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Abstract In this paper, we propose a simple but efficient heuristic that combines con-
struction and improvement heuristic ideas to solve multi-level lot-sizing problems.
A relax-and-fix heuristic is firstly used to build an initial solution, and this is further
improved by applying a fix-and-optimize heuristic. We also introduce a novel way to
define the mixed-integer subproblems solved by both heuristics. The efficiency of the
approach is evaluated solving two different classes of multi-level lot-sizing problems:
themulti-level capacitated lot-sizingproblemwith backlogging and the two-stageglass
container production scheduling problem (TGCPSP). We present extensive computa-
tional results including four test sets of the Multi-item Lot-Sizing with Backlogging
library, and real-world test problems defined for the TGCPSP, where we benchmark
against state-of-the-art methods from the recent literature. The computational results
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show that our combined heuristic approach is very efficient and competitive, outper-
forming benchmark methods for most of the test problems.

Keywords Lot-sizing · Heuristics · Relax-and-fix · Fix-and-optimize · Backlogging

Mathematics Subject Classification 90C11

1 Introduction

Manufacturing systems have been analytically studied for more than a century to
achieve better efficiencies and outputs, since manufacturing was a key element, if not
“the” key element, of the economic advancement of developed countries. 2013 marks
the centenary of the renowned “economic order quantity” formula, which was the
first attempt to optimize production quantities under very special conditions. Since
then, numerous operations researchers in academia and practice have built many more
realistic models and proposed various sophisticated solution methods to tackle lot-
sizing/production planning problems evident in practice, where decisions such as
how much to produce or stock are constrained by various natural limitations such
as capacities and setup times.

We investigate two classes of multi-level lot-sizing problems: the multi-level
capacitated lot-sizing problem (MLCLSP) with backlogging, and the two-stage glass
container production scheduling problem (TGCPSP). The first set of problems,
MLCLSP with backlogging, is particularly challenging from a computational point
of view, which is also apparent from a number of new lot-sizing problems included in
MIPLIB (2010). Moreover, the theoretical question of the full description of the con-
vex hull of the single-item problem with backlogging has remained open for decades
until the recent study of Küçükyavuz and Pochet (2009), which indicates the sophisti-
cation involved in these problems. Finally, in a practical problem setting, backlogging
is never prohibited as all manufacturers will sooner or later fall short of satisfying their
customer demands and backlog, and therefore the problem with backlogging presents
a more realistic case than the one without. The second set of problems, TGCPSP,
represents a real-world short-term production planning and scheduling problem with
a first mixed-integer programming (MIP) formulation proposed in Almada-Lobo et al.
(2010). The authors in Toledo et al. (2013) improved the previousMIP formulation for
the TGCPSP, proposed a hybrid genetic algorithm to solve it and defined sets of com-
plex test problems.TGCPSPdoes not allowbacklogging likeMLCLSP, and takes some
problem specific characteristics such as production loss costs and sequence-dependent
setup times and costs.

The lot-sizing literature can most appropriately be divided into two main areas due
to the nature of solution methods used: (i) Exact methods, and (ii) Heuristic methods.
Although even the capacitated single-item problem is NP-hard (see, e.g., Florian
et al. 1980) and expectations for optimal solutions diminish as problems become more
realistic, exact methods can be very helpful to understand the underlying difficulties
in solving these problems. Such methods include valid inequalities (see, e.g., Barany
et al. 1984; Miller et al. 2003), extended reformulations (see, e.g., Krarup and Bilde
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1997; Eppen and Martin 1987; Rardin and Wolsey 1993), Lagrangian relaxation (see,
e.g., Billington et al. 1986) and Dantzig-Wolfe decomposition (see, e.g., Degraeve and
Jans 2007). Most of these studies are mainly focused on simplistic (often single-item)
problems, however, many of the developed methods could be extended to realistic
problem settings as well. The recent study of Akartunalı and Miller (2012) provides
more insight on the complexities apparent in realistic lot-sizing problems, and an
extensive discussion of mathematical programming techniques used in the area can
be found in Pochet and Wolsey (2006).

Although exact methods are powerful since they provide an exposure of complicat-
ing structures and a guarantee on solution quality, they exhibit an important drawback
on the computational end: even with the modern fast computers and the state-of-
the-art optimization packages, solving industrial-size lot-sizing problems is a very
complicated (and often an impossible) task. To compensate for the computational
shortcomings of exact methods and to provide real time solutions to industrial-size
problems, heuristic methods have been extensively used in this area, from very simple
frameworks to very sophisticated ones, see, e.g., Van Vyve and Pochet (2004), Wu
et al. (2011), Kébé et al. (2012), Absi et al. (2013), Toledo et al. (2013), Baki et al.
(2014). We also refer the interested reader to Ball (2011) for a recent literature review
on general mathematical programming heuristics. Finally, we note that a number of
researchers have proposed frameworks using heuristics or meta-heuristics combined
with mathematical programming techniques, since the major drawback of heuristic
methods is no guarantee of solution quality. Recent results include the ant colony algo-
rithm coupled with reduced MIP solutions for the MLCLSP with overtime proposed
by Almeder (2010), the MIP-based and hybrid simulated annealing heuristics for the
stochastic lot-sizing problem proposed by Ramezanian and Saidi-Mehrabad (2013),
and finally the multi-population genetic algorithm with LP model resolution for the
MLCLSP with backlogging proposed by Toledo et al. (2013).

The method described in this paper combines two heuristics based on mathemati-
cal programming. Relax-and-fix (RF), a construction heuristic that solves relaxedMIP
subproblems sequentially and fixes binary variables throughout the process for speed-
ing it, has been used by a number of researchers for lot-sizing problems: Belvaux and
Wolsey (2000) included a basic RF heuristic in their sophisticated lot-sizing solver,
whereas Stadtler (2003) proposed a time-oriented RF for MLCLSP with impressive
results. More recent applications of RF in the lot-sizing literature include Federgruen
et al. (2007) and Akartunalı and Miller (2009), where the former iteratively increase
the size of the problem for efficient solutions whereas the latter make use of (�, S)

inequalities for stronger formulations, outperforming solutions found by Stadtler’s
heuristic Stadtler (2003). Fix-and-optimize (FO), an improvement heuristic based on
MIP, is firstly described in Helber and Sahling (2010) to solve the MLCLSP with lead
times and overtime costs. The authors propose product, resource and process-oriented
decompositions for the problem, which define subsets of binary variables to be opti-
mized. Seeanner et al. (2013) extend these decomposition ideas to the multi-level
lot sizing and scheduling problem, where the neighborhood decomposition search is
combined with FO.

We propose a simple and easy-to-implement solution method that also proves
to be computationally effective. Contrary to the recent works of Almeder (2010),
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Ramezanian and Saidi-Mehrabad (2013), Toledo et al. (2013) combining complex
meta-heuristicswithMIP heuristics, ourmethod combines two very simpleMIP-based
heuristics: RF with fix-and-optimize (“RFFO”, as we will refer to in the remainder of
the paper). The simplicity is one of the key strengths of the proposed method, allowing
any interested researcher or practitioner easily implement it if needed. Moreover, we
propose novel ways of building subproblems from the classical rolling time horizon
approach, which are important components of RF and FO heuristics, and investigate
their effectiveness in practice by extensive computational tests, including over some
MIPLIB 2010 instances (MIPLIB 2010).

The method shows impressive computational performance for the majority of
difficult test problems of the MCLSP with backlogging, outperforming benchmark
methods.Moreover, while many studies such as Helber and Sahling (2010) and Seean-
ner et al. (2013) explore very specific problem structures for their methodology design,
our proposed RFFO framework is designed as generic as possible to avoid taking
advantage of a specific problem structure and hence can be extended to other prob-
lems if necessary, and in order to support this argument, we have also applied it to
TGCPSP, where RFFO was able to find competitive results when compared with the
default IBM Ilog Cplex solver and the hybrid genetic algorithm of Toledo et al. (2013).

To summarize, the proposed RFFO method has two main contributions: (i) It
is a simple framework combining construction and improvement heuristics, which
also returns competitive results in extensive computational tests when compared with
state-of-the-art benchmark methods from the recent literature. (ii) The rolling hori-
zon window size is oriented not only by column (i.e., period in lot-sizing, which is
the common practice) but also by rows (i.e., families of products) as well as by a
combination of columns and rows. Therefore, the method allows rolling windows
along with different combinations of columns and rows in the two dimensional matrix
representation.

The paper is organized as follows. In the next section, we give a brief mathematical
description of the problems under investigation. In Sect. 3, we define in detail our
proposed framework, including a discussion of novel ways of building subproblems.
Then we present numerical results from extensive computational tests in Sect. 4 with
comparisons to two benchmarksmethods from recent literature, showing the effective-
ness of the proposed methodology. Finally, we conclude with some future directions
in Sect. 5.

2 Multi-level lot sizing problems

As we discussed earlier, the RFFO approach developed in this paper is not dependent
on the problem structure so that it can be adapted to other MIP problems. In this
section, we present the MIP formulations of the two classes of multi-level lot-sizing
problems. First, we describe the MIP formulation of Toledo et al. (2013), based on the
formulation of Akartunalı and Miller (2009), for the MLCLSP with backlogging, and
then we describe the MIP formulation for the TGCPSP as presented in Toledo et al.
(2013).
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2.1 MLCLSP with backlogging

In this paper, we consider MLCLSP with families of products, i.e., multiple products
are grouped into families based on their similarities. Since backlogging is a natural
practice in manufacturing environments due to capacity limitations, it is allowed for
products with external demands.

Parameters

J Total number of products.
T Total number of periods.
M Total number of machines/resources.
F Total number of families.
amj Time necessary to produce one unit of product j on machine m.
Bjt Upper bound for lot-size of product j in period t .
bc j Backlogging cost of product j .
Cmt Total capacity of machine m in period t .
Djt Primary demand (external) of product j in period t .
h j Holding cost per unit of product j in one period.
p j f 1 if product j belongs to family f .
r jk Quantity of product j necessary to produce one unit of product k.
stm f Setup time for product family f on machine m.
δ( j) Set of the immediate successors of product j .
Δ Set of the end products.

Variables

x jt Lot-size of product j in period t .
w f t Setup variable of family f in period t .
i j t Stock holding quantity of product j in period t .
b jt Backlogging quantity of product j in period t .

Min
J∑

j=1

T∑

t=1

(
bc j · b jt + h j · i j t

)
(2.1)

Subject to:

i j t−1 + b jt + x jt = i j t + b jt−1 + Djt ∀ j, t | j ∈ Δ (2.2)

i j t−1 + x jt = i j t +
∑

k∈δ( j)

r jk · xkt ∀ j, t | j /∈ Δ (2.3)

J∑

j=1

amj · x jt +
F∑

f =1

stm f · w f t ≤ Cmt ∀m, t (2.4)

x jt ≤ w f t · Bjt ∀ j, f, t |p j f = 1 (2.5)

x jt , i j t , b jt ≥ 0 w f t ∈ {0, 1} (2.6)

The inventory and backlogging costs are minimized in the objective function (2.1).
We note that we do not include setup costs for the sake of simplicity of the model (and
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consider setup times only instead), but the proposed model can be easily modified
to include them. The flow balance constraints (2.2) and (2.3) ensure the satisfaction
of external and internal demands, respectively, where the external demand for end
products can also be satisfied through backlogging. Here, we note that we use these
constraints for the sake of simplicity as well as for consistencywith the formulations of
Akartunalı andMiller (2009), Toledo et al. (2013); however, external demands as well
as backlogging can also be included in higher levels of the echelon. The big bucket
machine capacities incorporating both variable processing times and fixed setup times
in each period are defined by constraints (2.4), where we assume that each product
belongs to only one product family and there are product family setup times only
(rather than for each product). Constraint (2.5) ensures that a product j cannot be
produced (i.e., x jt = 0) if there is no setup for its product family (i.e., w f t = 0). The
upper bound for the lot-size of product j in period t is represented by parameter Bjt ,
which can be defined using the following definitions of (2.7) and (2.8) (in a similar
fashion to Akartunalı and Miller 2009).

Bjt = min

(
d j (1..T ),

Cmt − stm f

amj

)
(2.7)

d j (t..T ) =
T∑

u=t

D ju +
∑

k∈δ( j)

r jk · dk(t..T ) (2.8)

Note that the Eq. (2.7) bounds the lot-size either by the total demand over the hori-
zon (the first term on the right of the equation) or by the maximum capacity available
for production (setup time to be subtracted from the total capacity to identify the pro-
duction time). Finally, the variable domains are established by constraints (2.6). We
note that this formulation can be extended to incorporate other elements of a produc-
tion system, such as overtime, to make it more realistic. However, we leave it as is
for the sake of easier understanding. Finally, we note that due to backlogging allowed
to the final period of the horizon, this problem is always feasible. However, as we
have observed from our own computational experiences as well as from our discus-
sions with some other researchers, this is a characteristic that makes these problems
computationally challenging when attempting to optimize.

2.2 Two-stage glass container production scheduling problem

This problemoriginates from the glass containermanufacturing, where a furnacemelts
the raw material in the first stage of the production process, and molding machines are
used in the second stage to finalize the containers. In a typical glass containermanufac-
turer, the daily capacity of the furnace can vary from 100 to 650 ton/day. We refer the
interested reader to Toledo et al. (2013) for further technical details of the production
process. In short, the TGCPSP is a two-level lot sizing and scheduling problem with
parallel machines and sequence-dependent setup costs and times. Different than the
problem discussed in the previous section, it does not allow backlogging.
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Parameters

C : Melting capacity of the furnace in a period (in tonnes).
nik : Maximum number of mold cavities of machine k for product i .
nik : Minimum number of mold cavities of machine k for product i .
pik : Amount of product i produced per mold cavity of machine k in a period

(in tonnes).
hi : Holding cost for carrying one tonne of product i into the next period.
ci jk : Cost to set up machine k from product i to product j , i �= j .
si jk : Capacity necessary to set up machine k from product i to product j , i �= j

(in tonnes).
dit : Demand for product i at the end of period t (in tonnes).
ω : Penalty cost per tonne of furnace under-utilization.

Decision variables

Yitk : 1 if product i is assigned to machine k in period t ; 0 otherwise.
Qt : 1 if the furnace is active in period t; 0 otherwise.
Zi jtk : 1 if there is a setup changeover from product i in period t − 1 to product j

in period t on machine k; 0 otherwise.
Nitk : Number of active mold cavities on machine k dedicated to product i in

period t .
Ii t : Inventory of product i at the end of period t (in tonnes).
I dt : Idle capacity of the furnace in period t (in tonnes).

Min
∑

i, j,t,k

ci jk · Zi jtk + ω ·
∑

t

I dt +
∑

i,t

hi · Ii t (2.9)

Subject to:

Ii t − Ii,t−1 + dit =
∑

k

pik · Nitk −
∑

k, j

s j ik · Z jitk ∀(i, t) (2.10)

∑

i,k

pik · Nitk + I dt = C · Qt ∀(t) (2.11)

Nitk ≤ nik · Yitk ∀(i, t, k) (2.12)

Nitk ≥ nik · Yitk ∀(i, t, k) (2.13)
∑

i

Yitk ≤ 1 ∀(t, k) (2.14)

Qt =
∑

i

Yitk ∀(t, k) (2.15)

∑

i

Yitk ≥
∑

i

Yi(t+1)k ∀(t, k)|t < T (2.16)

Y jtk + Yi(t−1)k ≤ Zi jtk + 1 ∀(i, j, t, k) (2.17)
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∑

i, j

Zi j tk ≤ Qt ∀(t, k) (2.18)

pik · Nitk −
∑

j

s j ik · Z jitk ≥ 0 ∀(i, t, k) (2.19)

(
Ii t , I dt , Qt

) ≥ 0, Nitk ∈ Z+,
(
Yitk, Zi jtk

) ∈ {0, 1} (2.20)

The problem aims to minimize the total cost over the planning horizon that involves
inventory and setup costs as well as penalties for the idle capacities of furnaces, as
noted in (2.9). The glass container demands have to be fulfilled without backlogging
as ensured by (2.10), where the “setup time” (i.e., the number of tonnes of products
wasted from the capacity) is also taken account of. The constraint (2.11) enforces
the capacity limit of the furnace, and also ensures that the idle time is captured if
the furnace is used. The maximum and minimum number of active mold sections in
a given machine are enforced by (2.12) and (2.13) respectively, when a product is
produced. Each machine can produce at most one product in a time period (2.14),
and the two-stage process is synchronized by (2.15), which would activate the furnace
if a product is assigned to a machine. If the furnace is deactivated in period t , then
all associated machines will also be idle in the remainder of the horizon as enforced
by (2.16). Constraints (2.17) and (2.18) capture product changeovers and ensure that
they can happen only when the furnace is active. Constraint (2.19) enforces that the
“setup time” used is not greater than the quantity produced. Finally, (2.20) defines the
variable domains.

3 Proposed heuristic: relax-and-fix with fix-and-optimize

Here we describe the two heuristics and how they are combined to solve the multi-
level lot-sizing problems. For both heuristics, let’s consider a matrix F × T where
each entry is a binary variable w f t . The RF is a construction heuristic which defines
an initial solution by solving several small mixed-integer problems (MIP). This is
done by fixing or relaxing most of binary variables, enforcing only few of them to be
integer and optimizing them. We call this small set of integer variables as window
in the remainder of the paper. The pseudo-code of the RF approach proposed in this
paper is summarized in Fig. 1.

The inputs of the RF are the set of binary variables (sol.w), the number of binary
variables (windowSize) to be chosen, the selection criteria to choose variables
(windowT ype), the overlap rate of binary variables to be re-optimized (overlap)
and the execution time limit (timeLimit). Initially, all binary variables in the RF
solution (sol.w) are relaxed which means they can take any value between 0.0 and
1.0. A window is defined as a set that includes a fixed amount (windowSize) of
variables (line 2, Fig. 1). The variables inside the window are enforced to be integer
in the set wMI P (lines 4 and 10, Fig. 1), while the others are kept relaxed in wLP

(lines 5 and 11, Fig. 1). The resulting MIP is then solved (line 7, Fig. 1). Next, a new
set of variables (window) is defined, a subset of integer variables is fixed (w f i x ), and
another sets of integer and relaxed variables are optimized (lines 8 to 11, Fig. 1).
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Fig. 1 Pseudocode of relax-and-fix

The window type (windowT ype) defines how variables are selected to compound
the window, as well as how it is moved after each iteration. We propose three different
window types: row-wise, in which the window moves along rows; column-wise, in
which the windowmoves along columns; and value-wise, in which the window selects
the variables with relaxed values closest to 0.5. The window moves step variables at
each iteration, with step = |overlap∗windowSize| (line 8, Fig. 1), where overlap ∈
[0, 1] is the overlap rate defined by the user. Fixing happens to all variables that leave
the window in the next iteration (line 9, Fig. 1), and the same number of relaxed
variables are enforced to be integer. The algorithm continues processing in this fashion
until all variables are fixed. We note that the RF process would benefit if the problem
considered, such as the MLCLSP with backlogging, has always a feasible solution;
this is a property commonly exploited by other researchers using RF as well [see, e.g.,
Stadtler (2003) and Akartunalı and Miller (2009)].

Figure 2 shows examples of the three window types as well as how they proceed for
windowSize = 5 and step = 2. Figure 2a illustrates the row-wise window, where
variables from wF1,T1 to wF1,T5 are first include in window to be optimized as binary
variables. After finding the solution of this MIP, variables wF1,T1 and wF2,T2 are fixed
and leave thewindows set, while variableswF1,T6 andwF2,T1 are enforced to be binary
variables. This procedure allows re-optimizing variables wF3,T1 , wF4,T1 and wF5,T1 in
this step. A similar idea is applied in the column-wise window as illustrated by Fig. 2b.

When using the value-wise window, the model is first solved with all variables
relaxed so that the relaxed solution is obtained for evaluation. This is shown by the
first matrix on the left side of Fig. 2c, where wF1,T2 , wF4,T2 ,wF3,T3 ,wF2,T4 and wF3,T4
variables are the closest to 0.5. Thus, they are selected to be optimized as binary
variables in window set. When two or more variables have the same value, those
within first columns are preferred. If the variable with same value are in the same
column, then first rows will be picked first. In the two-dimensional matrix F × T
defined for lot-sizing problems, this means to choose products in the earlier periods
(first columns) and end products (first rows). These criteria are also used to decide how
to fix variables, after the MIP problem is solved. For example, variables wF1,T2 and
wF4,T2 are chosen to be fixed (middle matrix, Fig. 2c), once they are in the first column
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(a)

(b)

(c)

Fig. 2 Relax-and-fix different types of windows: a row-wise; b column-wise; c value-wise. For each
window, three iterations are shown in sequence. Window size = 5, overlap rate = 60 %

among variables in the window set. In this step, variables wF3,T1 and wF1,T5 are now
included in window, and wF3,T3 , wF2,T4 and wF3,T4 remain to be re-optimized.

In our framework, the solution built by the RF will be used as the solution to initiate
the FO. The steps executed by FO are very similar to RF, where several MIP problems
need to be solved. Figure 3 shows the FO pseudo-code. A rolling window, covering
windowSize number of variables in F × T matrix (sol.w), is also defined for FO
and these variables are adjusted as binary to be optimized by a solver. However all
variables outside the window are kept fixed in the FO heuristic. At each iteration,
after solving the MIP subproblem, the window is moved step variables forward with
step = |overlap ∗ windowSize| (line 9, Fig. 3).

FO improves the binary values following row and column directions and hence two
window types are defined. The first window type combines the row-wise, which covers
the matrix along the rows (Fig. 4a) and column-wise, which does the same along the
columns (Fig. 4b) following the same idea defined for RF. However, FO applies both
windows types during its execution adjustingwindowT ype in lines 2 and 14 (Fig. 3).
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Fig. 3 Pseudocode of fix-and-optimize

(a)

(b)

Fig. 4 Fix-and-optimize: a row-wise and b column-wise. Three iterations of each direction are shown with
window size = 5 and overlap rate = 60 %

In this case, windowT ype = 0 means to apply row-wise and windowT ype = 1
column-wise.

The second type is a square-wise window that covers the matrix along rows (Fig. 5
a) and columns (Fig. 5b) simultaneously, compounding a square through the matrix.
Note that this square overlaps in both sides with the same overlap rate, and step is
rounded down to the closest integer multiple of the square side. The square moves
along rows and columns during the FO execution according to the windowT ype
value. In this case, windowT ype = 0 means moving the square in the row direction
and windowT ype = 1 moves it in the column direction.

123
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(a)

(b)

Fig. 5 Fix-and-Optimize with square window following: a row and b column directions. Six iterations of
column direction and three of row direction are shown, both with window size = 9 and overlap rate = 70 %

The Relax-and-Fix with Fix-and-Optimize (RFFO) heuristic proposed is summa-
rized in Fig. 6. After the RF execution is complete, FO tries to improve this initial
solution until the time limit has been reached. If the improvement achieved by a FO
solution did not satisfy a given tolerance tol, the window size is increased by inc
variables, a user-defined parameter. Thereafter, the MIP subproblems become larger
as an attempt to find better solutions. When using the square window, the increment
will affect the window area, making its growth faster when small, and slower when
larger. The window area will be rounded to the closest perfect square integer so that
the square window can be formed, but the rounded value will not be used in future
increment calculations.

4 Computational results

The computational tests reported here were run on a PC with Intel i7 processor, 2.6
GHz, and 8GB RAM, and all mathematical models were implemented and solved
using IBM ILOG Cplex 12.2 callable library. We have implemented RFFO first to
solve the MLCLSP with backlogging, and therefore, we discuss in detail parameter
tuning of themethod as well as extensive results achieved for theMLCLSP next. Then,
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Fig. 6 Pseudocode of RFFO

the application of RFFO to TGCPSP will follow with computational results obtained
for instances based on parameters obtained from a glass container manufacturer.

4.1 Results for MLCLSP with backlogging

In order to evaluate the effectiveness of our method solving theMLCLSP, we compare
the RFFO framework to two state-of-the-art methods from the recent literature: Aheur
(Akartunalı and Miller 2009) and LugNP (Wu et al. 2011). The executable codes of
these methods were kindly provided by the respective authors so that we could run all
methods on the same computer for a fair comparison.

We used all the four test sets (SET1 to SET4) of Multi-LSB (2014) for our compu-
tational experiments, where for all problems multi-item and backlogging are allowed.
Each of these test sets has 30 instances with 6 machines, 78 products (divided into
11 product families) and 16 periods, except that SET2 instances have 24 periods. A
product can be component for only one product in the bill of materials (assembly
structure) defined for these instances. The resource utilization factor is 1.05 for SET1
and SET2, 2.0 for SET3 and 1.25 for SET04. This factor determines how much of the
total maximum resource capacity is required to supply all the demand, which means
a factor greater than 1.0 implies that backlogging in the last period is necessary. The
backlogging costs are set to twice the inventory holding cost for SET1 and SET2,
and 10 times the inventory holding costs for SET3 and SET4. These characteristics
make SET3 and SET4 harder to solve, as also noted by Akartunalı and Miller (2012).
Some of the hardest instances from this test are recently included in the MIPLIB
2010 library (MIPLIB 2010) as “open problems”. We make a practical remark that
very high utilization factors of SET3 and SET4make these test instances unrealistic in
practice. However, the computational challenges they offer as well as the fact that other
researchers have used them make these instances appealing, giving us a significant
opportunity to benchmark.

All three methods were executed for 100 s in SET1, 150 s in SET2 and 300 s in
SET3 and SET4, to remain consistent with the computational times used by Wu et al.
(2011) for LugNP, where the Aheur and LugNP results achieved smaller duality gaps
against those returned by the branch-and-cut (B&C) algorithm embedded in Cplex.

Initially we set RFFO parameter values empirically, based on preliminary tests
executed over randomly chosen instances, where RF and FO apply value-wise and
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row/column-wise, respectively. RFFO was set with an initial window size of 140
variables for RF windows and 5 for FO windows. Overlap rate for RF was set to 80 %,
and for FO to 40%.FO improvement tolerance usedwas set to 5%, and failing to obtain
such improvement would increase the window size by 40 variables. Next, the effects of
changing these initial parameters were evaluated with computational tests conducted
over SET1 to SET4 ofMLCLSP as shown by Fig. 7. The new parameter values chosen
from the initial ones are indicated with circles, and they allow us to customize RFFO
to achieve better results for the benchmark set of instance of MLCLSP. The average
deviation for all instances in each set is outlined and such results are compared to
LugNP and Aheur. We calculate the deviation (denoted by Dev(%)) for all instances,
using the Eq. (4.1), where Sol Re f refers to the “Reference” solution, i.e., LugNP and
Aheur.

Dev(%) =
(
Sol RFFO − Sol Re f

Sol Re f
· 100

)
(4.1)

The effect of changing parameter values is negligible for the instances of SET1 and
SET2, and it also remains limited for the instances of SET3, whereas SET4 instances
seem to be in general quite sensitive to parameter changes. A large window for RF
seems to be not as efficient as one with 40 variables, where the results for SET4 seem
to fluctuate as shown in Fig. 7a, b. The RF overlap rate of 80 % seems to be slightly
better than low values (Fig. 7c, d), and increasing the preferable value of 1 % for
FO improvement tolerance worsens the results over SET4 (Fig. 7e, f). A large initial
FO windows size with 40 variables gives some improvement for all sets (Fig. 7g, h),
with significant fluctuation for SET4 instances. Once FO fails to improve solutions by
1 %, an increment of 10 variables seems to be working best for increasing submodels
(Fig. 7i, j). Finally, the overlap rate of 50% produces slightly better average deviations
than the other values (Fig. 7k, l). We also present the improvement of deviations after
each parameter change from the initial settings in Fig. 8, which indicates that these
adjustments have the biggest impact on SET4 instances.

As shown on all these cases, the RFFO performs better when RF and FO start
solving MIP sub-problems with the RF and FO window size of 40 variables. RF is
able to obtain better solutions for FO when 80 % of its variables can be re-optimized
(Overlap rate), while FOworks better re-optimizing 50% of its variables. Such behav-
ior seems to be related to the fact that FO is an improvement heuristic and RF is a
construction heuristic, so RF needs to review past decision more often to converge
to a feasible solution. We also note that we have experimented with the sensitivity of
other parameters but seen insignificant differences in many cases. For example, RFFO
achieves average values less than 0.1 % different when FO improvement tolerance is
set as 5 and 10 % in SET4. An exhaustive finer evaluation of these parameters and
experimenting with other test sets might potentially lead RFFO to achieve “optimal”
performance. However, as noted earlier, our main focus in this paper is to evaluate
strategies regarding choices of decompositions ofMIP sub-models apparent in RF and
FO, which we will discuss next.

A total of six parameter setups were defined in order to determine which window
type combination has better performance forMIP sub-models inRF and FO. Parameter
setups #1 to #3 use RF row-wise, column-wise and value-wise windows, respectively,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 7 Analysis of parameter values: (a, b) RF window size, (c, d) RF overlap rate, (e, f) FO tolerance, (g,
h) FO window size, (i, j) FO increment, (k, l) FO overlap rate
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Table 1 Average deviation and number of better solutions in all sets for each window type combination

Setup Windows Better solutions

RF FO RFFO Draw LugNP Dev. (%)

#1 Row Row/column 61 38 21 −0.49

#2 Column Row/column 68 41 11 −0.98

#3 Value Row/column 68 37 15 −1.18

#4 Row Square 41 36 43 1.48

#5 Column Square 57 43 20 −0.55

#6 Value Square 49 32 39 0.20

combinedwithFO row/columnwindow (first type). Setups #4 to #6use all RFwindows
combined now with FO square window (second type). We executed all the six setups
for all test instances, and the results were compared to LugNP. Table 1 summarizes
the results obtained by each setup, showing the number of better solutions found by
RFFO, LugNp and the draws. It is considered draw when the deviation of solution
values for some instance is less than 0.01%. The last column in Table 1 has the average
deviation of RFFO solutions against LugNP for all instances in all sets.

The setup #3, which combined RF value-wise window and FO row/column-wise
window, showed the best performance with an average deviation of −1.18% as well
as 68 wins over LugNP. The combination of RF row-wise and column-wise with
FO row/column-wise also returned improvement from LugNP. However, the FO with
square approach seems to be better only when combined with RF column-wise. Thus,
for the remainder of computational tests, we used setup #3.

Next, we present Fig. 9, summarizing how the FO heuristic can improve the initial
solution built by RF. It shows the average deviation of the solutions found by RF
and RFFO from LugNP and Aheur for SET1 to SET4. RFFO was executed with
the parameters values and window types discussed earlier. RF on its own returns on
average solutions with less quality compared to the benchmark methods. However,
the FO improves these initial solutions significantly for all of these four test sets, in
particular for SET3 and SET4.

Finally, we discuss the results comparing the proposed RFFO approach against
Aheur and LugNP, as summarized in Table 2. Regarding average percentage improve-
ment, the results for SET1 and SET2 are not necessarily improved by RFFO, where it
achieved almost the same performance as the benchmark methods with average devia-
tions around 0.0 %. This can be also seen by the high number of draws, but RFFO was
able to return better solutions than LugNp and Aheur for both SET1 and SET2. On
the other hand, RFFO outperforms the two benchmark methods in SET3 and SET4,
achieving more than 4 and 2 % of average improvement, respectively. This is quite
significant, since these sets include the most challenging instances. Considering the
number of better final solution values, our proposed framework outperformed bench-
mark approaches for more than 20 out of 30 instances in each of the sets SET3 and
SET4.
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Table 2 Number of better solutions and deviation values by set

Set RFFO versus Aheur RFFO versus LugNP

RFFO Draw Aheur Dev. (%) RFFO Draw LugNP Dev. (%)

SET1 8 21 1 −0.11 10 19 1 −0.14

SET2 9 15 6 0.08 10 14 6 0.07

SET3 27 0 3 −4.78 22 0 8 −2.94

SET4 28 2 0 −2.23 26 4 0 −1.69

Next we discuss detailed results for each data set, where tables with detailed results
for all instances are provided in Appendix. We start with Appendix Tables 4 and 5
showing results for SET1 and SET2 instances, respectively. We also provide the root
node lower bounds with (�, S) inequalities of Akartunalı and Miller (2012), shown as
XLP, to indicate the computational complexity of the instances. It can be noticed that
deviations are low and most of them are draws, with several deviations between 1.00
and 0.00%, explaining the low average improvement. Compared to Aheur and LugNP,
SET1 has the most positive deviation of 0.24 % and the most negative deviation (best
improvement) of −0.80 % from Aheur and of −1.83 % from LugNP, respectively.
In SET2, it is worth to note that there are more negative than positive values, but the
high positive deviations for SET2_23, SET2_1 and SET2_7 are the main reasons for
the positive average deviation reported in Table 2. Our computational experience is
that the instances in SET1 and SET2 are quite easy to solve in general, and therefore
harder to improve, most likely because the results from literature are already very good
and close to optimality. This can be verified by the results and comparisons carried
on Akartunalı and Miller (2009) and Wu et al. (2011) to support the performance of
Aheur and LugNP against B&C.

Appendix Table 6 shows the results for SET3, where the results dominantly indicate
negative deviations, reaching−11.77% fromAheur and−9.18% from LugNP for the
instances SET3_21 and SET3_16, respectively. Another important remark to make is
that RFFO improves Aheur and LugNP solutions significantly (more than 5 %) for
15 and 9 instances, respectively, whereas the worst performance for RFFO is below
3.1 % compared to these two benchmarks (in case of SET3_14, with 1.14 % against
Aheur and 3.06% against LugNP in SET3_29). This is important since SET3 includes
hardest to solve instances in these problems.

Appendix Table 7 summarizes the results for SET4. The results are in line with
the results of SET3, indicating noticeable negative deviations (though slightly less
significant compared to SET3). There is no considerable positive deviationwith 2 and 4
results considered draws, respectively, against Aheur and LugNP. Negative deviations
reach −8.53 % against Aheur and −5.66 % against LugNP, whereas RFFO improves
Aheur and LugNP solutions more than 3 % for 8 and 7 instances, respectively.

Finally, we present in Fig. 10 computational performance of different methods
(including default Cplex) with extended computational times, where the average value
of the best solutions found by eachmethod is given. All methods were executed for 10-
fold time limits compared to our original time limits, i.e., 1000 s for SET1 instances
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(Fig. 10a), 1500 s for SET02 instances (10(b)), and 3000 s for SET03 and SET04
instances (Fig. 10c, d), respectively.

We have omitted some initial values (e.g., Cplex and AMH first values for SET02),
as they were out of the scale of the graphs used and would have deteriorated the visu-
alization otherwise. As the graphs indicate, RFFO finds high quality solutions quickly
and only improve these solutions slightly during the extended times. Moreover, RFFO
solutions over the extended times are only outperformed in SET02, albeit slightly, by
LugNP and Aheur, where Aheur is able to do so only after 1200 s. RFFO is always
better on average for all other sets showing a more stable performance when compared
with the other methods, achieving these solutions very quickly.

4.2 Results for TGCPSP

The effectiveness of our method is now evaluated solving the TGCPSP, where one
of the key differences compared to previous computational tests is that feasibility of
the problems are not guaranteed, which was ensured with the backlogging to the last
period in case of MLCLSP. We benchmark our results against those returned by the
default Cplex solver and the hybrid genetic algorithm (HGA) of Toledo et al. (2013),
which is a custom-designed method specifically for TGCPSP. HGA runs a genetic
algorithm (GA) with several populations, where their individuals are hierarchically
structured in trees, and integrated with simulated annealing (SA) and the so-called
cavity heuristic (CV). SA is applied over the best individual found by the GA at each
generation to intensify the search over its neighborhood. CV determines the number of
mold cavities and, consequently, the efficiency of the machine during the production
process of containers. HGA ran 10 times over each test problem within 1 h, and
the same time limit was spent by Cplex to solve each test problem using the model
described in Sect. 2.2. More details about the algorithm and parameters used can be
found in Toledo et al. (2013).

The test problems, based on data provided by real-world glass container plants, are
compounded by 150 artificial and 150 real problems. The artificial set is generated
randomly in an academic fashionnot necessarily representing a real-world scenario and
it involves small to moderate size instances with T ∈ {7, 14} days, K ∈ {1, 2, 3, 4, 5}
machines and N ∈ {5, 10, 20} products per week. The real set corresponds to actual
scenarios that happen in the glass container plants, where the production process
involves T ∈ {14, 28, 56} days with a number of products around 10–90 per week,
and K ∈ {2, 3, 4, 5} machines per furnace. For each set of problems, the type of
solution returned by the Cplex solver within a 1 h time limit is used to classify test
problems as Optimal (solver returns an optimal solution), Feasible (solver returns a
feasible solution without guaranteed optimality), andUnknown (solver does not return
a feasible solution). Table 3 indicates some characteristics of these test sets as well as
their subsets.

We recall that for the MLCLSP problem discussed in the previous section, RFFO
optimized the setup variables w f t combining RF with value-wise window and FO
with row/column-wise window, meaning that FO first searches through rows (families
f ) and then through columns (periods t) in the two-dimensional data structure of
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Table 3 TGCPSP problem
instances

Average

Type Status # Instances CPU(s) Gap (%)

Artificial test problems

O0 Optimal 27 1.8 0.0

O1 Optimal 27 419 0.0

F0 Feasible 24 3600 3.2

F1 Feasible 24 3600 9.8

F2 Feasible 25 3600 17.1

U Unknown 23 3600 –

Real test problems

O0 Optimal 3 1294 0.0

F0 Feasible 20 3600 9.1

F1 Feasible 21 3600 20.6

U Unknown 106 3600 –

(a)

(b)

Fig. 11 Fix-and-optimize: a machine-product-period and b product-machine-period. Three iterations of
each direction are shown with window size = 5 and overlap rate = 60 %

w f t . Since the setup variables Yitk of the TGCPSP are three-dimensional, a further
elaboration is necessary for the RFFO framework. This does not pose a problem in
executingRFwith value-wisewindow, but a strategy to execute FOneeds to be adapted
from the previous row/column-wise window. Based on our preliminary testing with
various options, we concluded to execute FO following first the sequence product-
machine-period and then machine-product-period as illustrated by Fig. 11.

In Fig. 11a, the window includes variables selecting indexes by machines Ki first
followed for items Ii (products) and periods Ti . After to optimize on this way, the
window in this three-dimensional data-structure selects variables indexes in Fig. 11b
by items followed for machines and periods.

We have executed RFFO for each test instance within the same time limit of 1 h,
where we use the initial parameter settings presented in the previous section. First of
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all, to test the flexibility of our approach, we executed RFFO on all the “Unknown”
instances that were identified by the default Cplex, which correspond to 15.3 and
70.7 % of the artificial and real test problems, respectively. In the same 1 h limit,
RFFO was able to find solutions for 56.5 and 20.8 % of these unknown instances,
respectively, achieving failure rates of 6.67 and 56% in the overall sets of artificial and
real problems, respectively. Although the improvement over Cplex for the unknown
artificial instances is significant, the unknown real instances still present a challenge, in
particular due to their immense sizes and high number of binary variables (on average
3,329 for real problems). In addition, the involvement of general integer variables
complicate these problems significantly and they were not specifically dealt within our
RFFO framework in order to preserve the simple structure presented earlier for mixed
binary problems. Moreover, the performance might also be affected by the fact that
the accessibility of a feasible solution is less straightforward compared to MLCLSP
with backlogging, where the simple solution of zero production and backlogging total
demand to the last period is always feasible (but costly).We are currently investigating
these areas more thoroughly as needed and plan to address these challenges in our
future research outcomes.

In order to evaluate the solution quality RFFO can achieve for TGCPSP, we have
next executed RFFO for all test instances that are not “Unknown”. Using the same time
limit of 1 h as Cplex and HGA, we present our computational results executing RFFO
with the initial parameter values (RFFOd ) and with the better parameter setting for
the benchmark instances of the MLCLSP (RFFO). Thus, the idea here is to evaluate
the performance of RFFO running with the initial values empirically obtained as well
as with those parameter values customized to solve MLCLSP instances.

In Fig. 12, we compare all methods for the five subsets of artificial test prob-
lems involving 127 instances, where the gap (%) is calculated by Gap(%) =
(Upper Bound − Lower Bound)/(Upper Bound) using the best solution obtained

Fig. 12 GAP(%) comparisons for artificial test problems
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Fig. 13 GAP(%) comparisons for real test problems

by each method for Upper Bound and the lower bound returned by the branch & cut
algorithm of Cplex for Lower Bound.

As Fig. 12 indicates, RFFOd was able to find optimal solutions in the set of
instances, whose optimal values were returned by Cplex (O0 and O1), whereas HGA
and RFFO could not return optimal solutions for all test problems belonging to
set O1 with average gaps 0.5 and 0.1 %, respectively. For the other three subsets
of problems, where only feasible solutions were returned by Cplex, all methods had
similar performance with regards to solution quality, but RFFOd managed to achieve
consistently the lowest average gap value. This is promising, in particular considering
that HGA is a custom-designed method for these problems.

In Fig. 13, we present the same evaluation for three subsets of real test problems
involving 44 instances. Based on the results obtained by RFFOd for the artificial test
problems, we have also implemented a slightly modified version of RFFOd , named
RFFO , where the order to optimize variables in the FO is changed. In this case,
the setup variables Yitk are optimized by FO following first the sequence machine-
product-period and then the sequence product-machine-period. Similar to artificial
instances, the three RFFO versions were able to find optimal solutions for the real
instances, for which Cplex could return their optimal values, while HGA did not
manage to find the optimal solution for all instances of this set O0. For the two
feasible sets, RFFOd and RFFO return almost the same average gap value as Cplex,
whereas the modified version RFFO outperforms Cplex and HGA for the set F0 and
outperforms Cplex for set F1. On the other hand, HGA generates better solutions
on average than RFFO for the set F1, but our results are competitive, considering
that HGA is specifically designed for these problems. As the experimentation with
RFFO indicated, we remark that other changes in RFFO parameters can potentially
improve its performance as it was done for the benchmark set of MLCLSP. However,
as a general framework, it works effectively. Finally, we note that RFFO is currently
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designed to optimize only binary variables, but a more sophisticated RFFO framework
could handle general integer variables of the TGCPSPmore efficiently, which we plan
to address in near future.

5 Conclusion

A hybrid method, RFFO, was proposed by combining two well-known heuristics,
RF and FO. A simple combination is proposed, where RF is used to build an initial
solution which is further improved by the FO in available computational time. The
RFFO is applied to the MLCLSP with backlogging and Two-stage Glass Container
Production Scheduling Problem (TGCPSP). Using various test problems available
from the literature, the proposed method was benchmarked to state-of-the-art methods
from literature: Aheur of Akartunalı and Miller (2009) and LugNP ofWu et al. (2011)
for MLCLSP, which are also heuristics based on mathematical programming, and
HGA of Toledo et al. (2013) for TGCPSP, which is a genetic algorithm.

In the proposed approach, both heuristics use mathematical programming to solve
mixed-integer subproblems defined by a certain amount of binary variables. These
variables define awindow thatmoves in the solutionmatrix usingdifferent orientations.
Also, the number of binary variables under the window is increased if the solution is
not sufficiently improved in a single execution of the FO.

Different strategies to traverse the matrix optimizing the binary variables were
proposed and tested, where the best one reported combines a value-wise RF with
row/column-wise FO. Thus, the results reported indicate better initial solutions
returned by RFwhen the optimization is focused on relaxed variables closer to 0.5, fol-
lowed by FO working better trying to optimize separately rows and columns oriented
variables. The best setup found allowed the proposed method significantly outperform
the benchmark approaches in two out of four test sets of MLCLSP. However, it was
also able to return competitive results in the other two sets. More importantly, the
results indicate a better performance of RFFO in the more complex test instances of
SET3 and SET4. Similarly, three configuration of RFFOwere also able to return com-
petitive results for the more sophisticated problem of TGCPSP, outperforming default
Cplex regularly and obtaining better or comparable results with HGA, which is a fast
and efficient custom-built method for these problems. We believe that RFFO is overall
an effective method for lot-sizing problems with varying characteristics.

As future work, we plan to conduct extensive computational testing on different
combinations of parameter values. This would give better insight into sensitivity of
different sizes for the MIP’s solved by RF and FO, as well as different overlap rate
values. We are also currently investigating combining RF and FO with other meta-
heuristics. For instance, RF could be used to provide different initial solutions if
a random criteria is incorporated in the value-wise strategy. Also the proposed FO
heuristic could be applied as local search to improve better solutions found by other
meta-heuristics. Another area to investigate is the potential improvement of themethod
if it exploited the specific problem structure.We plan to study this for different settings,
e.g., for overtime.
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Finally, we note that the design proposed in this paper is generic and problem-
independent. To verify its robustness, we plan to extend this approach to more general
MIP problems that naturally have a sequential decision making structure, including
problemswith general integer variables. In this case, it is in particular our special inter-
est to investigateMIP problemswhere theRF heuristic could fail to determine an initial
solution. Thus, another construction heuristics could be applied taking advantage from
the partial solution provided by the proposed RF. We are currently investigating some
crew scheduling problems with this framework.

Acknowledgments Wewould like to thankDr. TaoWu for providing us the code of LugNPheuristics used
in the comparisons. The work conducted by the first three authors was supported by Fundação de Amparo
e Pesquisa do Estado de São Paulo (FAPESP) Projects 2010/10133-0, 2011/15534-5 and 2011/15581-3
and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Projects 483474/2013-4 and
312967/2014-4.

6 Appendix

See Tables 4, 5, 6, and 7.

Table 4 Comparison for SET1 instances (time limit = 100 s)

SET1 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 17,888 22,382.5 22,460.7 22,382.1 0 −0.35

2 23,534 27,584.8 27,584.8 27,584.6 0 0

3 21,227 25,187.3 25,187.3 25,246.6 0.24 0.24

4 22,232 26,334.7 26,334.7 26,334.7 0 0

5 21,446 25,145.5 25,145.5 25,145.8 0 0

6 22,974 26,667.4 26,770.8 26,667.5 0 −0.39

7 20,360 24,123.8 24,123.8 24,124.2 0 0

8 25,582 29,640.4 29,640.4 29,639.8 0 0

9 16,321 20,971.2 21,362.7 20,971.0 0 −1.83

10 17,998 22,645.8 22,647.5 22,562.8 −0.37 −0.37

11 11,080 12,955.6 12,955.6 12,955.3 0 0

12 24,721 26,831.3 26,831.3 26,831.1 0 0

13 20,782 23,127.8 23,127.8 23,128.5 0 0

14 22,264 25,035.8 25,035.8 25,036.0 0 0

15 12,401 14,118.1 14,118.1 14,117.9 0 0

16 15,122 17,540.2 17,400.1 17,400.1 −0.80 0

17 20,468 23,007.5 23,007.5 22,996.2 −0.05 −0.05

18 11,075 12,973.8 12,973.8 12,973.8 0 0

19 13,276 16,502.9 16,502.9 16,349.2 −0.93 −0.93
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Table 4 continued

SET1 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

20 14,101 17,158.6 17,158.6 17,158.7 0 0

21 10,159 12,421.2 12,421.2 12,421.1 0 0

22 38,040 40,158.3 40,188.7 40,158.4 0 −0.08

23 29,331 30,605.7 30,605.7 30,605.5 0 0

24 28,858 32,190.4 32,145.5 32,007.2 −0.57 −0.43

25 51,371 52,989.2 52,959.9 52,960.3 −0.05 0

26 39,379 41,221.5 41,221.5 41,221.0 0 0

27 40,838 43,319.7 43,319.7 43,289.6 −0.07 −0.07

28 39,846 40,993.5 41,019.8 40,993.5 0 −0.06

29 23,155 25,492.6 25,322.3 25,322.0 −0.67 0

30 68,989 70,863.7 70,863.7 70,863.7 0 0

Table 5 Comparison for SET2 instances (time limit = 150 s)

SET2 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 46,116 52,050.7 52,050.7 52,339.4 0.55 0.55

2 47,780 53,863.4 53,713.4 53,713.0 −0.28 0

3 40,551 46,894.5 47,053.2 46,893.3 0 −0.34

4 36,347 43,009.8 42,977.1 43,063.1 0.12 0.20

5 45,395 51,757.6 51,757.6 51,768.8 0.02 0.02

6 45,902 51,858.1 51,858.1 51,858.4 0 0

7 52,825 58,153.8 58,153.8 58,425.2 0.47 0.47

8 48,033 54,396.2 54,449.6 54,182.9 −0.39 −0.49

9 37,553 43,737.8 43,737.8 43,690.0 −0.11 −0.11

10 38,751 45,278.8 45,278.8 45,305.8 0.06 0.06

11 65,210 68,488.8 68,646.4 68,487.8 0 −0.23

12 62,792 66,561.9 66,474.5 66,475.4 −0.13 0

13 34,778 39,120.3 39,082.7 38,852.7 −0.68 −0.59

14 62,907 66,373.7 66,383.2 66,325.1 −0.07 −0.09

15 59,079 61,574.1 61,574.1 61,574.0 0 0

16 75,682 79,364.8 79,385.0 79,363.9 0 −0.03

17 36,809 41,298.6 41,282.4 41,192.6 −0.26 −0.22

18 77,873 81,561.8 81,562.9 81,562.5 0 0

19 54,981 58,426.1 58,426.1 58,425.4 0 0

20 119,568 122,827.6 122,827.6 122,829.0 0 0
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Table 5 continued

SET2 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

21 22,281 24,013.2 24,014.2 24,013.3 0 0

22 51,279 52,887.1 52,887.1 52,886.8 0 0

23 29,793 32,618.2 32,708.8 33,713.9 3.36 3.07

24 65,891 68,640.6 68,575.1 68,574.8 −0.10 0

25 75,627 78,064.3 78,088.2 78,064.2 0 −0.03

26 60,952 63,275.2 63,285.6 63,273.2 0 −0.02

27 53,016 54,794.1 54,794.1 54,793.9 0 0

28 44,545 46,607.9 46,607.9 46,607.6 0 0

29 93,631 96,278.0 96,157.4 96,152.0 −0.13 0

30 68,324 71,408.0 71,408.0 71,408.7 0 0

Table 6 Comparison for SET3 instances (time limit = 300 s)

SET3 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 65,668 188,294.0 189,400.6 179,554.0 −4.64 −5.20

2 82,342 216,700.4 217,283.4 216,401.0 −0.14 −0.41

3 74,209 216,517.4 207,362.6 198,215.0 −8.45 −4.41

4 78,282 214,175.7 220,062.4 203,208.0 −5.12 −7.66

5 76,607 220,928.0 220,686.4 201,723.0 −8.69 −8.59

6 79,093 213,987.2 210,339.0 203,253.0 −5.02 −3.37

7 72,979 206,793.3 208,245.8 193,804.0 −6.28 −6.93

8 88,610 231,333.9 224,404.5 226,042.0 −2.29 0.73

9 64,180 198,594.1 183,327.9 178,576.0 −10.08 −2.59

10 66,878 201,771.0 192,069.0 188,790.0 −6.43 −1.71

11 42,946 132,466.6 130,055.9 132,231.0 −0.18 1.67

12 86,047 213,445.5 211,726.2 195,981.0 −8.18 −7.44

13 74,643 199,471.6 197,240.0 195,772.0 −1.85 −0.74

14 85,209 198,005.1 200,193.9 200,257.0 1.14 0.03

15 40,715 135,491.1 125,875.5 127,045.0 −6.23 0.93

16 46,548 144,580.2 149,411.0 135,689.0 −6.15 −9.18

17 71,555 200,971.1 199,875.3 184,830.0 −8.03 −7.53

18 39,533 98,901.8 97,031.1 98,106.0 −0.80 1.11

19 47,495 149,973.9 151,618.8 138,420.0 −7.70 −8.71

20 58,189 170,524.4 163,785.9 163,740.0 −3.98 −0.03
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Table 6 continued

SET3 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

21 44,182 141,578.2 134,625.9 124,919.0 −11.77 −7.21

22 130,235 256,283.6 245,549.4 246,270.0 −3.91 0.29

23 96,810 229,468.8 215,893.6 209,798.0 −8.57 −2.82

24 105,300 272,965.6 245,491.9 241,071.0 −11.68 −1.80

25 203,044 329,382.0 333,236.6 324,800.0 −1.39 −2.53

26 145,184 286,229.0 289,459.6 280,060.0 −2.16 −3.25

27 145,420 294,614.0 297,025.5 286,754.0 −2.67 −3.46

28 145,227 225,567.2 224,734.0 227,483.0 0.85 1.22

29 79,813 189,879.7 185,569.7 191,242.0 0.72 3.06

30 274,018 415,185.0 407,150.8 399,907.0 −3.68 −1.78

Table 7 Comparison for SET4 instances (time limit = 300 s)

SET4 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 16,353 57,483.0 53,168.4 53,062.3 −7.69 −0.20

2 31,541 80,772.8 77,346.7 73,884.2 −8.53 −4.48

3 24,864 68,176.9 67,097.7 66,030.7 −3.15 −1.59

4 27,786 72,989.4 68,995.1 68,662.6 −5.93 −0.48

5 25,450 67,329.1 66,993.7 66,328.8 −1.49 −0.99

6 30,632 75,042.4 74,601.8 70,698.3 −5.79 −5.23

7 22,650 62,993.3 64,132.5 62,974.3 −0.03 −1.81

8 40,532 81,200.6 84,586.1 80,914.5 −0.35 −4.34

9 13,490 55,901.5 52,041.0 51,457.5 −7.95 −1.12

10 15,542 55,602.2 57,297.3 55,341.7 −0.47 −3.41

11 12,802 28,415.7 28,323.5 28,207.1 −0.73 −0.41

12 43,341 73,653.4 72,084.8 71,886.9 −2.40 −0.27

13 28,152 52,525.0 55,251.9 52,518.4 −0.01 −4.95

14 56,174 79,086.4 80,501.7 78,903.9 −0.23 −1.98

15 14,628 25,927.5 25,286.3 24,568.9 −5.24 −2.84

16 17,171 35,048.5 35,138.7 34,569.2 −1.37 −1.62

17 29,001 51,396.2 51,671.9 51,266.5 −0.25 −0.78

18 19,184 26,101.5 26,282.3 26,037.4 −0.25 −0.93

19 10,724 31,585.8 33,006.4 31,139.0 −1.41 −5.66

20 18,718 38,796.1 38,781.4 37,179.1 −4.17 −4.13
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Table 7 continued

SET3 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

21 15,812 25,727.0 25,840.8 25,713.0 −0.05 −0.49

22 91,715 120,008.2 119,481.0 118,749.0 −1.05 −0.61

23 55,058 74,180.4 73,297.4 73,296.6 −1.19 0

24 58,919 82,349.4 82,260.2 80,733.2 −1.96 −1.86

25 171,987 196,626.7 196,025.1 196,023.0 −0.31 0

26 110,570 137,224.6 134,856.0 134,854.0 −1.73 0

27 101,114 135,936.6 132,463.3 132,451.0 −2.56 0

28 112,892 126,553.7 126,157.1 125,872.0 −0.54 −0.23

29 51,149 66,131.1 66,217.4 66,131.4 0 −0.13

30 241,678 262,380.7 263,042.1 262,378.0 0 −0.25
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