables. For each variable Xi, i = 1 , . . . , n, structure S represents the assertions 
that X{ and its non-descendants ND(Xr-) (excluding its parents) are conditionally 
independent given its parents Pat, i.e., 7(Xr-,ND(Xr-) \ P«; | Pai). Therefore, a 
Bayesian network encodes a factorization for the joint probability distribution of the 
variables 

n 

p(x) = p(xi,..., x„) = Y[PB{X{ \pa{), (1) 
r = l 

where pat denotes a possible value setting for the parents Pat. Equation 1 states that 
the joint probability distribution of the variables represented by a Bayesian network 
can be computed as the product of each variable's univariate conditional probability 
distributions given the values of its parents. These conditional probabilities are stored 
as local parameters 0; in the Bayesian network. 

In discrete domains, when a variable X; has rr- possible values, {xj,..., x['}, and, 
according to structure S, its parents P«; have qt possible combinations of values, 
[paj,..., paf], then PB{X\ \ pa\) = Otjt denotes the probability of X; being in its 
fcth value given that its parents are in their y'th value combination. Since all variables 
are discrete, the number of possible value combinations for the parents can be easily 
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Fig. 1 (a) An example of a Bayesian network structure, showing two possible types of parameters for one 
of its variables (X4); (b) Discrete variables, assuming that r; = i + 1; (c) Continuous Gaussian variables 

computed as qi = Ylx epa
 rm- The local parameters of the Bayesian network for the 

ith variable can be represented by 0r- = ((%*:)£=i)/'=i-Figure I'M shows an example 
of a conditional probability table for a discrete variable in a Bayesian network. 

2.2.1 Gaussian Bayesian networks 

For continuous domains, when it is assumed that X = {X\, ...,Xn) is an re-
dimensional Gaussian random variable, the Bayesian network used for encoding the 
joint density function is called a Gaussian Bayesian network (GBN) (Geiger and 
Heckerman 1994). The local probability density functions of the variables in a GBN 
is obtained using linear regression models. Specifically, the conditional density for 
variable Xt given the values of its parents pat is 

PB{X{ \ pa{) ~^>Af(xi;/j,i+ ^ fc;,m(xm - fim), of J, (2) 

where N{x; /x, a2) represents a normal distribution with mean \x and standard de­
viation a {a > 0). Thus, the parameters of the local probability density function for 
every Xi can be determined by the triplet 0; = (/x;, />;, a;): 

1. ixi is the mean of variable Xi, 
2. bi is a vector of size re - 1, where every bitM is a coefficient reflecting the strength 

of the linear relationship between Xm and Xi if Xm e Pen, and bitM = 0 other­
wise, and 

3. a} is the variance of variable Xi. 

Figure 1(c) shows an example of the parameters for a node of a Gaussian Bayesian 
network. 



2.3 Learning Bayesian networks 

This section briefly introduces Bayesian network learning methods, which will be 
useful later when we discuss probabilistic modeling in EDAs, and can give an idea of 
the complexity of model learning in general. The structure and conditional probabili­
ties necessary for characterizing a Bayesian network can be provided either externally 
by experts, which is time consuming and error prone, or by automatic learning from 
a database of samples. The task of learning a Bayesian network can be divided into 
two sub tasks: 

- structural learning, i.e., identification of the topology of the Bayesian network, 
and 

- parametric learning, estimation of the numerical parameters (conditional proba­
bilities) for a given network topology. 

The different methods proposed for inducing a Bayesian network from a dataset are 
usually classified by modeling type into two approaches: 

1. methods based on detecting conditional (in)dependencies, also known as con­
straint-based methods, and 

2. score+search methods. 

2.3.1 Constrained-based methods 

The input of these algorithms is a set of conditional (in)dependence relations between 
subsets of variables, which they use to build a Bayesian network that represents a 
large percentage (and, whenever possible, all) of these relations (Spirtes et al. 2001). 
The PC algorithm (Spirtes and Glymour 1991) is a well-known example of these 
methods. Typically, hypothesis tests are used to find conditional (in)dependencies 
from a dataset. Once the structure has been learned, the conditional probability dis­
tributions, required to fully specify the Bayesian network model are estimated from 
the dataset. The usual method for estimating the parameters is maximum likelihood 
estimation, although Laplace estimation and other Bayesian estimation approaches 
based on Dirichlet priors are also common. 

2.3.2 Score+search methods 

Constraint-based learning is quite an appealing approach as it is close to the semantics 
of Bayesian networks. However, most of the developed structure learning algorithms 
fall into the score+search method category. As the name implies, these methods have 
two major components: 

1. a scoring metric that measures the quality of every candidate Bayesian network 
with respect to a dataset, and 

2. a search procedure to intelligently move through the space of possible networks, 
as this space is enormous (see below for further discussion). 



Scoring metrics Most of the popular scoring metrics are based on one of the fol­
lowing approaches: (i) penalized maximum likelihood, and (ii) marginal likelihood. 
Penalized maximum likelihood is computed as follows: 

" qi n /N--t\Nijk 

w = n n n h r -/(A°dim(B)' (3) 
i=lj=lk=l\

1SliJ / 

where I? is a dataset of N samples each consisting of n variables, Ntj is the number 
of samples in this dataset that have the y'th value setting for the parents of the ith 
variable, and likewise Nijk is the number of samples with the ith variable in its fcth 
state and its parents in their y'th configuration. dim(B) is the dimension (number of 
parameters needed to specify the model) of the Bayesian network. If the number of 
different states for the ith variable is given by rr- and the number of possible con­
figurations for its parents is given by qi, then the dimension of Bayesian network 
can be computed as dim(B) = YA=I #r (rr ~~ !)• f(N)is a non-negative penalization 
function depending on the size of the dataset. Popular scoring metrics like Akaike's 
information criterion (AIC) (Akaike 1974) and the Bayesian information criterion 
(BIC) (Schwarz 1978) differ as to their choice for this penalization function with 
values f(N) = 1 and f(N) = \ log N, respectively. 

Assuming certain prior distributions for the parameters in the Bayesian network, 
the marginal likelihood of a specific network structure S given a dataset of samples, 
PB(S) (D), can be computed in closed form (Cooper and Herskovits 1992; Heckerman 
et al. 1995). A common prior probability assumption is the Dirichlet distribution with 
parameters aijk, resulting in the following scoring metric (and assuming a uniform 
prior distribution for the structures) also known as the Bayesian Dirichlet equivalence 
(BDe) metric (Heckerman et al. 1995): 

P {V)=n n r(a']) n r(Niik+aiit\ w 
where r(v) is the Gamma function which for v e N is given by r(v) = (v — 1)!, 
and ciij = Y2=i a'Jk-In t h e sPeciflc case where all Dirichlet distribution parameters 
are uniformly set to aijt = 1, the resulting scoring metric is usually called K2 metric, 
initially proposed for use in the K2 algorithm (Cooper and Herskovits 1992). 

Minimum description length (MDL) score (Rissanen 1978; Griinwald 1998) is an­
other type of scoring metric based on information theory and data compression. This 
score, which is justified by Occam's razor principle less complex models, is closely 
related to the logarithm of the penalized maximum likelihood metric. In simple terms 
this metric can be described as follows. Suppose that the cost of encoding a set of 
data V with a model B is equal to the cost of describing the model plus the cost of 
describing the data with this model: Cost(B) + Cost(X> | B). Then the MDL score 
tries to select the model with the least total cost of description. Usually, the cost is 
expressed in terms of the number of bits required to represent the description. 

A feature of scoring metrics that can greatly help the search algorithm is decom-
posability. With a decomposable metric, the score of a Bayesian network can be 
computed as the combination of scores obtained for smaller factors (e.g., a single 



variable). This property will allow the search algorithm to measure the effect of oper­
ations involving each factor independently of the effect of other network factors. The 
metrics introduced here are all decomposable. 

Search methods Most of the proposed score+search algorithms search the space of 
DAGs, which represent feasible Bayesian network structures. The number of possi­
ble structures in this space for an w-dimensional variable is given by the following 
recursive formula (Robinson 1977): 

f(n) = f2(-^+1(%'in-')f(n-i) 
ti W (5) 

/ (0) = 1, / (1) = 1 

In fact it has been shown that searching this huge space for the optimal structure (ac­
cording to a scoring metric) is NP-hard, even with a constrained maximum number 
of parents for each node (Chickering 1996; Chickering et al. 1994, 2004). There­
fore, greedy local search techniques (Buntine 1991; Cooper and Herskovits 1992), 
as well as many heuristic search methods such as simulated annealing (Heckerman 
et al. 1995), tabu search (Bouckaert 1995) and evolutionary computation have been 
frequently employed for this purpose in the literature. 

2.4 Markov networks 

Markov networks are a type of probabilistic graphical models for representing sym­
metric influences between variables. A Markov network M(<S, <Pc) has two compo­
nents: 

- an undirected graphical structure S, where each variable is depicted by a node and 
the undirected edges represent homogeneous dependencies between the variables, 
and 

- a set of factors (non-negative functions) <Pc, each defined over a clique of S, that 
express the compatibility of the values of their associated variables. 

Figure 2 shows an exemplary Markov network structure and the parameters for one 
of its factors. 

The set of factors <Pc can be used to define the joint probability distribution en­
coded in the Markov network. Let C = {C\,..., CK} be a set of cliques (complete 
subgraphs) of the Markov network structure, such that Uj=i Ci = %• Then, the so-
called Gibbs distribution p$c, parameterized by the set of factors <Pc = W'i(Ci), •••> 
4>K (CK)}, that factorizes over the Markov network is given by 

1 K 

r = l 

where Z is a normalizing term, called the partition function, and is obtained by sum­
ming (or integrating for continuous domains) the unnormalized product of factors 
over all possible configurations of the variables. It should be noted that the Markov 



Fig. 2 An example of a Markov 
network with a parameter table 
for the factor {Xi, X2, X4}. It is 
assumed that X\, Xx and X4 
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Fig. 3 Flowchart of a typical evolutionary algorithm 

network factors do not necessarily correspond to probabilities or conditional proba­
bilities. 

3 Estimation of distribution algorithms 

Over the last few decades several types of evolutionary algorithms (EAs), like genetic 
algorithms (GA) (Holland 1975), evolutionary strategies (ES) (Rechenberg 1973), 
evolutionary programming (EP) (Fogel 1966) and genetic programming (Cramer 
1985; Koza 1992) have been proposed. All of these meta-heuristic algorithms, more 
or less, follow the same framework adopted from natural evolution. Figure 3 shows 
the common steps taken by a typical evolutionary algorithm for solving a problem. 
Given a fitness function that evaluates the quality of solutions, the algorithm iter-
atively evolves a population of candidate solutions to the problem. New offspring 



solutions are reproduced from the fitter solutions of the population (survival of the 
fittest principle) by applying genetic operators, i.e. crossover and mutation. 

The simple and easy to understand mechanism of EAs along with their successful 
application to different problems in a variety of domains, has brought a lot of atten­
tion and interest to these algorithms. A key to the success of EAs is the identification, 
preservation and effective combination of the fitter partial solutions to the problem 
during evolution (Harik et al. 1999). However, it has been shown that the operators 
used in traditional EAs fail to properly accomplish this task when certain character­
istics are present in the problem. A main reason for this shortcoming is that these 
algorithms do not properly consider the dependencies and relationships between the 
variables of the problem, and are not able to thoroughly exploit the information ob­
tained so far, up to the current stage of the search, in order to speed up convergence. 
There are properties like non-linearity, ill-conditioning and deception in real world 
problems that without considering these types of regularities can pose significant 
challenges to traditional EAs. 

As it was discussed in Sect. 2, probabilistic modeling offers a systematic way of 
acquiring this kind of regularities, and therefore can help to achieve a quick, accurate 
and reliable problem solving (Goldberg 2002; Pelikan et al. 2002). For this purpose, 
instead of genetic operators used in traditional EAs, new candidate solutions to the 
problem in each iteration are generated using the following two steps: 

1. Estimating a probabilistic model based on the statistics collected from the set of 
candidate solutions, and 

2. Sampling the learnt probabilistic model. 

In this way the problem regularities encoded in the probabilistic model are used when 
generating new solutions, thus trying to overcome the shortcomings of traditional 
EAs. The incorporation of probabilistic modeling into EAs, has led to a new paradigm 
in evolutionary computation, usually referred to as estimation of distribution algo­
rithms (EDAs). Algorithm 1 shows the basic steps of an EDA. Worthy of note is that 
probabilistic models could also be used in EAs for other purposes, for instance to 
make decisions on the application of mutation operators, to assess the influence of 
the different EA parameters on the algorithm behavior, or even to implement local 
optimization procedures. 

Implicitly, EDAs assume that it is possible to model the promising areas of 
the search space, and to use this model to guide the search for the optimal so­
lution^). The probabilistic model learnt in EDAs captures an abstract representa­
tion of the features shared by the selected solutions and encodes the different pat­
terns of interactions between subsets of the problem variables. The advantage of 
EDAs over other non-model-based EAs in dealing with the problems that contain 
important interactions among their variables, together with the capacity to solve 
different types of problems in a robust and scalable manner (Lozano et al. 2006; 
Pelikan 2005), has greatly popularized these algorithms. There are also many EDA 
implementations available online, like the EDA toolbox for Matlab® (Santana et al. 
2010), which can be adopted for specific uses. Santana (2011) surveys some of the 
available softwares. 

Because of the different nature of both optimization and probabilistic modeling 
in discrete and continuous domains, EDAs developed for each of these domains 



ESTIMATION OF DISTRIBUTION ALGORITHM 

Inputs: 
A representation of solutions, 
An objective function/ 

1 Po 4- Generate initial population according to the given representation 
2 Fo<- Evaluate each individual x of Po using/ 
3 g < - l 
4 while termination criteria not met do 
5 Sg *- Select a subset of Pg-\ according to Fg-\ using a selection mechanism 
6 pg (x) *- Estimate the probability of solutions in Sg 

i Qg 4- Sample pg(x) according to the given representation 
8 Hg *- Evaluate Qg using/ 
9 Pg 4- Replace Qg in Pg-i according to Fg_i and Hg 

10 Fg *- Update Fg-\ according to the solutions in Pg 

n g^g + l 
12 end while 

Output: The best solution in Pg-\ 

Algorithm 1: The basic steps of an estimation of distribution algorithm 

also have differences depending on the representation type they use for the prob­
lem. Therefore, each of these two categories are discussed separately in Sects. 3.1 
and 3.2. Note that this paper does not intend to give an exhaustive list of all proposed 
EDAs. Rather it tries to review the different probabilistic models and machine learn­
ing methods employed in EDAs. Another common way of categorizing EDAs is by 
the complexity of the probabilistic models they use. In general, one of the rationales 
in EDA development has been to find a satisfactory trade-off between the complexity 
of the probabilistic models they use and how accurately these models represent par­
ticular optimization problem characteristics. This is another factor taken into account 
here in reviewing EDAs. Moreover, for readability we use the algorithm acronyms. 
Table 1 lists the algorithms full names. 

3.1 Discrete EDAs 

Early EDAs were developed for discrete and especially binary domains, as it is a 
common practice in EAs to represent problem solutions with bit strings. Univari­
ate EDAs, such as PBIL (Baluja 1994), cGA (Harik et al. 1999) and UMDA (Mtih-
lenbein and PaaB 1996), assume that all variables are independent and thus their 
joint probability can be factorized as a product of univariate marginal probabili­
ties. The probabilistic model in this case consists of separate nodes containing the 
probability distribution for each of the problem variables. While some algorithms 
(e.g., PBIL and UMDA) learn the model from a population of solutions, others (e.g., 
cGA) update the model using only a few individuals. Consequently, these algorithms 
are the simplest EDAs and thanks to their simplicity, univariate EDAs are partic­
ularly suitable for the theoretical analysis of EDA behavior (Gonzalez et al. 2002; 
Zhang 2004). 



Table 1 Full name of EDAs and the models they use. Discrete EDAs are shown on a white, continuous 
on a green and mixed discrete-continuous on a blue background, respectively (Color table online) 

Algorithm Complete name Model used 

Univariate 

PBIL 

UMDA 

PBILcH 
cGA 

UMDAc 

Population Based Incremental Learning -

Univariate Marginal Distribution Algorithm -

Continuous PBIL ^ H 

Compact Genetic Algorithm -

Continuous UMDA -

Bivariate 

HEDA 

MIMIC 

COMIT 

BMDA 

MEVQCc 
CEDA 

Histogram-based EDA 

Mutual Information Maximizing Input Clustering 

Combining Optimizers with Mutual Information Trees 

Bivariate Marginal Distribution Algorithm 

Continuous MIMIC 

Copula-based EDA 

Marginal Histograms 

Chain 

Tree 

Forest 

Chain 

Copula Functions 

Multivariate 

FDA 

EBNA 

BOA 

EGNA 

IDEA 

EMNA 

MBOA 

MN-FDA 

MOPEDA 

rBOA 

EBCOA 

MN-EDA 

UEBNA 

EcGA 

BGMMEDA 

DEUM 

CMA-ES 

MARLEDA 

EDNA 

RM-MEDA 

KEDA 

AffEDA 

LTGA 

JGBN-EDA 

Factorized Distribution Algorithm 

Estimation of Bayesian Network Algorithm 

Bayesian Optimization Algorithm 

Estimation of Gaussian Network Algorithm 

Iterated Density Estimation Evolutionary Algorithm 

Estimation of Multivariate Normal distribution 

Algorithm 

Mixed BOA 

Markov Network based FDA 

MultiObjective Parzan-based EDA 

Real-coded BOA 

Evolutionary Bayesian Classifier based Optimization 

Algorithm 

Markov Network EDA 

Unsupervised EBNA 

Extended cGA 

Boosting Gaussian Mixture Model based EDA 

Distribution Estimation Using Markov Random Fields 

Covariance Matrix Adaptation Evolutionary Strategy 

Markovian Learning EDA 

Estimation of Dependency Network Algorithm 

Regulatory Model-based Multiobjective EDA 

Kernel density-based EDA 

Affinity propagation EDA 

Model Building Growing Neural Gas 

Linkage Tree GA 

Joint GBN-based ED^ 

Factor Graph 

Bayesian Network 

Bayesian Network 

Gaussian Bayesian Network 

Gaussian Markov Network 

Gaussian Markov I Network 

Decision Graphs 

Markov Network 

Mixture of Kernels 

Gaussian Bayesian Network 

Bayesian Network Classifiers 

Markov Network 
Bayesian Network 
Marginal Product Model 
Mixture of Gaussian Markov 
Networks 

Markov Network 
Gaussian Markov Network 
Markov Network 
Dependency Network 
Mixture of hyperplanes 
Mixture of Gaussian Kernels 
Marginal Product Model 
Mixture of Gaussian Markov 
Networks 

Hierarchical Dependency Tree 
Gaussian Bayesian Network 

• 
ernels 



To extend the modeling capability of EDAs, bivariate models were used in EDAs. 
Bivariate models can represent pairwise dependencies between variables using effi­
cient learning methods. MIMIC (De Bonet et al. 1997) uses a chain structured prob­
abilistic model where the probability distribution of all the variables except the head 
node is conditioned on the value of the variable preceding them in the chain. The 
structure of the probabilistic model in COMIT (Baluja and Davies 1997) is a tree, 
while it is generalized to a forest of trees (dependency graph) in BMDA (Pelikan and 
Mtihlenbein 1999). 

In univariate and bivariate EDAs, the probabilistic model structure is either fixed 
or is very restricted. Therefore, while they can be efficiently applied to separable 
problems (without any dependency) or to problems with low degrees of dependency 
among the variables, they might still rapidly lose their efficiency when applied to 
more complicated problems, with larger number of variable interactions. A further 
attempt to improve EDAs is to use models that can capture dependencies between 
an arbitrary number of variables. Thus the joint probability distribution can be de­
composed into factors involving several variables of the problem. Of course, this 
more flexible modeling by multivariate EDAs, capable of learning complex struc­
tures, comes at the cost of a greater computational effort. Figure 4 shows some ex­
amples of possible model structures learnt by EDAs. 

3.1.1 Multivariate EDAs 

FDA (Mtihlenbein and Mahnig 1999; Mtihlenbein et al. 1999) gives a factorization of 
the joint probability distribution for a class of problems known as additively decom­
posable functions. EcGA (Harik et al. 2006) factorizes the joint probability distribu­
tion into a number of marginal distributions defined over non-overlapping subsets of 
variables in a probabilistic model called marginal product model. An MDL scoring 
metric is used to search for the proper partitioning of the variables. 

EBNA (Etxeberria and Larranaga 1999) and BOA (Pelikan et al. 1999) learn a 
Bayesian network from the selected set of solutions in every generation. While both 
of the algorithms use a greedy local search method to explore the space of possible 
network structures, EBNA measures the quality of the networks using the BIC metric 
and BOA utilizes the BDe metric to score them. BOA is also further extended to hi­
erarchical BOA (Pelikan 2005) by incorporating diversity-preserving techniques and 
an improved representation for Bayesian network parameters with decision graphs. 
An improved version of FDA, known as learning FDA, is also proposed that uses 
Bayesian networks to dynamically learn the interdependent variables (Mtihlenbein 
and Mahnig 1999). Thanks to the powerful probabilistic model that these algorithms 
use, they can be applied to solve many difficult problems (Larranaga et al. 2000a; 
Pelikan and Hartmann 2006). 

Because of model learning complexity, Markov network-based EDAs (Santana 
2003; Wang and Wang 2004; Shakya 2006; Alden 2007) are usually applied to ap­
plications where the structure of the optimization problem is known and can be eas­
ily represented using an undirected graphical model. However, an approximation of 
the probability distribution, like Kikuchi approximations (Santana 2005), can also 
be estimated to obtain the factorization of problem variables. The use of this type of 
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Fig. 4 Examples of different types of model structures used in EDAs 

probabilistic models for optimization is still topic of active research and very recently 
Shakya and Santana (2012) have reviewed new developments in this type of EDAs. 

EDNA (Gamez et al. 2007) uses dependency networks (Heckerman et al. 2001) 
to model the problem structure. Based on a heuristic approximation, this algorithm 
uses second-order statistics (similar to bivariate EDAs) for model learning. Depen­
dency networks can represent cyclic dependencies between variables which cannot 
be encoded in Bayesian networks. However, this property prevents the application of 
sampling techniques used for Bayesian networks. Like Markov network-based EDAs, 
therefore, EDNA uses relatively complex Gibbs sampling (Geman and Geman 1984) 
procedures to generate new solutions from the probabilistic model. 

3.1.2 Other modeling types 

Apart from basic probabilistic models, EDAs have also used other modeling tech­
niques. Mixture of models increases the flexibility of joint probability estimation in 
EDAs, especially for solving multi-modal optimization problems (containing several 
optima). Pelikan and Goldberg (2000) studied the effect of clustering the set of se-



lected solutions on the performance of UMDA. UEBNA (Pena et al. 2005) represents 
the mixture with a Bayesian network which is learnt by the structural expectation 
maximization algorithm (Dempster et al. 1977). Santana et al. (2009b) discussed sev­
eral topics concerning model building in discrete EDAs. 

A promising technique is to take into account the fitness information of individuals 
in the modeling process. EBCOA (Miquelez et al. 2004) adopts this idea, first intro­
duced by Michalski (2000), by dividing the set of selected individuals into different 
classes according to their fitness values. The probabilistic model of this algorithm 
can be any of the Bayesian network classifiers (naive Bayes, semi-naive Bayes, tree 
augmented naive Bayes) with the class node corresponding to the different classes of 
fitness values (after discretization). Another related idea is to learn EDA probability 
distributions from both low and high fitness individuals (Hong et al. 2009). Valdez-
Pena et al. (2009) have extended this idea by estimating a distribution for selection 
operators and used it to identify which solutions would be used for model learning. 

Probabilistic models in EDAs can also be used to estimate or predict the fitness 
values of the new solutions. This approach can be especially useful for problems with 
a very difficult and time-consuming fitness function. Fitness inheritance modeling has 
been incorporated into EcGA (Sastry et al. 2004) and BOA (Pelikan and Sastry 2004) 
to estimate the fitness value of new individuals and, consequently, reduce the total 
number of function evaluations consumed by the algorithm to reach the optimum. 
Brownlee et al. (2008) and Brownlee (2009) used a Markov network-based fitness 
model in DEUM (Shakya 2006) to predict the fitness value of the new individuals 
and also compare their correlations to the true fitness values. 

Propagation methods, used for inference in PGMs, also have applications in EDAs. 
Mendiburu et al. (2007) used total abductive inference to find the most probable 
Bayesian network configuration in EBNA as one of the solutions generated from 
the probabilistic model in order to improve the EDA sampling procedure. Lima et al. 
(2009) used loopy belief propagation in a local search for BOA as a way to compute 
optimal local configurations of the problem. An analysis of EBNA performance at 
different stages of evolution is also given by computing the most probable configura­
tion at each generation (Echegoyen et al. 2009). AffEDA (Santana et al. 2010) uses 
affinity propagation (Frey and Dueck 2006), another probabilistic-modeling-inspired 
propagation algorithm, to obtain non-overlapping factorizations of the joint probabil­
ity distribution. 

Otherwise, there have been attempts at combining EDAs with other optimization 
algorithms, like differential evolution (Sun et al. 2005) and artificial immune systems 
(de Castro and Zuben 2009), to achieve better optimization performance. Recently, 
Bengoetxea and Larranaga (2010) and Ahn et al. (2012) have proposed very similar 
frameworks for combining EDAs with particle swarm optimization, in continuous 
and discrete domains respectively. The central idea of these techniques is to combine 
the global search ability of EDAs with better local exploitation of other methods. 
LTGA (Thierens 2011) takes advantage of structure learning in EDAs and genetic 
recombination in GAs by building a linkage tree using an agglomerative hierarchical 
clustering algorithm based on mutual information as a distance metric. Using this 
linkage tree the algorithm determines the crossing point of the parents when applying 
the crossover operator to the selected solutions for generating new solutions. 



3.2 Continuous EDAs 

The usual choice, adopted by most EAs in continuous domain optimization, is to 
assume a Gaussian distribution for problem variables. Many of the early continuous 
EDAs as well as their recent improvements are also based on this assumption. PBILC 

(Sebag and Ducoulombier 1998) extends its discrete version to continuous domains 
by updating a vector of independent Gaussian distributions. UMDAC (Larranaga et al. 
1999, 2000b) uses maximum likelihood estimation to learn the parameters of the 
Gaussian distribution for each variable from the population of solutions. MDVIICc 
(Larranaga et al. 1999, 2000b) learns the chain structured probabilistic model for 
continuous variables by adapting the concept of (conditional) entropy for univariate 
and bivariate Gaussian distributions. 

EGNA (Larranaga et al. 1999, 2000b; Larranaga and Lozano 2001) can be con­
sidered as the continuous version of EBNA based on a GBN. Two approaches have 
been proposed for learning the network structure in this algorithm: (i) starting from a 
complete DAG, likelihood ratio hypothesis tests are used to decide whether the edge 
between two nodes should be excluded from the network; (ii) performing a greedy 
local search in the space of possible DAGs using a scoring metric like BGe (continu­
ous version of the BDe metric) or BIC. EBCOA has also been extended to continuous 
domains (Miquelez et al. 2006) by building Bayesian classifiers that assume Gaussian 
distributions for the variables given the class variable value. Karshenas et al. (2011) 
proposed learning a joint GBN consisting of both variables and objectives in their 
JGBN-EDA for multi-objective optimization. 

IDEA (Bosman and Thierens 2000b; Bosman and Thierens 2000a) and EMNA 
(Larranaga and Lozano 2001) learn a full multivariate normal distribution (MND) 
from the set of selected solutions. The inverse covariance matrix or precision ma­
trix of this distribution corresponds to a type of Markov network depicting pairwise 
(in)dependencies between variables. While EMNA uses maximum likelihood esti­
mation, IDEA employs Kullback-Leibler divergence in conjunction with a greedy 
search algorithm, as well as likelihood ratio statistical hypothesis tests. Further 
improvements of IDEA have been proposed by scaling the diminishing variances 
(Grahl et al. 2006) and shifting the distribution mean (Bosman and Grahl 2008; 
Bosman et al. 2008). 

3.2.1 Mixture of distributions 

An extended version of IDEA (Bosman and Thierens 2001) uses a mixture of normal 
distributions over clusters of solutions, obtained by applying a clustering algorithm 
before learning mixture components. rBOA (Ahn et al. 2004) first learns a GBN to 
obtain a decomposition of the problem variables into smaller subproblems. Then, a 
separate mixture of GBNs is learnt for each of the subproblems by clustering the 
solutions in that subproblem. In BGMMEDA (Li et al. 2006), instead of clustering 
the samples, a boosting technique is applied to estimate a Gaussian mixture model. 

MB-GNG (Marti et al. 2011) adopts growing neural gas, a specific single-layer 
neural network, to determine the location of the components of the mixture of Gaus­
sian distributions. This model learning algorithm is sensitive to, and therefore does 



not neglect, outliers and is able to automatically adapt its topology while decreas­
ing the accumulated error of the network nodes. The multi-model EDA framework 
(Weise et al. 2011) extends these mixture methods by applying traditional EA recom­
bination operators to the individual models learnt for each of the clusters in order to 
improve search space exploration. 

RM-MEDA (Zhang et al. 2008) learns a piece-wise continuous manifold for multi-
objective optimization using the local principle component analysis algorithm. Each 
model component consists of a hyper-rectangle with a Gaussian noise. 

3.2.2 Other modeling approaches 

Posfk (2008, 2009a) proposed the use of Cauchy distribution for the purpose of pre­
venting premature convergence. Since the moments of an w-dimensional variable 
with multivariate Cauchy distribution are not defined, the mean vector and covariance 
matrix of a Gaussian distribution are computed instead. For sampling new solutions, 
the scaling factor of the Cauchy distribution is used to obtain isotropically distributed 
new solutions. 

More recently some EDAs have employed copula theory to relax the Gaussian 
assumption for the variables. Copula-based EDAs (CEDAs) (Salinas-Gutierrez et al. 
2009; Wang et al. 2009; Wang and Zeng 2010; Cuesta-Infante et al. 2010) use the 
copula function for estimating the joint probability distribution of the variables ac­
cording to Sklar's theorem. The copula function only uses the marginal univariate 
probabilities to compute the joint probability distribution. This reduces the compu­
tational complexity of model learning. Two-dimensional elliptical copulas as well 
as Archimedean and empirical copulas and their extensions to higher dimensions are 
studied in the literature. These copula functions will serve as the problem dependency 
structure when sampling new solutions from the learnt model. In each generation 
the algorithm selects or constructs a copula function after estimating the univariate 
marginal distributions and then, generates new samples according to the copula dis­
tribution. 

CMA-ES (Hansen 2006) incorporates model estimation into evolutionary strate­
gies which mainly deal with continuous domain optimization. The algorithm learns 
an MND as its probabilistic model to generate new solutions. The probabilistic model 
estimated in each generation is a combination of information collected over several 
generations, taking into account the path that the optimizer has traversed in the search 
space. Instead of estimating a new probabilistic model in each generation, the algo­
rithm adapts the model during evolution. Thus, the algorithm is able to use smaller 
population sizes for optimization by spanning model learning over several genera­
tions. Because of such an adaptation strategy, some researchers do not completely 
consider this algorithm as an EDA (Posfk 2009b). It is worth to note that similar 
techniques have been proposed for improving the efficiency of EDAs in optimization 
(Pelikan et al. 2008; Bosman et al. 2008). 

3.2.3 Non-parametric probabilistic models 

Other probabilistic models that estimate a non-parametric distribution for the vari­
ables have also been used in continuous EDAs. IDEA, for example, has em-



ployed other models, apart from MND, like normal kernel distribution (a Gaus­
sian kernel for each sample) or histograms in its framework (Bosman and Thierens 
2000a, 2000b). 

Cho and Zhang (2002) proposed a continuous EDA that learns a mixture of factor 
analyzers using the EM algorithm. They also employed a more complicated mixture 
of variational Bayesian independent component analyzers in a later study (Cho and 
Zhang 2004). MOPEDA (Costa and Minisci 2003) applies a Parzen estimator that 
convolves the empirical estimation obtained from a finite data set with a squared in­
tegrate kernel function in order to reduce the variance of the probability distribution 
estimation. Both Gaussian and Cauchy kernels are used alternatively during evolu­
tion to utilize their intrinsic complementary characteristics. In KEDA (Luo and Qian 
2009), the width of each kernel is dynamically computed during the optimization. 

Histogram-based EDAs (HEDAs) discretize each variable's values by dividing 
their range to a number of bins. Tsutsui et al. (2001) proposed two types of marginal 
histogram models: (i) a fixed-width histogram (FWH) where the domain of each vari­
able is divided into a fixed number of bins whose height may differ depending on the 
variable values; (ii) a fixed-height histogram (FHH) where all bins have an equal 
value generation probability but can have different widths. Consequently, there will 
be more bins in denser regions and thus modeling will be more accurate. 

Ding et al. (2008) proposed two improvements to this histogram modeling in their 
HEDA. They introduced a surrounding effect, where the values of each bin can affect 
the values of its surrounding bins using a special surrounding factor. They also em­
ployed a shrinkage strategy whereby the height of the bin containing the best value 
of the variable can exceed a predefined threshold. PBILc is also extended with his­
tograms (Xiao et al. 2009), combining the original updating rule with bin updating, 
where the bins reaching a predefined height are divided. 

Histogram modeling has also been applied to optimization in permutation domains 
(Tsutsui 2002; Tsutsui et al. 2006) using two different types of models. The first is 
an edge histogram matrix where each entry indicates the frequency of two permuta­
tion values occurring adjacent to each other in the population. The second is a node 
histogram matrix that encodes the frequency at which a special value in the permu­
tation occurs at a specific location in the solution. Specific sampling algorithms are 
developed for these models where a new value is generated according to the value 
of adjacent permutation locations or the position for which the value is going to be 
generated. 

3.3 Discrete-continuous EDAs 

MBOA (Ocenasek and Schwarz 2002; Ocenasek et al. 2004) adopts binary classifi­
cation and regression decision trees to solve mixed discrete-continuous optimization 
problems. The algorithm uses a BDe-like scoring metric to build a decision tree for 
each variable to encode its related probability distribution. The decision trees allow 
the algorithm to build individual models (like Gaussian kernels) for specific regions 
of the search space, stored in different tree leaves. 



3.4 Discussion 

Table 1 gives a summary of the presented EDAs and their probabilistic models. The 
algorithms are divided into three different classes according to the complexity of 
their probabilistic models: univariate, bivariate and multivariate EDAs. Within each 
class, the algorithms are ordered chronologically to show how the use of probabilistic 
models in EDAs has evolved during time. 

Initial EDAs mainly considered about the probability distribution of individual 
variables, in order to perform a more effective search for the solutions of separable 
problems. In this kind of problems the optimal value of each variable can be obtained 
regardless of the value of the other variables. In other terms, the way that the value of 
each variable influences the fitness of the whole solution is not affected by the values 
of other variables at all. 

The limitations of univariate EDAs, brought up the need for a more advanced 
probabilistic modeling. The main advantage of these new probabilistic models is that 
they consider a kind of structure for the problem, reflecting an estimation of the inter­
actions between variables. Some algorithms put certain constraints on the structures 
to be considered, e.g. bivariate EDAs can only consider mutual interactions. Some 
others like FDA consider a fixed structure given beforehand (e.g. for a specific class 
of problems), and try to find the best parameter estimation that fits this structure. But 
most of EDAs try to learn the structure dynamically during evolution. A number of 
algorithms require the variables to be clustered into completely disjoint dependence 
groups (e.g. EcGA and AffEDA), whereas in others overlapping groups of dependent 
variables is allowed (e.g. MIMIC and EBNA). 

Because of their ability to represent complex patterns of interactions between the 
problem variables, the use of multivariate probabilistic models has become dominant 
in EDAs. Usually these algorithms perform a kind of structure learning to estimate 
the probabilistic model, which is very time-consuming in comparison to other parts 
of the algorithm. Therefore, in practice an upper bound is imposed on the order of 
interactions that is considered in the structure learning. This restriction can also be 
imposed implicitly, e.g. using penalized scoring metrics as discussed in Sect. 2.3 for 
learning Bayesian networks. 

The choice of the type of EDA to be used, depends very much on the problem. 
If the problem at hand is linear, or the variables are not believed to be strongly de­
pendent, then one should use univariate EDAs since they are computationally more 
efficient. On the contrary, if we are dealing with a problem that has high order of in­
teractions between its variables, then EDAs that use probabilistic models with higher 
representational capability should be used in order to be able to reach the optimal 
solution(s) of the problem. The structures estimated by these EDAs can also give a 
better understanding of unknown problems. Several works have studied the accuracy 
of these structures and the information we can obtain from them (Lima et al. 2007; 
Karshenas et al. 2009; Santana et al. 2009a). 

In reality, one should compromise between the computational complexity and the 
optimization capability of these algorithms when applying them to different prob­
lems. Based on this observation, there has been many efforts to increase the effi­
ciency of EDAs while keeping their complexity at an acceptable range. Techniques 



like parallelization and hybridization are introduced in the literature which are usually 
referred to as efficiency enhancement techniques (Pelikan 2005). 

3.5 Model-based genetic programming 

Although probabilistic models were first built into genetic algorithms, the idea was 
soon adopted also in genetic programming (GP). In GP the objective is to evolve 
functions or computer programs that are able to solve a given problem. The usual 
representation used to encode the solutions are tree structures. The variation operators 
(crossover and mutation) are adapted to work with this representation. Because of 
this complex representation, model learning and sampling can be a challenging task. 
However, several GPs based on probabilistic modeling have been proposed in the 
literature. 

Probabilistic incremental program evolution (PIPE) (Salustowicz and Schmidhu-
ber 1997) is a GP algorithm based on univariate factorization of program distribu­
tion. A probabilistic prototype tree (PPT) model encodes the probability distribution 
and is later used to generate new program trees at each generation of the algorithm. 
Extended compact genetic programming (ECGP) (Sastry and Goldberg 2003) incor­
porates the use of marginal product distributions into the context of GP. Also based 
on a PPT model, ECGP constructs a factorization of the tree program distribution 
equal to the product of marginal distributions. Each marginal distribution is associ­
ated with a subtree of the PPT. The structure of the factorization is learned using a 
greedy algorithm, similar to EcGA. 

The use of Bayesian networks for GP was proposed by Yanai and Iba (2003). This 
estimation of distribution programming approach is based on the use of the PPT. The 
conditional probabilities between the nodes of the PPT are computed for the purpose 
of representing a wider class of probability distributions than PIPE and ECGP. Re­
cently, Hasegawa and Iba (2008) proposed a Bayesian network modeling approach 
for GP that significantly reduces the size of the conditional probability tables. The 
algorithm also requires fewer samples to construct the Bayesian network from the 
selected solutions. 

Another type of GP-EDAs are based on the use of grammars. These algorithms 
(Shan et al. 2006; McKay et al. 2010; Bosman and de Jong 2008) depart from the 
traditional uses of probabilistic graphical models since the probability distributions 
are often associated with the grammar rules and their different contexts of application. 
For example, Bosman and de Jong (2008) estimate the distribution of programming 
trees based on the subtrees that actually occur in the data. The representation specifies 
a set of rules whose expansion leads to trees, and the probability distributions are 
defined on these rules. For a good review of these algorithms, see Shan et al. (2006) 
and McKay etal. (2010). 

4 Conclusions 

Probabilistic graphical models are a useful and effective way of dealing with uncer­
tainty in data. They have been studied at length over the last three decades, and many 



methods have been proposed to automate their learning and inference. They have 
also been successfully used in machine learning tasks. Special-purpose versions of 
these probabilistic tools have been proposed for dealing with continuous variables 
and domains with mixed discrete-continuous variables. 

One of the disciplines that has greatly taken advantage of probabilistic modeling 
is evolutionary computation, resulting in a new paradigm, namely, estimation of dis­
tribution algorithms. Although this is a relatively new paradigm, numerous studies 
have investigated its different aspects, and several types of algorithms have been pro­
posed based on this paradigm. These algorithms cover both discrete and continuous 
domains, and within each domain probabilistic models with different complexities 
have been used in these algorithms. 

EDAs are still topic of intensive research, and every year many new works related 
to the theory or application of these algorithms are published. New studies are trying 
to extend the application of these algorithms to other domains like multi-objective, 
noisy or dynamic problems. Nevertheless, because of the close relationship that these 
algorithms have with probabilistic modeling, any new development in the learning or 
inference of probabilistic models can help to achieve competent problem optimization 
with EDAs. 
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