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Abstract

In this paper we propose a new problem of finding the maximal bi-
connected partitioning of a graph with a size constraint (MBCPG-SC).
With the goal of finding approximate solutions for the MBCPG-SC, a
heuristic method is developed based on the open ear decomposition of
graphs. Its essential part is an adaptation of the breadth first search
which makes it possible to grow bi-connected subgraphs. The proposed
randomized algorithm consists of growing several subgraphs in parallel.
The quality of solutions generated in this way is further improved using a
local search which exploits neighboring relations between the subgraphs.
In order to evaluate the performance of the method, an algorithm for gen-
erating pseudo-random unit disc graphs with known optimal solutions is
created. The conducted computational experiments show that the pro-
posed method frequently manages to find optimal solutions and has an
average error of only a few percent to known optimal solutions. Further,
it manages to find high quality approximate solutions for graphs having
up to 10.000 nodes in reasonable time.
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1 Introduction

The bi-connectivity of graphs is essential for many real world applications rang-
ing from power distribution systems, communication networks and many others.
The reason for this is that such typologies provide a certain level of resistance
to failures, and as a result more robust and reliable systems (Zhang et al, 2009;
Moraes and Ribeiro, 2013; Goldschmidt et al, 1996; Hu et al, 2010). These ben-
efits are a direct consequence of the fact that such graphs have two disjoint
paths connecting any two nodes in the graphs. This property is often called 2-
connectivity of graphs. In literature there is differentiation between vertex and
edge 2-connected graphs, where the two paths are vertex or edge disjoint, re-
spectively. In practice this means that the vertex/edge 2-connected graph stays
connected if any single vertex/edge is removed from it. Vertex 2-connectivity is
a stronger property in the sense that every such graph is also 2-edge connected
but the reverse is not necessarily true. The term bi-connected graph is used for
2-vertex connected graphs.

Testing if a graph is bi-connected can be done efficiently using the standard
algorithm for finding articulation points of a graph based on depth first search in
linear time (Hopcroft and Tarjan, 1973a). A similar approach has also been used
for finding a 3-connected partitioning of a graph (Hopcroft and Tarjan, 1973b).
Other examples of algorithms for testing bi-connectivity of a graph exploit the
fact that bi-connected graphs have an ear (Robbins, 1939) or chain (Schmidt,
2013) decomposition. There are several types of mixed integer programs based
on multi-commodity flow constraints that are used for exploring bi-connectivity,
but such models generally have a large number of variables (Morgan and Grout,
2008). There are alternative formulations containing a lower number of vari-
ables but having an exponential number of constraints (do Forte et al, 2013;
Buchanan et al, 2015).

For many graph optimization problems, like the weighted vertex cover and
the independent set, it is sufficient to solve the problem separately on each
of the bi-connected components (Hochbaum, 1993). The most commonly used
method for partitioning graphs into bi-connected components is Tarjan’s algo-
rithm, which accomplishes this task in linear time (Tarjan, 1972). There are
several interesting variations of the original algorithm with similar computa-
tional times (Pearce, 2016). The problem with these types of algorithms is that
it is hard to modify them to a setting where the subgraphs need to satisfy some
additional constraints. The proposed work is focused on developing a method
that can partition a graph into bi-connected subgraphs with a maximal allowed
size, but the general concept can be adapted to other interesting constraints.
In current literature there are many practical problems which are modeled us-
ing the problem of partitioning graphs into connected subgraphs. Some exam-
ples are applications in surveillance systems (Borra et al, 2015), data clustering
(Shafique, 2004) and education (Matic and Bozic, 2012). An interesting group
of applications comes from the satisfactory graph partitioning problem, like
finding communities within social or biological networks, defense alliances, arti-
ficial intelligence development, etc. (Bazgan et al, 2010). Partitioning problems
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defined on supply/demand graphs have proven to be essential in modeling sys-
tems of interconnected microgrids (Arefifar et al, 2012, 2013; Jovanovic et al,
2015b; Popa, 2013; Jovanovic and Voss, 2015; Morishita and Nishizeki, 2013;
Ito et al, 2012). Clustering in For many of them it would be reasonable to
substitute the constraint of connectivity with bi-connectivity, producing the
benefit of higher reliability of the system. This type of extension has fre-
quently been applied to modeling real-world systems based on general graph
problems including connectivity. Some examples are power optimization in ad
hoc wireless networks (Moraes and Ribeiro, 2013) and facility layout problems
(Goldschmidt et al, 1996). A common approach for solving such problems is to
start from an approximate solution that is only connected and extend it with
additional nodes to achieve bi-connectivity, like in the case of the problem of
constructing a 2-connected virtual backbone in wireless networks (Wang et al,
2009).

In case of graph problems containing connectivity constraints, a standard
approach is to grow a partial solution by adding neighboring nodes. One ex-
ample is the method used for finding the minimal connected dominating set
of a graph (Jovanovic and Tuba, 2013). The concept of growth has also been
extended to problems where a graph is divided into connected components. In
case of such problems the general approach is to grow several subgraphs in par-
allel with the constraint that no vertex can be added to more than one of them.
The effectiveness of this type of method is well presented on the problem of
partitioning supply/demand graphs into connected subgraphs (Jovanovic et al,
2015b,a, 2016). It is important to note that the concept of growing a solution
gives a high level of flexibility of the method, in the sense of potential applica-
tions. Another advantage of growth based algorithms is that they can easily be
improved by their extension to metaheuristics like the ant colony optimization
(Dorigo and Blum, 2005), the GRASP algorithm (Feo and Resende, 1995) and
the variable neighborhood search (Hansen et al, 2010).

In this paper we introduce a new problem of finding the maximal bi-connected
partitioning of a graph with a size constraint (MBCPG-SC). For the newly
defined problem we show NP-hardness. Because of this a growth based algo-
rithm is developed for MBCPG-SC for finding approximate solutions. More
precisely, it is solved using a heuristic procedure that exploits the fact that
each bi-connected graph has an ear decomposition. The algorithm is based on
a breadth first search (BFS) that also tracks additional properties of the nodes
in the BFS tree. The additional information makes it possible to have an ef-
ficient way to ”grow” a bi-connected subgraph by expanding it with suitable
ears. The concept of growing a bi-connected graph using an ear decomposition
is also used in case of constructing a fault-tolerant connected set cover prob-
lem (Zhang et al, 2009). In this algorithm the best open ears for extending
the current solution are found using the idea of shortest cycles in the original
graph. A similar approach is used for the minimum 2-connected r-hop dom-
inating set problem (Li and Zhang, 2010). The proposed method consists in
growing several subgraphs in parallel, with some auxiliary corrections applied
to the corresponding BFS trees. To improve the performance of the basic al-
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gorithm several methods of randomization are developed. The quality of found
solutions is further enhanced using a local search procedure.

The practical objective of the proposed graph problem and the corresponding
solution method is its application to real word problems in the field of smart-
grids, more precisely on the underlying wireless networks. Such systems are
well presented using unit disc graphs. The proposed graph problem is closely
related to the clustering scheme for hierarchical control of wireless networks
(Banerjee and Khuller, 2001; Chang et al, 2006). Because of this, the focus of
the numerical experiments is on unit disc graphs. To be able to evaluate the
method, an extensive effort has been dedicated to developing an algorithm for
generating problem instances with known optimal solutions. Our computational
results show that the proposed method is able to find optimal solutions for small
graphs. In case of large graphs (10.000 nodes) the method manages to find so-
lutions within a few percent of error, in reasonable time.

The paper is organized as follows. In the second section we give the definition
for MBCPG-SC and a proof of NP- hardness. In the following section we present
the method for growing a bi-connected subgraph. The third section gives details
of the algorithm for parallel growth of several subgraphs and randomization.
The next section describes the proposed local search mechanism. In Section 5,
we provide details of the data generation mechanism for problem instances with
known optimal solutions. Moreover, we discuss results of our computational
experiments and provide some conclusions and ideas for future research.

2 Maximal bi-connected partitioning of a graph

with a size constraint

The problem is defined on a graph G(V,E), where V is the set of nodes and
E is the set of edges. We also define a set R ⊂ V , whose elements will be
called root nodes. The aim of the problem is to divide the graph G into a set of
subgraphs Π = {S̄1, S̄2, ..., S̄n}, where n = |R|, satisfying the constraints given
in the following text. The notation Si will be used for the set of nodes that
induces subgraph S̄i. Each of the Si must contain only one distinct root node
r ∈ R. A node v ∈ V can be an element of at most one Si. The number of
nodes in each of the subgraphs |Si| is less or equal to some constant M . The
last constraint is that each of the subgraphs S̄i is bi-connected. The goal of
the problem is to find Π containing the maximal number of nodes in all the
subgraphs. More formally, we wish to maximize the sum:

∑

i=1..n

|Si| (1)
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Figure 1: Example of a problem instance (left) and solution (right) for the
MBCPG-SC with maximal allowed size M = 5. The circle nodes represent root
nodes. Different shades of gray are used for different subgraphs.

where each of the subgraphs Si satisfies

|R ∩ Si| = 1 (2)

|Si| ≤ M (3)

Si ∩ Sj = ∅, i 6= j (4)

S̄i is bi-connected. (5)

In the definition we use notation |S| to indicate the number of nodes in a graph.
An illustration of a problem instance and solution for the MBCPG-SC is given
in Figure 1. It is important to note that the MBCPG-SC does not produce a
partitioning in the strict sense, since some nodes may not be included in any
Si.

The MBCPG-SC is a hard optimization problem in the sense that it is NP
hard. We give a proof by reduction to a restriction of the problem of maximal
partition of supply/demand graphs (MPGSD) (Ito et al, 2008). It has been
shown that the MPGSD is NP-hard in the case of a graph containing only
one supply node and having a star structure (Ito et al, 2008). For a more
comprehensive presentation we first give the definition of the MPGSD for star
graphs, which is a simplified version of the original problem. It is defined for an
undirected star graph G = (V,E) with a set of nodes V and a set of edges E.
The center node of the graph s is called a supply node and it has a corresponding
supply value sup. All the other nodes u ∈ D = V \{s} are called demand nodes,
and they have a corresponding demand value which is a positive integer dem(v).
The aim is to find a set of nodes S ⊂ D which satisfies the constraint that the
supply sup must be greater or equal to the total demand of nodes in S. The
goal is to maximize the fulfillment of demands.

In the following text we prove that MBCPG-SC is NP hard by reducing the
MPGSD for star graphs to it. Let MPGSD be defined for a star graph G′ having
a central supply node s with a supply value sup connected to n demand nodes
di having demand values demi. Let us convert this problem to MBCPG-SC
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Figure 2: Illustration of a conversion of a MPGSD for star graph (left) to
MBCPG-SC (right). In the graphic representation for the MPGSD the circle
node indicates the supply node and the corresponding supply value. The square
nodes indicate the demand nodes and corresponding demand values. Different
shades of gray are used to show the changes from nodes (MPGSD) to paths
in the MBCPG-SC. In case of the illustration for MBCPG-SC r represents the
root node, s the supply node from MPGSD and e the auxiliary node. Dashed
lines are used for the auxiliary edges. The size limit MBCPG-SC is M = 8.

in the following way. The parameter M of MBCPG-SC will be set to sup+ 3
and there will be only one root node r. Let us convert the star graph G′ to
Ĝ(V̂ , Ê) used in MBCPG-SC. First, we include the root node r in V̂ . The node
r is connected to two nodes s (corresponding to the supply node in G′) and
node e which will be used for some extra edges. Let us remember that the edge
set E′ of G′ consists of edges (s, di). For each demand node di we will add a
path (s, ni,1, · · · , ni,demi

). Next, we add an additional edge (e, di,demi
) for each

demand node di. An illustration of this conversion is given in Figure 2.
Let us make a few observations on the solution of a MBCPG-SC on the

convert graph G′. First, any solution must contain nodes e, s since there must
be at least two disjoint paths from r to any other node. Second if any node ni,j

is included in the solution Ŝ all the nodes ni,1, · · · , ni,demi
must be included in

it. Let us assume the opposite that node ni,k is not included in the solution and

that the nodes ni,j ∈ Ŝ for j 6= k are. In such a case the removal of node e from

Ŝ results in all the nodes ni,l where l > k becoming disconnected from the graph

induced by Ŝ. In the same way, the removal of node s from Ŝ results in all the
nodes ni,l, where l < k, becoming disconnected from the graph induced by Ŝ.

As a consequence any nik ∈ Ŝ is connected to r by two disjoint paths (containing
only elements in Ŝ) (ni,k−1, ni,k−2 , · · · , s, r) and by path (ni,k+1,ni,k+2, · · · ,
e, r). Note that nodes r, s, ni,1,..., ni,demi

, e form a cycle and as a consequence
two disjoint paths exist among any 2 of them.

We will prove that MPGSD on G′ can be reduced to MBCPG-SC on Ĝ by
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showing that any solution S′ of MPGSD has a corresponding solution Ŝ of the
MBCPG-SC such that

∑

u∈S′ dem(u) = |Ŝ| − 3 and and vice versa. Let us
first prove the direction MPGSD to MBCPG-SC, by constructing the solution
Ŝ from S′. Ŝ will consist of nodes r, e, s and all nodes nu,k were u ∈ S′ and

k = 1, .., demu. First, by construction we have
∑

u∈S′ dem(u) = |Ŝ| − 3. The

only additional case that needs to be considered to prove bi-connectivity of Ŝ
is for two nodes nu,i nv,j such that u 6= v. To be more precise we need to
prove that there are two disjoint paths connecting them. From the previous
observation we have that each of these two nodes is connected to nodes e, s
by two disjoint paths. So, nodes nu,i nv,j are connected with disjoint paths
nu,i − s− nv,j and nu,i − e− nv,j .

The construction of the solution S′ of MPGSD from a solution of Ŝ of the
MBCPG-SC is trivial and is based on the construction of graph Ĝ and the fact,
shown in the previously made observation, that any solution Ŝ consists of r, e,
s and all nodes nu, k where k = 1..demu for some nodes u ∈ S′ ⊂ D.

The main motivation for defining the MBCPG-SC is its application to sys-
tems of interconnected microgrids (Hatziargyriou et al, 2007). It has been
shown that optimization of self-adequacy of individual microgrids in such sys-
tems can be well modeled using the MPGSD. The proposed problem can also
be understood as a partitioning of a power supply network in which all supply
nodes (elements of R) have a value M and demand nodes (elements of V \ R)
have value 1. The problem with using the MPGSD for this type of systems
is that it does not address the problem of failure resistance. In MBCPG-SC
we exploit the fact that by strengthening the constraint of connectivity to bi-
connectivity, compared to MPGSD, we are able to have a model that produces
more robust subsystems.

Another potential application of the proposed problem is on the hierarchical
clustering for wireless networks. In the work of (Banerjee and Khuller, 2001),
a network is divided into clusters that can be hierarchically controlled. The
basic properties of a cluster are that it has a single control node, the number
of nodes it can contain is limited, and the corresponding subgraph needs to be
connected. It is natural to extend this formulation with an additional constraint
of bi-connectivity of subgraphs to enhance reliability.

3 Growing bi-connected subgraphs

3.1 Definition of open ear decomposition

Since the proposed algorithm is based on the property that a bi-connected graph
has an open ear decomposition we start with its definition. An open ear decom-
position of a graph G is defined as a series of paths P̄0, P̄i, . . . , P̄n called ears.
The term path is used for an ordered sequence (v1, v2, . . . , vm) such that all
edges (vi, vi+1) ∈ E. In the following text we will use the notation P for the
set of nodes in P̄ . The notation (vj1, . . . , v

j

mj ) is used for a sequence of nodes in
ear P̄j . All the ears P̄i, i = 1 . . . n in the decomposition satisfy vij 6= vik if j 6= k.
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Figure 3: Examples of an open ear decomposition for a bi-connected graph.
Different shades of gray are used for separate open ears.

The exception is the first ear P̄0 which is a cycle v01 = v0n. For j > 0, we have
that for each of the two terminating nodes vj1, v

j

mj ∈ Pj exists k, l < j such that

vj1 ∈ Pk, v
j

mj ∈ Pl where it is not necessarily l 6= k. We wish to point out that

vj1 6= vj
mj , so each Pj is an open ear. Except for such terminating nodes, there

is no v ∈ Pi ∩Pj if i 6= j. Finally, for each v ∈ G there exists at least one i such
that v ∈ Pi. If such a decomposition exists for graph G then G is bi-connected.
An illustration of an open ear decomposition of a graph is given in Figure 3.

3.2 Algorithm outline

In the proposed algorithm the idea is to grow a bi-connected subgraph S, start-
ing from an initial cycle and extending it with adequate ears. More formally,
we will be iteratively generating a sequence of subgraphs S̄0 ⊂ S̄1 ⊂ S̄2 ⊂ · · · ,
where Si+1 = Si ∪ P i and P i is an open ear for Si. It is evident that if a sub-
graph is generated in this way it will always have an open ear decomposition.
Although it is possible to develop such an algorithm using a depth first search
(DFS) the use of BFS is more suitable since it gives us more control of the size
|Pi| of the ear that will be added.

In the subsequent text we will be using the following notation.

• N(u) the set of adjacent/neighboring nodes to node u in graph G.

• BFStreeV /BFStreeE are the set of nodes/edges in the BFS tree.

• ch(u) is the set of children of node u ∈ BFStree in the BFS tree.

• par(u) is the parent node of u ∈ BFStree in the BFS tree.

• desc(u) is the set of all descendants of node u ∈ BFStree in the BFS tree.

• p̄b[u, v] is defined for nodes u, v ∈ BFStree. It represents the path (u,
w1, w2, · · · , wn, v) connecting u, v such that all wi ∈ BFStree. Brackets
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”(”/”[” are used to indicate if u, v are included/excluded in the path. The
notation pb[u, v] is used for the corresponding set of nodes.

• root(u), is node v which is the first ancestor of u, in the BFS tree, such
that v ∈ S. In case u ∈ S, then root(u) = u.

• root(u, P ), is node v which is the first ancestor of u, in the BFS tree, such
that v ∈ P . In case u ∈ P , then root(u) = u.

• d(u) is the length of the path (number of nodes), pb[u, root(u)). Note, that
it does not include node root(u). In case u = root(u), we have d(u) = 0.

It is well known that BFS can be used to find cycles which we exploit in the
proposed method. Let us assume that we start the BFS from some initial node
r. As we expand the BFS tree, or in other words, new nodes are visited, the
first time we encounter a back-edge (u, v) ∈ E \BFStreeE an initial cycle S is
found. More precisely, S is acquired by connecting three segments: path from
r to u, the back edge u, v and the path from v to r. In the proposed notation
S = (pb[r, u], pb[v, r)) and it has all its nodes in the BFS tree.

In a similar way we can find new open ears. Let us assume the BFS tree is
further expanded and a new back-edge (s, t) ∈ E \BFStreeE has been found,
and that at least one of the nodes s, t is not in S. It is obvious that if the
following is satisfied,

root(s) 6= root(t) (6)

then the sequence

P̄ (s, t) = (p̄b[root(s), t], p̄b[s, root(t)]) (7)

will produce a new open ear connected to S. As a consequence S ∪ P (u, v) will
also be a bi-connected subgraph. We will use the notation P (u, v) for the set
of nodes corresponding to P̄ (u, v). The same procedure can be used to further
expand S with new open ears.

The second constraint that exists in the MBCPG-SC is that |S| < M . While
growing S, it can easily be maintained if we only allow adding ear P (u, v) if the
following equation is satisfied

|S|+ d(u) + d(v) ≤ M (8)

If we adapt the BFS search in a way to always explore node u having the lowest
value of d(u) the length |P | of the newly found open ear will be among the
shorter ones (except in rare cases). This is due to the method of construction
in which newly found ears will always have one terminating node equivalent to
the currently visited node in the BFS. If d(M) has the largest value of all nodes
in the BFS tree which are not in S then the maximal difference between |P |
and the shortest ear will be d(M). In case of adapting the BFS in this way
some additional work will be necessary to update the values of d(u) and root(u)
as new ears are added to S. It is important to note that after such updates it
is possible that several back edges (u, v) that have been previously tested may
now satisfy the constraints given in Eqs. (6),(8).
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3.3 Algorithm

The algorithm for growing a bi-connected subgraph based of the idea presented
in the previous section will start the BFS from some root node r. As the first
ear in the decomposition P0 differs from the rest as it is a cycle, some special
initialization needs to be done for r and its neighbors N(r). For all these nodes
u we will initially set root(u) = u. In the adaptation of BFS for growing a
bi-connected graph the distance in the BFS tree will have a different meaning.
Instead of following the distance of a node u from the root node r we will track
the distance from u to the already generated bi-connected subgraph S̄. At the
initial step we will consider S = {r}. Let us assume that we have found two
nodes u, v that satisfy the constraints given in Eqs. (6), (8), then the first ear
P0 can be constructed as

P0 = P (u, v) ∪ {r} (9)

As previously stated in case a new ear P is added to S the values of root(u),
d(u) will need to be updated for some elements of the BFS tree. It will be
necessary to update these values for all u ∈ P ∪ desc(P ) in the following way.

root(v) = root(v, P ). (10)

d′(v) =

{

d′(v) − d′(root(v, P )) v /∈ P
0 v ∈ P

(11)

It is important to note that the proposed correction for functions d(u) will
produce approximations to the exact distance d′(u). For the function d′ we
have that d′(u) ≥ d(u) since it is possible to have an alternative path to S using
some back edges which is shorter. A consequence of this is that the constraint
defined in Eq.(8) will never give false positives if function d′ is used instead of
d. By using this approximate approach it is possible to have a simpler and less
computationally expensive implementation.

In the standard BFS there is no change in the distance for visited nodes
and no node is re-visited. In the proposed adaptation of BFS such changes can
occur and some revisits are necessary. It is possible to use a heap or similar
structure instead of a queue to always test the node u with the lowest value
d′(u). In practice this is not necessary especially since we are only using an
approximation to d(u). On the other hand the need for retesting some nodes
further increases the complexity of implementation. Both of these issues are
addressed simultaneously using the following approach. First, nodes will be re-
added to the queue as a new ear is added to S and their re-evaluation is needed.
Since it is possible for the same node to be added multiple times to the queue
due to the addition of multiple ears, an additional value will be used to track if
an evaluation is needed. The algorithm for growing a bi-connected subgraph is
better understood by observing Algorithm 1.

The proposed algorithm starts with a standard BFS initialization of the
distance, parents and descendants for all the nodes with the additional property

10



Algorithm 1 Pseudo code for growing a bi-connected subgraph

procedure BFSGrowBiConnected(G, r)
For all u ∈ G initialize Dist, Eval, Parent
Initialize all u ∈ r ∪N(R)
Add all N(R) to Q
while Q is not empty do

current = Q.dequeue() ⊲ Using Queue (FIFO) structure
if current.Eval ∧ (M − |S| ≤ current.Dist) then

for all u ∈ N(current) do
if (u, current) is BackEdge) then

if u, v produce an open ear satisfying Eq. (6), (8) then
Set P (u, c) based on Eq. (7) or Eq.(9)
S = S ∪ P (u, c)
Update(P,Q)
Exit procedure if S = M

end if

else

u.[Root,Dist] = [current.Root, current.Dist + 1]
Update parent, child relations for u, current
Q.enqueue(u)

end if

end for

current.Eval = false
end if

end while

end procedure

11



of the need for evaluation. Initially all the values of Eval will be set to true.
An auxiliary structure is used to store all the properties of individual nodes,
which can be accessed and updated using the node id. Next, we initialize the
root r and all its neighbors N(r) as previously described and all nodes in N(r)
are added to the queue Q. The main loop is executed for each node current
in Q until Q = ∅. For each such node we first check if an evaluation is needed
and if so all its neighbors N(current) are evaluated. For each u ∈ N(current)
we check if (current, u) is a back-edge. In case it is not we add u to the Q as
in the BFS, and we set root(u) = root(current). In case u is a back-edge we
check if P (u, current) is an open ear connected to S. If this is true the subgraph
S is extended with P (u, current) and necessary updates are performed using
procedure Update(P,Q). After all the elements of N(current) are visited the
evaluation of node current is complete and we set current.Eval = false.

The update procedure for a newly found open ear, Update(P,Q), is used to
change the state of Q and nodes based on the P (u, current). The details of the
procedure are given in Algorithm 2. In it, for all u ∈ P the distance is set to

Algorithm 2 Update procedure for adding an ear to subgraph S.

procedure Update (P,Q)
for all (u ∈ P ) do

u.[Root,Dist] = [u, 0]
UpdateBFSBranch(u, u, 0)
Q.Enqueue(u)

end for

end procedure

procedure UpdateBFSBranch( u, root, dist)
for all (v ∈ ch(u)) do

if v /∈ S ∧ v ∈ BFStree then

u.[Root,Dist, Eval] = [root, dist+ 1, true]
UpdateBFSBranch(v, root,Dist+ 1)
Q.Enque(u)

end if

end for

end procedure

d.Dist = 0. Each node u now becomes a root of a new potential ear, so we set
u.root = u. For each node u ∈ P we wish to update the branch of the BFS tree
whose root is u.

This is done using a recursive procedure UpdateBFSBranch(u, root, dist).
In it we go through all the BFS descendants v of u that are not already in S
and set the v.root = root and v.dist = dist+1. By doing so the node properties
are set to the values that correspond to the new state of S. For each such node
re-eavaluation is needed to check if new open ears have been created so we set
v.Eval = true. The addition to the queue Q is done after the recursive call
UpdateBFSBranch(v, root, dist+ 1) for updating the descendants. This order
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is important since nodes will be added to the queue in reverse order of their
distance and as a consequence shorter potential ears are checked first. By doing
so S is more gradually grown.

4 Algorithm for MBCPG-SC

When solving the MBCPG-SC multiple subgraphs S̄1, .., S̄n should be grown
together. The idea of the algorithm is to randomize this process. The random-
ization is done on two levels. First, the growth of individual subgraphs S̄i should
be randomized. This can simply be done by adding an additional parameter
p0 ∈ [0, 1] and a corresponding random variable p ∈ [0, 1] which will be used to
decide if a valid open ear is added to S or not. It is important to note that by
not adding an open ear Pk at iteration k does not necessarily exclude the nodes
inside Pk from the corresponding subgraph S̄. This is due to the fact that they
can be a part of some ear Pl that will be added to S at a later iteration.

It is evident that the growth of subgraphs S̄1, · · · , S̄n is interdependent since
a node u can only be an element of a unique Si. On the other hand, the growth of
some Si will also effect the direction of expansion of the BFS tree of neighboring
subgraphs. Because of this the second type of randomization should effect the
speed and order in which all the Si will be grown. The proposed method can
be better understood through the pseudocode given in Algorithm 3.

Algorithm 3 Randomized method for generating a solution for MBCPG-SC
S.
procedure GenerateMBCPG-SC(roots)

For all i Set rootji .Unavalable = true for all Sj where i 6= j
Initialize all Si for rootsi
while Can Expend Some Si do

Select Random Expansion Length MaxL ∈ (2,MaxExpLength)
Select Random Si from Expandable
cLength = 0
repeat

P = BFSGrowSingleEarBiConnected(Si, G)
Apply UpdateBFSTree(Sj, P ) for all j 6= i
cLength = cLength+ |P |

until (cLenght ≥ MaxL) ∧ CanExpand(Si))
end while

end procedure

In the proposed algorithm separate BFS trees and corresponding auxiliary
structures exist for each of the Si. The auxiliary structure for tracking node
properties is extended with a property Available for nodes, which is used to
indicate if a node has been added to some of the other subgraphs. Initially
this value is set to true for all nodes in all subgraphs. The first step, is setting
rootji .Available = false for all the Sj where i 6= j. Here we use the notation
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uj
i for node ui in the auxiliary structure of subgraph S̄j . Next, the BFStree is

initialized for each subgraph S̄i using the corresponding rooti as described in the
previous section. The main loop is repeated until no subgraph can be further
expanded. At each iteration a random subgraph S̄i is selected for expansion of
a maximal allowed size MaxL. MaxL is a random variable from some range
[2,MaxExpLength]. The goal of the inner loop is to extend Si with at least
MaxL nodes, or until it is not possible to extend it. In this loop an adaptation
of the procedure presented in the previous section is used in the form of function
BFSGrowSingleEarBiConnected(Si, G) which only adds a single ear P to Si.
This function does not consider nodes having Available = false. After an ear
P is added to Si, the BFS tree and corresponding structures need to be updated
for all Sj where i 6= j using procedure UpdateBFSTree(S, P ).

The update procedure needs to perform several tasks. First, all the nodes
u ∈ P need to be made unavailable for the growth of Sj, where j 6= i, which
can be done by setting u.Available = false in the corresponding auxiliary
structures. Secondly, all the nodes in v ∈ desc(u) which have been cutoff from
the BFS tree (for some Sj , i 6= j), by the removal of u, need to be re-initialized
so they can potentially be re-added to the BFS tree. This is done by setting
v.Distance = INF and v.Eval = true. Although there is a potential that a
node v ∈ desc(u) may be reached by continuing the growth of the BFS tree, there
is no guarantee for this. The question is which nodes need to be re-evaluated to
make this possible. It is obvious that if a back-edge (w, v) existed for the BFS
tree that node w can be reconnected to v. On the other hand if such a back
edge existed and root(w)! = root(v) then the corresponding open ear would
have been already added to S. The only potentially disregarded back edges are
of the type root(w) = root(v). Because of this the nodes in a ∈ pb(u, root(u))\u
should be re-evaluated if a.Eval = false, since they can establish a connection
with v. The details of the update procedure for deleting a node are given in
Algorithm 4.

5 Local Search for MBCPG-SC

The algorithm in the previous section gives us a method for generating a single
solution for MBCPG-SC. A simple way of finding higher quality solutions is to
perform multiple runs with different random seeds and selecting the best one.
The problem with this approach is that no experience is gained from previously
generated solutions and as a consequence a very high number of them needs to be
generated to get good quality ones. An alternative approach is to develop a local
search procedure which improves sections of already generated solutions. The
basic idea of the proposed local search is to regrow only a subsection I ⊂ Π of the
previously best found solution. Ideally, we wish to do this only for subsections
for which an improvement is possible. The growth procedure presented in the
previous section can easily be adapted to such a setting.
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Algorithm 4 Randomized method for generating a solution for MBCPG-SC.

procedure UpdateBFSTree(j, P )
for all u ∈ P do

u.Available = False
Update Parent, Descent relation for u
for all c ∈ pb(u, root(u)) \ {u} do

if c.Eval = false then

c.Eval = true
Q.enqueue(c)

end if

end for

for all v ∈ desc(u) do
v.[Eval,Dist] = [false, INF ]
Clear parent, child relations

end for

end for

end procedure

Let us define the set on non-located nodes as

NonLoc = V \
⋃

i=1..n

Si (12)

It is obvious that I should contain at least one S̄i such that |Si| < M . The
other requirement is that I has a potential to expand to some u ∈ NonLoc. For
simplicity let us assume that there is only one non-located node u ∈ NonLoc,
and there is only one S̄i ∈ I such that |Si| < M . Since S̄i must be bi-connected
there must be a path(rooti, u) having only nodes in I. We can define the set of
neighboring nodes of a subgraph in the following way

Ns(S̄) = {u | (u ∈ V ) ∧ (u /∈ S) ∧ (∃(v ∈ S)((u, v) ∈ E)} (13)

It is evident that for an appropriate path(rooti, u) to exist, u must satisfy
u ∈ Ns(Sj) for some S̄j ∈ I. Using this logic, we can specify I containing
m subgraphs based on this necessary condition. Select one S̄i ∈ Π having
|Si| < M and S̄j ∈ Π such that it Ns(S̄j) ∩NonLoc 6= ∅. Select m− 2 random
subgraphs from Π\ {S̄i, S̄j}. We will call this method for selecting the elements
of I growth random (GrowR).

This method for specifying I satisfies the necessary condition but further
constraints can be added to make the local search more efficient. Let us ob-
serve a graph G′(V ′, E′) induced by Π in the following way. Each node in V ′

corresponds to a subgraph S̄i ∈ Π. An edge (S̄i, S̄j) is in E′ if there exist
nodes u ∈ Si, v ∈ Sj such that (u, v) ∈ E. If we are re-growing only two sub-
graphs S̄i, S̄j there is a potential that nodes may be exchanged between them
if (S̄i, S̄j) ∈ E′, and more generally Si, Sj will influence each other’s growth.
Transitively, the influence will extend to all subgraphs in a connected subgraph
S′ ⊂ G′.
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Figure 4: An illustration of an exchange between subgraphs through non-located
nodes. Different shades of gray are used to indicate different subgraphs. Dashed
lines represent non-located paths (left side). The edge sets used for defining G′

and Ĝ are E′ = {(S2, S3)} and Ẽ = {(S1, S2), (S1, S3)}, respectively.

An exchange can occur between subgraphs S̄i, S̄j in the same setting even
if (S̄i, S̄j) /∈ E′ through nodes in NonLoc. Let us assume that for some u ∈ Si,
v ∈ Sj there is a connecting path(u, v) which only contains nodes in NonLoc.
In such a case there is a chance that node v can be added to Si using this path.
We give an illustration in Figure 4. Let us define Ẽ as a set of edges, where
(S̄i, S̄j) ∈ Ẽ only if a connecting path exists containing only non-located nodes.

Let us now define a new graph Ĝ(V ′, Ê) using the following edge set

Ê = E′ ∪ Ẽ (14)

Now, we can say that for the same I an exchange between subgraphs S̄i, S̄j can

only occur if and only if (S̄i, S̄j) ∈ Ê and more generally Si, Sj will influence
each other’s growth. Transitively the same applies to any connected subgraph
I ⊂ Ĝ. A consequence of this is that regrowing should only be considered for
a connected (in Ĝ) subsections I, since each isolated section can be treated
separately.

Using graph Ĝ we can define a method for generating a set |I| ≥ m suitable
for regrowth in the following way. First select an initial random node I = {Ā0}
such that |A0| < M . Note as a reminder that Ā0 represents a subgraph in Π.
Iteratively, we add a random node Āi such that it is connected (in Ĝ) to at
least one node Āj ∈ I. When |I| = m, we check if at least one node Āj ∈ I
satisfies Ns(Āj) ∩NonLoc 6= ∅. If this is true I is accepted as the set that will
be regrown. In case this is not true a new set I is generated in the same way. If
after N attempts no such I is generated m is increased by one. This process is
repeated until I satisfying the necessary constraints is generated. We will call
this method for selecting the elements of I growth neighbor (GrowN).

The method based on the local search for the MBCPG-LS is given in Algo-
rithm 5. The methods starts with generating an initial solution using procedure
GenerateMBCPG − SC which is set as the BestSolution. For this solution
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Algorithm 5 Local search based algorithm for finding a high quality solutions
for MBCPG-SC.

Generate solution Π using GenerateMBCPG− SC
BestSolution = Π
Calculate Ĝ(V ′, Ê) for BestSolution
while Not Termination Condition do

Randomly select m from [2, RegrowSize]
Randomly select S̄i such that |Si| < M
Generate I based on Si, m and Ĝ
Π′ = RegrowPartial(I, BestSolution)
if |Π′| ≥ |BestSolution| then

BestSolution = Π
Calculate Ĝ(V ′, Ê) for BestSolution

end if

end while

we generate the graph Ĝ as described in the previous text. In the main loop
we first select a random subgraph S̄i such that |Si| < M and a random num-
ber m ∈ [2, RegrowSize] which indicates how many subgraphs will be regrown.
Next, we generate a random subgraph I ⊂ Ĝ based on the node Si containing m
nodes using one of the two methods GrowR or GrowN . A new solution Π′ is ac-
quired by regrowing I using procedure RegrowPartial(I, BestSolution). This
procedure is the same as GenerateMBCPG− SC with the following changes.
First, for all nodes u /∈ NonLoc ∪ I we set u.Available = false. Next, only
subgraphs in I are grown and considered in the update procedure. The rest of
the subgraphs are left unchanged. The next step in the main loop consists in
testing if |Π′| ≥ |BestSolution|. In case this is true the best found solution is
updated and the graph Ĝ is recalculated. Note that we have allowed the update
of the best solution even if it has the same quality as Π to diversify the search.
The main loop is repeated until a maximal number of iterations or no further
improvement can be achieved.

6 Computational Experiments

In this section we present the results of the computational experiments used
to evaluate the performance of the proposed method. We have compared the
basic randomized growth algorithm with its extension using the local search
procedure with and without exploiting the subgraph neighborhoods. All the
algorithms have been implemented in C# using Microsoft Visual Studio 2015.
The source code and the execution files have been made available at (Jovanovic,
2013). The calculations have been done on a machine with Intel(R) Core(TM)
i7-2630 QM CPU 2.00 Ghz, 4GB of DDR3-1333 RAM, running on Microsoft
Windows 7 Home Premium 64-bit.
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6.1 Test instance generation

In the evaluation of the proposed algorithm our focus is on unit disc graphs
due to there close relation with wireless networks. As stated above the pro-
posed problem can be used to find clustering schemes for hierarchical control
of such systems with enhanced fault tolerance. Due to the fact that this is a
newly defined problem there are no standard benchmark instances available for
comparison it was necessary to also generate problem instances with known op-
timal solutions. In the generation procedure our goal is to generate graphs that
are ”as random as possible”. To be more precise we attempt to have the node
positions close to the uniform probability distribution and to have the number
of edges that are adjacent to each node relatively balanced. To achieve this we
use the following procedure.

Let us say that we are generating a problem instance having n root nodes and
M is the maximal allowed number of nodes in a subgraph, having a solution in
which Π contains all the nodes. For problem instances of this form we generate
unit disc graphs inside of a box B with dimensions 1, 1. The value for the length
for establishing edges is d = 1/(

√
αnM). α is an additional parameter used to

vary the density of the graph used in specifying different data sets. The first
step is generating n random bi-connected unit disc graphs having M nodes. As
our aim is to have the nodes of graph G spread over the entire area of the box B
having an area equal to 1. We want to have each of the subgraphs Gi covering
an area of close to 1/n. To achieve this for each such graph we first define a box
with dimensions 1/(

√
nR),

√
nR where R is randomly selected from the interval

(0.5, 1) used to vary the shape of Gi. For this box a random bi-connected graph
Gi is generated. This is done by repeatedly generating M ·δ random points and
checking if the resulting unit dist graph contains a bi-connected subgraph Gi

containing M nodes. To increase the probability of having nodes of the graph
covering an area close to 1/n, four nodes have been forced to random positions
at each edge of the box. To achieve this a high number of graphs needs to be
generated, especially in the case of a high value of M . This is the reason for the
additional points, specified using parameter δ = 1.1, in the box, since it greatly
reduces the number of graphs that are generated. Out of all the nodes in Gi

one would be randomly selected as the rooti.
The next step in generating a problem instance with a known solution is

combining graphs Gi. Let us remember that by the method of construction for
each subgraph Gi contains M nodes having some values of coordinates (x, y),
as a consequence we can easily translate Gi by a vector (tx, ty) by changing all
node positions to (x+tx, y+ty). The basic idea of combining the graphs Gi is to
randomly position (translate) them in a way that all the nodes fit in a box having
dimensions 1, 1. As previously stated our goal is to have a relatively balanced
number of edges for all the nodes. Secondly, we want to distribute the nodes over
the entire box B. This is achieved through the following iterative procedure.
Initially, the graph G is set to G0. At each iteration a new graph Gi is set at a
random position and added to G, but some constraints must be satisfied. First,
all the points in G∪Gi must fit into a box having dimensions 1,1. The number
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of new edges ne connecting G and Gi, has to satisfy ne ≥ MinCon. To achieve
this multiple random positions have to be tested for each subgraph Gi. The
parameter MinCon is used to bound the allowed number of new edges which is
related to the number of edges |Ei| in the graph as MinCom = max(3, γ|Ei|).
Empirical tests have shown that values γ = 0.2 produce satisfactory results. For
each graph Gi a 1000 positions are tested and the one satisfying the constraints
and having the lowest number of minj=1..i|Ej | would be chosen for adding to
G. The last step is randomly enumerating all the nodes in G.

6.2 Experiments

To have an extensive evaluation of the proposed algorithm, we have generated
a wide range of problem instances for different numbers of root nodes n (5-
100) and maximal allowed number of nodes in a subgraph M (5-100). For
each pair n, M 40 problem instances have been generated using the algorithm
presented in the previous subsection with different values for the seed of the
random number generator. We have generated two problem sets varying in the
level of connectivity by setting α = 1.5, 2. For each of the problem instances
a single run of the growth based algorithms is performed. This is done for the
two local search methods based on GrowR and GrowN for generating the set
of subgraphs I which will be regrown.

The same set of parameters for specifying the algorithm is used for all the
problem sizes. The value of the parameter for accepting an ear is p0 = 0.5 in
the growth algorithm. The parameter specifying the maximal expansion of a
subgraph at one step is MaxExpLength = 12. The value RegrowSize = 9
was used for the the upper bound on the value m which is used for generating
the size |I| of the set of subgraphs that will be regrown. These values have
been chosen empirically after a wide range of values have been tested in com-
putational experiments. In all of the computational experiments the algorithm
would execute until 10.000 iterations (generated solutions) have been reached
or more than 2000 iterations have been completed without an improvement to
the best found solution.

The results of the computational experiments focus on the quality of found
solutions and the computational cost which can be seen in Tables 1, 2. The
evaluation of solution quality is done using the average normalized error of the
found solutions compared to the known optimal ones, for each of the used meth-
ods. More precisely, for each of the 40 test instances, for each pair (n,M), the
normalized error is calculated by (Optimal − found)/Optimal · 100, and we
show the average values. To have a better comprehension of the performance
we have also included the standard deviation, maximal errors and the number
of found optimal solutions (hits). The computational cost is analyzed through
the average execution time needed to find the best solution. To have a better
understanding of these execution times, we have also included the average num-
ber of iterations (number of generated solutions) to find the best solution and
the corresponding standard deviation in Tables 1, 2.

As it can be seen in Tables 1, 2 the local search based on the use of subgraphs
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Table 1: Comparison of the performance of the GrowR and GrowN methods
for unit disc graphs with α = 2.

Roots X M Avg(Stdev) Max Hits AvgIter AvgT ime(ms)
R N R N R N R N R N

5 X 5 0.30(1.38) 0.30(1.38) 8.00 8.00 38 38 122(47) 63(41) 12 8
5 X 10 0.15(0.69) 0.00(0.00) 4.00 0.00 38 40 357(224) 269(228) 40 31
5 X 25 0.78(1.32) 0.96(1.61) 5.60 7.20 24 23 884(435) 644(170) 236 185
5 X 50 1.12(1.46) 0.90(1.41) 8.00 8.00 11 14 1428(1160) 1455(364) 851 940
5 X 100 1.40(1.39) 1.38(1.64) 5.00 6.00 5 7 1707(851) 1738(215) 2472 2547

10 X 5 0.50(1.40) 0.25(0.80) 6.00 4.00 35 36 393(903) 359(507) 34 33
10 X 10 0.43(0.80) 0.28(0.63) 4.00 3.00 28 32 1034(928) 848(775) 162 162
10 X 25 2.78(2.03) 2.30(2.26) 9.60 9.60 1 5 1810(1031) 1569(594) 748 680
10 X 50 2.04(1.34) 1.51(1.19) 6.80 5.00 0 1 2775(441) 2946(1389) 2497 2730
10 X 100 1.92(1.30) 1.70(1.35) 6.30 6.30 0 0 3470(555) 3479(1997) 7883 7870

25 X 5 3.36(3.13) 1.98(2.71) 9.60 8.80 12 21 2113(3057) 1635(686) 246 207
25 X 10 2.19(1.42) 1.41(1.18) 5.20 4.00 2 7 2268(2228) 1731(890) 431 399
25 X 25 3.35(1.31) 2.04(0.87) 6.88 4.16 0 0 4475(3739) 4494(1885) 2221 2248
25 X 50 2.91(0.98) 2.41(0.95) 4.88 4.56 0 0 6225(2062) 4480(1170) 6842 4985
25 X 100 2.59(0.93) 2.32(1.04) 6.00 5.16 0 0 7220(2221) 6105(1092) 22812 18533

50 X 5 6.47(2.08) 3.08(1.97) 10.40 8.00 0 2 3669(3037) 4020(1764) 746 728
50 X 10 2.93(1.16) 1.37(0.82) 6.00 3.20 0 1 5385(2962) 3548(248) 1681 1118
50 X 25 3.88(0.86) 2.50(0.74) 5.68 4.16 0 0 7779(1800) 7322(1683) 5911 4801
50 X 50 3.91(0.76) 2.79(0.70) 5.68 4.40 0 0 8822(813) 7966(1921) 15347 12788
50 X 100 3.51(0.79) 2.47(0.59) 5.26 4.40 0 0 9295(228) 8995(916) 42597 38596

100 X 5 8.87(1.53) 4.87(1.19) 13.00 7.40 0 0 5333(2432) 5829(832) 2681 2256
100 X 10 4.16(0.75) 1.92(0.74) 6.00 3.40 0 0 8100(1171) 6944(2128) 6452 3875
100 X 25 5.51(0.88) 2.99(0.47) 8.00 4.04 0 0 9449(306) 9127(475) 17044 11720
100 X 50 5.44(0.70) 3.26(0.44) 6.94 4.82 0 0 9710(240) 9640(212) 39697 29134
100 X 100 5.00(0.82) 3.15(0.49) 6.84 4.31 0 0 9844(168) 9731(255) 100213 78981

GrowN manages to significantly outperform GrowR. As expected, GrowN
produces a higher level of improvement for problem instances having a higher
number of roots, or in other words when the graph is divided into a greater num-
ber of subgraphs. In case of problems having 100 subgraphs the average error is
nearly halved. For problem instances with lower values of n this improvement
is smaller but consistent. In the 50 problem sets, in only 5 GrowR produces
slightly better results. This only occurred for problems having five subgraphs,
in which the use of neighborhoods is not essential. Overall both methods had a
good performance, with an average error going up to 9%/5% and 5%/3.5% for
problem instance generated using α = 2/1.5 for GrowR and GrowN , respec-
tively. In practice the problem instances having the maximal number of allowed
nodes M = 5 proved to be the hardest. The methods managed to find better
solutions for graphs with higher edge densities (α = 1.5). We believe that the
main reason for this is that such problem instances are in practice easier to
solve since there is a greater number of potential bi-connected subgraphs. The
hardest instances to solve are the ones in which the maximal allowed size of a
graph is the smallest and the number of subgraphs is the highest. For a notable
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Table 2: Comparison of the performance of the GrowR and GrowN methods
for unit disc graphs with α = 1.5.

Roots X M Avg(Stdev) Max Hits AvgIter AvgT ime(ms)
R N R N R N R N R N

5 X 5 0.10(0.62) 0.10(0.62) 4.00 4.00 39 39 158(150) 153(124) 10 10
5 X 10 0.00(0.00) 0.10(0.44) 0.00 2.00 40 38 254(147) 211(180) 27 28
5 X 25 0.38(0.69) 0.18(0.42) 2.40 1.60 29 33 511(273) 526(480) 137 153
5 X 50 0.05(0.13) 0.06(0.17) 0.40 0.80 35 35 911(252) 542(456) 536 341
5 X 100 0.17(0.31) 0.16(0.43) 1.60 2.60 23 26 1305(1029) 875(502) 1772 1243

10 X 5 0.75(1.53) 1.00(2.10) 6.00 8.00 31 31 624(434) 349(185) 49 35
10 X 10 0.65(1.15) 0.33(0.75) 5.00 4.00 26 31 807(457) 578(464) 126 121
10 X 25 0.70(1.01) 0.49(0.82) 4.40 3.60 18 24 1548(820) 1269(324) 659 595
10 X 50 0.39(0.55) 0.38(0.40) 2.80 1.60 15 13 2429(1540) 1914(1255) 2421 2043
10 X 100 0.50(0.75) 0.38(0.60) 3.00 2.80 6 13 2859(1494) 2431(1869) 7150 6134

25 X 5 3.48(1.47) 2.18(1.51) 6.40 6.40 0 6 1581(450) 1336(838) 208 182
25 X 10 1.17(1.01) 0.76(0.79) 4.40 2.80 3 13 2256(1616) 1664(714) 516 496
25 X 25 1.18(0.74) 0.80(0.69) 3.52 2.88 0 4 4392(2236) 3231(730) 2556 1970
25 X 50 0.98(0.64) 0.76(0.79) 3.12 4.00 0 1 5522(1851) 4478(1968) 7367 5983
25 X 100 1.22(0.76) 1.02(0.80) 3.52 3.44 0 0 6704(2977) 4824(3691) 22793 15582

50 X 5 4.54(1.21) 2.74(0.82) 8.40 4.80 0 0 2805(825) 3111(2346) 652 644
50 X 10 1.63(0.78) 0.85(0.49) 3.80 2.00 0 1 4818(1732) 3410(1566) 1746 1518
50 X 25 1.72(0.66) 0.90(0.37) 3.36 1.60 0 0 7604(1662) 5735(1714) 7030 4764
50 X 50 1.61(0.45) 0.97(0.36) 2.76 1.92 0 0 8573(1729) 7110(2077) 18569 13504
50 X 100 1.50(0.60) 1.01(0.44) 2.96 2.72 0 0 9178(705) 8132(1189) 52250 39889

100 X 5 5.14(1.03) 3.32(0.74) 7.60 5.60 0 0 5442(1610) 4417(976) 2876 1843
100 X 10 2.36(0.57) 1.03(0.45) 3.50 1.80 0 0 8590(1161) 6651(1594) 6909 4301
100 X 25 2.52(0.58) 1.19(0.42) 4.24 2.16 0 0 9675(146) 8769(3070) 20390 12047
100 X 50 2.51(0.59) 1.23(0.34) 4.18 2.28 0 0 9641(78) 9319(387) 46193 30645
100 X 100 2.36(0.47) 1.26(0.33) 3.61 1.95 0 0 9708(245) 9702(808) 129312 87792

number of test instances GrowN manages to find optimal solutions, in case of
α = 2/1.5 it is close to 20%/30%. It is important to note that optimal solutions
are only found for graphs having up to 500 nodes. GrowN has a robust behavior
in the sense that the maximal error for a problem set is 9.6%/5.6% but in the
majority of the cases it is less than 5%/3% for α = 2/1.5.

When we observe the computational speed of the proposed methods the ad-
ditional cost for calculating the neighborhoods in GrowN is overall neglectable
when compared to GrowR. In case of large problem instances the use of neigh-
borhoods even decreases the calculation time. Overall both methods prove to
be computationally very efficient having taken 100/120 and 80/87 seconds to
generate close to 10 000 solutions in case of graphs having 10 000 nodes and
α = 2/1.5 for GrowR and GrowN , respectively. It is important to note that
for the largest instances in case of both methods the execution of the algorithm
was terminated before the stagnation occurred (no improvements of the best
found solution). The scaling of the methods is good in the sense that the in-
crease of average execution time from instances having 100 nodes to 10000 was
around 10 000 times. The number of iterations performed for different problem
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instances for the same pair n,M would highly vary which can be seen from the
standard variation. We wish to point out that GrowN manages to find high
quality solutions with a low number of generated solutions when compared to
the solution space.

7 Conclusion

In this paper we have introduced a new problem of finding the maximal num-
ber of nodes contained in a set of disjoint bi-connected subgraphs of a graph
with the additional constraint on the maximal size of a subgraph. This type of
problem can be potentially applied for many practical problems. One example
is the partitioning of electrical grids into a system of interconnected microgrids
with a high level of resistance to failure. For solving the MBCPG-SC, a novel
computationally efficient method for growing bi-connected subgraphs has been
introduced. This method has been adapted to the setting of growing multiple
graphs in parallel to generate solutions for MBCPG-SC. The quality of solutions
generated in this way was further improved using a local search method exploit-
ing neighboring relations between subgraphs. The proposed method managed
to acquire approximate solutions having an average error of up to 5% when
compared to known optimal solutions. Further, the method is highly computa-
tionally efficient in the sense that it manages to find such solutions within two
minutes for graphs having 10.000 nodes.

In the future we plan to extend the current research in several directions.
First, we aim to explore the weighted version of the problem which would be
more suitable for problems occurring in electrical distribution systems. Once the
weighted version is solved we may also relate the problem towards multi-depot
vehicle rooting problems and the assignment of costumers to routes of different
depots. Secondly, we shall extend the method to metaheuristic approaches
like ant colony optimization, GRASP or variable neighborhood search which
appear as good options. Finally, we shall explore the potential of applying the
proposed growth procedure for problems like the bi-connected dominating set
and bi-connected vertex cover problem.
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