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Abstract. The independent set problem is NP-hard and particularly difficult to solve in large sparse
graphs. In this work, we develop an advanced evolutionary algorithm, which incorporates kernelization
techniques to compute large independent sets in huge sparse networks. A recent exact algorithm has
shown that large networks can be solved exactly by employing a branch-and-reduce technique that
recursively kernelizes the graph and performs branching. However, one major drawback of their al-
gorithm is that, for huge graphs, branching still can take exponential time. To avoid this problem,
we recursively choose vertices that are likely to be in a large independent set (using an evolutionary
approach), then further kernelize the graph. We show that identifying and removing vertices likely to
be in large independent sets opens up the reduction space—which not only speeds up the computation
of large independent sets drastically, but also enables us to compute high-quality independent sets on
much larger instances than previously reported in the literature.

1 Introduction

The maximum independent set problem is an NP-hard problem that has attracted much attention in
the combinatorial optimization community, due to its difficulty and its importance in many fields.
Given a graph G = (V,E), the goal of the maximum independent set problem is to compute a
maximum cardinality set of vertices I ⊆ V , such that no vertices in I are adjacent to one another.
Such a set is called a maximum independent set (MIS). The maximum independent set problem has
applications spanning many disciplines, including classification theory, information retrieval, and
computer vision [14]. Independent sets are also used in efficient strategies for labeling maps [18],
computing shortest paths on road networks [26], (via the complementary minimum vertex cover
problem) computing mesh edge traversal ordering for rendering [34], and (via the complementary
maximum clique problem) have applications in biology [16], sociology [23], and e-commerce [43].

It is easy to see that the complement of an independent set I is a vertex cover V \I and an
independent set in G is a clique in the complement graph G. Since all of these problems are NP-
hard [17], heuristic algorithms are used in practice to efficiently compute solutions of high quality
on large graphs [2,21]. However, small graphs with hundreds to thousands of vertices may often
be solved in practice with traditional branch-and-bound methods [32,33,39], and medium-sized
instances can be solved exactly in practice using reduction rules to kernelize the graph. Recently,
Akiba and Iwata [1] used advanced reduction rules with a measure and conquer approach to solve
the minimum vertex cover problem for medium-scale sparse graphs exactly in practice. Thus, their
algorithm also finds the maximum independent set for these instances. However, none of these exact
algorithms can handle huge sparse graphs. Furthermore, our experiments suggest that the quality of
existing heuristic-based solutions tends to degrade at scale for inputs such as Web graphs and road
networks. Therefore, we need new techniques to find high-quality independent sets in these graphs.
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Our Results. We develop a state-of-the-art evolutionary algorithm that computes large independent
sets by incorporating advanced reduction rules. Our algorithm may be viewed as performing two
functions simultaneously: (1) reduction rules are used to boost the performance of the evolutionary
algorithm and (2) the evolutionary algorithm opens up the opportunity for further reductions by
selecting vertices that are likely to be in large independent sets. In short, our method applies
reduction rules to form a kernel, then computes vertices to insert into the final solution and removes
their neighborhood (including the vertices themselves) from the graph so that further reductions can
be applied. This process is repeated recursively, discovering large independent sets as the recursion
proceeds. We show that this technique finds large independent sets much faster than existing local
search algorithms, is competitive with state-of-the-art exact algorithms for smaller graphs, and
allows us to compute large independent sets on huge sparse graphs, with billions of edges.

2 Preliminaries

2.1 Basic Concepts

Let G = (V = {0, . . . , n − 1}, E) be an undirected graph with n = |V | nodes and m = |E| edges.
The set N(v) = {u : {v, u} ∈ E} denotes the neighbors of v. We further define the neighborhood
of a set of nodes U ⊆ V to be N(U) = ∪v∈UN(v) \ U , N [v] = N(v) ∪ {v}, and N [U ] = N(U) ∪ U .
A graph H = (VH , EH) is said to be a subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E. We call
H an induced subgraph when EH = {{u, v} ∈ E : u, v ∈ VH}. For a set of nodes U ⊆ V , G[U ]
denotes the subgraph induced by U . The complement of a graph is defined as G = (V,E), where E
is the set of edges not present in G. An independent set is a set I ⊆ V , such that all nodes in I are
pairwise nonadjacent. An independent set is maximal if it is not a subset of any larger independent
set. The independent set problem is that of finding the maximum cardinality independent set among
all possible independent sets. A vertex cover is a subset of nodes C ⊆ V , such that every edge e ∈ E
is incident to at least one node in C. The minimum vertex cover problem asks for the vertex cover
with the minimum number of nodes. Note that the vertex cover problem is complementary to the
independent set problem, since the complement of a vertex cover V \C is an independent set. Thus,
if C is a minimum vertex cover, then V \ C is a maximum independent set. A clique is a subset of
the nodes Q ⊆ V such that all nodes in Q are pairwise adjacent. An independent set is a clique in
the complement graph.

A k-way partition of a graph is a division of V into k blocks of nodes V1, . . . , Vk such that
V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. A balancing constraint demands that ∀i ∈ {1, . . . , k} :
|Vi| ≤ Lmax = (1+ε) d|V |/ke for some imbalance parameter ε. The objective is to minimize the total
cut

∑
i<j w(Eij) where Eij = {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. The set of cut edges is also called edge

separator. The k-way node separator problem asks to find k blocks (V1, V2, . . . , Vk) and a separator
S that partitions V such that there are no edges between the blocks. Again, a balancing constraint
demands |Vi| ≤ (1+ε) d|V |/ke. The objective is to minimize the size |S| of the separator. By default,
our initial inputs will have unit edge and node weights.

2.2 Related Work

We now outline related work for the MIS problem, covering local search, evolutionary, and exact
algorithms. We review in more detail techniques that are directly employed in this paper, partic-
ularly the local search algorithm by Andrade et al. [2] (ARW) and the evolutionary algorithm by
Lamm et al. [28] (EvoMIS).
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Local Search Algorithms. There is a wide range of heuristics and local search algorithms for the
maximum clique problem (see for example [6,22,20,25,31,21]). They typically maintain a single
solution and try to improve it by performing node deletions, insertions, and swaps, as well as
plateau search. Plateau search only accepts moves that do not change the objective function, which
is typically achieved through node swaps—replacing a node by one of its neighbors. Note that a
node swap cannot directly increase the size of the independent set. A very successful approach for
the maximum clique problem has been presented by Grosso et al. [21]. In addition to using plateau
search, it applies various diversification operations and restart rules.

For the independent set problem, Andrade et al. [2] extended the notion of swaps to (j, k)-
swaps, which remove j nodes from the current solution and insert k nodes. The authors present
a fast linear-time implementation that, given a maximal solution, can find a (1, 2)-swap or prove
that no (1, 2)-swap exists. One iteration of the ARW algorithm consists of a perturbation and a
local search step. The ARW local search algorithm uses simple 2-improvements or (1, 2)-swaps to
gradually improve a single current solution. The simple version of the local search iterates over all
nodes of the graph and looks for a (1, 2)-swap. By using a data structure that allows insertion and
removal operations on nodes in time proportional to their degree, this procedure can find a valid
(1, 2)-swap in O(m) time, if it exists. A perturbation step, used for diversification, forces nodes into
the solution and removes neighboring nodes as necessary. In most cases a single node is forced into
the solution; with a small probability the number of forced nodes f is set to a higher value (f is set
to i+ 1 with probability 1/2i). Nodes to be forced into a solution are picked from a set of random
candidates, with priority given to those that have been outside the solution for the longest time. An
even faster incremental version of the algorithm (which we use here) maintains a list of candidates,
which are nodes that may be involved in (1, 2)-swaps. It ensures a node is not examined twice unless
there is some change in its neighborhood.

Evolutionary Algorithms. An evolutionary algorithm starts with a population of individuals (in our
case independent sets of the graph) and then evolves the population into different ones over several
rounds. In each round, the evolutionary algorithm uses a selection rule based on fitness to select
good individuals and combine them to obtain an improved child [19].

In the context of independent sets, Bäck and Khuri [3] and Borisovsky and Zavolovskaya [7]
use fairly similar approaches. In both cases a classic two-point crossover technique randomly selects
two crossover points to exchanged parts of the input individuals, which is likely to result in invalid
solutions. Recently, Lamm et al. [28] presented a very natural evolutionary algorithm using com-
bination operations that are based on graph partitioning and ARW local search. They employ the
state-of-the-art graph partitioner KaHIP [36] to derive operations that make it possible to quickly
exchange whole blocks of given independent sets. Experiments indicate superior performance than
other state-of-the-art algorithms on a variety of instances.

We now give a more detailed overview of the algorithm by Lamm et al., which we use as a sub-
routine. It represents each independent set (individual) I as a bit array s = {0, 1}n where s[v] = 1 if
and only if v ∈ I. The algorithm starts with the creation of a population of individuals (independent
sets) by using greedy approaches and then evolves the population into different populations over
several rounds until a stopping criterion is reached. In each round, the evolutionary algorithm uses
a selection rule based on the fitness of the individuals (in this case, the size of the independent set)
in the population to select good individuals and combine them to obtain an improved child.

The basic idea of the combine operations is to use a partition of the graph to exchange whole
blocks of solution nodes and use local search afterwards to turn the solution into a maximal one.

3



Algorithm 1 EvoMIS Evolutionary Algorithm with Local Search for the Independent Set Problem
create initial population P
while stopping criterion not fulfilled
select parents I1, I2 from P
combine I1 with I2 to create child O
ARW local search+mutation on child O
evict individual in population using O

return the fittest individual that occurred

We explain one of the combine operations based on 2-way node separators in more detail. In its
simplest form, the operator starts by computing a 2-way node separator V = V1∪V2∪S of the input
graph. The separator S is then used as a crossover point for the operation. The operator generates
two children, O1 = (V1 ∩I1)∪ (V2 ∩I2) and O2 = (V1 ∩I2)∪ (V2 ∩I1). In other words, whole parts
of independent sets are exchanged from the blocks V1 and V2 of the node separator. Note that the
exchange can be implemented in time linear in the number of nodes. Recall that a node separator
ensures that there are no edges between V1 and V2. Hence, the computed children are independent
sets, but may not be maximal since separator nodes have been ignored and potentially some of them
can be added to the solution. Therefore, the child is made maximal by using a greedy algorithm.
The operator finishes with one iteration of the ARW algorithm to ensure that a local optimum is
reached and to add diversification.

Once the algorithm computes a child it inserts it into the population and evicts the solution
that is most similar to the newly computed child among those individuals of the population that
have a smaller or equal objective than the child itself. We give an outline in Algorithm 1.

Exact Algorithms. As in local search, most work in exact algorithms has focused on the complemen-
tary problem of finding a maximum clique. The most efficient algorithms use a branch-and-bound
search with advanced vertex reordering strategies and pruning (typically using approximation algo-
rithms for graph coloring, MAXSAT [29] or constraint satisfaction). The current fastest algorithms
for finding the maximum clique are the MCS algorithm by Tomita et al. [39] and the bit-parallel
algorithms of San Segundo et al. [32,33]. Furthermore, recent experiments by Batsyn et al. [5] show
that these algorithms can be sped up significantly by giving an initial solution found through local
search. However, even with these state-of-the-art algorithms, graphs on thousands of vertices re-
main intractable. For example, only recently was a difficult graph on 4,000 vertices solved exactly,
requiring 39 wall-clock hours in a highly-parallel MapReduce cluster, and is estimated to require
over a year of sequential computation [41]. A thorough discussion of many recent results in clique
finding can be found in the survey of Wu and Hao [40].

The best known algorithms for solving the independent set problem on general graphs have
exponential running time, and much research has be devoted to reducing the base of the exponent.
The main technique is to develop rules to modify the graph, removing subgraphs that can be solved
simply, which reduces the graph to a smaller instance. These rules are referred to as reductions.
Reductions have been used to reduce the running time of the brute force O(n22n) algorithm to
the O(2n/3) time algorithm of Tarjan and Trojanowski [38], and to the current best polynomial
space algorithm with running time of O(1.2114n) by Bourgeois et al. [8]. These algorithms apply
reductions during recursion, only branching when the graph can no longer be reduced [15].

Reduction techniques have been successfully applied in practice to solve exact problems that are
intractable with general algorithms. Butenko et al. [9] were the first to show that simple reductions
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could be used to solve independent set problems on graphs with several hundred vertices for graphs
derived from error-correcting codes. Their algorithm works by first applying isolated clique removal
reductions, then solving the remaining graph with a branch-and-bound algorithm. Later, Butenko
and Trukhanov [10] further showed that applying a critical set reduction technique could be used
to solve graphs produced by the Sanchis graph generator.

Repeatedly applying reductions as a preprocessing step to produce an irreducible kernel graph
is a technique that is often used in practice, and has been used to develop fixed-parameter tractable
algorithms, parameterized on the kernel size. As for using reductions in branch-and-bound recursive
calls, it has long been known that two such simple reductions, called pendant vertex removal and
vertex folding, are particularly effective in practice. Recently, Akiba and Iwata [1] have shown that
more advanced reduction rules are also highly effective, finding exact minimum vertex covers (and
by extension, exact MIS) on a corpus of large social networks with hundreds of thousands of vertices
or more in mere seconds. More details on the reduction rules follow in Section 3.

3 Algorithmic Components

We now discuss the main contributions of this work. To be self-contained, we begin with a rough
description of the reduction rules that we employ from previous work and then describe the main
algorithm, together with an additional augmentation to speed up the basic approach.

3.1 Kernelization

We now briefly describe the reductions used in our algorithm, in order of increasing complexity.
Each reduction allows us to choose vertices that are in some MIS by following simple rules. If an
MIS is found on the kernel graph K, then each reduction may be undone, producing an MIS in the
original graph. Refer to Akiba and Iwata [1] for a more thorough discussion, including implementa-
tion details. We use our own implementation of the reduction algorithms in our method.

Pendant vertices: Any vertex v of degree one, called a pendant, is in some MIS; therefore v and
its neighbor u can be removed from G.
Vertex folding: For a vertex v with degree 2 whose neighbors u and w are not adjacent, either
v is in some MIS, or both u and w are in some MIS. Therefore, we can contract u, v, and w to a
single vertex v′ and decide which vertices are in the MIS later.
Linear Programming: A well-known [30] linear programming relaxation for the MIS problem
with a half-integral solution (i.e., using only values 0, 1/2, and 1) can be solved using bipartite
matching: maximize

∑
v∈V xv such that ∀(u, v) ∈ E, xu+xv ≤ 1 and ∀v ∈ V , xv ≥ 0. Vertices with

value 1 must be in the MIS and can thus be removed from G along with their neighbors. We use an
improved version [24] that computes a solution whose half-integral part is minimal.
Unconfined [42]: Though there are several definitions of unconfined vertex in the literature, we
use the simple one from Akiba and Iwata [1]. A vertex v is unconfined when determined by the
following simple algorithm. First, initialize S = {v}. Then find a u ∈ N(S) such that |N(u)∩S| = 1
and |N(u) \N [S]| is minimized. If there is no such vertex, then v is confined. If N(u) \N [S] = ∅,
then v is unconfined. If N(u)\N [S] is a single vertex w, then add w to S and repeat the algorithm.
Otherwise, v is confined. Unconfined vertices can be removed from the graph, since there always
exists an MIS I that contains no unconfined vertices.
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Algorithm 2 ReduMIS
input graph G = (V,E), solution size offset γ (initially zero)
global var best solution S

if |V | = 0 then return
else
// compute exact kernel and intermediate solution
(K, θ)← computeExactKernel(G) {exact kernel, solution size offset θ}
I ← EvoMIS(K) {intermediate independent set}
if |I|+ γ + θ > |S| then update S

// compute inexact kernel
select U ⊆ I s.t. |U| = λ, ∀u ∈ U , v ∈ I\U : dK(u) ≤ dK(v) {fixed vertices}
U = U ∪N(U) {augment U with its neighbors}
K′ ← K[VK\U ] {inexact kernel}

// recurse on inexact kernel
ReduMIS(K′, γ + θ + |U|) {recursive call with updated offsets}

return S

Twin [42]: Let u and v be vertices of degree 3 with N(u) = N(v). If G[N(u)] has edges, then add
u and v to I and remove u, v, N(u), N(v) from G. Otherwise, some vertices in N(u) may belong
to some MIS I. We still remove u, v, N(u) and N(v) from G, and add a new gadget vertex w to
G with edges to u’s two-neighborhood (vertices at a distance 2 from u). If w is in the computed
MIS, then none of u’s two-neighbors are I, and therefore N(u) ⊆ I. Otherwise, if w is not in the
computed MIS, then some of u’s two-neighbors are in I, and therefore u and v are added to I.
Alternative: Two sets of vertices A and B are set to be alternatives if |A| = |B| ≥ 1 and there exists
an MIS I such that I ∩ (A∪B) is either A or B. Then we remove A and B and C = N(A)∩N(B)
from G and add edges from each a ∈ N(A)\C to each b ∈ N(B)\C. Then we add either A or B to
I, depending on which neighborhood has vertices in I. Two structures are detected as alternatives.
First, if N(v) \ {u} induces a complete graph, then {u} and {v} are alternatives (a funnel). Next, if
there is a cordless 4-cycle a1b1a2b2 where each vertex has at least degree 3. Then sets A = {a1, a2}
and B = {b1, b2} are alternatives when |N(A) \B| ≤ 2, |N(A) \B| ≤ 2, and N(A) ∩N(B) = ∅.
Packing [1]: Given a non-empty set of vertices S, we may specify a packing constraint

∑
v∈S xv ≤ k,

where xv is 0 when v is in some MIS I and 1 otherwise. Whenever a vertex v is excluded from I
(i.e., in the unconfined reduction), we remove xv from the packing constraint and decrease the
upper bound of the constraint by one. Initially, packing constraints are created whenever a vertex
v is excluded or included into the MIS. The simplest case for the packing reduction is when k is
zero: all vertices must be in I to satisfy the constraint. Thus, if there is no edge in G[S], S may be
added to I, and S and N(S) are removed from G. Other cases are much more complex. Whenever
packing reductions are applied, existing packing constraints are updated and new ones are added.

3.2 Faster Evolutionary Computation of Independent Sets

Our algorithm applies the reduction rules from above until none of them is applicable. The resulting
graph K is called the kernel. Akiba and Iwata [1] use a branch-and-reduce technique, first computing
the kernel, then branching and recursing. Often the kernel K is empty, giving an exact solution
without any branching. Depending on the graph structure, however, the kernel can be too large to
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be solved exactly (see Section 4). For several practical inputs, the kernel is still significantly smaller
than the input graph. Furthermore, any solution of K can be extended to a solution of the input.

With these two facts in mind, we apply the evolutionary algorithm on K instead of on the input
graph, thus boosting its performance. We stop the evolutionary algorithm after µ unsuccessful
combine operations and look at the best individual (independent set) I in the population. This
corresponds to an intermediate solution to the input problem, whose size we can compute based
on some simple bookkeeping (without actually reconstructing the full solution in G). Instead of
stopping the algorithm, we use I to further reduce the graph and repeat the process of applying exact
reduction rules and using the evolutionary algorithm on the further reduced graph K′ recursively.

Our inexact reduction technique opens up the reduction space by selecting a subset U of the
independent set vertices of the best individual I. These vertices and their neighbors are then removed
from the kernel. Based on the intuition that high-degree vertices in I are unlikely to be in a large
solution (consider for example the optimal independent set on a star graph), we choose the λ vertices
from I with the smallest degree as subset U . Using a modified quick selection routine this can be
done in linear time. Ties are broken randomly. It is easy to see that it is likely that some of the
exact reduction techniques become applicable again. Another view on the inexact reduction is that
we use the evolutionary algorithm to find vertices that are likely to be in a large independent set.
The overall process is repeated until the newly computed kernel is empty or a time limit is reached.
We present pseudocode in Algorithm 2.

Additional Acceleration. We now propose a technique to accelerate separator-based combine op-
erations, which are the centerpiece of the evolutionary portion of our algorithm. Recall that after
performing a combine operation, we first use a greedy algorithm on the separator to maximize the
child and then employ ARW local search to ensure that the output individual is locally optimal with
respect to (1,2)-swaps (see Algorithm 1). However, the ARW local search algorithm uses all inde-
pendent set nodes for initialization. We can do better since large subsets of the created individual
are already locally maximal (due to the nature of combine operations, which takes as input locally
maximal individuals). It is sufficient to initialize ARW local search with the independent set nodes
in the separator (added by the greedy algorithm) and the solution nodes adjacent to the separator.

4 Experimental Evaluation

Methodology. We have implemented the algorithm described above using C++ and compiled all
code using gcc 4.63 with full optimizations turned on (-O3 flag). Our implementation includes the
reduction routines, local search, and the evolutionary algorithm. The exact algorithm by Akiba and
Iwata [1] was compiled and run sequentially with Java 1.8.0_40. For the optimal algorithm, we
mark the running time with a “-” when the instance could not be solved within ten hours, or could
not be solved due to stack overflow. Unless otherwise mentioned, we perform five independent runs
of each algorithm, where each algorithm is run sequentially with a ten-hour wall-clock time limit
to compute its best solution. We use two machines for our experiments. Machine A is equipped
with two Quad-core Intel Xeon processors (X5355) running at 2.667 GHz. It has 2x4 MB of level 2
cache each, 64 GB main memory and runs SUSE Linux Enterprise 10 SP 1. We use this machine
in Section 4.1 for the instances taken from [28]. Machine B has four Octa-Core Intel Xeon E5-
4640 processors running at 2.4GHz. It has 512 GB local memory, 20 MB L3-Cache and 8x256 KB
L2-Cache. We use this machine in Section 4.1 to solve the largest instances in our collection. We
used the fastsocial configuration of the KaHIP v0.6 graph partitioning package [35] to obtain graph
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partitions and node separators necessary for the combine operations of the evolutionary algorithm.
Experiments for the ARW algorithm, the exact algorithm, and the original EvoMIS algorithm were
run on machine A. Data for ARW and EvoMIS are also found in [28], which uses the same machine.

We present two kinds of data: (1) the solution size statistics aggregated over the five runs,
including maximum, average, and minimum values and (2) convergence plots, which show how the
solution quality changes over time. Whenever an algorithm finds a new best independent set S at
time t, it reports a tuple (t, |S|); the convergence plots use average values over all five runs.

Algorithm Configuration. After preliminary experiments, we fixed the convergence parameter µ to
1,000 and the inexact reduction parameter λ to 0.1·|I|. However, our experiments indicate that our
algorithm is not too sensitive to the precise choice of the parameters. Parameters of local search
and other parameters of the evolutionary algorithm remain as in Lamm et al. [28]. We mark the
instances that have been used for the parameter tuning here and in Appendix A with a *.

Instances. First, we conduct experiments on all instances used by Lamm et al. [28]. The social
networks include citation networks, autonomous systems graphs, and Web graphs taken from the
10th DIMACS Implementation Challenge benchmark set [4]. Road networks are taken from An-
drade et al. [2] and meshes are taken from Sander et al. [34]. Meshes are dual graphs of triangular
meshes. Networks from finite element computations have been taken from Chris Walshaw’s bench-
mark archive [37]. Graphs derived from sparse matrices have been taken from the Florida Sparse
Matrix Collection [11]. In addition, we perform experiments on huge instances with up to billions
of edges. The graphs eu-2005, uk-2002, it-2004, sk-2005 and uk-2007 are Web graphs taken from
the Laboratory of Web Algorithmics [27]. The graphs europe and usa-rd are large road networks
of Europe [12] and the USA [13]. The instances as-Skitter-big, web-Stanford and libimseti are the
hardest instances from Akiba and Iwata [1],

4.1 Solution Quality and Algorithm Performance

In this section, we compare solution quality and performance of our new reduction-based algorithm
(ReduMIS) with the evolutionary algorithm by Lamm et al. [28] (EvoMIS), local search (ARW),
and the exact algorithm by Akiba and Iwata [1]. We do this on the instances used in [28] and present
detailed data in Appendix A. We briefly summarize the main results of our experiments.

First, ReduMIS always improves or preserves solution quality on social or road networks. On four
social networks (cnr-2000, skitter, amazon and in-2004) and on all road networks, we compute a
solution strictly larger than EvoMIS and ARW. On mesh-like networks, ReduMIS computes solutions
which are sometimes better and sometimes worse than the previous formulation of the evolutionary
algorithm; however, ARW performs significantly better than both algorithms on large meshes. (See
representative results from experiments in Table 1.) EvoMIS reached its solution fairly late within
the ten-hour time limit in the cases where ReduMIS computes a smaller solution than EvoMIS.
This indicates that (1) increasing the patience/convergence parameter µ may improve the result on
these networks and (2) it is harder to fix certain nodes into the solution since these networks contain
many different independent sets. The convergence plots in Figure 1 show that the running time of
the evolutionary algorithm is reduced with kernelization, especially on road and social networks.
Once the first kernel is computed, ReduMIS quickly outperforms ARW and EvoMIS.

The exact algorithm performs as expected: it either quickly solves an instance (typically in a
few seconds), or it cannot solve the instance within the ten-hour limit. Our experiments indicate
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Fig. 1. Convergence plots for ny (top left), gameguy (top right), cnr-2000 (bottom left), fe_ocean (bottom right).

that success of the exact algorithm is tied to the size of the first exact kernel. For most instances, if
the kernel is too large the algorithm does not finish within the ten-hour time limit. Since the exact
reduction rules work well for social networks and road networks, the algorithm can solve many of
these instances. However, the exact algorithm cannot solve any mesh graphs and fails to solve many
other instances, since reductions do not produce a small kernel on these instances. On all instances
that the exact algorithm solved, our algorithm computes a solution having the same size; that is,
each of our five runs computed an optimal result. In 29 out of 36 cases where the exact algorithm
could not find a solution, the variance of the solution size obtained by the heuristics used here is
greater than zero. Therefore, we consider these instances to be hard.

We present running times of the exact algorithm and our algorithm on the instances that the
exact algorithm could solve in Appendix A, Table 8. On most of the instances, the running times
of both algorithms are comparable. Note, however, that our algorithm is not optimized for speed.
For example, our evolutionary algorithm builds all the partitions needed for the combine operations
when the algorithm starts. On some instances our algorithm outperforms the exact algorithm by far.
The largest speed up is obtained bcsstk30, where our algorithm is about four orders of magnitude
faster. Conversely, there are instances for which our algorithm needs much more time; for example,
the instance Oregon-1 is solved 364 times faster by the exact algorithm.
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Table 1. Results for representative social networks, road networks, Walshaw benchmarks, sparse matrix instances,
and meshes from our experiments. Note that for the large mesh instance buddha, ReduMIS finds much smaller
independent sets than ARW, since reductions do not effectively reduce large meshes.

Graph ReduMIS EvoMIS ARW

Name n Opt. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

in-2004 1 382 908 896 762 896 762 896 762 896 762 896 581 896 585 896 580 896 477 896 562 896 408
cnr-2000 325 557 - 230 036 230 036 230 036 229 981 229 991 229 976 229 955 229 966 229 940
ny 264 346 - 131 502 131 502 131 502 131 384 131 395 131 377 131 481 131 485 131 476
fla 1 070 376 549 637 549 637 549 637 549 637 549 093 549 106 549 072 549 581 549 587 549 574
brack2 62 631 21 418 21 418 21 418 21 418 21 417 21 417 21 417 21 416 21 416 21 415
fe_ocean 143 437 - 71 706 71 716 71 667 71 390 71 576 71 233 71 492 71 655 71 291
GaAsH6 61 349 - 8 567 8 589 8 550 8 562 8 572 8 547 8 519 8 575 8 351
cant 62 208 - 6 260 6 260 6 259 6 260 6 260 6 260 6 255 6 255 6 254
bunny 68 790 - 32 346 32 348 32 342 32 337 32 343 32 330 32 293 32 300 32 287
buddha 1 087 716 - 480 072 480 104 480 043 478 879 478 936 478 795 480 942 480 969 480 921

Table 2. Results on huge instances. Value n(K) denotes the number of nodes of the first exact kernel and n(K′′)
denotes the average number of nodes of the first inexact kernel (i. e., the number of vertices of the exact kernel of K′).
Column ` presents the average recursion depth in which the best solution was found and tavg denotes the average
time when the solution was found (including the time of the exact kernelization routines). A value of ` > 1 indicates
that the best solution was not found on the exact kernel but on an inexact kernel during the course of the algorithm.
Entries marked with a * indicate that ARW could not solve the instance.

graph n m n(K) n(K′′) Avg. Max ` tavg MaxARW

europe ≈18.0M ≈22.2M 11 879 826 9 267 810 9 267 811 1.4 2m 9 249 040
usa-rd ≈23.9M ≈28.8M 169 808 8 926 12 428 075 12 428 086 2.0 38m 12 426 262
eu-2005 ≈862K ≈16.1M 68 667 55 848 452 352 452 353 1.4 26m 451 813
uk-2002 ≈19M ≈261M 241 517 182 213 11 951 998 11 952 006 4.6 213m *
it-2004 ≈41M ≈1.0G 1 602 560 1 263 539 25 620 513 25 620 651 1.4 26.1h *
sk-2005 ≈51M ≈1.8G 3 200 806 2 510 923 30 686 210 30 686 446 1.4 27.3h *
uk-2007 ≈106M ≈3.3G 3 514 783 - 67 285 232 67 285 438 1.0 30.4h *

Additional Experiments. We now run our algorithm on the largest instances of our benchmark
collection: road networks (europe, usa-rd) and Web graphs (eu-2005, uk-2002, it-2004, sk-2005 and
uk-2007). For these experiments, we reduced the convergence parameter µ to 250 in order to speed
up computation. On the three largest graphs it-2004, sk-2005 and uk-2007, we set the time limit of
our algorithm to 24 hours after the first exact kernel has been computed by the kernelization routine.
Table 2 gives detailed results of the algorithm including the size of the first exact kernel. We note that
the first exact kernel is much smaller than the input graph: the reduction rules shrink the graph size
by at least an order of magnitude. The largest reduction can be seen on the europe graph, for which
the first kernel is more then three orders of magnitude smaller than the original graph. However,
most of the kernels are still too large to be solved by the exact algorithm. As expected, applying
our inexact reduction technique (i. e., fixing vertices into the solution and applying exact reductions
afterwards) further reduces the size of the input graph. On road networks, inexact reductions reduce
the graph size again by an order of magnitude. Moreover, the best solution found by our algorithm
is not found on the first exact kernel K, but in deeper recursion levels. In other words, the best
solution found by our algorithm in one run is found on an inexact kernel. We run ARW on these
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instances as well, giving it as much time as our algorithm consumed to find its best solution. It could
not handle the largest instances and computes smaller independent sets on the other instances.

We also ran our algorithm on the hardest instances computed exactly by Akiba and Iwata [1]:
as-Skitter-big, web-Stanford, and libimseti. ReduMIS computes the optimal result on the instances as
well. ReduMIS is a factor 147 and 2 faster than the exact algorithm on instances web-Stanford and
as-Skitter-big respectively. However, we need a factor 16 more time for the libimseti instance.

5 Conclusion

In this work we developed a novel algorithm for the maximum independent set problem, which
repeatedly kernelizes the graph until a large independent set is found. After applying exact re-
ductions, we use a preliminary solution of the evolutionary algorithm to further reduce the kernel
size by identifying and removing vertices likely to be in large independent sets. This further opens
the reduction space (i. e., more exact reduction routines can be applied) so that we then proceed
recursively. This speeds up computations drastically and preserves or even improves final solution
quality. It additionally enables us to compute high quality independent sets on instances that are
much larger than previously reported in the literature. In addition, our new algorithm computes an
optimal independent set on all instances that the exact algorithm can solve.

Important future work includes a coarse-grained parallelization of our evolutionary approach,
which can be done using an island-based approach, as well as parallelization of the reduction algo-
rithms. Reductions and fixing independent set vertices can disconnect the kernel. Hence, in future
work we want to solve each of the resulting connected components separately, perhaps also in par-
allel. Note that new reductions can be easily integrated into our framework. Hence, it may be
interesting to include new exact reduction routines once they are discovered. Lastly, it may also be
interesting to use an exact algorithm as soon as the graph size falls below a threshold.
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A Detailed per Instance Results

Table 3. Results for social networks.

Graph ReduMIS EvoMIS ARW

Name n Opt. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

enron 69 244 62 811 62 811 62 811 62 811 62 811 62 811 62 811 62 811 62 811 62 811
gowalla 196 591 112 369 112 369 112 369 112 369 112 369 112 369 112 369 112 369 112 369 112 369
citation 268 495 150 380 150 380 150 380 150 380 150 380 150 380 150 380 150 380 150 380 150 380
cnr-2000* 325 557 - 230 036 230 036 230 036 229 981 229 991 229 976 229 955 229 966 229 940
google 356 648 174 072 174 072 174 072 174 072 174 072 174 072 174 072 174 072 174 072 174 072
coPapers 434 102 47 996 47 996 47 996 47 996 47 996 47 996 47 996 47 996 47 996 47 996
skitter 554 930 - 328 626 328 626 328 626 328 519 328 520 328 519 328 609 328 619 328 599
amazon 735 323 - 309 794 309 794 309 793 309 774 309 778 309 769 309 792 309 793 309 791
in-2004 1 382 908 896 762 896 762 896 762 896 762 896 581 896 585 896 580 896 477 896 562 896 408

Table 4. Results for mesh type graphs.

Graph ReduMIS EvoMIS ARW

Name n Opt. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

beethoven 4 419 - 2 004 2 004 2 004 2 004 2 004 2 004 2 004 2 004 2 004
cow 5 036 - 2 346 2 346 2 346 2 346 2 346 2 346 2 346 2 346 2 346
venus 5 672 - 2 684 2 684 2 684 2 684 2 684 2 684 2 684 2 684 2 684
fandisk 8 634 - 4 074 4 075 4 073 4 075 4 075 4 075 4 073 4 074 4 072
blob 16 068 - 7 250 7 250 7 249 7 249 7 250 7 248 7 249 7 250 7 249
gargoyle 20 000 - 8 852 8 852 8 851 8 853 8 854 8 852 8 852 8 853 8 852
face 22 871 - 10 217 10 218 10 217 10 218 10 218 10 218 10 217 10 217 10 217
feline 41 262 - 18 853 18 854 18 851 18 853 18 854 18 851 18 847 18 848 18 846
gameguy 42 623 - 20 726 20 727 20 724 20 726 20 727 20 726 20 670 20 690 20 659
bunny* 68 790 - 32 346 32 348 32 342 32 337 32 343 32 330 32 293 32 300 32 287
dragon 150 000 - 66 438 66 449 66 433 66 373 66 383 66 365 66 503 66 505 66 500
turtle 267 534 - 122 417 122 437 122 383 122 378 122 391 122 370 122 506 122 584 122 444
dragonsub 600 000 - 281 561 281 637 281 509 281 403 281 436 281 384 282 006 282 066 281 954
ecat 684 496 - 322 363 322 419 322 317 322 285 322 357 322 222 322 362 322 529 322 269
buddha 1 087 716 - 480 072 480 104 480 043 478 879 478 936 478 795 480 942 480 969 480 921
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Table 5. Results for Walshaw benchmark graphs.

Graph ReduMIS EvoMIS ARW

Name n Opt. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

crack 10 240 4 603 4 603 4 603 4 603 4 603 4 603 4 603 4 603 4 603 4 603
vibrobox 12 328 - 1 852 1 852 1 851 1 852 1 852 1 852 1 850 1 851 1 849
4elt 15 606 - 4 943 4 944 4 942 4 944 4 944 4 944 4 942 4 944 4 940
cs4 22 499 - 9 167 9 168 9 166 9 172 9 177 9 170 9 173 9 174 9 172
bcsstk30 28 924 1 783 1 783 1 783 1 783 1 783 1 783 1 783 1 783 1 783 1 783
bcsstk31 35 588 3 488 3 488 3 488 3 488 3 488 3 488 3 488 3 487 3 487 3 487
fe_pwt 36 519 - 9 309 9 309 9 308 9 309 9 310 9 309 9 310 9 310 9 308
brack2 62 631 21 418 21 418 21 418 21 418 21 417 21 417 21 417 21 416 21 416 21 415
fe_tooth 78 136 27 793 27 793 27 793 27 793 27 793 27 793 27 793 27 792 27 792 27 791
fe_rotor 99 617 - 22 010 22 016 21 999 22 022 22 026 22 019 21 974 22 030 21 902
598a* 110 971 - 21 814 21 819 21 810 21 826 21 829 21 824 21 891 21 894 21 888
fe_ocean 143 437 - 71 706 71 716 71 667 71 390 71 576 71 233 71 492 71 655 71 291
wave 156 317 - 37 054 37 060 37 047 37 057 37 063 37 046 37 023 37 040 36 999
auto 448 695 - 83 873 83 891 83 846 83 935 83 969 83 907 84 462 84 478 84 453

Table 6. Results for road networks.

Graph ReduMIS EvoMIS ARW

Name n Opt. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

ny* 264 346 - 131 502 131 502 131 502 131 384 131 395 131 377 131 481 131 485 131 476
bay 321 270 166 384 166 384 166 384 166 384 166 329 166 345 166 318 166 368 166 375 166 364
col 435 666 225 784 225 784 225 784 225 784 225 714 225 721 225 706 225 764 225 768 225 759
fla 1 070 376 549 637 549 637 549 637 549 637 549 093 549 106 549 072 549 581 549 587 549 574
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Table 7. Results for graphs from Florida Sparse Matrix collection.

Graph ReduMIS EvoMIS ARW

Name n Opt. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

Oregon-1 11 174 9 512 9 512 9 512 9 512 9 512 9 512 9 512 9 512 9 512 9 512
ca-HepPh 12 006 4 994 4 994 4 994 4 994 4 994 4 994 4 994 4 994 4 994 4 994
skirt 12 595 2 383 2 383 2 383 2 383 2 383 2 383 2 383 2 383 2 383 2 383
cbuckle 13 681 1 097 1 097 1 097 1 097 1 097 1 097 1 097 1 097 1 097 1 097
cyl6 13 681 600 600 600 600 600 600 600 600 600 600
case9 14 453 7 224 7 224 7 224 7 224 7 224 7 224 7 224 7 224 7 224 7 224
rajat07 14 842 4 971 4 971 4 971 4 971 4 971 4 971 4 971 4 971 4 971 4 971
Dubcova1 16 129 4 096 4 096 4 096 4 096 4 096 4 096 4 096 4 096 4 096 4 096
olafu 16 146 735 735 735 735 735 735 735 735 735 735
bodyy6 19 366 - 6 229 6 232 6 223 6 232 6 233 6 230 6 226 6 228 6 224
raefsky4 19 779 1 055 1 055 1 055 1 055 1 055 1 055 1 055 1 053 1 053 1 053
smt 25 710 - 782 782 782 782 782 782 780 780 780
pdb1HYS 36 417 - 1 077 1 078 1 076 1 078 1 078 1 078 1 070 1 071 1 070
c-57 37 833 19 997 19 997 19 997 19 997 19 997 19 997 19 997 19 997 19 997 19 997
copter2 55 476 - 15 192 15 194 15 191 15 192 15 195 15 191 15 186 15 194 15 179
TSOPF_FS_b300_c2 56 813 28 338 28 338 28 338 28 338 28 338 28 338 28 338 28 338 28 338 28 338
c-67 57 975 31 257 31 257 31 257 31 257 31 257 31 257 31 257 31 257 31 257 31 257
dixmaanl 60 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000
blockqp1 60 012 20 011 20 011 20 011 20 011 20 011 20 011 20 011 20 011 20 011 20 011
Ga3As3H12 61 349 - 8 068 8 132 8 146 7 839 8 151 8 097 8 061 8 124 7 842
GaAsH6 61 349 - 8 567 8 589 8 550 8 562 8 572 8 547 8 519 8 575 8 351
cant 62 208 - 6 260 6 260 6 259 6 260 6 260 6 260 6 255 6 255 6 254
ncvxqp5* 62 500 - 24 504 24 523 24 482 24 526 24 537 24 510 24 580 24 608 24 520
crankseg_2 63 838 1 735 1 735 1 735 1 735 1 735 1 735 1 735 1 735 1 735 1 735
c-68 64 810 36 546 36 546 36 546 36 546 36 546 36 546 36 546 36 546 36 546 36 546
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Table 8. Running times for ReduMIS and the exact algorithm on the graphs that the exact algorithm could solve.
Running times tReduMIS are average values of the time that the solution was found. Instances marked with a † are
the hardest instances solved exactly in [1]. Running times in bold are those where ReduMIS found the exact solution
significantly faster than the exact algorithm.

Graph Opt. tReduMIS texact

a5esindl 30 004 0.07 0.07
as-Skitter-big† 1 170 580 1 262.46 2 838.030
bay 166 384 14.32 2.33
bcsstk30 1 783 2.71 31 152.16
bcsstk31 3 488 3.11 2.20
blockqp1 20 011 46.33 3.89
brack2 21 418 9.43 792.48
c-57 19 997 6.70 0.03
c-67 31 257 1.02 0.03
c-68 36 546 0.45 0.05
ca-HepPh 4 994 0.50 0.07
case9 7 224 3.23 0.54
cbuckle 1 097 3.83 1.34
citation 150 380 0.52 0.49
col 225 784 27.93 7 140.28
coPapers 47 996 3.21 1.45
crack 4 603 0.05 0.06
crankseg_2 1 735 1.86 2.63
cyl6 600 0.86 0.29
dixmaanl 20 000 12.27 13.62
Dubcova1 4 096 0.07 0.05
enron 62 811 3.08 0.06
fe_tooth 27 793 0.20 0.439
fla 549 637 20.10 22.50
in-2004 896 762 7.82 5.08
gowalla 112 369 0.79 0.33
libimseti† 127 294 28 375.4 1 729.05
olafu 735 3.84 1.44
Oregon-1 9 512 2.55 0.01
raefsky4 1 055 0.86 0.33
rajat07 4 971 0.02 0.05
skirt 2 383 0.14 0.14
TSOPF_FS_b300_c2 28 338 139.25 32.83
web-Google 174 072 2.95 0.83
web-Stanford† 163 390 316.15 46 450.11
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