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Abstract

The maximum a posteriori (MAP) assignment for general structure Markov random fields
(MRFs) is computationally intractable. In this paper, we exploit tree-based methods to ef-
ficiently address this problem. Our novel method, named Tree-based Iterated Local Search
(T-ILS) takes advantage of the tractability of tree-structures embedded within MRFs to derive
strong local search in an ILS framework. The method efficiently explores exponentially large
neighborhood and does so with limited memory without any requirement on the cost func-
tions. We evaluate the T-ILS in a simulation of Ising model and two real-world problems in
computer vision: stereo matching, image denoising. Experimental results demonstrate that our
methods are competitive against state-of-the-art rivals with a significant computational gain.

1 Introduction

Markov random fields (MRFs) [2 [13} 133]] are popular probabilistic graphical representation for
encoding the object’s state space using sites and the correlation between local objects using edges.
For example, a grid is a powerful image representation for pixels, where each site represents a
pixel state (e.g., intensity or label) and an edge represents local relations between neighboring
pixels (e.g., smoothness). In other words, we can encode prior knowledge about the nature of
interaction between objects in a MRF. Once the model has been built, we can perform inference
in a principled manner.

One of the most important MRF inference problems in many applications is finding maximum
a posteriori (MAP) assignment. The goal is to search for the the most probable state configuration
of all objects, or equivalently, the lowest energy of the model. The problem is known to be NP-
complete [[7]. Given a MRF of NV objects each of which has .S states, a brute-force search must
explore S™V state configurations. In image denoising, for example, N is the number of pixels,
which can range from 10* — 107, and S is the number of pixel intensity levels, which are in the
order of 28 —232. This calls for heuristic methods which can find reasonable solutions in practical
time.

There have been a great number of attempts to solve this problem. An early approach was
based on simulated annealing (SA), where the convergence is also guaranteed for log-time cooling
schedule [13]]. The main drawback of this approach is its low speed — it takes long time to achieve
reasonably good solutions. Another early attempt involves local greedy search, and the iterated
conditional mode (ICM) [3] is probably the most well-known method. In probabilistic terms,



it iteratively seeks for the mode of the local distribution of states of an object conditioned on
the states of nearby objects. Translated in combinatorial terms, it greedily searches for the local
valley - here the neighborhood size is limited to .S - the number of possible states per object. Not
surprisingly, this method is prone to getting stuck at poor local minima.

A more successful approach is belief-propagation (BP) [43], which exploits the problem struc-
ture better than the ICM. The main idea is that we maintain a set of messages sending simultane-
ously along all edges of the MRF network. A message carries the information of the state of the
sites it originates from, and as a result, any update of a particular site is informed by messages
from all nearby sites. However, this method can only be guaranteed to work for a limited class of
network structures — when the network reduces to a tree, where there are no loops in the network.
Another drawback is that the memory requirement for BP is high - this is generally linear in the
number of edges in the network. More recently, efficient algorithms with theoretical guarantees
have been introduced based on the theory of graph cuts [7]. This class of algorithms, while being
useful in certain computer vision problems, has limitation in the range of problems it can solve —
the energy formulation must admits a certain metric form [7,150]. In effect, these algorithms are
not applicable to problems where energy functions are estimated from data and their functional
forms are not known in priori.

Given this ground, it is desirable to have an approximate algorithm which is fast enough (bet-
ter than ICM - for example), consumes little memory and does not have any specific requirements
of network structures or energy functionals. A meta-heuristic solution has already been proposed
in the combinatorial optimization literature - the Iterated Local Search (ILS) (e.g. see [36]).
Typically, ILS encourages jumping between local minima, which can be found by local search
methods such as ICM. This algorithm, however, does not exploit any model-specific information,
and thus could be inefficient for the MAP assignment in MRFs. To this end, we propose a novel
algorithm called Tree-based Iterated Local Search (T-ILS), which combines the strength of BP
and ILS. This algorithm exploits the fact that BP works efficiently on tree structures, in which the
time complexity is linear in the number of edges in the tree, and thus BP is an effective candidate
for locating good local minima. The main difference from standard tree-based BP is that our trees
are conditional trees which are built upon fixing states of neighbor leaves. When combined with
ILS, we have a heuristic algorithm that is less likely to get stuck in poor local minima, and has
better chance to reach high quality solution, or even global minima.

We evaluate our tree-based inference methods on three benchmark problems: Ising model,
stereo correspondence and image denoising. We empirically demonstrate that T-ILS attains good
performance, while requiring less training time and memory than the loopy BP, which is one the
state-of-the-arts for these problems.

To summarize, our main contributions are the proposal and evaluation of fast and lightweight
tree-based inference methods in MRFs. Our choice of trees on N = W x H images requires
only O(2D) memory where D = max{W, H} and two passes over all sites in the MRFs per
iteration. These are much more economical than O(4W H) memory and many passes needed by
the traditional loopy BP.

This paper is organized as follows. Section [3|describes MRFs, the MAP assignment problem,
and belief propagation for trees. In Section[d] the concept of conditional trees is defined, followed
by two algorithms: the strong local search T-ICM and the global search T-ILS. Section[5|provides
empirical support for the performance of the T-ICM and T-ILS. Finally, Section [6|concludes the

paper.



2 Related work

The MAP assignment for Markov random fields (MRFs) as a combinatorial search problem has
attracted a great amount of research in the past several decades, especially in the area of computer
vision [35] and probabilistic artificial intelligence [43]. The problem is known to be NP-hard
[47). For example, in labeling of an image of size W x H, the problem space is S large,
where S is the number of possible labels per pixel.

Techniques for solving the MAP assignment can be broadly classified into stochastic and
deterministic classes. In early days, the first stochastic algorithms were based on simulated an-
nealing (SA) [22]. The first application of SA to Markov random fields (MRFs) with provable
convergence was perhaps the work of [13]. The main drawback of this method is slow conver-
gence toward good solutions [50]]. Nature-inspired algorithms were also popular, especially the
family of genetic algorithms [8},120, 21} 138} 54]. Some attempts using ant colony optimization and
tabu-search have also been made [42, 65]].

Deterministic algorithms started in parallel with iterated conditional model (ICM) [3]. Itis a
simple greedy search strategy that updates one label at a time. Thus it is very slow and sensitive
to bad initialization. A more successful approach is based on Pearl’s loopy belief propagation
(BP) [43]]. Due to its nature of using local information (called “messages”) to update “belief”
about the optimal solution, loopy BP is also called a message passing algorithm. Although loopy
BP is neither guaranteed to converge at all nor to reach global optima, empirical evidences so far
have indicated that it is very competitive against state-of-the-arts in a variety of image analysis
problems [1250]. Research on improving loopy BP is currently a very active topic in a range
of disciplines, from artificial intelligence, statistical physics, computer visions to social network
analysis [[L1, 12} [15 18} 127, [28 140l 166} 156]. The most recent development centers around convex
analysis [17} 130l 144, 157, 160]. In particular, the MAP is converted into linear programming with
relaxed constraints from which a mixture of convex optimization and message passing can be
used. Loopy BP also plays role in improving evolutionary algorithms under probabilistic graphi-
cal model representation [32].

Another powerful class of algorithms in computer vision is graph cuts [7, [50]. They are,
nevertheless, designed with specific cost functions in mind (i.e. metric and semi-metric) [26], and
therefore inapplicable for generic cost functions such as those resulting from learning. Again,
research in graph cuts is an active area in computer vision [4} |6, 23], 124} 29| [34]]. Interestingly, it
has been recently proved that graph cuts are in fact loop BP [51]].

It is fair to say that the deterministic approach has become dominant due to their performance
and theoretical guarantee for certain classes of problems [19]. However, the problem is still
unsolved for general settings, thus motivates this paper. Our approach has both the deterministic
and heuristic nature. It relies on the concept of strong local search using the deterministic method
of BP, which is efficient in trees. The local search is strong because it covers a significant number
of sites, rather than just one, which is often found in other local search methods such as ICM [3]].
The neighborhood size in our method is very large [1]]. For typical image labeling problems, the
size is SO5WH for an image of height H and width W and label size of S. Standard local search
like ICM only explores the neighborhood of size .S at a time. Once a strong local minimum is
found, a stochastic procedure based on iterated local search [36]] is applied to escape from it and
explores a better local minimum.

The idea of exploiting the trees in MRF in image analysis is not entirely new. In early days,
a spanning tree is used to approximate the entire MRF [9} [16]. This method is efficient but the
approximation quality may hurt because the number of edges in tree is far less than that in the



original MRF. Another way is to built a hierarchical MRF with multiple resolutions [61], but this
is less applicable for flat image labeling problems. Our method differs from these efforts in that
we use trees embedded in the original graph rather than building an approximate tree. Second,
our trees are conditional — trees are defined on the values of its leaves. Third, trees are selected as
we go during the search process.

More recently, trees are used in variants of loop BP to specify the orders which messages
are scheduled [57, 48]]. Our method can also viewed along this line by differs in the way trees
are built and messages are updated. In particular, our trees are conditional on neighbor labeling,
which is equivalent to collapsing an associated message to a single value.

Iterated Local Search (ILS), also known as basin hopping [58]], has been used in related appli-
cations such as image registration [10]], and structure learning in probabilistic graphical models
[S]. The success of ILS depends critically on the local search and the perturbation (basin hop-
ping) strategy [37]]. In [58]], for example, a powerful local search based on conjugate gradients is
essential to reach global solution for the Lennard-Jones clusters problem. Our work builds strong
local search using tree-based BP on the discrete spaces rather than continuous ones.

3 Markov random fields for image labeling

In this section we introduce Markov random fields (MRFs) and the MAP assignment problem
with application to image labeling. A MRF is a probabilistic way to express the uncertainty in the
discrete system of many interacting variables each of which is characterized by a set of possible
states [43]]. In what follows, we briefly describe the MRF and its MAP assignment problem and
focus on the minimization of model energy.

Formally, a MRF specifies a random field x = {x;}¥, over a graph G = (V, &), where V
is the collection of N sites {i}, £ is the collection of edges {(¢, j)} between sites, and z; € L
represents states at site ¢. The entire system is random because the uncertainty in specifying the
exact state of each site. One of the main objectives is to compute the most probable specification,
also known as MAP assignment, which is the main focus of the paper.

3.1 Image labeling as energy minimization and MAP assignment

In image labeling problem, an image y is a collection of pixels arranged in a particular geomet-
rical way, as defined by the graph G. Typically, we assume a grid structure over pixels, where
every inner pixel has exactly four nearby pixels. A labeling x is the assignment of each pixel y; a
corresponding label x; forall: = 1,2, ..., N.

A full specification of an MRF over the labeling x given the image y can be characterized by
its energy. Assuming pairwise interaction between connected sites, the energy is the sum of local
energies as follows:

E(x,y) = Y Ei(zi,y)+ > Eij(xix;) ey

Y (i,4)€€

The singleton energy F;(x;,y) encodes the disassociation between the label z; and the features
of image y at site ¢. In image denoising, for example, where y; is the corrupted pixel and z; is the
true pixel we may use E;(z;,y) = |z; — ;| as the cost due to corruption. The pairwise energy
E;j(x;,x;) often captures the smoothness nature of image, that is, two nearby pixels tend to be



similar. For example, E;;(x;, ;) = A |z; — x| is a cost of difference between two labels, where
A > 0 is a problem-specific parameter.

In image labeling, the task is to find the optimal x"“P that minimizes the energy F(X,y),
which now plays the role of the cost function:

map

X = argmin F(x,y) 2)

For example, in image denoising, this translates to finding a map of intensity that admits both the
low cost of corruption and high smoothness.

The formal justification for the energy minimization in MRF can be found through the prob-
ability of the labeling defined as

1
e~ EGy) 3)

ly) =

Z(y)
where Z(y) is the normalization term. Thus minimizing the energy is equivalent to finding the
most probable labeling x™*P. As P(x | y) is often called the posterior distribution in computer
visio the energy minimization problem is also referred to as maximum a posteriori (MAP)
assignment.

P(x

3.2 Local search: Iterated conditional mode

Iterated conditional mode (ICM) [3] is a simple local search algorithm. It iteratively finds the
local optimal labeling for each site 7 as follows

x; =argming,  Ei(z;,y)+ Z Eij(zi,xj) “

JEN(9)

where N/ (7) is the set of sites connected to the site 7, often referred to as Markov blanket. The
Markov blanket shields a site from the long-range interactions with remote sites, due to a special
property of MRF known as Markov property, which states that probability of a label assignment
at site ¢ given all other assignments depends only on the nearby assignments [14,|33]. The prob-
abilistic interpretation of Eq. (@) is

a;:‘ = arg H}EXP (a?i | {Cll’j}je,/\f(i)73’)

The local update in Eq. (@) is repeated for all sites until no more improvement can be made. This
procedure is guaranteed to find a local minimum energy in a finite number of steps. However,
the solutions found by the ICM are sensitive to initialization and often unsatisfactory for image
labeling [50]].



Upward pass: collecting evidences Downward pass: redistributing evidences
Figure 1: Belief propagation on trees: the two-pass procedure.

3.3 Exact global search on trees: Belief-propagation

Belief-propagation (BP) was first proposed as an inference method on MRF with tree-like struc-
tures in the field of artificial intelligence [43]. BP operates by sending messages between con-
necting sites. For this reason, it is also called message passing algorithm. It is efficient because
instead of dealing with all the sites simultaneously, we need to compute messages passing be-
tween two local sites. At each site, local information modifies the incoming messages before
sending out to neighbor sites.

General BP. The general rule is that the message sent from site j to site ¢ in the tree is computed
as follows

pii(ws) = wmin | Ej(z,y) + Eij(2, ;) + S i) ®)
! kEN (§), ki

That is, the outgoing message is aggregated from all incoming messages, except for the one in
the opposite direction. Messages can be initialized arbitrarily, and the procedure is guaranteed to
stop after finite steps on trees [43]. The optimal labeling could be estimated as follows

z;"" = argmin | Ej(z;,y) + Z i () (6)
' KEN (i)

It has been proved that the labeling obtained in this way is indeed globally optimal [43]], i.e.,

x™%P = argmin E(x,y)
X

The term posterior comes from the early practice in computer vision in which P(y | x) is first defined then linked
to P(x | y) through the Bayes rule:

P(x)P(y | x)
P(y)

where P(x) is called the priori. However in this paper we will work directly with P(x | y) for simplicity. The posterior
is recently called conditional random fields in machine learning [31} 53]

Px|y)=



2-pass BP. A more efficient variant of BP is the 2-pass procedure, as summarized in Fig.[I] First
we pick one particular site as the root. Since the graph has no loops, there is a single path from a
site to any other sites in the graph, and each site, except for the root, has exactly one parent. The
procedure consists of two passes:

o Upward pass: Messages are first initiated at the leaves, and are set to 0. Then all messages
are sent upward and updated as messages converging at common parents along the paths
from leaves to the root. The pass stops when all the messages reach the root.

e Downward pass: Messages are combined and re-distributed downward from the root back
to the leaves. The messages are then terminated at the leaves.

The 2-pass BP procedure is a remarkable algorithm: it searches through the combinatorial space
of S using only O (2N S 2) operations and O (2/N.S) memory to store all the messages.

Remark. We note in passing that this procedure may be known as min-sum, max-product, or
simply BP. The term max-product comes from the fact that we can operate in the potential domain
by taking the exponential of negative energies in Eqs. (5][6), and turn mins into maxes and sums
into products.

3.4 Approximate global search on general graphs: Loopy belief-propagation

Standard MRFs in image analysis are usually not tree-structured. A common topology is a grid
in which each site represents a pixel and has four neighbors. Thus the resulting graph has many
cycles, rendering the standard 2-pass BP algorithm useless.

However, an approximation to exact BP has been suggested. Using the general BP described
above, messages are sent across all edges without worrying about the order [43]. At each step,
the messages are updated using Eq. (5). After some stopping criteria are met, we still use Eq. (6)
to find the best labeling. This procedure is often called loopy BP due to the presence of loops
in the graph. The heuristic has been shown to be useful in several applications [41] and this has
triggered much research on improving it [11} 12, 251490145, 157, 551159} 164, 163]].

The main drawback of loopy BP is lack of convergence guarantee for general problems. In
our simulation of Ising models (Sec. [5.1), loop BP clearly fails in the cases where interaction
energies dominate singleton energies, that is | E;; (i, ;)| > |Ej(x;,y)| for all i, j (see Fig. ).
Another drawback is that the memory will be very demanding for large images. For grid-image,
the memory needed is O (4HW S) which in the order of gigabytes, and thus may not be suitable
for devices with small footprint.

4 Iterated strong local search

In this section we present a method to exploit the efficiency of the BP on trees to build strong
local search for the MAP assignment problem in Markov random fields. By ‘strong’, we mean
the quality of the local solution found by the procedure is often much better than standard greedy
local search. Although a typical MRF in computer vision is not a tree, we observe that it can be
thought as a super-imposition of trees. Second, due to the Markov property of MRFs, described
in Sec. [3.2] variables in a tree can be shielded from other variables through the Markov blanket
of the tree. This gives rise to the concept of conditional trees, which we present subsequently.



4.1 Conditional trees

(a) (b) (c) (d)

Figure 2: Examples of conditional trees on grid (connecting empty sites). Filled nodes are labeled
sites. Arrows indicate absorbing direction, dashes represent unused interactions. Dotted lines in
(c,d) are dummy edge (with zeros interacting energy) that connects separate sub-trees together to
form a full tree.

For concreteness, let us consider grid-structured MRFs. There are more than one way to
extract a tree out of the grid, as shown in Fig 2] In particular, we fix some labeling to some sites,
leaving the rest forming a tree. Consider a tree 7 and let x, = {x; | ¢ € 7}, and x—, = {a; | i ¢
7}. Denote by A (7) the set of sites connecting to 7 but do not belong to 7. This is essentially the
Markov blanket of the tree 7. Thus the collection of sites (7, V(7)) and the partial labeling of the
neighbor sites X y/(), forms a conditional tree. The energy of the conditional tree can be written
as:

ET (XT7XN(T)7y) = ZE;k(x17Y)+ Z Eij(zivxj) (7)
1ET 1,JET
where
Ei (z;,y) = Ei(z,y) + Z Eij(w;, x;) ®)

(1,5)€E.FEN (1)

In other words, the interacting energies at the tree border are absorbed into the singleton energy
of the ordering sites. In Fig. [2|the absorbing direction is represented by an arrow.
The minimizer of this conditional tree energy can be found efficiently using the BP:

%, = argmin Br (%,,Xx(r), ¥) ©)

This is due to the fact that Eq. (7) now has the form of Eq. ().

One may wonder how the minima of the energy of conditional trees E, (xT, XN (1) y) relate
to the minima of the entire systems F (x,y). We present here two theoretical results of this
connection. First, the local minimum found by Eq. (9) is also a local minimum of E (x,y):

Proposition 1 Finding the mode X, as in Eq. (9) guarantees a local minimization of model en-
ergy over all possible tree labelings. That is

E(%r,%-r,¥) < E(Xr, %7, y)

forall x; # X,.



Algorithm 1 Tree-based iterated conditional mode (T-ICM).
Function: T-ICM()
Input:

e Graph G = (V,€).

e Local cost/energy functions E;(z;,y) and E;;(z;, ;).
e A set of trees T, and an update schedule.

e Maximum number of iterations 7'.

o Initial labeling x°.

Procedure:
Fort=1,2,....,T
1. Pick a conditional tree 7 from the tree set 7 according to the update schedule.
2. Absorb neighboring energies according to Eq. (8).
3. Run 2-pass BP on the conditional tree (Section: xt + BP(xi™1).
4. Update the labeling of the tree: xt « x‘~1.
5. Stop if E, (xi, xj\/(T), y> no longer decreases for all trees 7 € 7.

Output: A local optimal labeling.

Proof: The proof is presented in Appendix [A.2}

The second theoretical result is that the local minimum found by Eq. (9 is indeed the global
minimum of the entire system if all other labels outside the tree happen to be part of the optimal
labeling:

Proposition 2 Ifx_, € X" then X, € x™P,

Proof: We first observe that since F/(x™?P,y) is the lowest energy then
E(Xmap7Y) S E()A(T7X‘\T7y) (10)

Now assume that X, ¢ x"?, so there must exist x,. € x™? that X, # x/ and E(x],x.;,y) >
E(%X,,%x-.,y), or equivalently E(x™ y) > E(X,,X-,,Yy), which contradicts with Eq. [ |
The derivation in Eq. (/) from the probabilistic formulation is presented in Appendix.

4.2 Tree-based ICM (T-ICM): conditional trees for strong local search

As conditional trees can be efficient to estimate the optimal labeling, we propose a method in the
spirit of the simple local search ICM [3] (Section [3.2). First of all, a set of conditional trees 7 is
constructed. At each step, a tree 7 € T is picked according to predefined rules. Using the 2-step
procedure of BP, we find the optimal labeling for 7 using Eq. (9). This method includes the ICM
as a special case when the tree is reduced to a single site, so we call it the tree-based ICM (T-ICM)
algorithm, which is presented in pseudo-code in Algorithm 1}



4.2.1 Specification of T-ICM

Tree set and update schedule. For a given graph, there are exponentially many ways to build
conditional trees, and thus defining the tree set is itself a nontrivial task. However, for grids used
in image labeling with height H and width W, we suggest two simple ways:

e The set of H rows and W columns. The neighborhood of size is HS™ + W SH.

e The set of 2 alternative rows and 2 alternative columns (Figs. Q};,d). Since alternative rows
(or columns) are separated, they can be connected by dummy edges to form a tree (e.g., see
Figs.[2c,d). A dummy edge has the interacting energy of zero, thus does not affect search
operations on individual components. The neighborhood size is 45%-57W

These two sets lead to much more efficient T-ICM compared to the standard ICM which only
covers the neighborhood of size SHW using the same running time. Once the set has been
defined, the update order for trees can be predefined (e.g., rows from-top-to-bottom then columns
from-left-to-right), or random.

4.2.2 Properties of T-ICM

Due to Proposition at each step of Algorithm the total energy F(x,y) will be either reduced
or the algorithm will terminate. Since the model is finite and the energy reduction is discrete
(hence non-vanishing), the algorithm is guaranteed to reach a local minimum after finite steps.

Although the T-ICM only finds local minima of the energy, we can expect the quality to
be better than the original ICM because each tree covers many sites. For example, as shown
in Figs. Zh,b, a tree in the grid can account for half of all the sites, which is overwhelmingly
large compared to a single site used by the ICM. The number of configurations of the tree 7, or
equivalently the neighborhood size, is S™~, where N, is the number of sites on the tree 7. The
neighborhood size of the ICM, on the other hands, is just .S.

For the commonly used 4-neighbor grid MRF in image labeling, and the tree set of alternative
rows and columns, the BP takes O(4HW) time to pass messages, each of which cost 352 time
to compute. Thus, the time complexity per iteration of T-ICM is only S times higher than that of
ICM and about the same as that of loop BP (Sec. [3.4). However, the memory in our case is still
O (2 x max{H, W}), which is much smaller than the O(4HW) memory required by loopy BP.
In addition, each step in T-ICM takes exactly 2 passes, while the number of iterations of loopy
BP for the whole image, if the method does converge, is unknown and parameter dependent.

4.3 Tree-based ILS: global search

As T-ICM is still a local search procedure, inherent drawbacks still remain: (i) it is sensitive to
initialization, and (ii) it can get stuck in suboptimal solutions. To escape from the local minima,
global search strategies must be employed. We can consider the entire T-ICM as a single super-
move in an exponentially large neighborhood.

Since it is not our intention to create a totally new escaping heuristic, we draw from the rich
pool of metaheuristics in the literature and adapt to the domain of image labeling. In particular,
we choose an effective heuristic, commonly known as iterated local search (ILS) [36] for escaping
from the local minima. ILS advocates jumps from one local minimum to another with the hope
that we can eventually find better local minima after multiple tries. If a jump fails to lead to a
better solution, it can still be accepted according to an acceptance scheme, following the spirit of



Algorithm 2 Tree-based iterated local search (T-ILS).

Function: T-ILS()
Input:

e Max jump step-size: pqz € (0, 100).
e Max number of iterations T, ;¢-; max number of iterations for the inner T-ICM T, 1
e Max number of backtracks.

Procedure:
Initialize some labelings: X°.
Find the first local minimum: x* < T-ICM (X°, Tyner ).
Initialize variables: n = 0; g = 1.
Fort = 1, 2, vy Toutte'r
1. Jump to a new place: X! < x' by randomly resetting U (0, ppaz) % of labels.
2. Find a local minimum: x**! < T-ICM (X!, Ty ner).-
3. Accept: x!t1 « x!*+1 with probability of
a=min{l,exp (-8 {EE"Ty) - Ex",y)})}
otherwise backtrack: x!+1 < xt .
4. Adjust the temperature:
n < n+ 1if xtt = xt+1;
r < 0.9n/t + 010 [x'T! = ']
if r < 0.45 then 8 « 0.8 else if » > 0.55 then 8 < (3/0.8.
5. Stop if number of backtracks has been reach.
Output: A near global optimal labeling.

The original energy landscape

The surrogate energy landscape of T-ICM/T-ILS

Figure 3: Search behavior of T-ICM and T-ILS. The use of T-ICM creates a smoother energy
landscape for T-ILS (the surrogate dotted curve). ICM gets stuck on the first local minimum
it finds, but T-ICM could find a much better solution by operating on an exponentially large
neighborhood.



simulated annealing (SL). However, we do not decrease the temperature as in the SL, but rather,
the temperature is adjusted so that on average the acceptance probability is roughly 0.5. The
process is repeated until the stopping criteria are met. We term the resulting metaheuristic the
Tree-based Iterated Local Search (T-ILS) whose pseudo-code is presented in Algorithm [2| and
behavior is illustrated in Fig.[3| In what follows we specify the algorithm in more details.

4.3.1 Specification of T-ILS

Jump. The jump step-size has to be large enough to successfully escape from the basin that
traps the local search. In this study, we design a simple jump by randomly changing labels of p%
of sites. The step-size p is drawn randomly in the range (0, pimaz), i€, p ~ U (0, praq ), Where
Pmaz 18 an user-specified parameter.

Acceptance. After a jump, the local search is invoked, followed by an acceptance decision to
accept or reject the jump. Convergence guaranteed acceptance criteria such as those used in
simulated annealing can be used, but it is likely to be slow. We consider the following acceptance
probability:

a = min {1,exp(—BAE)}

where AE = E(x'*!)y) — E(x!,y) is the change in energy between two consecutive minima,
and S > 0 is the adjustable “inverse temperature”. Large /3 lowers the acceptance rate but small
B increases the rate. This fact will be used to adjust the acceptance rate, as detailed below.

Adjusting inverse temperature. We wish to maintain an average acceptance probability of 0.5,
following the success of [58]]. However, unlike the work in 58], we do not change the step-size,
but rather adjusting the inverse temperature. The estimation of acceptance rate is < r /¢, where
n is the total number of accepted jumps up to step ¢. To introduce short-term effect, we use the
last event:

74 0.9r + 011 [x"*! = ']

If the acceptance rate is within the range [0.45,0.55] we do nothing. A lower rate will lead to
decrease of the inverse temperature: 5 < 0.8, and a higher rate will lead to increase: [

8/0.8.

4.3.2 Properties of T-ILS

Fig. B|illustrates the behavior of the T-ILS. Through the T-ICM component, the energy landscape
is smoothed out, helping the T-ICM to locate good local minima. When the jump is not large, the
search trajectory can be tracked to avoid self-crossing walks. If the jump is far enough (with large
Pmaz), the resulting algorithm will behave like the well-known multistart procedures.

When the inverse temperature 3 is set to 0, the acceptance become deterministic, that is, we
only accept the jump if it improves the current solution. In other words, the T-ILS becomes a
greedy algorithm. Alternatively, when [ is set to a very large number and no adjustment is made,
we would accept all the jumps, allowing memoryless foraging behavior.
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Figure 4: Performance of T-ILS and loopy BP algorithm in minimizing Ising energy with A = 0.5
(left) and A = 1.0 (right).

5 Experiments

In this section, we evaluate our proposed algorithms on a simulated Ising model and two standard
vision labeling problems: stereo correspondence and image denoising. In all settings, we employ
MRFs with grid-structure (e.g. each inner pixel is connected to exactly 4 nearby pixels). Trees
are composed of rows and columns as specified in Sec. f.2.1] Unless specified otherwise, the
initial labeling is randomly assigned. Max step-size is ez = 10% (Sec.[4.3.1). For T-ILS, the
inner loop has T}, e = 1, i.e., the full local minima may not be reached by the T-ICM, as does
not seem to hurt the final performance.

5.1 Simulated Ising model

In this subsection, we validate the robustness of our proposed algorithms on Ising models, which
have wide applications in magnetism, lattice gases, and neuroscience [39]. Within the MRF
literature, Ising lattice is often used as a benchmark to test inference algorithms (e.g., see [57]).
Following [57], we simulate a 500500 grid Ising model where labels are binary spin orientations
(up or down): z; € £1, and local energy functions are: E;(x;) = 0;x;; Eij(x,x;) = 0522,
The parameter 0; specifies the influence of external field on the spin orientation and 6;; specifies
the interaction strength and direction (impulsive or repulsive) between sites. For this experiment,
the parameters {6;,6;; } are set as follows

0i,0;5 ~ U(-1,1)

where U(—1, 1) denotes the uniform distribution in the range (—1,1), and A > 0 specifies the
interaction strength. When ) is small, the interaction is weak, and thus the external field has more
effect on the spin arrangement. However, when ) is large, the spin arrangement depends more on
the interacting nature. A stable arrangement in nature would be of the minimum energy.

The result of minimizing energy is shown in Fig. |4 When the interaction is weak (e.g. A =
0.5), the loopy BP performs well, but when the interaction is strong (e.g. A = 1.0), the T-ILS has
a clear advantage. Thus T-ILS is more robust since it is less sensitive to A.



Figure 5: Stereo results on the Tsukuba dataset. (Top-left): left image, (top-middle): right image,
(top-right): groundtruth; (bottom-left): scan-line, (bottom-middle): loop BP, and (bottom-right):
T-ILS (initialized from scan-line).

5.2 Stereo correspondence

The problem in stereo correspondence is to estimate the depth of the field (DoF) given two or more
2D images of the same scene taken from two or more cameras arranged horizontally. This is used
in 3D reconstruction of a scene using standard 2D cameras. The problem is often translated into
estimating disparity between images — how much two images differ and this reflects the depth
at any pixel locations. For simplicity, we only investigate the two-cameras setting. In the MRF-
based stereo framework, a configuration of x € NW*# realizes the disparity map, which in this
case is represented by a grid network. The disparity set (or the label set) is often predefined. For
example, in the two standard datasetsﬂused in this experiment, the Tsukuba has 16 labels (Fig.,
and the Venus has 20 (Fig. [6).

The singleton energy E;(x;,y) at each pixel location usually measures the dissimilarity of
pixel intensity between the left/right images, and the interaction energy E;;(x;,x;) ensures the
smoothness of the disparity map. In this set of experiments, we use the simple linear Potts cost
model as often used in testing stereo correspondence algorithms [46]. Let y = (I', I") where I!
and I" are intensities of the left and right images respectively, and ¢ = (ix, iy ) where ix and iy
are horizontal and vertical coordinates of the pixel i. The local energies are defined as [46]):

Ei(ziy) = Al(i, ;)
Eij(zi,z;) = AxIz; # ]

where I[-] is the indicator function, A > 0 is the smoothness parameter, and A (i, ;) = |I'(ix,iy) — I"(ix — @i, iy)|
is the difference in pixel intensity in two images when pixel positions are x; pixels apart in the
horizontal dimension. Due to the optical properties of two nearby cameras, a small x; would
result in large AI(%, z;) if the true DoF is small. Thus by minimizing the singleton energy with
respect to x;, a small DoF would leads to stronger reduction of z; than a large DoF. For this set

2 Available at: jhttp://vision.middlebury.edu/stereo/
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Figure 6: Stereo results on the Venus dataset. (Top-left): left image, (top-middle): right image,
(top-right): groundtruth; (bottom-left): scan-line, (bottom-middle): loop BP, and (bottom-right):

T-ILS (initialized from scan-line).

of experiments, we choose A = 20 following [46]. Our implementation is based on the software

framework of

There is a wide range of techniques available for stereo estimation, and loopy BP is one of the
winning methods [46][50]. Fast methods like scan-line (SL) optimization are still widely used
for real-time implementation. The scan-line is equivalent to taking independent 1D rows of the
MREF and running the chain BP. Since the SL does not admit the original 2D structure, we need
to adapt the singleton energy as: E;(z;,y) = vE;(z;,y) where v € [0, 1] to account for the lack

of inter-row interactions.

Method Tsukuba Venus
SL(v = 1.0) 814,121 1,362,067
SL(v = 0.4) 658,946 1,198,324
Random—T-ICM(T = 1) 739,370 1,048,587
SL(v = 0.4)—TICM(T = 1) 427,860 669,973
Loopy BP(T' = 1, 000) 413,269 640,385
SL(v = 0.4)—=T-ILS(Tputter = 1,000) | 403,129 635,305

Table 1: Stereo energy found by algorithms. SL=Scan-line.

Table [T] shows the effect of changing from » = 1.0 to ¥ = 0.4 in term of reducing 2D
energy and error. The result, however, has the inherent horizontal ‘streaking’ effect since no 2D
constraints are ensured (Figs. bottom-left). The randomly initialized T-ICM with one iteration
(T = 1 in Algorithm [T)) performs comparably with the best of SL (v = 0.4). The performance

3The C++ code is available at http://vision.middlebury.edu/MRF/
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Figure 7: Stereo energy minimization by Loopy BP (dashed line) and T-ILS (line) on Tsukuba
(left) and Venus (right) images.

of T-ICM improves significantly by initializing from the result of SL. T-ILS initialized from SL
finds better energy than the loopy BP given the same number of iterations, as shown in Fig.

5.3 Image denoising

In image denoising, we are given an image corrupted by noise, and the task is to reconstruct the
original image. For this set of experiments we use the 122 x 179 noisy gray Penguin imageﬂ
(Fig.[8). The labels of the MRF correspond to S = 256 intensity levels (8 bits depth). Similar
to the stereo correspondence problem, we use a simple truncated Potts model for the energy as
follows

EL(I“y) = mln{|xl _yi|a7-}
Eij(l'i,l'j> = AX 5[.’51 7é l’j]
where 7 = 100 prevents the effect of extreme noise, and A = 25 is smoothness parame-

ter, following [50]. In addition, the optimized loopy BP for Potts models from [12]] is used.
Figs[8|b,c) demonstrates that T-ILS runs faster than the optimize loopy BP, yielding lower energy
and smoother restoration.

6 Discussion

We have proposed a fast method for inference in Markov random fields by exploiting tree struc-
tures embedded in the network. We proposed a strong local search operator (T-ICM) based on
Belief-Propagation and a global stochastic search operator T-ILS based on the iterated local search
framework. We have shown in both simulation and two real-world image analysis tasks (stereo

4 Available at: http://vision.middlebury.edu/MRF/
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Figure 8: Penguin images: (a) noisy, (b) restored with T-ILS, (b) restored with loopy BP; (d)
running time. Algorithms stop after 5 unsuccessful iterations.

correspondence and image denoising) that the T-ILS is competitive against state-of-the-art algo-
rithms. We have demonstrated that by exploiting the structure of the domains, we can derive
strong local search operators which can be exploited in a metaheuristic strategy such as ILS.

6.1 Future work

The line of current work could be extended in several directions. First, we could adapt the T-ILS
for certain cost functions. Currently, the T-ILS is designed as a generic optimization method,
making no assumptions about the the nature of optimal solution. In contrast, label maps in vision
are often smooth almost everywhere except for sharp boundaries. Second, the MRFs may offer a
more informative way to perform the jump steps, e.g., by relaxing the messages in the local edges
or by keeping track of the hopping trajectories. Third, we have limited the T-ILS to uniform
distribution of step-sizes, but it needs not be the case. One useful heuristic is Lévy flights
in which the step-size p is drawn from the power-law distribution: p~* for « > 0. This
distribution allows the step-size to usually stay within a certain narrow range but also allows
occasional big jump (which might behave like a total restart). Alternatively, we can use Beta
distribution due to its richness in distribution shape and the boundedness of p. Fourth, since a
MREF typically contain many separated conditional trees, it could be interesting to explore the
parallel jump strategies.

As our development is based on the recognition that we can exploit conditional trees in MRFs
to obtain fast strong local search. The metaheuristics thus need not be limited to ILS. In fact,
conditional trees open up a new direction of research in the MAP assignment by investigating the
use of other metaheuristics. For example, we can use genetic algorithms in conjunction with the
conditional trees as follows. Each individual in the GA population can be represented by a string
of N characters, each of which has one of S values in the label alphabet. For each individual, we
run the 2-pass BP to obtain a strong local solution. Then the crossover operator can be applied
character-wise on a selected subset to generate a new population.

Finally, although we have limited ourselves to applications in image analysis, the proposed
algorithm is generic to any problems where MRFs are applicable.



A Appendix

A.1 Distribution over conditional trees

We provide the derivation of Eq. from the probabilistic argument. Recall that A'(7) is the
Markov blanket of the tree 7, that is, the set of sites connecting to 7. Due to the Markov property

P (XT | XN(T)?Y) = P(XT | X“T?Y)

In other words, we need only to worry about the interaction within the tree, and between the tree
sites with its Markov blanket:

P(XT | XN(T))y) X exp{_ET (XT?XN(T)?y)}

where

Er (Xr,Xx(r),Y) = ZEi(fi,Y) + Z Eij(zi,zj) + Z Eij(zi{t})

€T (i,5)€E|i,jeT (i,5)€ElieT,jeN(T)

Eq. (7) can be derived from the energy above by letting:

Bf(vi,y) = Es(zi,y)+ > Eylwi,)) (12)
(i,5)€E,GEN(T)

Thus finding the most probable labeling of the tree 7 conditioned on its neighborhood is equiva-
lent to minimizing the conditional energy in Eq. (9):

X, = argmax P (XT | XN(T),y) (13)

The equivalence can also be seen intuitively by considering the tree 7 as a mega-site, so the update
in Eq. (9) is analogous to that in Eq. ().

A.2 Proof of Proposition 1|

Recall that the energy can be decomposed into singleton and pairwise local energies (see Eq. (1)

E(xr,x-7,y) = ZEi(fiaY)+ZEi($ivy)+ Z Eij(@i, z;) +

ier igr (i,j)e€lijer
+ Z Eij(@i, z5) + Z Eij(wi, ;)
JEN(T)|(i.5)€€ (,7)€€li,j¢T

where
® > .. Ei(w;,y) is the data energy belonging to the tree 7,
° >, ¢r E;(x;,y) the data energy outside 7,
° Z(i,j) eelijer Bij (x;, ;) is the interaction energy within the tree,

® > ien(n)|(i.j)ee Eij(wi, ;) the interaction energy between the tree and its boundary, and



> (ij)eclier Bij (x;, z;) the interaction energy outside the tree

By grouping energies related to the tree and the rest, we have

E(XTax“‘ny) = ET(XT7XN(T)7y)+ Z Eij(xivxj)
(i,5)€ElL,i¢T

where E; (X, Xx(-),y) is given in Eq. (11) for all i € 7. This leads to:

E()A(T’Xﬁ.”y) = ET (&T7X]\/’(T)7y) + Z El](x’nx])
(58T iidr
< E: (XT,XN(T)Q’) + Z E’L](-T'Laxj>
()8 Tiidr
= E(XT7 X“T7 y)

This completes the proof B
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