
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 01, 2024

A fix-and-optimize matheuristic for university timetabling

Lindahl, Michael; Sørensen, Matias; Stidsen, Thomas R.

Published in:
Journal of Heuristics

Link to article, DOI:
10.1007/s10732-018-9371-3

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Lindahl, M., Sørensen, M., & Stidsen, T. R. (2018). A fix-and-optimize matheuristic for university timetabling.
Journal of Heuristics, 24(4), 645-665. https://doi.org/10.1007/s10732-018-9371-3

https://doi.org/10.1007/s10732-018-9371-3
https://orbit.dtu.dk/en/publications/c162473f-2d38-41bd-aa48-4aeecab0a8f8
https://doi.org/10.1007/s10732-018-9371-3


Noname manuscript No.
(will be inserted by the editor)

A Fix-and-Optimize Matheuristic for University

Timetabling

Michael Lindahl · Matias Sørensen ·

Thomas R. Stidsen

Received: date / Accepted: date

Abstract University course timetabling covers the task of assigning rooms and time

periods to courses while ensuring a minimum violation of soft constraints that define

the quality of the timetable. These soft constraints can have attributes that make it

difficult for mixed-integer programming solvers to find good solutions fast enough to be

used in a practical setting. Therefore, metaheuristics have dominated this area despite

the fact that mixed-integer programming solvers have improved tremendously over the

last decade. This paper presents a matheuristic where the MIP-solver is guided to

find good feasible solutions faster. This makes the matheuristic applicable in practical

settings, where mixed-integer programming solvers do not perform well. To the best

of our knowledge this is the first matheuristic presented for the University Course

Timetabling problem.

The matheuristic works as a large neighborhood search where the MIP solver is

used to explore a part of the solution space in each iteration. The matheuristic uses

problem specific knowledge to fix a number of variables and create smaller problems for

the solver to work on, and thereby iteratively improves the solution. Thus we are able to

solve very large instances and retrieve good solutions within reasonable time limits. The

presented framework is easily extendable due to the flexibility of modeling with MIPs;

new constraints and objectives can be added without the need to alter the algorithm

itself. At the same time, the matheuristic will benefit from future improvements of MIP

solvers.

The matheuristic is benchmarked on instances from the literature and the 2nd In-

ternational Timetabling Competition (ITC2007). Our algorithm gives better solutions

M. Lindahl
Department of Management Engineering
Technical University of Denmark
E-mail: miclin@dtu.dk

M. Sørensen
MaCom A/S
E-mail: ms@macom.dk

T. Stidsen
Department of Management Engineering
Technical University of Denmark
E-mail: thst@dtu.dk



2 Michael Lindahl et al.

than running a state-of-the-art MIP solver directly on the model, especially on larger

and more constrained instances. Compared to the winner of ITC2007, the matheuristic

performs better. However, the most recent state-of-the-art metaheuristics outperform

the matheuristic.

Keywords Matheuristics · Integer programming · University course timetabling

1 Introduction

University course timetabling is the problem of assigning courses to rooms and time

periods. This should be done without violating a number of hard constraints that would

make the timetable infeasible. For example, a teacher is only able to teach one class in

a certain time period. Furthermore, a number of soft constraints should be obeyed as

much as possible, because violating them would result in a timetable with undesired

features. An undesired feature could e.g. be lectures of one course planned in different

rooms during the week. The generating of high quality timetables automatically leads

to better timetables in a production setting, and the automatization can help planners

make timetables faster as they often have tight deadlines.

Timetabling differs between universities according to traditions and how their ed-

ucations are structured. Many universities have curricula which consist of a number of

courses taken by a group of students in a specific semester. This problem formulation

is called the Curriculum-based Course Timetabling (CB-CTT). A formal description of

this problem was made for the Second International Timetabling Competition in 2007

by Di Gaspero et al (2007) together with 21 benchmark instances from the University

of Udine. This allowed researchers to compare their results on the same instances with

roughly the same computational resources. The rules of the competition disallowed the

use of external solvers which meant that all contestants used metaheuristics. A website

has been made to keep track of the best known solutions and the best known bounds.

The website is maintained by A. Bonutti, L. Gaspero and A. Schaerf and can be found

at http://tabu.diegm.uniud.it/ctt/.

The purpose of this paper is to combine mixed-integer programming and heuris-

tics to find good feasible solutions fast, taking advantage of the large improvements

in mixed-integer programming solvers that have happened over the last decade as

shown in Bixby (2012). This combination is commonly known as matheuristics. The

matheuristic developed in this paper works as a large neighborhood search where the

MIP solver is used to explore a part of the solution space in each iteration. The heuris-

tic uses problem specific knowledge to fix a number of variables and create smaller

problems for the solver to work on and thereby iteratively improves the solution. Thus,

we are able to solve very large instances and retrieve good solutions within reason-

able time limits. The presented framework is easily extendable due to the flexibility of

modeling with MIPs; new constraints and objectives can be added without the need to

alter the algorithm itself. At the same time, the matheuristic will benefit from future

improvements in MIP solvers.

The paper is organized as follows: In section 2 we describe previous work. In section

3 the Curriculum-based Course Timetabling problem is defined together with the MIP

formulation used. In section 4 the matheuristic is described. The computational results

of the algorithm are shown in section 5. Finally, the conclusion and outlook of future

directions are presented in section 6.



A Fix-and-Optimize Matheuristic for University Timetabling 3

2 Previous work

The CB-CTT problem has received a lot of attention in the literature as the de-facto

benchmarking problem within university timetabling. The winning heuristic of the orig-

inal competition is described in Müller (2009). More recently, especially two heuristics

have shown to perform well on the problem, see Abdullah and Turabieh (2012) and

Kiefer et al (2014). As the algorithm presented in this paper is based on a MIP solver,

we will focus on other MIP-based approaches in this section.

Integer programming has been applied to CB-CTT, but the models have proved

difficult to solve due to the characteristics of the problem described by Burke et al

(2008). In Hao and Benlic (2011) they successfully generate lower bounds by using

MIP and a partition-based approach based on the "divide and conquer principle",

and Cacchiani et al (2013) split the objective function into two parts formulated as

MIPs that are solved separately by using a column generation procedure. In Lach and

Lübbecke (2012) the problem is separated in two stages (two MIP models) that are

exact with respect to the hard constraints when solved in sequence. They generate

lower bounds and are also able to generate good feasible solutions. For a complete

overview of the different methods applied to CB-CTT we recommend the overview by

Bettinelli et al (2015). Hybridizing exact methods with heuristics is not a new idea.

One of the earliest examples is the corridor method by Sniedovich and Voß (2006),

where a corridor is made around the current solution to create a smaller search space.

Within MIP Danna et al (2005) proposed a relaxation induced neighborhood search

(RINS) by using the current incumbent together with the linear relaxation to search

for improving solutions. New heuristics have been proposed, for example the local

branching by Fischetti and Lodi (2003) who use the concept of hamming distance to

create a branching based on the current solution. Within timetabling Avella et al (2007)

applie a local search algorithm on a high-school timetabling problem and use a MIP

solver to explore a very large neighborhood.

3 Curriculum-based Course Timetabling

In curriculum-based course timetabling (CB-CTT) the purpose is to assign a number

of lectures to a time period and a room. To be able to compare results to the current

state-of-the-art we use the formulation from the Second International Timetabling

Competition ITC-2007 stated in Di Gaspero et al (2007).

A set of courses is given, and each course consists of a number of lectures that

should be planned. A lecture should be assigned to a time period and a room without

causing any conflicts. A set of time periods is given, and each one is associated with

a day and a time, and two lectures of the same course can not take place at the same

time or it will result in a conflict. A set of rooms is given, and only one lecture can

take place in the same room in a time period, or it will result in a conflict. Each course

also has a teacher assigned, and it will result in a conflict if a teacher has two lectures

in the same time period. Furthermore, a set of curricula is also given. A curriculum

consists of a set of courses, and courses from the same curriculum will conflict if they

are planned in the same time period.

All lectures should be planned without conflicts, and the objective is to create

a timetable that minimizes the violation of a number of soft constraints. The soft

constraints define some attributes that we would like to avoid. Each one is associated



4 Michael Lindahl et al.

with a number of penalty points, and the goal is therefore to minimize the total sum

of penalty points for the timetable. The following four soft constraints are defined:

RoomCapacity Each room has a capacity and each course has a number of students

who attend the course. If a course is planned in a room with less capacity than

the number of students attending the course, one penalty point is given for each

student exceeding this number.

RoomStability A course consists of several lectures and it is desired that all of these

are assigned to the same room. one penalty point is given for each additional room

used.

MinimumWorkingDays To distribute the workload of a course throughout the week

it is desired to spread the lectures out on several days. Each course has a number of

minimum working days which should be respected. For each day below five penalty

points are given.

CurriculumCompactness To avoid that students have idle time periods in the timetable

it is desired that curricula are planned consecutively. If a course of a curriculum is

planned in a time period where there is not another course from the same curricu-

lum in the previous or in following time period, two penalty points are given.

3.1 Mixed Integer Programming Model

The proposed matheuristic works on top of a MIP model. Different models for the CB-

CTT have been proposed in the literature and we refer to Bettinelli et al (2015) for an

overview of these. We use the MIP model proposed in Lach and Lübbecke (2012). This

model has shown good results on the ITC2007 benchmark instances, and we believe

that this is currently the best model when the goal is to create feasible solutions. The

approach consists of two stages solved sequentially. The first stage assigns time periods

to the lectures, and the second stage then assigns the rooms. The decomposition is

exact with respect to the hard constraints, meaning that no feasible solutions are lost.

The following sets are defined:

C: Set of courses

CU : Set of curricula

P : Set of timeslots across the week

D: Set of days of the week

R: Set of rooms

T : Set of teachers

The following parameters are defined:

l(c): The number of lectures for course c ∈ C
mnd(c): The minimum working days for course c ∈ C
dem(c): The demand for course c ∈ C i.e. the number of students.

cap(r): The capacity of room r ∈ R
C(t) Set of courses where the teacher is t ∈ T
C(cu) Set of courses included in curriculum c ∈ CU

Furthermore, the following helper sets are used to formulate the model:

C≥s = {c ∈ C : dem(c) ≥ s}, set of courses with a demand larger than or equal to

s ∈ S



A Fix-and-Optimize Matheuristic for University Timetabling 5

R≥s = {r ∈ R : cap(r) ≥ s}, set of rooms with capacity larger than or equal to

s ∈ S

3.1.1 Stage I

The first stage determines at what time periods each lecture should be taught. It does

not assign any rooms, but keeps track of the available rooms to ensure that a feasible

room assignment exists and calculates the violation of the RoomCapacity constraint.

The Stage I therefore considers all soft constraints except for RoomStability. The

decision variable is defined as,

xc,p =

{

1 if course c ∈ C is planned at period p ∈ P

0 otherwise

The following auxiliary variables are also needed: To keep track of the violation of

RoomCapacity, the variable ys,c,p determines if course c ∈ C in period p ∈ P is

planned in a room of size s ∈ S or smaller. The variable zc,d is equal to one if course

c ∈ C is planned on day d ∈ D. The variable wc then counts the number of violations

of the MinimumWorkingDays constraint for course c ∈ C. The variable rcu,p is one

if a course from curriculum cu ∈ CU is planned in period p ∈ P . The violation of

the CurriculumCompactness is then calculated by vcu,p that determines if there is an

isolated lecture from curriculum cu ∈ CU in period p ∈ P . The full model for stage I

is shown in Model 1.

The objective (1a) calculates the violation of the three soft constraints. The con-

straints of the MIP are described in the following:

Constraints

(1b) – A course c ∈ C should be assigned exactly Lc lectures.

(1c) – At given period p ∈ P it is not possible to assign more courses than

available rooms.

(1d) – If a room size is assigned to a course, the course should be assigned to

that time period.

(1e) – Ensures that we do not assign more courses to a certain room size than

rooms available of that size.

(1f) – Calculates if a course c ∈ C is planned on day d ∈ D
(1g) – Calculates the violation of the MinimumWorkingDay constraint.

(1h) – Calculates if a curriculum is planned in a time period and ensures that

only one course from the same curriculum is planned.

(1i) – Calculates the CurriculumCompactness violation.

(1j) – Ensures that only one course with the same teacher is planned at the

same period.

3.1.2 Stage II

The Stage II model assigns a room to each lecture based on the solution of Stage I

while minimizing RoomStability. The decision variable is the following:

uc,p,r =

{

1 if course c ∈ C is planned in room r ∈ R at period p ∈ P

0 otherwise



6 Michael Lindahl et al.

min
∑

p∈P,s∈S,c∈C≥s

objs,c,p · ys,c,p +
∑

c∈C

5 · wc +
∑

cu∈CU,p∈P

2 · vcu,p (1a)

s. t.
∑

p∈P

xc,p = L(c) ∀c ∈ C (1b)

∑

c∈C

xc,p ≤ |R| ∀p ∈ P (1c)

xc,p − ys,c,p ≥ 0 ∀c ∈ C, p ∈ P, s ∈ S (1d)
∑

c∈C≥s

(xc,p − ys,c,p) ≤ |R≥s| ∀s ∈ S, p ∈ P (1e)

∑

p∈P

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D (1f)

∑

d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C (1g)

∑

c∈C(cu)

xc,p − rcu,p = 0 ∀cu ∈ CU , p ∈ P (1h)

− rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈ CU , p ∈ P (1i)
∑

c∈C(t)

xc,p ≤ 1 ∀t ∈ T , p ∈ P (1j)

xc,p ∈ B ∀c ∈ C, p ∈ P (1k)

ys,c,p ∈ B ∀s ∈ S, c ∈ C≥s, p ∈ P (1l)

wc ∈ Z+ ∀c ∈ C (1m)

zc,d ∈ B ∀c ∈ C, d ∈ D (1n)

vcu,p ∈ B ∀cu ∈ CU , p ∈ P (1o)

rcu,p ∈ B ∀cu ∈ CU , p ∈ P (1p)

Model 1 The MIP model for the first stage.

The assignments of times is given from the previous stage as x∗
c,p. If a course is not

assigned to a time period, no room should be assigned. The violation of room capacity

is given from the variables y∗s,c,p. This means that if a lecture has been assigned to a

smaller room in Stage I this should also be the case in the second stage.

Given a course c ∈ C, a time period p ∈ P and a room r ∈ R then the assignment

is invalid, i.e. uc,p,r = 0, if one of these three conditions is satisfied:

– If a course c is not assigned to a time period p then no room should be assigned.

– x∗
c,p = 0

– If there is no violation of the capacity in Stage I then there should not be a violation

in Stage II.

– y∗s,c,p = 0 and dem(c) > cap(r)
– If the capacity is exceeded in Stage I, then the same violation should occur in Stage

II.

– y∗s,c,p = 1
– dem(c) ≤ cap(r)
– cap(r) = maxr̂∈R{cap(r̂) : cap(r̂) < dem(c))}



A Fix-and-Optimize Matheuristic for University Timetabling 7

Furthermore, the variable yc,r states whether course c ∈ C takes place in room

r ∈ R at least once. This is used to calculate the violation of the RoomStability

constraint. The full model of Stage II is shown in Model 2.

min
∑

c∈C,r∈R

yc,r (2a)

s. t.
∑

p∈P

uc,p,r − |P| · yc,r ≤ 0 ∀c ∈ C, r ∈ R (2b)

∑

r∈R

uc,p,r = 1 ∀c ∈ C, p ∈ P : x∗
c,p = 1 (2c)

∑

c∈C,p∈P

uc,p,r ≤ 1 ∀r ∈ R (2d)

yc,r ∈ B ∀c ∈ C, r ∈ R (2e)

uc,p,r ∈ B ∀c ∈ C, p ∈ P, r ∈ R (2f)

Model 2 The MIP model for the second stage.

The objective (2a) is the violation of the RoomStability objective. The constraints

are the following:

Constraints

(2b) – Calculates the violation of the RoomCapacity constraint.

(2c) – Ensures that all lectures get assigned to a room.

(2d) – Ensures that no more than one lecture is assigned to the same room.

4 Fix-and-Optimize Matheuristic

A natural way of finding good solutions to a problem is to iteratively improve a bad

solution. This is done by creating a neighborhood that can be explored around the solu-

tion, like proposed in the Large Neighborhood Search (LNS) algorithm (Shaw (1998)).

An example of a matheuristic is the corridor method proposed by Sniedovich and Voß

(2006). In the corridor method an exact method that can solve small instances of a

problem, but which is not applicable to large instances, is used. A corridor around

the current solution is created, and this results in a smaller neighborhood which can

then be explored by using the exact method. Our matheuristic build on a similar ap-

proach, as we have a mixed-integer model that can solve small instances to optimality,

but struggles with large instances. In each iteration the MIP solver is used to explore

a large neighborhood defined by fixing a subset of the variables. This results in a

new MIP that we call the subproblem, and the solver is then used as a black-box to

search for improving solutions within this. This is the fix-and-optimize aspect of the

matheuristic. This also implies that if the original model is changed, e.g. a constraint

is added or removed, the neighborhoods are not affected as the same model is used.

This can sometimes be a problem in move-based heuristics where a new constraint can

make certain moves obsolete as they depend too much on special characteristics of the

solution.



8 Michael Lindahl et al.

An important aspect of implementing this algorithm is that the model is only built

from scratch once by the MIP-solver. As the same model instance is used throughout

the algorithm, and due to the way the fixing of the variables is defined, the solution

found in the previous iteration of the algorithm is always feasible with regard to the

fixing of the variables in the next iteration. For most MIP solvers, this means that

the solve operation in each iteration is automatically warm-started from the previously

found solution, which is a great benefit. For the MIP solver used in these experiments

(Gurobi) this is certainly the case.

In Caserta and Voss (2010) they put metaheuristics in two classes. The first is the

model based heuristics where a new solution is found by using a model. Our algorithm

falls in the second category called method based heuristic where the underlying model

is still the same, but the neighborhood is defined by how the MIP solver explores the

neighborhood.

The proposed method is applied to Stage I of the problem as experiments have

shown that the majority of the solution time is spent at this stage. The resulting

solution is then handed to the Stage II model to find a solution for the entire problem.

The algorithm is described in Algorithm 4.1. A key part of the algorithm is to

determine which variables to fix to create subproblems that are easier to solve than

the full problem, while still leading to improving solutions. This part will be explained

in Section 4.2.

Algorithm 4.1 Fix-and-Optimize Matheuristic

1: input:

2: problem instance
3: Set of neighborhoods N and initial sizes S

4: output:

5: Solution
6: x∗

c,p ← Create Initial solution
7: Fix all decision variables
8: while stopping criteria not met do

9: Pick neighborhood n ∈ N

10: X(R) = NeighborhoodCreator(n) ⊲ Find connected decision variables
11: Unfix variables X(R)
12: x∗

c,p ← Optimize subproblem
13: Update Sn ⊲ Use feedback from solver to update parameters
14: end while

15: Solve StageII(x∗
c,p)

4.1 Initial solution

Before decisions variables can be fixed, a feasible initial solution is needed. As shown in

Lach and Lübbecke (2012) the problem can quickly be solved when the soft constraint

CurriculumCompactness is removed. Moreover, the objective MinimumWorkingDays

also introduces new auxiliary variables, and removing this makes the problem easier.

Creating a start solution is therefore done by removing those two objectives: Curricu-

lumCompactness and MinimumWorkingDays. To avoid spending too much time in

this step the solver is set to return the first found solution.



A Fix-and-Optimize Matheuristic for University Timetabling 9

4.2 Neighborhoods

A neighborhood defines which part of the solution space should be explored in an

iteration. As mentioned, this is done by choosing a subset of variables that should be

unfixed thus allowing the values to be changed.

The neighborhood should choose variables where it is likely that a change will re-

sult in an improved solution. If the resulting subproblem is too constrained by the

fixed variables, then no new solutions will be found. At the same time it should also

be possible for the solver to find an improving solution which depends on how difficult

the subproblem is to solve. If the neighborhood is too difficult to solve within the time

limit of each iteration, no improvement will be made.

There is no exact way to predict how difficult a MIP model is to solve, but as men-

tioned by Vielma (2015) the size of the model has a high impact. A simple measure

which also is easy to calculate, is the number of decision variables. We therefore define

the size of a neighborhood as the number of unfixed decision variables. In each iteration

we have a neighborhood size, S ∈ Z+, which will determine how many variables to pick.

It is also important to choose decision variables that are connected in the sense

that if one of them changes value, the others are likely to change value as well. An

example is that if an assignment of a course in a curriculum is moved to a new time

period, it is likely to affect other courses in that same curriculum, as they may need

to be assigned to a new time period to avoid a conflict.

We define a resource r as an entity associated to a set of decision variables. We

define the variables associated with resource r as X(r). A resource could for example

be a course where the associated decision variables are the ones that affect that course.

i.e. to a course c′ ∈ C the corresponding decision variables are

X(c′) = Xc,p : c = c
′
, p ∈ P

To pick resources that are connected we create a score function to measure how

well a specific resource is connected to a set of other resources. A high number means

that if a decision variable from the set of resources is changed, it will likely result in a

change in the given resource.

The score of resource r related to the list of resources R is defined the following way:

Score(R, r) ∈ R
+
0

The algorithm uses a greedy heuristic to find connected resources. It starts with

a list of resources of the same type, for example all courses. It then picks the first

at random and then iteratively adds more depending on which one has the largest

score. This is repeated until the desired size is reached. The algorithm is shown in

Algorithm 4.2.

Three different neighborhoods are defined. The purpose of this is to make sure that

it is possible to reach different parts of the solution space. The neighborhoods are put

into two categories, static and dynamic. The static neighborhoods look at the problem

formulation to pick variables where the dynamic looks at the current solution too. The

three neighborhoods are: Curricula, Courses and Assignments.



10 Michael Lindahl et al.

Algorithm 4.2 NeighborhoodCreator

1: input: List of resources R, Neighborhood Size S

2: output: List of decision variables X̃

3: R̄ := {Randomr∈R} ⊲ Pick a random resource
4: while |X(R̄)| < S do ⊲ Add more until desired size is reached
5: r = argmaxr∈R Score({R̄, r}) ⊲ Find resource with highest score
6: R̄ := R̄ ∪ r ⊲ Add resource
7: end while

8: return X(R̄) ⊲ Return corresponding decision variables

Curricula The curricula neighborhood is static and chooses the decision variables of

courses that belong to a set of curricula. Looking at optimal solutions, the objective

CurriculumCompactness is usually contributing to a large part of the penalty. The

purpose of this neighborhood is to make sure that the parts of the solution space that

can lead to lowering this are explored. The score is calculated by choosing curricula with

overlapping courses as moving one lecture will influence both curricula. The resources

are therefore curricula CU and the score function is the number of courses in common:

Score(cu′
, CU ′) =

∣

∣c ∈ cu
′
∣

∣ : c ∈ CU ′

Courses This neighborhood finds courses that have similar numbers of students at-

tending and is therefore static. This is to be able to swap courses that use similar

rooms. The resource is courses C with the following score function that measures the

difference from the average number of students:

Score(c′, C′) = −

∣

∣

∣

∣

∣

dem(c′)−
1

|C′|

∑

c∈C′

dem(c)

∣

∣

∣

∣

∣

Assignments This dynamic neighborhood looks at the assignments in the current

best solution and looks at how much the assignment violates the soft constraints . The

purpose of this is to fix undesired assignments that result in lowering the objective.

Each assignment is therefore associated with the amount of violation in which it results.

Score(y′s′,c′,p′ , Y ) = objs′,c′,p′ + 5 · w′
c +

∑

p,cu∈CU:c∈CU

2 · rcu,p

4.3 Choosing neighborhood

In each iteration it needs to be decided which neighborhood to use. This is done in a

random manner by selecting what neighborhood to use from a uniform distribution.



A Fix-and-Optimize Matheuristic for University Timetabling 11

4.4 Adaptive Neighborhood Size

Finding the right size of the neighborhoods is important. We therefore continually ad-

just the neighborhood size S to ensure that we are solving neither too easy or too

difficult subproblems.

A way to measure the hardness of a subproblem is to look how far from optimum

we are when the time limit of an iteration is reached. This is done by looking at the

relative gap between the lower bound and the incumbent for each subproblem. We

define two parameters MinGap and MaxGap and aim at creating subproblems that

are solved within this gap. If the gap is less than MinGap the neighborhood size of

that neighborhood is increased, and in the same way decreases it if it is larger than

MaxGap.

The increase or decrease of the neighborhood size is defined in terms of the pa-

rameter Decay. Because each neighborhood is different, we have a size S for each of

the used neighborhoods. The adaptive algorithm for updating the sizes is shown in

Algorithm 4.3.

Algorithm 4.3 UpdateNeighborhoodsize

1: if MipGap > MaxGap then ⊲ Subproblem is too difficult
2: Size *= 1 - Decay ⊲ Decrease size
3: else if MipGap < MinGap then ⊲ Subproblem is too easy
4: Size *= 1 + Decay ⊲ Increase size
5: end if

Smoothing The amount of decision variables is not enough to predict how difficult

a subproblem is. Therefore, a lot of fluctuation in the MIP Gap happens between

iterations for the same number of decision variables. To handle this we smooth the

MIP Gap by using exponential smoothing, which makes it less fluctuated by averaging

the MIP Gap with its previous value. This is done in the following way: Let MipGapi

be the gap in iteration i, the smoothed gap, denoted M̃ipGapi, is then calculated in

the following way, where α is the smoothing factor.

M̃ipGap1 = MipGap1

M̃ipGapi = α ·MipGapi + (1− α) · M̃ipGapi−1, i > 1

An example of how the size of the neighborhood adapts when using the MipGap is

seen in Figure 1. It is seen that there is a lot of fluctuation in the MIPGap, but it is

smoothed by the exponential smoothing.

5 Computational results

To evaluate the algorithm we use both the instances from the ITC2007 competition and

the much larger instances from University of Erlangen. All data sets are available from

http://tabu.diegm.uniud.it/ctt/. We will compare the algorithm to running the

MIP solver directly on the CB-CTT model. As the goal is to provide a tool for practical



12 Michael Lindahl et al.

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

M
IP

 G
ap

500

600

700

800

900

1000

1100

1200

1300

1400

S
iz

e

MipGap

˜MipGap

Size

Fig. 1 This figure illustrates the size of the neighborhood and the MipGap in each iteration.
It can be seen that the size of the neighborhood is gradually increased until it is stabilized and
then increased in the end again.

Neighborhood Curricula Courses Assignments
Size 1000 2500 60%

Table 1 The initial sizes of the neighborhoods. Two of them are absolute number of decision
variables and the other are a percentage of the total amount.

timetabling, we will compare to the state-of-the-art in metaheuristic, both the winner

from the original ITC2007 competition as well as newer algorithms proposed in the

literature.

All experiments were run on a 64 bit Windows machine with a 4.00GHz CPU and

32GB of memory. To solve the integer programs we use Gurobi 6.5.0 running with

standard parameters except for MIPFocus = 1 to tell the solver to focus on finding

feasible solutions instead of proving optimality. The solver is only allowed to use one

thread. The allowed time limit is determined by using the benchmark tool provided for

the ITC2007 competition. This means that one CPU time unit corresponds to 260

seconds. We use the same fraction on time for Stage I and II as proposed by Lach and

Lübbecke (2012), where approximately 75% of the time is used in Stage I. This means

that Stage I is given 210 seconds and Stage II 50 seconds.

The time limit for each iteration in the matheuristic is set to 2 seconds. For the

adaptive part the following parameters are used: GapMin = 15%, GapMax = 20%,

α = 0.3 and Decay = .02. The initial sizes of the neighborhoods are shown in Table 1.

These are either an absolute number of decision variables or as an percentage of the

total amount in the given instance.

All results are shown as the average over 10 runs with different random seeds to the

matheuristic and the MIP solver.



A Fix-and-Optimize Matheuristic for University Timetabling 13

0 20 40 60 80 100 120 140 160

Seconds

0

500

1000

1500

2000

2500

O
bj

ec
tiv

e

Matheuristic
Full MIP

Fig. 2 Solving Comp12. It can be seen that the matheuristic makes many small improvements
compared to the full MIP that hits some large improvement less frequently.

5.1 Comparison of the neighborhoods and the full MIP

To see the effects of the three neighborhoods, a comparison is made between the in-

dividual performance of each neighborhood, the full matheuristic and solving the full

model directly by using a state-of-the-art MIP solver. In Table 2 we show the re-

sults on solving Stage I of the model. It is seen that each neighborhood by itself does

not perform well, especially the assignment neighborhood performs very badly. The

courses neighborhood works best by itself. It is seen that the performance is improved

when two neighborhoods work together, and the algorithm works best when all three

neighborhoods are used.

Looking at how the solution improves over time, illustrated in Figure 2, it is seen

that the profiles differ. The matheuristic makes many small improvements, and the full

MIP hits some larger improvements, but these occur less frequently.

5.2 Adaptive Neighborhood Sizes

To see the impact of the adaptive neighborhood sizes described in Section 4.4, tests are

run on the Stage I model with and without the adaptive part. The results are shown

in Table 3. It is seen that the adaptive neighborhood sizes have a large impact on the

results, finding the best solution for 19 of 21 instances. How the adaptive part affects

the neighborhood sizes can be seen in Figure 3. The two plots show neighborhood sizes

and the smoothed MIP gap respectively for the three neighborhoods. It is seen that

with the fixed neighborhood sizes, one of the neighborhoods always has a 100% MIP

gap, and one always have 0%. With the adaptive part these neighborhood sizes are

adjusted so the MIP gap falls between the min. and max. gap of 15% and 20%.



14 Michael Lindahl et al.

Instance Full MIP Cou Cur Assi Cou,Cur Cou,Assi Cur,Assi All

comp01 4.0 4.0 4.0 27.3 4.0 4.0 4.0 4.0

comp02 50.7 55.4 57.6 159.2 39.2 58.9 49.0 45.8
comp03 87.2 98.4 77.8 131.7 72.1 92.1 76.9 73.4
comp04 35.0 35.3 35.0 90.3 35.0 35.0 35.0 35.0

comp05 392.2 567.1 369.6 687.8 378.1 517.1 379.6 369.6

comp06 47.2 57.6 66.9 71.6 43.5 45.6 46.6 42.4

comp07 6.2 15.1 67.2 23.6 8.0 9.7 10.4 7.8
comp08 37.0 37.6 37.0 81.8 37.0 38.2 37.0 37.0

comp09 100.1 100.6 106.9 138.2 99.7 99.8 99.6 99.1

comp10 4.4 22.1 22.8 59.0 11.4 17.1 11.4 10.2
comp11 0.0 0.0 0.0 14.2 0.0 0.0 0.0 0.0

comp12 462.5 542.0 366.8 531.5 364.0 418.3 360.4 359.6

comp13 61.4 68.7 65.5 141.7 61.7 65.2 62.0 61.7
comp14 51.6 66.1 61.6 84.8 57.7 59.3 56.5 55.1
comp15 87.2 97.1 76.5 127.6 78.5 92.0 80.3 73.7

comp16 22.1 36.5 59.9 56.4 29.6 32.8 25.3 26.9
comp17 76.8 79.0 83.5 100.5 70.7 75.0 73.4 71.5
comp18 78.9 89.7 76.4 106.7 75.4 76.9 80.7 71.9

comp19 58.1 70.8 59.1 179.7 59.4 69.0 59.2 59.8
comp20 18.4 41.9 55.9 48.5 16.3 24.1 20.4 17.7

comp21 107.2 118.1 107.1 162.1 97.7 105.5 99.5 95.3

Avg. Rank 3.0 5.4 4.4 6.7 2.1 4.1 2.9 1.7

Table 2 Comparison of all combinations of the three neighborhoods Courses, Curriculum,
Assignments and the full model on stage I. The best value for each instance is marked with
bold. It can be seen that overall the heuristic helps the solver to find better solutions.

Instance No Adaptive Adaptive

comp01 4.0 4.0

comp02 51.4 45.8

comp03 81.9 73.4

comp04 35.0 35.0

comp05 405.6 369.6

comp06 43.8 42.4

comp07 8.2 7.8

comp08 37.0 37.0

comp09 101.6 99.1

comp10 14.5 10.2

comp11 0.0 0.0

comp12 384.9 359.6

comp13 61.2 61.7
comp14 56.6 55.1

comp15 82.6 73.7

comp16 28.1 26.9

comp17 73.5 71.5

comp18 80.5 71.9

comp19 59.3 59.8
comp20 20.6 17.7

comp21 96.5 95.3

Avg. Rank 1.7 1.1

Table 3 The matheuristic with and without the adaptive part on stage I. It is seen that
the adaptive part greatly improves the algorithm and finds the best solution on 19 out of 21
instances.



A Fix-and-Optimize Matheuristic for University Timetabling 15

0 10 20 30 40 50 60 70

Iteration

500

1000

1500

2000

N
ei

gh
bo

rh
oo

d 
si

ze

No Adaptive Adaptive

0 10 20 30 40 50 60 70

Iteration

0

50

100

M
IP

 G
ap

Fig. 3 The change in neighborhood size and MIP gap for the three neighborhoods with and
without the adaptive part. Without the adaptive part two of the MIP Gap’s stay at 0% and
100% respectively. The adaptive part changes the size of the neighboorhods so the MIP gaps
stay within 15% to 20%.

5.3 Comparison with State of the art metaheuristics

To compare with the current state of the art of finding high quality solutions to CB-

CTT we compare with Müller (2009), the winner of the ITC2007 contest. We also

compare with two more recent algorithms from the literature, which have shown good

results, that is a Tabu-based memetic from Abdullah and Turabieh (2012) and a LNS

from Kiefer et al (2014). The results are shown in Table 4.

The matheuristic performs better than the original winner from ITC2007, Müller,

but worse than the LNS and the Tabu-based memetic. On one instance the matheuristic

finds the best solution.

5.3.1 Very large instances

To see how the algorithm performs on very large instances we use the ones from Uni-

versity of Erlangen. These instances have around six times as many decision variables

at the first stage and are far more constrained. Because these instances are much big-

ger, the timelimit is set to 10 CPU time units. The results can be seen in Table 5. For

two of the instances the solver applied to the full MIP is not able to find a feasible

solution, and in all cases the matheuristic is able to find better solutions. Wbest show

the currently best known solution. An example of a run is seen in Figure 4 which shows

that the solver has difficulties in improving the solution for the full MIP. This shows

that the matheuristic is more stable in finding feasible solutions and improving them

afterwards.



16 Michael Lindahl et al.

Instance Kiefer et al (2014) Abdullah and Turabieh (2012) Müller (2009) MH

comp01 5.0 5.0 5.0 12.0
comp02 41.9 36.4 61.3 49.5
comp03 72.8 74.4 94.8 74.5
comp04 35.2 38.5 42.8 38.5
comp05 306.3 314.5 343.5 373.5
comp06 48.1 45.3 56.8 58.3
comp07 15.3 12.0 33.9 35.0
comp08 40.6 40.8 46.5 49.7
comp09 102.4 108.4 113.1 100.5

comp10 13.3 8.4 21.3 25.7
comp11 0.0 0.0 0.0 6.5
comp12 323.9 320.3 351.6 360.7
comp13 63.8 64.3 73.9 69.0
comp14 56.1 64.4 61.8 56.9
comp15 73.8 72.7 94.8 74.5
comp16 34.8 23.7 41.2 37.1
comp17 73.0 76.4 86.6 86.1
comp18 66.5 75.6 91.7 72.9
comp19 64.6 66.8 68.8 64.8
comp20 24.0 13.5 34.3 34.3
comp21 95.3 100.7 108.0 103.8
Avg. rank 1.4 1.8 3.3 3.1

Table 4 Comparison with the matheuristic including stage II with state of the art meta-
heuristics. The running time is 1 CPU Time unit. The bold results are the best result for that
instance. The matheuristic (MH) performs better than the initial winner of the competition
but not better than more recent versions.

Instance Wbest Full MIP Matheuristic

erlangen2011_2 4670 - 5,956.0

erlangen2012_1 5716 19,067.0 9,648.8

erlangen2012_2 8813 - 15,059.8

erlangen2013_1 5476 20,467.0 10,052.0

erlangen2013_2 8150 16,308.0 11,120.4

erlangen2014_1 5981 15,765.0 8,372.0

Avg. Rank 2 1

Table 5 Comparison of the matheuristic on 6 very large instances running with 10 CPU time
units. The results are for the full model (StageI+II) and Wbest is the currently best known
solution. The matheuristic outperforms the full mip consistently and is able to find solutions
where the solver can not on two of the instances.

6 Conclusion

We have proposed a matheuristic that works as a framework on top of a MIP model. The

approach makes it possible to find good solutions even on larger and more constrained

instances.

The algorithm has been applied to the standard benchmark datasets for Curriculum-

based University Course Timetabling. To the best of our knowledge, this is the first

paper which describes a matheuristic for this problem.

Computational results have shown that the matheuristic is better at finding feasible

solutions than solving the original MIP with a MIP solver.



A Fix-and-Optimize Matheuristic for University Timetabling 17

0 200 400 600 800 1000 1200 1400 1600

Seconds

1

1.2

1.4

1.6

1.8

2

2.2

O
bj

ec
tiv

e

×104

Matheuristic
Full MIP

Fig. 4 Solving the very large instance Erlangen2012_1. The matheuristic finds a worse start
solution but is able to improve it compared to the solver on the full model that can not find
any improving solution.

Compared to metaheuristics, which is the most used method for practical timetabling,

the algorithm performs well. On average, it performs better than the original winner

from ITC2007, but not better than two more recently proposed heuristics. Research

in heuristics for timetabling has a long history, and more research is needed before

matheuristics can catch up. The proposed method can, however, utilize future improve-

ments of both solvers and models, and especially the solvers have improved tremen-

dously over the last decade Bixby (2012). Furthermore, the matheuristic algorithm has

the advantage of being flexible when it comes to adding new constraints and objectives.

The authors therefore believe that matheuristics and mathematical programming will

become a major approach for practical timetabling.

6.1 Outlook

There are a lot of opportunities for future research in the area of matheuristics, aso

applied to CB-CTT. An important aspect is to make sure that the computational

resources are used to solve the right subproblems. In the following we propose three

areas as subjects for future research.

Neighbourhoods It would be interesting to look more into what the characteristics of

a good neighborhood are. This would also make it easier to adapt the algorithm to

new problems. Another interesting thing would be to generalize it to generic MIPs.

This would require neighborhoods with more generic definitions, as opposed to using

problem-specific knowledge.

More Adaptive parameters The time limit in each iteration and the min. and max.

MIP gap is manually set. There might be a potential in making them adaptive. So



18 Michael Lindahl et al.

that for example in the beginning there is a short time limit and high MIP gap, and

in the later iterations, where the solution is closer to optimality, the MIP gap in each

iteration is smaller, and the time limit is longer.

Parallelization Because of the fixed variables many of the neighborhoods are not

connected and can therefore be solved in parallel. This can lead to further speed up by

exploiting multiple processors. This would, however, require the processors to somehow

share an instance of the MIP model, a problem to which there is no obvious solution

in our opinion.

Acknowledgements The authors would like to thank the organizers of ITC-2007 for pro-
viding a formal problem description of CB-CTT as well as benchmark instances. The authors
would also like to thank Alex Bonutti, Luca Di Gaspero and Andrea Schaerf for creating and
maintaining the website for instances and solutions to CB-CTT.

References

Abdullah S, Turabieh H (2012) On the use of multi neighbourhood structures within

a tabu-based memetic approach to university timetabling problems. information sci-

ences 191:146–168

Avella P, D’Auria B, Salerno S, Vasilev I (2007) A computational study of local search

algorithms for italian high-school timetabling. Journal of Heuristics 13:543–556

Bettinelli A, Cacchiani V, Roberti R, Toth P (2015) An overview of curriculum-based

course timetabling. TOP pp 1–37

Bixby RE (2012) Optimization Stories, 21st International Symposium on Mathematical

Programming Berlin, vol Extra, Journal der Deutschen Mathematiker-Vereinigung,

chap A Brief History of Linear and Mixed-Integer Programming Computation, pp

107–121

Burke E, Marecek J, Parkes A, Rudová H (2008) Uses and abuses of mip in course

timetabling. In: Poster at the Workshop on Mixed Integer Programming, MIP2007,

Montréal

Cacchiani V, Caprara A, Roberti R, Toth P (2013) A new lower bound for curriculum-

based course timetabling. Computers & Operations Research 40(10):2466 – 2477

Caserta M, Voss S (2010) Metaheuristics: Intelligent problem solving. In: Maniezzo

V, Statzle T, Voss S (eds) Matheuristics, Annals of Information Systems, vol 10,

Springer US, pp 1–38

Danna E, Rothberg E, Le Pape C (2005) Exploring relaxation induced neighborhoods

to improve mip solutions. Mathematical Programming 102(1):71–90

Di Gaspero L, McCollum B, Schaerf A (2007) The second international timetabling

competition (itc-2007): Curriculum-based course timetabling (track 3). Tech. rep.,

School of Electronics, Electrical Engineering and Computer Science, Queenes Uni-

versity SARC Building, Belfast, United Kingdom

Fischetti M, Lodi A (2003) Local branching. Mathematical Programming 98:23–47

Hao JK, Benlic U (2011) Lower bounds for the ITC-2007 curriculum-based course

timetabling problem. European Journal of Operational Research 212(3):464 – 472

Kiefer A, Hartl R, Schnell A (2014) Adaptive large neighborhood search for the

curriculum-based course timetabling problem. Tech. rep., University of Vienna



A Fix-and-Optimize Matheuristic for University Timetabling 19

Lach G, Lübbecke M (2012) Curriculum based course timetabling: new solutions to

udine benchmark instances. Annals of Operations Research 194:255–272

Müller T (2009) Itc2007 solver description: a hybrid approach. Annals of Operations

Research 172:429–446

Shaw P (1998) Using constraint programming and local search methods to solve vehicle

routing problems. In: Maher M, Puget JF (eds) Principles and Practice of Constraint

Programming CP98, Lecture Notes in Computer Science, vol 1520, Springer Berlin

/ Heidelberg, pp 417–431

Sniedovich M, Voß S (2006) The corridor method: a dynamic programming inspired

metaheuristic. Control and Cybernetics 35(3):551

Vielma JP (2015) Mixed integer linear programming formulation techniques. SIAM

Review 57(1):3–57


