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Abstract

This paper deals with a well-known NP-hard string problem from
the bio-informatics field: the repetition-free longest common subsequence
problem. This problem has enjoyed an increasing interest in recent years,
which has resulted in the application of several pure as well as hybrid
metaheuristics. However, the literature lacks a comprehensive compari-
son between those approaches. Moreover, it has been shown that general
purpose integer linear programming solvers are very efficient for solving
many of the problem instances that were used so far in the literature.
Therefore, in this work we extend the available benchmark set, adding
larger instances to which integer linear programming solvers cannot be
applied anymore. Moreover, we provide a comprehensive comparison of
the approaches found in the literature. Based on the results we propose
a hybrid between two of the best methods which turns out to inherit the
complementary strengths of both methods.
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1 Introduction

Longest common subsequence problems are string problems that arise frequently
in bio-informatics applications. The most general problem from this class of
problems is simply known as the longest common subsequence (LCS) problem.
A problem instance (S,Σ) consists of a set S = {s1, s2, . . . , sn} of n ≥ 2 input
strings over a finite alphabet Σ. The goal is to find the longest possible subse-
quence of all strings in S. Hereby, a string t is called a subsequence of a string
s, if t can be produced from s by possibly deleting characters. For example, agt
can be produced from addagta by deleting the two occurrences of letter d and
the last two occurrences of letter a. Apart from applications in computational
biology [13, 18, 14], the LCS problem finds applications, for example, in data
compression and file comparison [20, 3]. The LCS problem was shown to be NP-
hard [16] for general n. If n is a constant, the problem is polynomially solvable
by dynamic programming [13]. Standard dynamic programming approaches for
this problem require O(ln) of time and space, where l is the length of the longest
input string and n is the number of strings. However, dynamic programming
becomes quickly impractical when n grows.

The specific problem considered in this work is a restricted version of the LCS
problem: the repetition-free longest common subsequence (RFLCS) problem.
Given exactly two input strings x and y over a finite alphabet Σ, the goal is
to find a longest common subsequence with the additional restriction that no
letter of the alphabet may appear more than once. The problem was introduced
in [2] as a comparison measure for two sequences of biological origin. Moreover,
the problem was shown to be APX-hard in [2], which implies NP-hardness.

1.1 Related Work

A lot of research effort has been dedicated to the more general LCS problem.
Notable works include the large neighborhood search approach from [10], a
beam search approach [6], fast heuristics [23], dynamic programming-based ap-
proaches such as [22], a decomposition and extension approach aimed for prob-
lem instances with many input strings [17], and a hyper-heuristic approach [21],
among others. In comparison much less research effort has been dedicated to
solving the RFLCS problem. First heuristics were proposed in [1, 2]. In addi-
tion, in recent years three metaheuristic approaches were described in the liter-
ature for solving the RFLCS problem. The first one was the adaptation of the
Beam-ACO algorithm [6] from the LCS problem to the RFLCS problem; see [5].
Beam-ACO is a hybrid metaheuristic than makes use of a tree search method
known as beam search in the context of an ant colony optimization (ACO) al-
gorithm. Furthermore, an evolutionary algorithm (EA) for the RFLCS problem
can be found in [9]. Finally, a Construct, Merge, Solve & Adapt (CMSA) ap-
proach, which is a hybrid metaheuristic combining heuristic elements with the
application of a general purpose integer linear programming (ILP) solver, was
presented in [4]. This last approach generates, at each iteration, sub-instances
to an original problem instance and solves these by means of an ILP solver. As
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outlined in more detail below in Section 1.2, due to a rudimentary (or even the
lack of a) comparison between these methods, so far it was not clear what were
the advantages, respectively the weaknesses, of these approaches.

Bonizzoni et al. [8] studied some variants of the RFLCS, such as the one in
which some symbols are required to appear in the sought solution possibly more
than once. They showed that these variants are also APX-hard and that, in some
cases, the problem of deciding the feasibility of an instance is NP-complete.

1.2 Our Contribution

So far it was not clear which one of the proposed techniques is really the state-
of-the-art method. There are several reasons for that. First, the Beam-ACO
approach [6] was only compared to the heuristics from [1, 2]. The same is the
case for the evolutionary algorithm from [9], which was published at about the
same time as the Beam-ACO approach. While the Beam-ACO approach clearly
outperformed the heuristics in all cases, this was not the case for the evolutionary
algorithm. Finally, in [4] the proposed CMSA approach was compared to Beam-
ACO and to the application of the ILP solver CPLEX to all available problem
instances. In this context it was shown that many of the problem instances
considered to date can easily be solved by CPLEX (in the context of the used ILP
model). For the remaining ones CMSA outperformed Beam-ACO in many cases.
Summarizing, the performance relation between the proposed methods is not
yet clear and can only be determined by means of a comprehensive comparison
on a set of benchmark instances containing larger instances which can not easily
be solved by CPLEX. This is exactly what we provide in this paper.

In addition, we take profit from the lessons learnt by this comparison and
devise a hybrid method combining the CMSA algorithm with elements of beam
search in order to obtain an algorithm with the respective strengths of both
Beam-ACO and CMSA. The experimental results show that this hybrid can
currently be called the state-of-the-art algorithm for the RFLCS problem.

1.3 Organization

The remainder of this work is organized as follows. In Section 2, the stan-
dard ILP model for the RFLCS problem is provided. Furthermore, the three
metaheuristics from the literature tackling the RFLCS problem are described
in Section 3. The extended set of benchmark instances, the tuning of the algo-
rithm parameters, and a comprehensive experimental evaluation is described in
Section 4. Finally, conclusions and an outlook to future work are provided in
Section 5.

2 ILP Model for the RFLCS Problem

The RFLCS problem can be expressed as an integer linear program (ILP) as
described below. The following notations are required. The length of x is
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henceforth denoted by lx and the length of y by ly. Furthermore, we assume
that the positions in x, respectively y, are numbered from 1 to lx, respectively
from 1 to ly. The letter at position i of x, respectively position j of y, is denoted
by x[i], respectively y[j]. The set Z of binary variables that is required for the
ILP model contains a binary variable zi,j for each combination of i = 1, . . . , lx
and j = 1, . . . , ly such that x[i] = y[j]. Moreover, two variables zi,j and zk,l are
said to be in conflict, if and only if either (i < k and j > l) or (i > k and j < l).
Finally, for each letter a ∈ Σ, let Za ⊂ Z be the subset of Z that contains
all variables zi,j such that x[i] = y[j] = a. The RFLCS problem can then
be expressed as the problem of selecting a maximal number of non-conflicting
variables from Z provided that, among all variables representing a letter a ∈ Σ,
at most one variable is chosen. Given these notations, the ILP is as follows.

max
∑
zi,j∈Z

zi,j

subject to:∑
zi,j∈Za

zi,j ≤ 1 for a ∈ Σ

zi,j + zk,l ≤ 1 for all zi,j and zk,l being in conflict

zi,j ∈ {0, 1} for zi,j ∈ Z

(1)

(2)

(3)

(4)

Hereby, constraints (2) ensure that each letter from the alphabet is chosen at
most once, and constraints (3) ensure that selected variables are not in conflict.

3 Metaheuristics

In the following we describe the three existing (hybrid) metaheuristic approaches:
CMSA from [4], Beam-ACO from [6], and the EA from [9].

3.1 Description of CMSA

The pseudo-code for the application of CMSA to the RFLCS problem is provided
in Algorithm 1. In the context of this algorithm, both solutions to the problem
and sub-instances are expressed as subsets of the complete set of variables (Z).
The meaning of a variable zi,j being part of a solution S is that zi,j must be
given value one in order to produce the corresponding solution. The main loop
of CMSA, which is executed while the CPU time limit is not reached, consists
of the following actions. First, both the best-so-far solution Sbsf and the re-
stricted problem instance Zsub are initialized to the empty set. Then, a number
of na solutions is probabilistically constructed in function ProbabilisticSolution-
Construction(Z); see line 6 of Algorithm 1. The variables that form part of these
solutions are added to Zsub. The age of a newly added variable zi,j , as denoted
by age[zi,j ], is initialized to zero. After the construction of na solutions, an ILP
solver is applied with a computation time limit of tmax seconds to sub-instance
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Algorithm 1 CMSA for the RFLCS problem

1: input: input strings x and y, values for parameters na, agemax, drate, lsize

and tmax

2: Sbsf := ∅, Zsub := ∅
3: age[zi,j ] := 0 for all zi,j ∈ Z
4: while CPU time limit not reached do
5: for i = 1, . . . , na do
6: S := ProbabilisticSolutionConstruction(Z, x, y, drate, lsize)
7: for all zi,j ∈ S and zi,j /∈ Zsub do
8: age[zi,j ] := 0
9: Zsub := Zsub ∪ {zi,j}

10: end for
11: end for
12: S′ilp := ApplyILPSolver(Zsub, tmax)
13: if |S′ilp| > |Sbsf | then Sbsf := S′ilp
14: Adapt(Zsub, S′ilp, agemax)
15: end while
16: output: Sbsf

Zsub (line 12 of Algorithm 1). The best solution found by the ILP solver within
the allowed computation time is denoted by S′ilp. In case S′ilp is better than the
current best-so-far solution Sbsf , S

′
ilp replaces Sbsf (line 13). Next, the current

sub-instance Zsub is subject to changes, based on solution S′ilp and on the age
values of the variables. This is done in function Adapt(Zsub, S′ilp, agemax) in
line 14 as follows. First, the age of each variable in Zsub is incremented, and,
subsequently, the age of each variable in S′ilp ⊆ Zsub is re-initialized to zero.
Finally, those variables from Zsub whose age has reached the age limit (agemax)
are deleted from Zsub. The motivation behind this mechanism is as follows. On
the one side, variables which never appear in a solution generated by the ILP
solver should be removed from Zsub after a while, because they arguably slow
down the ILP solver. On the other side, components which appear in optimal
solutions seem to be useful and should therefore be maintained.

The last remaining component of the CMSA algorithm is the probabilistic
construction of solutions in function ProbabilisticSolutionConstruction(Z, x, y,
drate, lsize). Each solution construction starts with an empty solution S = ∅.
The first step consists in generating the set of variables that serve as options to
be added to S. More specifically, the initial set C is generated in order to contain
for each letter a ∈ Σ the variable zi,j ∈ Za (if any) such that i < k and j < l,
∀zk,l ∈ Za. Moreover, options zi,j ∈ C are given a weight value w(zi,j) := i

lx
+ j
ly

,

which is a known greedy function for longest common subsequence problems.
At each construction step, exactly one variable is chosen from C and added
to S. For doing so, first, a value r is chosen uniformly at random from [0, 1].
In case r ≤ drate, where drate is a parameter of the algorithm, the variable
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zi,j ∈ C with the smallest weight value is deterministically chosen. Otherwise,
a candidate list L ⊆ C of size min{lsize, |C|} containing the options with the
lowest weight values is generated and exactly one variable zi,j ∈ L is then chosen
uniformly at random and added to S. Note that lsize is another parameter of
the solution construction process. Finally, the set of options C for the next
construction step is generated. This is done such that C only contains variables
that represent letters that are not already represented by one of the variables
in S. Moreover, being zi,j the last variable that was added to S, C contains for
each non-represented letter a ∈ Σ the variable zr,s ∈ Za (if any) with the lowest
weight value w(zr,s) calculated as w(zr,s) := r−i

lx−i + s−j
ly−j . The construction of a

complete (valid) solution is finished when the set of options is empty.

3.2 Description of Beam-ACO

As mentioned before, Beam-ACO is a general algorithm that combines the al-
gorithmic framework of ACO with a tree search method known as beam search.
In the following we first describe the ACO-based framework of the Beam-ACO
algorithm for the RFLCS problem. Afterwards, the beam search component is
presented.

In contrast to CMSA, where solutions to the problem were kept in terms of
the set of variables from the ILP model that have value one in the corresponding
solution, solutions in Beam-ACO are represented in a different way. Solutions
in this representation are henceforth called ACO-solutions. Any common subse-
quence t of strings x and y can be translated in a well-defined way into a unique
ACO-solution T = (X,Y ), where both X and Y are binary strings and X is of
length lx while Y is of length ly: first, the position of the left-most occurrence
of t[1] in x (where t[1] is the first character of t) is determined, say k1. Then,
all X[i] with i < k1 are set to 0, while X[k1] := 1. Next, the position of the
first occurrence of t[2] in x after position k1 is determined, say k2. Then, all
X[i] with k1 < i < k2 are set to 0, while X[k2] := 1. This is continued until all
positions of t are treated. Afterwards, the same procedure is applied to string
y in order to produce Y .

Apart from the solution representation, another crucial component of any
ACO algorithm is the so-called pheromone model T , which is a probabilistic
model used for generating solutions to the tackled problem. In the context
of Beam-ACO for the RFLCS problem, T consists of a pheromone value 0 ≤
τx,i ≤ 1 for each position i of input sequence x (1 ≤ i ≤ lx), and a pheromone
value τy,j for each position j of input sequence y (1 ≤ j ≤ ly). Observe that a
pheromone value τx,i (respectively τy,j) indicates the desirability of adding the
letter at position i of string x (respectively, the letter at position j of string y)
to the solution under construction.

Algorithm Framework. The algorithmic framework of the proposed Beam-
ACO approach—see Algorithm 2 for the pseudo-code—is a MAX -MIN Ant
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Algorithm 2 Beam-ACO for the RFLCS problem

1: input: input strings x and y, values for parameters kbw, µ ∈ Z+, and drate

2: T bsf := null, T rb := null, cf := 0, bs update := false
3: Initialize all pheromone values to 0.5
4: while CPU time limit not reached do
5: T pbs := ProbabilisticBeamSearch(kbw,µ, drate) {see Alg. 3}
6: if |tpbs| > |trb| then T rb := T pbs

7: if |tpbs| > |tbsf | then T bsf := T pbs

8: ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bsf)
9: cf := ComputeConvergenceFactor(T )

10: if cf > 0.99 then
11: if bs update = true then
12: Re-init. all pheromone values to 0.5, T rb := null, bs update := false
13: else
14: bs update := true
15: end if
16: end if
17: end while
18: output: the string version tbsf of T bsf

System implemented in the hyper-cube framework (HCF) [7]. The following
notations are required: (1) T bsf is the best-so-far solution, that is, the best
solution generated by the algorithm over time; (2) T rb is the restart-best solu-
tion, that is, the best solution generated since the algorithm’s last restart; (3)
0 ≤ cf ≤ 1 is the convergence factor, which is a measure indicating the state of
the convergence of the algorithm; and (4) bs update is a Boolean control vari-
able which assumes value true when the algorithm reaches convergence. The
algorithm works as follows. Initially, the pheromone values are set to 0.5. Then,
at each iteration, a probabilistic beam search based on pheromone values and
greedy information is applied. For a description of the beam search component
see Section 3.3. The result of the application of beam search is a solution T pbs.
Next, an update of the pheromone values is performed in ApplyPheromoneUp-
date(cf , bs update, T , T pbs, T rb, T bsf). Moreover, the value of the convergence
factor cf is calculated. Depending on cf and the value of the Boolean variable
bs update, a decision on whether to restart the algorithm is made. In case of a
restart, all pheromone values are set again to 0.5. As in the case of CMSA, the
stopping criterion of the algorithm is a maximum CPU time. The algorithm
provides the string version T bsf of the best-so-far ACO-solution T bsf as output.
The two remaining procedures of Algorithm 2 are detailed in the following.

ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bsf): At each iteration, the
three solutions T pbs, T rb, and T bsf are used for updating the pheromone values.
The impact/weight of each solution for this update is determined as a function
of the convergence factor cf. The pheromone values τx,i corresponding to input
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Table 1: Setting of κpbs, κrb, κbs, and ρ depending on the convergence factor cf
and the Boolean control variable bs update

bs update = false bs update
cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κpbs 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbs 0 0 0 0 1
ρ 0.2 0.2 0.2 0.15 0.15

string x are updated as follows:

τx,i := τx,i + ρ · (ξx,i − τx,i) , (5)

where
ξx,i := κpbs ·Xpbs[i] + κrb ·Xrb[i] + κbs ·Xbs[i] . (6)

Hereby, κpbs is the weight of solution T pbs = (Xpbs, Y pbs), κrb the one of
T rb = (Xrb, Y rb), κbs the one of T bsf = (Xbs, Y bs), and κpbs+κrb+κbs = 1. The
weight values chosen for the experimental evaluation are standard for ACO algo-
rithms; see Table 1. Obviously, the pheromone update formulas above are also
applied to the pheromone values τy,j corresponding to input string y. Finally,
note that the algorithm works with upper and lower bounds for the pheromone
values, that is, τmax = 0.999 and τmin = 0.001. Not letting the pheromone values
pass these limits, has the effect that a complete convergence of the algorithm is
avoided.

ComputeConvergenceFactor(T ): The following is the formula used for calculating
the value of the convergence factor.

cf := 2


∑
τ∈T

max{τmax − τ, τ − τmin}

|T | · (τmax − τmin)

− 0.5


Accordingly, when starting (or re-starting) the algorithm, cf has value zero, and
when all pheromone values have either value τmin or τmax, cf has value one. In
general, cf moves in [0, 1].

3.3 The Beam Search Component

The pseudo-code for the probabilistic beam search component is provided in
Algorithm 3. Note that this pseudo-code shows the working of function Prob-
abilisticBeamSearch(kbw,µ, drate) of Algorithm 2. In the context of this algo-
rithm, feasible solutions are represented as strings that are subsequences of the
two input sequences. In general, solutions are constructed from left to right.
Moreover, partial solutions are extended by appending exactly one letter at a
time. The beam search component has two input parameters: (1) kbw ∈ Z+,
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Algorithm 3 Procedure ProbabilisticBeamSearch(kbw,µ, drate) of Algorithm 2

1: input: input strings x and y, values for parameters kbw, µ ∈ Z+, and drate

2: Bcompl := ∅, B := {ε}, tbsf := ∅
3: while B 6= ∅ do
4: EB := Produce Extensions(B)
5: EB := Filter Extensions(EB)
6: B := ∅
7: for k = 1, . . . ,min{bµkbwc, |EB |} do
8: za := Choose Extension(EB , drate)
9: t := za

10: if UB(t) = |t| then
11: Bcompl := Bcompl ∪ {t}
12: if |t| > |tbsf| then tbsf := t end if
13: else
14: if UB(t) ≥ |tbsf| then B := B ∪ {t} end if
15: end if
16: EB := EB \ {t}
17: end for
18: B := Reduce(B, kbw)
19: end while
20: output: The ACO-version T pbs of argmax {|t| | t ∈ Bcompl}

which is the so-called beam width, and (2) µ ∈ R+ ≥ 1, which is a parameter
used to determine the maximal number of solution extensions that may be cho-
sen at each step. The main data structure is the so-called beam B, which is
a set for storing the current partial solutions. B is initialized with the empty
string denoted by ε. Assuming that EB denotes the set of all feasible extensions
of the partial solutions in B, bµkbwc of these extensions are selected at each
step based on a greedy function and the pheromone values. When choosing an
extension from EB , it is stored in Bcompl in case it corresponds to a complete—
that is, non-extensible—solution. However, if the chosen extension corresponds
to a partial solution and its upper bound value (computed by function UB())
is greater than the length of the best-so-far solution tbsf, it is stored in the new
beam B of the next step of the algorithm. In order to finalize a step, B must be
reduced in case it contains more than kbw partial solutions. This is done on the
basis of the upper bound values, that is, the best partial solutions with respect
to the upper bound values remain in B. The four procedures of Algorithm 3
are outlined in detail in the following.

Produce Extensions(B): This procedure generates the set EB of non-dominated
extensions of all the partial solutions in B. This is done as follows. First, given
a partial solution t, the reduced alphabet Σt only contains letters which do not
appear in t. Furthermore, let x = x+ · x− be the partition of input sequence
x into substrings x+ and x− such that t is a subsequence of x+, and x− has
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maximal length. In the same way, y+ and y− are defined with respect to input
string y. Given this partition, which is well-defined, position pointers px := |x+|
and py := |y+| are introduced. Moreover, the position of the first appearance
of a letter a ∈ Σt in strings x and y after the position pointers px and py is
well-defined and denoted by pax and pay. In case letter a ∈ Σt does not appear
in x (respectively y), pax (respectively pay) is set to ∞. In this context, a letter
a ∈ Σt is called dominated, if there exists at least one letter b ∈ Σt, a 6= b, such
that pbx < pax and pby < pay. Finally, Σtnd ⊆ Σt denotes the set of non-dominated
letters of the reduced alphabet Σt with respect to partial solution t. Observe
also that letters in Σnd

t are required to appear at least once in both x− and y−.
Finally, set EB is generated as the set of subsequences ta, where t ∈ B and
a ∈ Σtnd.

Filter Extensions(EB): The non-domination relation—as defined above—can also
be considered for extensions of different partial solutions of the same length. For-
mally, given two extensions ta, zb ∈ EB , where t 6= z but not necessarily a 6= b,
ta is said to dominate zb if and only if the position pointers concerning a appear
before the position pointers concerning b in the corresponding remaining parts
of the two input strings. Using this relation, EB is filtered in order to remove
all dominated elements.

Choose Extension(EB , drate): The probabilistic choice of a partial solution from
EB is made both on the basis of a greedy function and the pheromone values.
The greedy value of an extension ta ∈ EB is computed as follows:

η(ta) :=

(
pax − px
|x−|

+
pay − py
|y−|

)−1

(7)

Note that this is the same greedy function as the one used in the context of
the CMSA algorithm for generating solutions in a probabilistic way. However,
instead of directly using these greedy values, it was decided to use the cor-
responding ranks. More specifically, the final greedy value ν(ta) of a partial
solution ta ∈ EB is calculated as the sum of the ranks of the greedy weights
that correspond to the construction steps that were performed to construct
string ta. With this definition of ν(), the probability for each ta ∈ EB can be
defined as follows:

p(ta) =

(
min{τx,pax , τy,pay} · ν(ta)−1

)
∑

zb∈EB

(
min{τx,pbx , τy,pby} · ν(zb)−1

) (8)

The intuition for this formula is as follows: If at least one of the pheromone val-
ues τx,pax and τy,pay is low, the corresponding letter should not yet be appended
to the string, because there exists another letter that should be appended first.
Finally, each application of function Choose Extension(EB) is either executed
probabilistically, or deterministically (by choosing the option with the highest
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probability). The probability for a deterministic choice, also called the deter-
minism rate, is henceforth denoted by drate ∈ [0, 1].

Reduce(B, kbw): In this procedure, the new beam B is reduced, if necessary, to
exactly kbw elements. This is done based on the upper bound values. Given a
partial solution t ∈ B, δ(x, a) (for all a ∈ Σt) evaluates to one, in case letter
a appears at least once in x−. Otherwise, δ(x, a) evaluates to zero. The same
holds for δ(y, a). The upper bound value of t ∈ B is then defined as follows:

UB(t) := |t|+
∑
a∈Σt

min {δ(x, a), δ(y, a)} (9)

It is easy to see that the upper bound value of any partial solution can be
computed in linear time.

3.4 Description of the Evolutionary Algorithm

In the following we describe our re-implementation of the evolutionary algo-
rithm (EA) from [9]. Note that, due to ambiguities and possible errors in the
original description—which could not even be resolved by conversation with the
authors of [9]—we were forced to take a couple of design decisions concerning
(1) the selection operator (tournament selection) and (2) the calculation of the
so-called frequency vector for resolving conflicts (further details are given be-
low). Nevertheless, we made sure that the results of our re-implementation are
not worse than those presented in the original paper.

Before delving into the algorithm description, we will deal with some key
issues of the EA, namely, the representation of solutions, the repair of invalid
solutions, and the fitness function.

Solution representation. The EA works on individuals that are binary
strings of the length of input string x, that is, lx. The candidate solution z
corresponding to an individual I is produced as follows. First, input string x is
copied, that is, z := x. Then, all letters at positions where I has value zero are
deleted from z. The remaining string is the candidate solution. Observe that
a candidate solution obtained in this way does not necessarily guarantee that
the ”repetition-free” constraint is being respected. In such a case the corre-
sponding individual I from which z was obtained is said to suffer from conflicts.
More specifically, an individual I is said to suffer from a conflict if and only
if I[j] = I[k] = 1 and x[j] = x[k], for some j 6= k such that 1 ≤ j, k ≤ lx.
In other words, an individual is said to suffer from conflicts if and only if the
corresponding candidate solution contains at least one repetition of at least one
of the characters of the alphabet Σ.

As an example, let us consider input string x = ACGAGT and an individual
I = 101101. Note that x and I have the same length. The corresponding
candidate solution is z = AGAT. As z has two appearences of letter A, the
individual I is said to suffer from conflicts.
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Repair of invalid individuals. When given an individual with conflicts,
these conflicts are resolved in one of the following two ways. Conflicts of the
individuals in the initial population are randomly resolved, which means that,
among all the repetitions of the same character in an individual I, one is ran-
domly chosen to be maintained and the rest of the positions that refer to the
same character are given value zero. In the example from above, the repaired
individual would be either 001101 or 101001. All other individuals—from pop-
ulations other than the initial one—that suffer from conflicts are repaired by
using a so-called frequency vector V of length lx, whose positions take values
between 0 and 1. Such a frequency vector V is obtained on the basis of the valid
solutions of the current population as outlined in detail below. For any two con-
flicting positions j and k of an individual I, if V [j] > V [k] then I[k] is set to zero.
In the opposite case, I[j] is set to zero. Considering again the example from
above, and assuming to have frequency vector V = (0.6, 0.0, 0.1, 0.4, 0.9, 1.0),
individual I = 101101 would be repaired by setting the fourth position to zero.

Fitness function. Let I be a (conflict-free) individual, and let z be the cor-
responding candidate solution produced as described above. The fitness f(I) of
such an individual I is defined as the length of the LCS between z and y (which
is the second input string), penalized by a factor that considers the number of
characters in z that do not form part of the LCS between z and y. In the fol-
lowing, let LCS(z, y) denote the LCS between z and y, which can be computed
efficiently by the dynamic programming algorithm of Smith and Waterman [19].
Moreover, let |LCS(z, y)| denote the length of LCS(z, y). Then,

f(I) := |LCS(z, y)| −
lx∑
j=1

φ(z[j], y) (10)

where

φ(z[j], y) :=

{
1 if z[j] /∈ LCS(z, y)

0 if otherwise.
(11)

Note that—as I must be a conflict-free individual—the LCS between z and
y also corresponds to a repetition-free longest common subsequence of the
input strings x and y. As an example, consider again a problem instance
where x = ACGAGT. Moreover, the second input string (y) is as follows:
y = AGTCC. Let us consider the conflict-free individual I = 001101, which
corresponds to candidate solution z = GAT. The LCS between z and y is GT.
Therefore, |LCS(z, y)| = 2. This means there is one position of z which does
not contribute to the LCS between z and y. Therefore, f(I) := 2− 1 = 1.

After describing these important algorithmic aspects, we provide a descrip-
tion of the pseudo-code of EA in Algorithm 4. As input the algorithm takes the
two input strings, the population size psize, the crossover rate crate and the muta-
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Algorithm 4 (Modified) EA for the RFLCS problem from [9]

1: input: input strings x and y, values for parameters psize, crate, and mrate

2: P := CreateInitialPopulation(psize)
3: while CPU time limit not reached do
4: V := ComputeFrequencyVector(P )
5: P ′ := ∅
6: while |P ′| < psize do
7: {I1, I2} := TournamentSelection(P )
8: {I ′1, I ′2} := Crossover(I1, I2, crate)
9: {I ′1, I ′2} := Mutate(I ′1, I ′2, mrate)

10: {I ′1, I ′2} := SolveConflicts(I ′1, I ′2, V )
11: P ′ := P ′ ∪ {I ′1, I ′2}
12: end while
13: Ibsf := argmax{f(I) | I ∈ P}
14: P ′ := P ′ ∪ Ibsf

15: Remove the worst individuals from P ′ until |P ′| = psize

16: P := P ′

17: end while
18: Ibsf := argmax{f(I) | I ∈ P}
19: output: The solution corresponding to Ibsf

tion rate mrate.1 The procedure CreateInitialPopulation(psize) (line 2) generates
an initial population of psize individuals at random. Each of these individuals
has an equal probability (i.e., 0.5) of having a zero or a one at each position. As
stated before, the length of each individual is lx. Moreover, conflicts in individu-
als are randomly resolved. At each iteration, the algorithm first applies method
ComputeFrequencyVector(P ) (line 4). Based on the current population P , this
method computes the frequency vector V of length lx which is used to resolve
conflicts in individuals.2 In particular, V is computed as follows. First, a set
Q of psize/2 individuals are selected from P by means of tournament selection
using a tournament size of |P |/2. Then, each position 1 ≤ i ≤ lx of V is set to
ni

|Q| , where ni is the number of individuals in Q that have a one at position i.

After the computation of V , psize new individuals are generated in lines 6–12
of Algorithm 4 by means of the application of the classical operators of evolu-
tionary algorithms: selection, crossover and mutation. The selection operator
selects two individuals I1 and I2 from the current population P . This is done
in method TournamentSelection(P ) (line 7) by means of tournament selection.
The crossover operator (method Crossover(I1, I2, crate), line 8) implements a
standard one-point crossover in which the crossover point is randomly chosen.

1Default parameter values used for the experiments in [9]: psize = 100, crate = 0.9, mrate =
0.05.

2According to the description as given in [9], this vector is re-computed inside the while-
loop (lines 6–12). In our opinion, this is a description error, because re-computing V at every
iteration would only introduce minor variations to V . Therefore, we decided to re-compute V
only once per main iteration of the algorithm.
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This is done with probability crate. Otherwise, the two individuals are simply
copied. The mutation operator (method Mutate(I ′1, I ′2, mrate), line 9) flips, with
probability mrate, each bit in individuals I ′1 and I ′2 resulting from the crossover.
Before adding the created offspring to the new population P ′ under construction
(line 11), the procedure SolveConflicts(I ′1, I ′2, V ) (line 10) resolves the conflicts
that the crossover and mutation operators might have caused. In contrast to
resolving conflicts in the individuals of the initial population, here the conflicts
are resolved using the frequency vector V as described above.

Once P ′ contains at least psize individuals, the best individual of P is ex-
plicitly added to P ′ in order to guarantee the survival of the best individual
from one generation to the next (elitism). Moreover, the worst individuals are
removed from P ′ in order to keep P ′ of size psize (see lines 13 and 14). Finally
the current population P is replaced with the new population P ′ (line 16).

The whole process (lines 4–16) is iterated while the CPU time limit is not
reached. The output of the algorithm is the best solution found.

4 Experimental Evaluation

The three algorithms presented in Section 3—henceforth denoted by Cmsa,
Beam-Aco, and Ea—were implemented in ANSI C++ using GCC 4.7.3, with-
out the use of any external libraries. In addition the ILP models concerning all
problem instances were solved with the ILP solver IBM ILOG CPLEX v12.2
in one-threaded mode.3 The same version of CPLEX was used for solving the
reduced ILP models in the context of CMSA. Note that the performance of
CPLEX is always measured in relation to the used ILP model. Therefore, when
referring to the performance of CPLEX, we always refer to the performance of
CPLEX in relation to the ILP model provided in Section 2. In order to indi-
cate this, the application of CPLEX to this ILP model is henceforth denoted by
Cplex∗.

The experimental evaluation has been performed on a cluster of PCs with
Intel(R) Xeon(R) CPU 5670 CPUs of 12 nuclei of 2933 MHz and at least 40
Gigabytes of RAM. The remainder of this section is organized as follows. First,
the extended set of benchmark instances is described. Second, the tuning ex-
periments that were conducted in order to determine a proper setting for the
parameters of the three metaheuristics are outlined. Finally, an exhaustive ex-
perimental evaluation is presented.

4.1 Problem Instances

The algorithms that were so-far proposed in the literature were all evaluated on
the following two sets of benchmark instances originally proposed in [2]. The

3IBM ILOG CPLEX is an optimization software package which includes state-of-the-art
exact techniques for solving integer linear programming models to optimality. It is available
for free for academic purposes. For more information we refer the interested reader to http:

//www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html.

14



first set—referred to as Set1—consists, for each combination of input sequence
length n ∈ {32, 64, 128, 256, 512} and alphabet size

|Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8},

of exactly 10 randomly generated problem instances. The second set of instances—
referred to as Set2—is generated on the basis of alphabet sizes |Σ| ∈ {4, 8, 16, 32, 64}
and the maximal repetition of each letter rep ∈ {3, 4, 5, 6, 7, 8} in each input
string. For each combination of |Σ| and rep this instance set consists of 10
randomly generated problem instances. Provided that Cplex∗ was found to be
very efficient for solving most of the instances from these two sets, the follow-
ing extension of Set2 was considered in [4]. This extension contains for each
combination of |Σ| ∈ {128, 256} and rep ∈ {3, 4, 5, 6, 7, 8} 10 randomly gener-
ated problem instances. In this work we, first, extend the above-mentioned sets
from 10 to 30 problem instances for each parameter combination. Second, we
extend Set2 with 30 problem instances for each combination of |Σ| = 512 and
rep ∈ {3, 4, 5, 6, 7, 8}. Third, Set1 is also extended with 30 problem instances
for each combination of input sequence length n ∈ {1024, 2048, 4096} and al-
phabet size |Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8}. This makes a total
of 1680 problem instances in (the extended) Set1 and 1440 problem instances
in (the extended) Set2. All problem instances can be obtained by requesting
them via email from the first author of this paper.

4.2 Tuning of the Metaheuristics

The automatic configuration tool irace [15] was used for tuning the parameters
of the three metaheuristics. The tuning processes are described in the following.

Tuning of Cmsa. The following parameters of Cmsa were considered for
tuning: (na) the number of solution constructions per iteration, (agemax) the
maximum allowed age of solution components, (drate) the determinism rate,
(lsize) the candidate list size, and (tmax) the maximum time in seconds allowed
for CPLEX per application to a sub-instance. In particular, Cmsa was tuned
separately for each alphabet size, which—after initial experiments—seems to
have a greater influence on the behavior of the algorithm than the length of
the input strings. In the context of Set1, two tuning instances were randomly
generated for each combination of string length and alphabet size, whereas for
Set2 two tuning instances were randomly generated for each combination of
alphabet size and number of repetitions.

The tuning process for each alphabet size was given a budget of 1000 runs of
Cmsa, where each run was given a computation time limit of lx/10 CPU seconds
for instances of Set1 (remember that for instances of Set1 it holds that lx = ly)
and (|Σ| ∗ reps)/10 CPU seconds for instances of Set2. Finally, the following
parameter value ranges were considered concerning the five parameters of Cmsa:

• na ∈ {10, 30, 50}
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Table 2: Results of tuning Cmsa with irace.

|Σ| na agemax drate lsize tmax

0n/8 10 1 0.7 5 100.0
0n/4 10 1 0.9 10 100.0
3n/8 10 1 0.7 10 5.0
0n/2 10 1 0.5 3 100.0
5n/8 50 1 0.9 10 100.0
3n/4 10 1 0.5 5 10.0
7n/8 30 10 0.5 3 100.0

(a) Tuning results concerning Set1.

|Σ| na agemax drate lsize tmax

4 30 5 0.5 3 1.0
8 30 inf 0.3 10 1.0
16 10 1 0.9 3 1.0
32 50 1 0.5 10 1.0
64 10 5 0.7 10 5.0
128 10 5 0.0 3 100.0
256 10 1 0.5 3 100.0
512 10 1 0.3 3 10.0

(b) Tuning results concerning Set2.

• agemax ∈ {1, 5, 10, inf}, where inf means that solution components are
never removed from Zsub.

• drate ∈ {0.0, 0.3, 0.5, 0.7, 0.9}, where a value of 0.0 means that the selection
of the next variable to be added to the partial solution under construction
is always done randomly from the candidate list, while a value of 0.9 means
that solution constructions are nearly deterministic.

• lsize ∈ {3, 5, 10}

• tmax ∈ {1.0, 5.0, 10.0, 100.0} (in seconds).

The tuning runs with irace produced the configurations of Cmsa as shown in
Table 2. At first sight, it might be surprising that no clear tendency about the
setting of the parameter values can be observed. However, this can be explained
by the fact that the algorithm is—at least for instances of small and medium
size—very robust.

Tuning of Beam-Aco. The following parameters of Beam-Aco were consid-
ered for tuning: (kbw) the beam width, that is, the number of partial solutions
that can be maintained per construction step within beam search, (µ) a param-
eter used to determine the maximal number of solution extensions that may be
chosen at each step, and (drate) the determinism rate. Note that the parameters
of the ACO framework (such as the learning rate, etc.) were not found to have
a big influence on the behavior of the algorithm, which is clearly dominated by
the beam search component.
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Table 3: Results of tuning Beam-Aco with irace.

|Σ| kbw µ drate

0n/8 10 1.5 0.3
0n/4 30 2.5 0.3
3n/8 10 1.5 0.0
0n/2 10 1.5 0.6
5n/8 10 1.5 0.0
3n/4 10 2.0 0.0
7n/8 10 1.5 0.6

(a) Tuning results concerning Set1.

|Σ| kbw µ drate

4 10 2.0 0.3
8 50 3.0 0.9
16 5 1.5 0.0
32 5 1.5 0.0
64 5 1.5 0.3
128 5 2.0 0.0
256 10 1.5 0.0
512 10 1.5 0.0

(b) Tuning results concerning Set2.

Just like in the case of Cmsa, Beam-Aco was tuned separately for each
alphabet size. The tuning instances, the budget per tuning run, and the compu-
tation time limits were chosen as in the case of Cmsa. The following parameter
value ranges were considered concerning the three parameters of Beam-Aco:

• kbw ∈ {5, 10, 30, 50, 100}

• µ ∈ {1.5, 2.0, 2.5, 3.0, 3.5}

• drate ∈ {0.0, 0.3, 0.6, 0.9}

The tuning runs with irace produced the configurations of Beam-Aco as shown
in Table 3. As in the case of Cmsa, no clear tendency about the setting of
the parameter values can be observed, which can be explained again by the
remarkable robustness of the algorithm, at least in the context of instances of
small and medium size.

Tuning of Ea. The three parameters of Ea that were considered for tuning
are the following ones: (psize) the population size, (crate) the crossover rate, and
(mrate) the mutation rate. Just like in the cases of Cmsa and Beam-Aco, Ea
was tuned separately for each alphabet size. The tuning instances, the budget
per tuning run, and the computation time limits were chosen as in the cases of
Cmsa and Beam-Aco. The following parameter value ranges were considered
concerning the three parameters of Ea:

• psize ∈ {10, 20, 40, 80, 160}.

• crate ∈ {0.75, 0.8, 0.85, 0.9, 0.95}.

• mrate ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.

The tuning runs with irace produced the configurations of Ea as shown in
Table 4.

17



Table 4: Results of tuning Ea with irace.

|Σ| psize crate mrate

0n/8 10 0.9 0.01
0n/4 10 0.8 0.01
3n/8 10 0.85 0.03
0n/2 10 0.8 0.01
5n/8 10 0.75 0.01
3n/4 10 0.95 0.02
7n/8 10 0.85 0.01

(a) Tuning results concerning Set1.

|Σ| psize crate mrate

4 10 0.75 0.03
8 40 0.8 0.04
16 80 0.8 0.05
32 10 0.8 0.05
64 10 0.75 0.03
128 10 0.95 0.01
256 10 0.9 0.01
512 10 0.75 0.01

(b) Tuning results concerning Set2.

4.3 Statistical Assessment of the Results

As described in more detail below, the results (in terms of the obtained objective
function values) are presented in each row of the result tables in terms of averages
over 30 problem instances. The results obtained by the four considered methods
concerning each table row were statistically tested in order to determine the
significance of the differences among them. This was done by comparing the
results of all algorithms with the result of the best-performing algorithm per
table row. As an example, consider the 30 instances with Σ = n/8 and n = 512
(see Table 5). The best performing algorithm is Cmsa, as marked by bold font.
The results of Beam-Aco are statistically equivalent, as indicated by the F
symbol (significance level of 0.05). The differences have been assessed using
Friedman’s test, and the p-values have been corrected for multiple comparison
using Finner’s procedure [11].

Additionally, we aimed for detecting the differences between the algorithms
(if any) for larger subsets of the considered instances. For doing so, all the algo-
rithms have been compared simultaneously using Friedman’s test. Then, given
that in all the cases the test rejected the hypothesis that all the algorithms
perform equally, all the pairwise comparisons have been performed using the
Nemenyi post-hoc test [12]. The corresponding results will be shown in Sec-
tion 4.4 by means of so-called criticial difference plots. Finally, note that all the
tests and the plots have been generated using R’s scmamp package, available
at https://github.com/b0rxa/scmamp.

4.4 Numerical Results

As already mentioned before, four algorithmic techniques were included in the
comparison: (1) Cmsa (from [4]), (2) Beam-Aco (from [5]), (3) Ea from [9],
and (4) Cplex∗, which refers to the application of CPLEX to all instances in
relation to the ILP model from Section 2. The parameter values of the first three
algorithms were chosen as described above. All four algorithmic techniques were
applied to each problem instance with a computation time limit of lx/10 CPU
seconds for instances of Set1 (remember that for instances of Set1 it holds that
lx = ly) and (|Σ| ∗ reps)/10 CPU seconds for instances of Set2. Moreover, a
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memory limit of 4Gb was used for each application of Cplex∗. However, this
limit was never reached within the allowed computation time.

The numerical results are presented in Table 5 concerning Set1 and Table 6
concerning Set2. Each table row presents the results averaged over 30 prob-
lem instances of the same type. The results of Cmsa, Beam-Aco and Ea are
provided in two columns each. The first one (with heading result) provides
the result of the corresponding algorithm averaged over 30 problem instances,
while the second column (with heading time) provides the average computation
time (in seconds) necessary for finding the corresponding solutions. The result
column is also provided for Cplex∗. However, the second column for Cplex∗

provides the average optimality gaps (in percent), that is, the average gaps be-
tween the upper bounds and the values of the best solutions when stopping a
run. Finally, the best result of each table row is indicated with bold font. More-
over, those algorithms whose performance is not significantly worse than the
one of the best performing algorithm at a significance level of 0.05 are marked
in the table with the F symbol. Those cases in which Cplex∗ was not able to
produce a single feasible solution are marked with ’n.a.’.

The following observations can be made:

• As already noted in [4], Cplex∗ is very efficient in solving most of the
problem instances of Set1 with n ≤ 256 and of Set2 with |Σ| ≤ 32.
However, both concerning Set1 and Set2, there seems to be a sharp
transition between instances that are easily solvable for Cplex∗ and those
that are not. For example, for instances with n ≥ 1024 (Set1) Cplex∗ is
generally not able to come up even with a single feasible solution within
the allowed computation time. The same holds for instance with |Σ| ≥ 256
concerning Set2.

• In general, Ea is only competitive for the smallest problem instances in
both problem instance sets. Moreover, the larger the tackled problem
instances, the less competitive is Ea. Nevertheless, we would like to em-
phasize again that the results of our re-implementation of Ea are not
worse than those of the original implementation from [9].

• Concerning Set1, both Cmsa and Beam-Aco provide (near-)optimal so-
lutions and both outperform Cplex∗ once the average optimality gaps
start to increase. Hereby, Cmsa is generally slightly better than Beam-
Aco for instances with n ≤ 1024. Starting from instances with n = 2048,
this seems to change in the sense that, now, Beam-Aco has slight advan-
tages over Cmsa. However, this is not surprising, as Cmsa is based on the
application of Cplex∗ to reduced sub-instances and, even though appli-
cable to larger problem instances than pure Cplex∗, Cmsa was expected
to reach its limits with growing problem instance size. Nevertheless, the
performance differences between Cmsa and Beam-Aco are nearly always
of no statistical significance; at least for what concerns the row-wise com-
parison of the results.
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• Concerning Set2, the performance of Cmsa is again slightly better than
the one of Beam-Aco for most instances with |Σ| ≤ 256, providing
(near-)optimal solutions. However, starting from alphabet size |Σ| = 512,
Beam-Aco starts again perform slightly better than Cmsa, for the same
reasons as outlined above.

Apart from the numerical results provided in the form of tables, the graphics
of Figure 1 and 2 show the relation between Cmsa and Beam-Aco in the follow-
ing way. Figure 1 shows the improvement (in percent) of Cmsa over Beam-Aco
in the context of Set1, and Figure 2 shows the same for Set2. Note that in the
case of negative values, Beam-Aco performs better than Cmsa.

Given the general picture of Cmsa performing slightly better than Beam-
Aco for small and medium size problem instances and of Beam-Aco per-
forming slightly better than Cmsa in the context of the largest problem in-
stances, we finally considered combining Cmsa and Beam-Aco in some way in
order to obtain an algorithm that would perform well for all considered prob-
lem instances. In fact, apart from the restrictions implied by the application
of CPLEX within Cmsa, it can also be assumed that, with growing problem
instance size, the greedy construction mechanism of Cmsa is likely to be less
able to feed the reduced problem instances with all components necessary in or-
der to generate high-quality solutions. In turn, the construction mechanism of
Beam-Aco—which, in addition to being based on the greedy function, is also
strongly influenced by the upper bound function—seems to be able to generate
high-quality solutions even in the context of large problem instances. Therefore,
it was decided to test a version of Cmsa in which the initial reduced problem
instance, in contrast to being empty, is composed of the solution components
found in the best solution obtained by running the beam search algorithm from
Algorithm 3 with the following parameter settings for all problem instances:
kbw = 30, µ = 2.5, and drate = 1.0. That is, the beam search component is
applied in a deterministic way—due to drate = 1.0—and with an intermediate
value of kbw = 30 in order not to use too much computation time. This version
of Cmsa, henceforth referred to by Hyb-Cmsa, was applied with the same com-
putation time limit as used for the other algorithms, to all problem instances.
Moreover, the parameter value setting was the same as the one determined for
Cmsa. The results are shown in Table 7 concerning Set1 and in Table 8 con-
cerning Set2. In case Hyb-Cmsa obtains the best average value among all five
approaches, the corresponding value is provided in bold font. If this is not the
case, but the value obtained by Hyb-Aco is statistically equivalent to the one
of the best-performing approache, this is marked by the F symbol. Finally,
in those cases in which the result obtained by Hyb-Aco improves both over
the one of Cmsa and the one of Beam-Aco, the corresponding table cells are
painted with a lightgrey background.

The following observation can be made. First, only in two cases the result
of Hyb-Cmsa is slightly worse than the one of Cmsa. In turn, for most of
the medium and large size problem instances, Hyb-Cmsa improves over both
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(a) Instances with |Σ| = n/8
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(b) Instances with |Σ| = n/4
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(c) Instances with |Σ| = 3n/8
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(d) Instances with |Σ| = n/2
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(e) Instances with |Σ| = 5n/8
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(f) Instances with |Σ| = 3n/4
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(g) Instances with |Σ| = 7n/8

Figure 1: Improvement of Cmsa over Beam-Aco in the context of instances
of Set1. Each box shows the differences between the objective function values
of the solutions produced by Cmsa and the ones of the solutions produced by
Beam-Aco for the 30 instances of the same type (in percent). The x-axis of
each graphic ranges over the different string lengths.

Cmsa and Beam-Aco. This also happens frequently in cases in which Cmsa
was already performing better than Cmsa. This clearly shows that Hyb-Cmsa
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(a) Instances with |Σ| = 4
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(b) Instances with |Σ| = 8
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(c) Instances with |Σ| = 16
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(d) Instances with |Σ| = 32
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(e) Instances with |Σ| = 64
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(f) Instances with |Σ| = 128
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(g) Instances with |Σ| = 256
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(h) Instances with |Σ| = 512

Figure 2: Improvement of Cmsa over Beam-Aco in the context of instances
of Set2. Each box shows the differences between the objective function values
of the solutions produced by Cmsa and the ones of the solutions produced by
Beam-Aco for the 30 instances of the same type (in percent). The x-axis of
each graphic ranges over the different values of rep.

benefits from synergies between Cmsa and Beam-Aco. Moreover, Hyb-Cmsa
can be called a current state-of-the-art algorithm for the RFLCS problem.
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Additional statistical information comparing the four initially presented al-
gorithms and the new hybrid algorithm is provided in terms of a comparison
between the five algorithms for subsets of instances in Figure 3 (concerning
Set1) and Figure 4 (concerning Set2). These figures present the result of the
Nemenyi test in a graphical way. Briefly, each algorithm is positioned in the
segment according to its average ranking concerning the considered subset of
instances. Then, the critical difference (CD) is computed for a significance level
of 0.05 and the performance of those algorithms that have a difference lower
than CD are regarded as equal—that is, no difference of statistical significance
can be detected. This is indicated in the graphic by horizontal lines joining the
respective algorithms.
The following observations can be made:

• First, and most imortantly, when considering all instances of Set1, respec-
tively Set2, then all algorithms are different with statistical significance
(see Figures 3h and 4i). In both cases, the best-ranked algorithm is Hyb-
Cmsa, followed by Cmsa and Beam-Aco (in this order).

• Second, when considering subsets of instances, Hyb-Cmsa is also generally
the best-ranked algorithm. However, not always with a statistically signif-
icant different. See, for example, the graphic in Figure 3e (concerning all
instances of Set1 with Σ = 5n/8) where there is no statistical difference
between Hyb-Cmsa and Cmsa. Moreover, in some cases—when small
problem instances are concerned—all five considered approaches are sta-
tistically equivalent; see, for example, the graphics in Figures 4a and 4b,
concerning instances with Σ = 4 and Σ = 8.

5 Conclusions and Future Work

This work has provided a comprehensive comparison between the metaheuristic
algorithms that were proposed for the repetition-free longest common subse-
quence problem in the literature. Moreover, the application of the general-
purpose integer linear programming solver CPLEX was included in the compar-
ison. The evaluation has shown that—using the specific ILP model outlined in
this work—CPLEX is able to solve most of the problem instances so-far con-
sidered in the literature to optimality. Therefore, the experimental evaluation
conducted in this work was extended to much larger problem instance than
those considered so far. Based on the results of the different metaheuristics
approaches, a hybrid approach combining the two best proposals from the liter-
ature, CMSA and Beam-ACO, was developed. The results have shown that this
hybrid, indeed, benefits from the synergies between these two techniques, which
makes the developed hybrid technique the current state-of-the-art algorithm for
the repetition-free longest common subsequence problem. In particular, this
was shown with statistical significance when considering all the instances of the
first, respectively the second, benchmark set together.
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(e) Instances with |Σ| = 5n/8

2 3 4

(f) Instances with |Σ| = 3n/4
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(g) Instances with |Σ| = 7n/8
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Figure 3: Criticial difference plots for subsets of Set1 (see (a) to (g)), and
globally for all instances of Set1(see (h)).

Concerning future work, we will consider different ways of hybridizing CMSA
and Beam-ACO. Moreover, it might be interesting to experiment with the par-
allel use of different greedy functions in the context of CMSA.
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Figure 4: Criticial difference plots for subsets of Set2 (see (a) to (h)), and
globally for all instances of Set2(see (i)).
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[12] Garćıa, S., Herrera, F.: An extension on “statistical comparisons of clas-
sifiers over multiple data sets” for all pairwise comparisons. Journal of
Machine Learning Research 9, 2677 – 2694 (2008)

26



[13] Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Computer Sci-
ence and Computational Biology. Cambridge University Press, Cambridge
(1997)

[14] Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between
RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)
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Table 5: Experimental results (in terms of the average final objective function
values) concerning the instances of Set1.

|Σ| n Cmsa Beam-Aco Ea Cplex∗

result time result time result time result time gap

n/8

32 4.00 < 1 4.00 < 1 4.00 < 1 4.00 < 1 0.0
64 8.00 < 1 8.00 < 1 8.00 < 1 8.00 < 1 0.0
128 16.00 < 1 16.00 < 1 16.00 < 1 16.00 7 0.0
256 31.97 < 1 31.93F < 1 31.83F 2 n.a. n.a. n.a.
512 63.27 15 62.90F 7 58.33 33 n.a. n.a. n.a.
1024 108.60F 72 111.57 26 86.00 87 n.a. n.a. n.a.
2048 174.00F 160 182.67 102 107.10 173 n.a. n.a. n.a.
4096 262.50 272 283.33 264 129.43 285 n.a. n.a. n.a.

n/4

32 7.83 < 1 7.70F < 1 7.77F < 1 7.83 < 1 0.0
64 14.63F < 1 14.07 < 1 14.07 < 1 14.67 < 1 0.0
128 25.70 < 1 24.53 < 1 24.27 5 25.43F 9 5.3
256 43.70 6 41.80 < 1 40.97 9 24.23 7 > 100
512 67.70 9 65.17 < 1 59.63 36 n.a. n.a. n.a.
1024 102.53 31 101.03F < 1 73.47 58 n.a. n.a. n.a.
2048 153.63 84 151.97F 1 91.97 151 n.a. n.a. n.a.
4096 223.40F 234 224.47 7 117.57 163 n.a. n.a. n.a.

3n/8

32 8.77 < 1 8.67F < 1 8.70F < 1 8.77 < 1 0.0
64 15.53 < 1 14.97 < 1 15.33F < 1 15.53 < 1 0.0
128 24.87F < 1 23.90 < 1 24.37 2 24.90 3 0.0
256 39.93 < 1 38.97 < 1 38.20 11 21.80 8 > 100
512 59.60 6 59.37F 4 48.77 29 5.5 37 > 100
1024 90.27 19 89.87F 16 63.83 54 n.a. n.a. n.a.
2048 129.00F 58 130.07 34 79.43 79 n.a. n.a. n.a.
4096 184.57 385 190.87 100 107.67 91 n.a. n.a. n.a.

n/2

32 8.87 < 1 8.63F < 1 8.53F < 1 8.87 < 1 0.0
64 14.77F < 1 14.50F < 1 14.10 < 1 14.80 < 1 0.0
128 22.83F < 1 22.60F < 1 22.00 2 22.93 1 0.0
256 34.97 < 1 34.33F < 1 33.10 9 29.00 18 62.6
512 52.83 6 52.13F < 1 46.50 20 10.70 28 > 100
1024 78.50 21 78.00F 1 61.30 58 n.a. n.a. n.a.
2048 114.70 25 114.57F 6 76.87 111 n.a. n.a. n.a.
4096 166.07F 106 166.33 25 102.10 136 n.a. n.a. n.a.

5n/8

32 8.57F < 1 8.47F < 1 8.23F < 1 8.60 < 1 0.0
64 13.27F < 1 13.00F < 1 12.40 < 1 13.30 < 1 0.0
128 21.20 < 1 20.83F < 1 20.33 3 21.20 < 1 0.0
256 32.47F < 1 32.20F < 1 31.33 9 32.53 10 0.0
512 47.60 1 47.40F < 1 43.47 23 25.23 19 > 100
1024 69.87F 10 70.00 8 56.00 57 n.a. n.a. n.a.
2048 103.07F 44 103.63 15 72.83 129 n.a. n.a. n.a.
4096 148.17F 200 149.57 75 96.43 208 n.a. n.a. n.a.

3n/4

32 8.17 < 1 8.07F < 1 7.93F < 1 8.17 < 1 0.0
64 12.53 < 1 12.43F < 1 12.37F < 1 12.53 < 1 0.0
128 19.70 < 1 19.47F < 1 19.53F 2 19.70 < 1 0.0
256 29.87F < 1 29.80F < 1 29.00 7 29.97 5 0.0
512 44.30 2 43.97F < 1 39.47 17 21.97 14 > 100
1024 64.63 3 64.40F < 1 51.90 56 0.03 75 > 100
2048 93.13F 30 93.80 17 67.40 125 n.a. n.a. n.a.
4096 134.67F 71 135.50 20 90.70 213 n.a. n.a. n.a.

7n/8

32 7.67 < 1 7.60F < 1 7.53F < 1 7.67 < 1 0.0
64 11.53F < 1 11.50F < 1 10.97 < 1 11.57 < 1 0.0
128 18.37F < 1 18.30F < 1 17.70 2 18.40 < 1 0.0
256 27.73F < 1 27.63F < 1 26.93 7 27.80 2 0.0
512 40.43 2 40.37F < 1 37.57 25 33.13 34 84.9
1024 60.30F 13 60.37 3 50.30 48 1.17 50 > 100
2048 87.60F 43 87.70 2 65.83 123 n.a. n.a. n.a.
4096 125.60F 107 126.53 20 86.03 186 n.a. n.a. n.a.
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Table 6: Experimental results (in terms of the average final objective function
values) concerning the instances of Set2.
|Σ| reps Cmsa Beam-Aco Ea Cplex∗

result time result time result time result time gap

4

3 3.47 < 1 3.37F < 1 3.47 < 1 3.47 < 1 0.0
4 3.77 < 1 3.77 < 1 3.77 < 1 3.77 < 1 0.0
5 3.80F < 1 3.77F < 1 3.83 < 1 3.83 < 1 0.0
6 3.90 < 1 3.87F < 1 3.90 < 1 3.90 < 1 0.0
7 3.97 < 1 3.93F < 1 3.97 < 1 3.97 < 1 0.0
8 3.97 < 1 3.93F < 1 3.97 < 1 3.97 < 1 0.0

8

3 6.23 < 1 6.20F < 1 6.23 < 1 6.23 < 1 0.0
4 6.83F < 1 6.80F < 1 6.83F < 1 6.87 < 1 0.0
5 7.40 < 1 7.20F < 1 7.33F < 1 7.40 < 1 0.0
6 7.53 < 1 7.40F < 1 7.50F < 1 7.53 < 1 0.0
7 7.70 < 1 7.57F < 1 7.63F < 1 7.70 < 1 0.0
8 7.77 < 1 7.67F < 1 7.77 < 1 7.77 < 1 0.0

16

3 9.67F < 1 9.53F < 1 9.60F < 1 9.70 < 1 0.0
4 11.57 < 1 11.37F < 1 11.47F < 1 11.57 < 1 0.0
5 12.93 < 1 12.57F < 1 12.80F < 1 12.93 < 1 0.0
6 13.83F < 1 13.57 < 1 13.93F < 1 14.00 < 1 0.0
7 14.87F < 1 14.50F < 1 14.80F < 1 14.93 < 1 0.0
8 14.67F < 1 14.30 < 1 14.57F 1 14.80 < 1 0.0

32

3 16.13 < 1 15.97F < 1 16.03F < 1 16.13 < 1 0.0
4 19.00 < 1 18.67F < 1 18.80F 2 19.00 < 1 0.0
5 21.63 < 1 21.23F < 1 21.23F 2 21.63 1 0.0
6 23.70F < 1 23.50F < 1 23.37F 2 23.73 4 0.0
7 25.53 < 1 25.20F 1 24.83 2 25.13F 9 2.9
8 27.40 1 27.23F 1 26.63 2 25.77 16 12.2

64

3 25.43 < 1 25.40F < 1 25.10F 3 25.43 < 1 0.0
4 30.37 < 1 30.10F < 1 30.00F 9 30.37 7 0.0
5 34.83 1 34.57F 1 34.30F 9 31.50 23 32.4
6 39.03 6 38.50F 5 37.73 17 24.13 9 > 100
7 43.40 9 42.90F 3 41.23 20 24.60 9 > 100
8 45.17 16 44.60F 6 42.23 23 23.30 10 > 100

128

3 36.47 2 36.17F < 1 36.00F 12 33.23 29 35.9
4 44.63 3 44.23F 5 41.83 17 20.63 13 > 100
5 53.07 9 52.43F 7 48.90 26 20.87 25 > 100
6 60.90 15 60.10F 8 55.10 47 13.87 51 > 100
7 67.73 27 66.50F 12 60.80 48 n.a. n.a. n.a.
8 73.13 37 72.27F 20 66.00 71 n.a. n.a. n.a.

256

3 54.70F 3 54.87 < 1 49.87 30 4.23 25 > 100
4 68.47 9 68.30F 4 57.27 41 n.a. n.a. n.a.
5 80.77 20 80.33F 7 63.10 58 n.a. n.a. n.a.
6 92.60 31 92.37F 34 70.30 79 n.a. n.a. n.a.
7 102.93 28 102.30F 35 75.67 114 n.a. n.a. n.a.
8 113.30 46 112.77F 37 81.20 140 n.a. n.a. n.a.

512

3 80.63F 17 81.27 10 66.17 76 n.a. n.a. n.a.
4 99.13F 17 100.63 27 74.57 107 n.a. n.a. n.a.
5 118.90F 63 120.20 63 80.47 124 n.a. n.a. n.a.
6 135.57F 63 136.73 62 86.73 164 n.a. n.a. n.a.
7 153.57 108 153.23F 112 92.73 197 n.a. n.a. n.a.
8 172.00 124 171.30F 102 100.23 249 n.a. n.a. n.a.
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Table 7: Experimental results (in terms of the average final objective function
values) of Hyb-Cmsa concerning the instances of Set1.
HHH

HHn
|Σ|

n/8 n/4 3n/8 n/2 5n/8 3n/4 7n/8

32 4.00 7.83 8.77 8.87 8.57F 8.17 7.67
64 8.00 14.63F 15.53 14.77F 13.30 12.53 11.57
128 16.00 25.77 24.87F 22.90F 21.20 19.70 18.40
256 31.97 43.63F 39.97 35.10 32.50F 29.97 27.80
512 63.13F 67.90 59.77 53.10 47.83 44.53 40.57
1024 111.17F 103.00 90.50 79.03 70.03 65.07 60.50
2048 180.50F 154.33 130.57 115.30 103.80 94.53 88.00
4096 279.17F 226.67 191.37 167.47 150.00 136.57 127.20

Table 8: Experimental results (in terms of the average final objective function
values) of Hyb-Cmsa concerning the instances of Set2.
PPPPPPPPreps

|Σ|
4 8 16 32 64 128 256 512

3 3.47 6.23 9.70 16.13 25.43 36.70 54.97 81.57
4 3.77 6.83F 11.57 19.00 30.37 44.90 68.70 100.83
5 3.83 7.40 12.93 21.63 34.87 53.23 81.00 120.43
6 3.90 7.53 13.87F 23.70F 39.07 61.07 93.10 137.03
7 3.97 7.70 14.87F 25.53 43.50 67.90 103.50 154.57
8 3.97 7.77 14.77F 27.40 45.17 73.57 113.70 172.10
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