
A study on exponential-size neighborhoods for

the bin packing problem with conflicts

Renatha Capua

Instituto de Computação – Universidade Federal Fluminense

Rua Passo da Pátria, 156 - São Domingos, Niterói - RJ, 24210-240, Brazil

rcapua@ic.uff.br

Yuri Frota

Instituto de Computação – Universidade Federal Fluminense

Rua Passo da Pátria, 156 - São Domingos, Niterói - RJ, 24210-240, Brazil

yuri@ic.uff.br

Luiz Satoru Ochi

Instituto de Computação – Universidade Federal Fluminense

Rua Passo da Pátria, 156 - São Domingos, Niterói - RJ, 24210-240, Brazil

satoru@ic.uff.br

Thibaut Vidal

Departamento de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio)

Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

vidalt@inf.puc-rio.br

Technical Report – Universidade Federal Fluminense – May 2017

Abstract. We propose an iterated local search based on several classes of local and large

neighborhoods for the bin packing problem with conflicts. This problem, which combines the

characteristics of both bin packing and vertex coloring, arises in various application contexts

such as logistics and transportation, timetabling, and resource allocation for cloud computing.

We introduce O(1) evaluation procedures for classical local-search moves, polynomial variants of

ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood,

and finally a controlled use of 0-cost moves to further diversify the search. The overall method

produces solutions of good quality on the classical benchmark instances and scales very well with

an increase of problem size. Extensive computational experiments are conducted to measure the

respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the

large neighborhood based on set covering contribute very significantly to the search. Several

research perspectives are open in relation to possible hybridizations with other state-of-the-art

mathematical programming heuristics for this problem.

Keywords. Metaheuristics; Bin packing with conflicts; Large neighborhood search; Ejection

chains; Assignment; Set covering

ar
X

iv
:1

70
5.

08
49

5v
1

 [
cs

.D
S]

 2
3

M
ay

 2
01

7

1 Introduction

The Bin Packing Problem with Conflicts (BPPC) is a difficult combinatorial optimization

problem which brings together the features of bin packing and vertex coloring problems. We are

given a set of bins of identical capacity Q, a set of items I = {1, . . . , n} with weights w1, . . . , wn

and a conflict graph G = (V,E). Any edge (i, j) ∈ E represents a conflict between items i and j.

The objective of the BPPC is to assign each item to a bin, in such a way that the number of

bins in use is minimized and there are no two items in conflict in the same bin. This problem

can be formulated as follows (Gendreau et al. 2004):

min
n∑
k=1

yk (1)

s.t.
n∑
i=1

wixik 6 Qyk k = 1, . . . , n (2)

n∑
k=1

xik = 1 i = 1, . . . , n (3)

xik + xjk 6 1 (i, j) ∈ E, k = 1, . . . , n (4)

yk ∈ {0, 1} k = 1, . . . , n (5)

xik ∈ {0, 1} i = 1, . . . , n, k = 1, . . . , n (6)

In this model, each binary variable xik is set to 1 if and only if item i is assigned to bin k, and

each binary variable yk is set to 1 if and only if the bin k has been used. Inequality (2) enforces

the capacity constraints, Equation (3) states that each item should be assigned to exactly one

bin, and Inequality (4) models the conflict constraints.

The BPPC is linked to several important applications. In the field of transportation and

logistics, restrictions and compatibility constraints are imposed on several classes of products,

including food, medicine or hazardous materials. Combinations of flammable, explosive, or toxic

products should never be carried jointly in the same load (Hamdi-Dhaoui et al. 2014, Minh et al.

2013), leading to difficult item-to-vehicle assignment decisions during operational planning. The

problem also arises in examination timetabling, where we search for a schedule that respects

room capacities and avoids conflicts (Laporte and Desroches 1984). No student, for example,

should take more than one exam at the same time. Finally, another application comes from

the field of parallel computing, where we aim to assign a set of tasks to a minimum number of

processors, subject to restrictions on the collocation of some conflicting tasks in some machines

(Jansen 1999, Masson et al. 2013).

From a methodological standpoint, the problem is also of high interest. It includes two

types of constraints: capacity restrictions and conflicts. Each constraint class, alone, leads to a

NP-hard subproblem: bin packing or vertex coloring. It is also noteworthy that the research

2

on the BPPC has been in majority concentrated on approximation algorithms (Epstein and

Levin 2008) and mathematical-programming techniques. Mathematical programming has been

successful on the BPPC up to this date, since decomposition methods such as branch-and-price

(Fernandes Muritiba et al. 2010, Elhedhli et al. 2011, Sadykov and Vanderbeck 2013) are very

efficient for problem instances with few items per bin (a common characteristic of most of

the test sets available in the literature). Even in these conditions, the current mathematical

programming algorithms remain applicable only to medium-scale problems, and many instances

with one thousand items cannot be exactly solved to this date. This is unfortunately insufficient

for several applications of BPPC, for cloud computing and large-scale task allocation problems

(Masson et al. 2013), which can involve tens or hundreds of thousands of items.

The objective of this article is to progress on the understanding and development of meta-

heuristics for this class of problems. A significant part of recent research on metaheuristics, in

the last five years, has been focused on producing novel search concepts, often from natural

analogies. However, as in Sörensen (2015), we believe that part of this research is misled. Beyond

natural phenomenons, the success of many metaheuristics come from a careful definition of

their neighborhoods, efficient techniques to search them, and an exploration strategy which

finds a sensible balance between intensification and diversification (Blum and Roli 2003, Vidal

et al. 2013). Metaheuristics are also better understood in terms of their basic operations:

neighborhoods, local search, restarts and perturbations, recombinations, short and long-term

memories and diversification procedures, among others. Following this general logic, we develop

a simple metaheuristic framework, an iterated local search, but enhance this search procedure

with a variety of local and large (exponential-sized) neighborhoods, with the aim of carefully

investigating their relative contribution to the search. Overall, this leads to a simple and efficient

algorithm, plus a more complete version with additional classes of neighborhoods, which both

return results of good quality on classic instances for the considered problem. We also observe

that set covering-based neighborhoods had the biggest impact on the search performance, as

well as the proposed diversification strategies based on 0-cost moves.

Overall, the main contributions of this paper are:

1. A simple and efficient ILS approach for the BPPC;

2. New ejection chain, assignment, and grenade neighborhoods tailored for the problem;

3. Efficient amortized O(1) move evaluations for standard enumerative neighborhoods;

4. A controlled use of 0-cost moves to better explore the search place;

5. An investigation of the relative contribution of all proposed neighborhoods.

2 Related literature

Although conflict constraints have a long history in the domain of timetabling (Laporte and

Desroches 1984), the first studies dedicated to the bin packing problem with conflicts appeared

3

in Jansen and Öhring (1997) and Jansen (1999). Early works were focused on approximation

algorithms, a research line which was later pursued in Epstein et al. (2008) and Epstein and

Levin (2008). Unfortunately, no bounded polynomial approximation scheme can be obtained

for the BPPC with general conflict graphs (Jansen 1999). As such, most approximation results

concern specific graph structures, such as perfect graphs, interval graphs, and bipartite graphs,

with approximation ratios of 2.5, 2.33333, and 1.75, respectively (Epstein and Levin 2008).

More recently, Gendreau et al. (2004) investigated some heuristics (without performance

guarantee) for the problem. The authors proposed six different constructive heuristics, as well as

two lower bounds, and a first set of benchmark instances based on the data set of Falkenauer (1996)

for the bin packing problem. Unfortunately, these instances are not available anymore to this

date, and thus were re-generated later on (Fernandes Muritiba et al. 2010, Elhedhli et al. 2011).

Subsequently, a significant research effort has been dedicated to mathematical programming

algorithms for the problem. Khanafer et al. (2010) proposed new lower bounds based on the

concept of data-dependent dual feasible solutions. Furthermore, three recent articles proposed

exact branch-and-price procedures (Fernandes Muritiba et al. 2010, Elhedhli et al. 2011, Sadykov

and Vanderbeck 2013). These articles use different branching rules, initial columns, and sub-

procedures for the pricing problem (a knapsack problem with conflicts). When the conflicts

form an interval graph, the pricing problem can be solved efficiently via dynamic programming

(Sadykov and Vanderbeck 2013), while branch-and-bound procedures can be used in more

general cases. These exact methods can solve many benchmark instances, with up to 1000 items

in some cases. Still, instances with a large number of items per bin (e.g., set (da) of Sadykov

and Vanderbeck 2013) remain challenging. The computational effort can also vary significantly

from one instance to another, and becomes impracticable for large data sets with general graphs.

Metaheuristics for the BPPC have received, to this date, less attention than mathematical-

programming algorithms. An advanced population-based metaheuristic was proposed in Fernan-

des Muritiba et al. (2010), and used to generate good upper bounds and initial columns. The

method is a complex combination of a tabu search based on the impasse class neighborhoods of

Morgenstern (1996), with a genetic algorithm using the crossover operator of Galinier and Hao

(1999). Sadykov and Vanderbeck (2013) also introduce a diving heuristic based on a controlled

partial exploration of the branch-and-price search tree. This method is a good alternative

between exact solution approaches and heuristics, as it combines the benefits of mathematical

programming for problem instances with few items per bin, with a shorter CPU time. Overall,

metaheuristics for the BPPC still deserve further investigation.

Finally, as the BPPC is a generalization of both the bin packing problem and vertex coloring,

results about metaheuristic searches for these two subproblems can be a good source of inspiration.

The literature on these two subproblems is extensive, and we refer to Malaguti and Toth (2010),

Lewis et al. (2012), Quiroz-Castellanos et al. (2015), Delorme et al. (2016) and Lewis (2016) for

some detailed reviews. Some of the current best metaheuristics for the bin packing problem

4

include the grouping genetic algorithm of Falkenauer (1996), the extension of the Perturbation-

MBS method by Fleszar and Charalambous (2011), and the grouping genetic algorithm with

controlled gene transmission of Quiroz-Castellanos et al. (2015). Population-based heuristics

tend to be very frequently used, due to their capability of exploring very diverse areas of the

search space. For the vertex coloring problem, some of the state-of-the-art metaheuristics include

the TabuCol approach of Hertz and de Werra (1987), the PartialCol algorithm of Blöchliger and

Zufferey (2008) with fluctuation of the objective function, the hybrid evolutionary algorithms of

Galinier and Hao (1999), Malaguti et al. (2008), and the ant colony optimization metaheuristic

of Dowsland and Thompson (2008).

3 Methodology

We opted for a simple metaheuristic framework, which allows to carefully investigate the impact

of several local and large neighborhoods. Our method is thus built on an Iterated Local Search

(ILS) metaheuristic, with several neighborhood classes for solution improvement, and one single

perturbation procedure. Its pseudo-code is presented in Algorithm 1.

Algorithm 1 Iterated local search for the BPPC

1: Sbest ← BuildInitialSolution();
2: Klb ← ComputeLowerBound();
3: while NbBins(Sbest) ≥ Klb and Sbest is feasible do
4: Sbest ← ReduceNbBins(Sbest);
5: S ← Sbest;
6: ishak ← 0;
7: while ishak ≤ Nshak and Sbest is not feasible do
8: for Nls iterations do
9: S ← LocalSearch(S);

10: S ← AssignmentNeighborhood(S);
11: S ← EjectionChains(S);
12: S ← Grenade(S);
13: end for
14: if ∃ k ∈ N+ such that ishak = k ×Nsc then S ← SetCovering();
15: if cost(S) < cost(Sbest), then Sbest ← S and ishak ← 0; else ishak ← ishak + 1;
16: S ← Shaking(Sbest);
17: end while
18: end while

An initial solution is first generated via a constructive heuristic (Line 1). Subsequently, to

decrease the number of used bins, the method iteratively removes one bin (Line 4), randomly

assigning its items to other bins, and attempts to solve the resulting conflicts or capacity

excesses by means of iterations of local search with 0–cost moves, ejection chains, grenade moves,

resolutions of set covering or assignment formulations, and perturbation procedures (Lines 7–17).

5

Using the terminology of the vertex coloring problem, and as surveyed in Lewis et al. (2012), this

type of strategy exploits the search space of complete, but improper colorings. The algorithm

terminates when no feasible solution is found after Nshak perturbations, or if a trivial lower

bound Klb on the number of bins (the sum of items weight divided by bin capacity) is reached.

We now describe each component of the algorithm in further details.

3.1 Initial Solution

The initial solution is generated by means of the modified first fit decreasing heuristic (Gendreau

et al. 2004). Items are enumerated in non-decreasing order of weight, and inserted in the first

bin which has enough residual space and does not contain conflicting items. This leads to a

feasible initial solution with K bins.

3.2 Local Search

The local search procedure aims to improve any infeasible solution produced by the removal of

one bin or by the shaking operator. To define an improvement, the cost of each solution S is

evaluated as the sum of the cost of its bins B ∈ S given by Equation (7). In this equation, C(B)

represents the current number of conflicts in the bin, W (B) represents the total excess weight,

and ωc and ωw are the penalty factors associated to each unit conflict and weight violation.

Φ(B) = ωcC(B) + ωwW (B) (7)

Neighborhoods and exploration. Three classic neighborhoods are used: Swap, Relocate

and Swap2vs1. A Swap move exchanges two items from different bins. As suggested by its

name, a Relocate move reassigns an item to a different bin. Finally, a Swap2vs1 move

exchanges a pair of consecutive items from one bin with a single item from another bin. The

neighborhoods are explored as detailed in Algorithm 2, enumerating the pairs of bins in random

order to test the associated moves (Lines 4–5). For each bin pair, the best improving move is

applied if such a move exists (Line 9), and the local search terminates when no improving move

can be found.

This evaluation policy allows to save computational effort, since it is unnecessary to re-

evaluate the moves between a pair of bins when the evaluation has been done in the past without

success, and if the bins have not undergone any change. Moreover, at least one bin B involved

in a move must satisfy Φ(B) > 0 to hope for an improvement. This condition is included as an

additional filter (Line 4), allowing to save a significant amount of CPU time. Finally, during the

first loop of the local search, the method accepts 0-cost moves (Line 8). These moves do not

improve the objective but contribute to diversify the search.

6

Algorithm 2 Local search with 0-cost moves

1: ItLoop ← 0
2: while a local minimum has not been attained do
3: ItLoop ← ItLoop+ 1
4: for each bin B in random order such that Φ(B) > 0 do
5: for each bin B ′ 6= B in random order do
6: if B or B ′ has been modified since the last evaluation or ItLoop = 1 then
7: ∆← CostBestMove(B,B ′)
8: if {∆ < 0} or {∆ ≤ 0 and ItLoop = 1} then
9: ApplyBestMove(B,B ′)

10: end if
11: end if
12: end for
13: end for
14: end while

Efficient Move Evaluations. The computational efficiency of the move evaluations is of

critical importance, as it is the main bottleneck of most recent local search-based heuristics.

Any significant reduction in the CPU time needed to evaluate moves can be translated into a

direct gain in terms of number of moves which can be evaluated during one run of the algorithm,

and thus into enhanced solution quality. For the BPPC, move evaluations are not trivial

since they require to compute the number of conflicts in the new solution. A straightforward

implementation of Swap, for example, between bins B and B ′ would require O(|B| + |B ′|)
elementary operations per move evaluation, where |B| is the current number of items in a bin B.

This effort is due to the evaluation of conflicts between the items exchanged and those existing

in the bins. This effort grows linearly with the average number of items per bin, and can be

responsible for the majority of the CPU time for problem instances with a large number of items

per bin.

To address this issue, we propose a pre-processing and move evaluation mechanism which

supports amortized O(1) move evaluations. We rely on an array which gives O(1) access to the

current number of conflicts Conf[i][B] between an item i and all items in bin B. Let di be

the degree of i in the conflict graph. This array can be built in O(Kn+
∑n

i=1 di) elementary

operations for the initial solution. Subsequently, any solution modification can be assimilated to

a sequence of item relocations. For each relocation of an item i from a bin B to a bin B ′, the

Conf array is updated in O(di) by means of Algorithm 3.

Algorithm 3 Update mechanism – Relocation of one item i from bin B to B ′

1: for each item j in conflict with i do
2: Conf[j][B] = Conf[j][B]− 1
3: Conf[j][B ′] = Conf[j][B ′] + 1
4: end for

7

This data structure can now be used to perform efficient move evaluations. Consider a Swap

move between an item i from bin B, with item j from bin B ′. The difference ∆ in the number

of conflicts after and before the move can be computed as follows:

∆ = Conf[i][B ′] + Conf[j][B]−Conf[i][B]−Conf[j][B ′]− 2× isConflict(i, j) (8)

Remark the corrective term 2× isConflict(i, j), which takes value 2 if and only if there is

a conflict between the items i and j. This term comes from the fact that the array Conf[i][B ′]

contains the number of conflicts when moving i in B ′, but before the removal of item j, and

vice-versa for the array Conf[j][B].

This approach can be generalized to evaluate in O(1) any move involving an exchange of

bounded sets of items S and S ′ between a pair of bins B and B ′, hence allowing efficient

evaluations for all the considered moves. An example of a move, which exchanges three items of

each bin, is displayed in Figure 1. Let Ninter(S, S ′) be the number of conflicts between pairs of

items in S and S ′, let Nintra(S) be the number of conflicts within the set S, and let Nintra(S ′)

be the number of conflicts within the set S ′. The difference in the number of conflicts after the

application of the move can be obtained from Equation (9).

∆ =
∑
i∈S

(Conf[i][B ′]−Conf[i][B]) +
∑
j∈S ′

(Conf[j][B]−Conf[j][B ′])

+ 2× (Nintra(S) +Nintra(S ′)−Ninter(S, S ′))

(9)

Capacity excesses can also be simply evaluated inO(1). Overall, this leads to move evaluations

in O(1) at the price of a slightly higher computational effort when updating the solution. In

all computational experiments, we observed that hundreds of moves are tested, in average,

before even applying one of them. The complexity needed to initialize and update the data

structures remained largely dominated by the effort dedicated to move evaluations, leading to

the announced amortized O(1) evaluations.

S’

S

NINTER (S,S’) = 4

NINTRA (S’) = 2

NINTRA (S) = 1

B B’

Figure 1: A generalized move involving the exchange of three items in B with three items in B ′.

8

3.3 Large Neighborhoods

Our hybrid ILS is built on simple perturbation and local search concepts, but it relies on

four large neighborhoods to enhance the search performance. The first two neighborhoods –

Assignment and Ejection Chains – exploit restrictions of the problem which have the benefit

to be combinatorial but still polynomial. This leads to neighborhoods of exponential size which

can be searched in polynomial time. The third neighborhood – Grenade – is based on the

enumeration of a larger move. Finally, the fourth neighborhood – Set Covering – uses the

fact that effective integer programming solvers can address the set covering formulation of the

problem in the presence of a limited pool of columns (item combinations in a bin). These solvers

are used to combine high-quality columns from local minima to produce better solutions.

Some of these families of neighborhoods are well known in the operations research literature,

and we refer to Deineko and Woeginger (2000) and Ahuja et al. (2002) for detailed surveys

and analyses. Not all combinatorial optimization problems allow for an efficient search of such

exponential-sized neighborhoods. For the case of the BPPC, such a search is possible. We now

describe these large neighborhoods, tailored for the problem, as well as a specific form of ejection

chains, which also allows a polynomial exploration of an exponential subset of solutions, under

the condition that ejections between bins should follow a pre-specified ordering.

3.3.1 Assignment Neighborhood

The assignment neighborhood selects some items for removal, and reinserts these items in

the holes thus formed by solving an assignment problem in a weighted bipartite graph. Such

a methodology was successfully used for traveling salesman and vehicle routing problems in

Sarvanov and Doroshko (1981), Gutin (1999) and Toth and Tramontani (2008).

We adapt this approach to the BPPC as follows. In our context, only a few problematic

items usually present conflicts or belong to a bin with excess weight during the course of the

search. To improve the solution, better allocation decisions should be sought for some of these

items with simultaneous movements of other items. Hence, the proposed algorithm randomly

selects one problematic item, call it k, as well as Nassign random items, at most one in each bin.

Together, these items form a vertex set V ′1 . Let V ′2 be a copy of this set of vertices, and define

the edge set E′ = {(i, j) such that i ∈ V ′1 and j ∈ V ′2}. The cost of each edge (i, j) is defined

as the cost of inserting item i in the bin B(j) of item j (which has been removed beforehand).

Finally, to break possible ties and favor a movement of k, an ε-penalty is added to the cost of

the edge linking k with its copy. This defines a bipartite graph G′ = (V ′1 , V
′
2 , E

′), illustrated in

Figure 2.

Then, finding a best re-allocation of items to bins is done by solving a linear-sum assignment

problem on this graph. The optimal solution is found in O(n3) by means of an efficient

implementation of the Hungarian algorithm (Kuhn 1955). Any non-trivial optimal solution of

9

k

i1

i2

REMOVE

i2

i1

INSERT

 k

FIND
ASSIGNMENT

Small ε penalty to avoid
keeping k in the same bin

POSITIONS
in V’2

i1

k

i2

ITEMS
in V’1

Figure 2: Assignment neighborhood and its associated bipartite graph G′.

this assignment model (different from the pairing of each node i with its clone) corresponds to a

move of the BPPC solution. This move is applied, leading to a new (better or equal) incumbent

solution in the ILS.

3.3.2 Ejection Chains

Ejection chains allow to explore a different subset of neighbor solutions obtained via chained

relocations of items (see, e.g., Thompson and Psaraftis 1993, Glover 1996 and Deineko and

Woeginger 2000). A key difference with the previous assignment neighborhood is that the choice

of items to be relocated is not a-priori fixed. On the other hand, to allow for a polynomial

exploration procedure, we restrain item relocations so as to comply with a pre-defined bin

ordering.

Our ejection chains algorithm works as follows. First, choose a random order Π of the bins in

the current solution. Then, define an auxiliary graphG′′ = (V ′′, A′′) with V ′′ = V∪Vzero∪vsource,

illustrated in Figure 3. The set V contains one node for each item, while Vzero contains one node

vzerok for each bin k in the current solution. Each node in V will model the possible replacement

of one item by another, and each node in Vzero will model the possible insertion of an item and

the end of an ejection chain. The node vsource represents a source. We denote by B(i) the bin

that contains vertex i in the current solution. The set A′′ contains one arc (i, j) for any pair of

nodes i ∈ V ∪Vzero and j ∈ V ∪Vzero such that bin B(i) precedes bin B(j) in the order Π, and

10

one arc (vsource, j) for any j ∈ V. The costs of the arcs are defined as follows:

cij =


the cost difference of bin B(j) when replacing item j by item i if i ∈ V and j ∈ V,
the cost difference of bin B(j) when removing item j if i ∈ Vzero ∪ vsource and j ∈ V,
the cost difference of bin B(j) when inserting item i if i ∈ V and j ∈ Vzero.

A shortest path in this graph from the source to any node in Vzero is equivalent to a sequence

of combined item insertions and removals. Note that, thanks to the use of the nodes in Vzero,

we can possibly obtain a collection of several disjoint ejection chains. The solution is finally

updated in case of improvement.

vsource

Bin Π(1) Bin Π(2) Bin Π(3) Bin Π(4) Bin Π(5)

vzero
1 vzero

2
vzero

3
vzero

4
vzero

5

Figure 3: Ejection-chains graph, and a possible solution.

3.3.3 Grenade Neighborhood

The Grenade neighborhood has been previously used for the vertex coloring problem in

Avanthay et al. (2003), and consists in the enumeration of some larger moves. In our context, we

consider in turn each item k in the set of problematic items P (as defined in the previous section:

with either a conflict or in a bin with excess capacity). For each possible bin B 6= B(k), the

method evaluates the possibility of relocating k in B and jointly relocating any conflicting item

i of B to another bin by means of a best insertion criterion. The total cost of these combined

relocations is evaluated and the best grenade move for k is applied in case of improvement.

The overall scheme is illustrated in Figure 4, and the pseudo-code of the neighborhood

exploration is detailed in Algorithm 4. Note that the search consists of a single loop over the

items k ∈ P, as a complete descent towards a local minimum of this neighborhood would be

time consuming.

11

k

i

j

Relocating k

Best
relocation of i
in another bin

Best
relocation of j
in another bin

Figure 4: Grenade move. Relocating the item i creates two conflicts which are resolved by
other relocations.

Algorithm 4 Exploration of the Grenade neighborhood

1: for each item k ∈ P in random order do
2: for each bin B 6= B(k) do
3: ∆← Cost of a relocation of item k in B
4: for each item i ∈ B in conflict with k, in random order do
5: ∆← ∆ + Least-cost relocation of i in a bin different from B
6: end for
7: UpdateBestGrenadeMove(∆,k)
8: end for
9: if BestGrenadeMove(k) < 0, then apply this move

10: end for

3.3.4 Adaptive Set Covering

Set covering (or set partitioning) formulations have been successfully used to solve a variety

of combinatorial optimization problems to optimality and to generate larger neighborhoods

(see, e.g., Monaci and Toth 2006, Muter et al. 2010 and Subramanian et al. 2013 for recent

applications on a wide range of packing, coloring and routing problems). In our context, we

investigate a set covering formulation in which the maximum number of bins is fixed, and one

aims to minimize the sum of column costs associated to possible capacity of conflict constraints

violations, and use it as a base for an additional large neighborhood in the ILS. To limit the

computational effort, this procedure is used only a few times during the search, after each Nsc

consecutive iterations of the local search procedure without improvement.

The considered set covering formulation is expressed in Equations (10–13). It involves the set

R of all possible columns, where each column represents a combination of items, associated with

a cost cj . The cost cj is based on the same weighted penalties for conflicts and capacity excess

as in Equation (7), and let Ri ⊆ R be the subset of columns containing an item i ∈ V. The

12

goal of the formulation is to find a set of up to K columns that covers all items with minimum

cost. We highlight the fact that the positive-cost columns (with ci > 0) correspond to sets of

items with excess capacity or conflicts, and that any solution with cost 0 would correspond to a

feasible packing in K bins.

min
∑
j∈R

cjuj (10)

s.t.
∑
j∈Ri

uj > 1 ∀i ∈ V (11)

∑
j∈R

uj 6 K (12)

uj ∈ {0, 1} ∀j ∈ R (13)

This formulation involves an exponential number of decision variables (2n−1). To circumvent

this issue, we restrict the model to a subset of columns R′ ⊂ R, obtained from local minima of

the ILS. More specifically, before every shaking iteration, the columns of the current solution are

added to the pool R′, filtering possible duplicates (this can easily implemented by hashing), and

controlling the size of the pool to remain below a limit Spool. The new columns start to replace

the oldest columns when this limit is attained. The formulation is solved by means of an integer

programming solver subject to a CPU time limit TLimit. The pool-size limit is adapted during

the search, with the aim to balance the difficulty of the problem and thus obtain good solutions

with a formulation that remains tractable. If the model was solved to the optimality during the

allowed time, then Spool is increased by 15%. On the contrary, if the time limit was attained

without an optimal solution, then Spool is reduced by 15%. The optimal solution provided by

this model is taken as new incumbent solution.

3.4 Perturbation

Shaking is only operated after Nls consecutive iterations of the 0-cost moves, local and large

neighborhood search without improvement of the best solution. Indeed, the 0-cost moves

themselves already allow significantly modifications to the solutions, which help to progress

towards different areas of the search space.

During shaking, Nshak items are randomly relocated, considering 50% items with conflicts or

capacity excess, and 50% random items. The size of the shaking operator is a key parameter for

the search. Its value has been defined as a result of our preliminary computational experiments,

as described in the next section.

13

4 Computational Experiments

The goal of these experiments is to evaluate the performance of the proposed method on the

BPPC, as well as to identify the relative contribution of each neighborhood and the impact

of its key design choices to drive future research. The classical benchmark instances for the

BPPC are divided into six sets: (t) and (u) from Fernandes Muritiba et al. (2010), and (ta),

(ua), (d), (da) from Sadykov and Vanderbeck (2013), for a total of 2060 instances ranging from

60 to 1000 items.

The instances of the group (t – triplet) and (u – uniform) were first derived from the bin

packing instances of Falkenauer (1996) by Gendreau et al. (2004). The generation procedure,

however, contains some randomized choices and the original instances are no longer available.

Thus, these instances were generated again in Fernandes Muritiba et al. (2010) and Elhedhli

et al. (2011). In this paper, we rely on the files of Fernandes Muritiba et al. (2010), as this allows

a comparison with the only existing population-based metaheuristic in the literature, as well as

the current state-of-the-art mathematical programming – heuristic and exact – algorithms of

Sadykov and Vanderbeck (2013). The set (t) includes four groups of instances with a number

of items ranging from 60 to 501. One remarkable characteristic of this instance group is that,

in the optimal bin packing solution, without conflict constrains, the bins are filled by exactly

three items each. In a similar manner, the set (u) includes four classes of instances, with 120 to

1000 items. In both groups, the conflict graph is an interval graph, with a density ranging from

0% to 90%. Previous articles did not always report results for the instances with 0% density,

leading to 360 instances per set (9 density levels × 4 size levels × 10 instances).

The instances of sets (ta) and (ua) have the same characteristics as the instances of sets

(t) and (u), but with an arbitrary conflict graph. These instances were generated by Sadykov

and Vanderbeck (2013) with edge densities from 10% to 90%, for a total of 360 instances in

each set. Finally, the instances of sets (d) and (da) were generated with item weights uniformly

distributed in [500, 2500], and a bin capacity of 10000. These instances include either 120, 250

or 500 items, with interval (d) or arbitrary (da) conflict graph. The objective of these instances

was to include a higher average number of items per bin and obtain more difficult problems for

column generation-based methods. This objective was, however, only partially attained, since

the average number of items per bin in the best known solutions remain relatively small for

all data sets: 2.18, 1.96, 2.91, 2.48, 2.76, and 5.83 for the classes (t), (u), (ta), (ua), (d), and

(da), respectively. For this reason, these instance sets remain ideal for existing branch-and-price

methods.

4.1 Performance Evaluations

The first experiment aims to measure the performance of the proposed ILS with large neigh-

borhoods relatively to the performance of the best current metaheuristic, the population

14

heuristic (PH) of Fernandes Muritiba et al. (2010), and the best mathematical-programming

based heuristic, the diving approach with limited discrepancy search (DH-LDS) of Sadykov and

Vanderbeck (2013). As the total number of instances for the BPPC is large, the results are

usually presented in an aggregated form. For a precise comparison, the detailed results of PH

and DH-DLS were kindly provided by the authors in a personal communication. The proposed

algorithm was coded in C++, uses CPLEX 12.5.1, and was run on a single thread of a Xeon

X5675, 3.07 GHz CPU. PH and DH-LDS were run on Pentium IV 3.0GHz and Xeon X5460

3.16GHz CPUs, respectively.

A preliminary calibration of the search parameters – size and frequency of the shaking

operator, number of iterations of the method, size of the set covering subproblem – was

conducted with the aim of producing good solutions in a CPU time which is comparable

with previous research for medium-sized instances. This led to a standard set of parameters:

Nshak = 50, Nls = 100, Nsc = 25, Spool = 1500, TLimit = 20 and Sshak = 3. The impact of any

deviation from these search parameters will be investigated in deeper details in Section 4.2.

The proposed method was then run 10 times for each instance, with different random seeds,

in order to measure its average performance. The complete version of the algorithm will be called

HILS-Complete. To examine the impact of the large neighborhood search on solution quality, we

will also report the results of a simplified configuration, ILS-Simple, which corresponds to the

same algorithm without the large neighborhoods. These experiments are presented in Tables

1–2. In Table 1, the results are aggregated for each instance class × number of items, while

Table 2 aggregates the results per instance class × density. The following metrics are reported:

Gap – The average gap from the best known solutions (BKS) in the literature. For each

instance, the gap is calculated as 100(z − zBKS)/zBKS , where z is the value of the

solution found by the method and zBKS is the value of the BKS;

T(s) – The average CPU time per instance until termination of the search;

Opt – The average number of optimal solutions found for this group of instances in one run.

For each group of instances, the best results are highlighted in boldface. The last two columns

indicate the average number of bins in the best known solutions of the literature, and the number

of known optimal solutions for the group.

Two factors are determining for the performance of an optimization approach: the quality

of its solutions, and the scalability of the method, i.e., how fast the CPU time grows for larger

problem instances. From these results, the following observations can be made.

In terms of solution quality, HILS-Complete provides solutions of higher quality than the

current best metaheuristic (PH), and slightly lower quality than the column generation-based

diving algorithm (DH-LDS). The magnitude of the differences depends on the sets of instances.

For the sets (t) and (d), which are common to the three algorithms, HILS-Complete finds an

average gap of 0.02%, compared to 0.29% and 0.00% for PH and DH-LDS, respectively. For the

15

Instance HILS-Complete ILS-Simple PH DH-LDS BKS

Class n Gap T(s) Opt Gap T(s) Opt Gap T(s) Opt Gap T(s) Opt Bins Opt

t

60 0.00 1.26 90.0 0.42 0.72 82.1 0.50 41.68 81 0.00 0.20 90 33.40 90

120 0.01 5.17 89.6 0.63 2.34 66.3 0.66 44.44 66 0.03 1.36 89 66.11 90

249 0.08 17.27 84.3 0.35 5.09 57.5 0.44 57.61 58 0.00 7.81 90 135.83 90

501 0.01 23.88 88.9 0.26 13.19 47.9 0.23 65.48 60 0.00 50.43 90 275.69 90

u

120 0.03 3.67 88.8 0.06 1.22 87.1 0.11 24.58 85 0.00 0.76 90 70.38 90

250 0.01 17.57 88.8 0.13 4.67 74.9 0.19 49.81 71 0.00 3.34 90 143.72 90

500 0.01 37.56 86.8 0.37 16.47 45.8 0.18 66.44 65 0.00 18.74 90 286.03 90

1000 0.01 90.07 85.7 0.53 65.07 33.6 0.20 105.34 56 0.00 116.71 90 571.88 90

ta

60 0.00 1.85 90.0 0.09 0.78 88.4 – – – 0.00 0.16 90 21.87 90

120 0.05 23.34 88.1 1.18 3.41 49.4 – – – 0.05 1.46 88 41.39 90

249 0.49 75.17 51.3 0.94 12.88 42.3 – – – 0.29 23.67 67 83.80 88

501 0.40 128.30 44.5 0.57 32.87 44.1 – – – 0.15 271.33 48 167.61 70

ua

120 0.00 3.26 90.0 0.52 1.37 66.8 – – – 0.00 0.73 90 49.27 90

250 0.02 28.70 87.1 0.55 6.83 58.9 – – – 0.02 6.21 87 100.64 89

500 0.08 154.09 69.8 0.38 26.62 60.8 – – – 0.01 63.10 80 200.77 82

1000 0.15 399.37 67.8 0.27 55.74 67.6 – – – 0.01 516.75 79 400.03 82

d

120 0.00 3.17 90.0 0.04 1.01 88.1 – – – – – – 61.82 90

250 0.00 11.57 89.9 0.08 2.77 80.6 – – – – – – 127.93 90

500 0.00 23.35 89.5 0.10 8.96 69.2 – – – – – – 252.79 90

da

120 0.80 12.91 57.7 0.98 1.18 55.0 – – – 0.12 6.02 63 23.63 67

250 1.14 25.50 40.5 1.32 4.88 38.0 – – – 0.04 59.60 49 44.66 50

500 1.83 53.31 37.1 1.85 18.12 37.0 – – – 0.10 541.48 47 84.12 49

Table 1: Comparison of th current state-of-the-art BPPC heuristics for each instance set and
size n.

sets (ta) and (ua), the difference of solution quality is also small, and both HILS-Complete and

DH-LDS return near-optimal solutions with average gaps below 0.15%. For the (da) instances,

DH-LDS produces solutions of higher quality (1.17% gap difference in average) than HILS-

Complete, albeit at the expense of a larger CPU time. HILS-Complete attained 1819 out of the

1917 known optimal solutions, and a total of 9 new best upper bounds were also found for some

open (da) instances.

DH-DLS performs a truncated search in the branch-and-price tree, which loses its optimality

certificate but often keeps finding near-optimal solutions when the problem size allows for it.

Yet, as n grows, its CPU grows very quickly as noted in Sadykov and Vanderbeck (2013): “a

disadvantage of our primal heuristic is that the running time increases rapidly with the number

of items”. To better evaluate the scalability of the methods, Figure 5 reports the CPU time of

DH-DLS and HILS-Complete for each instance set and size. Moreover, we fitted the CPU time

as a power law f(n) = α× nβ of the number of items n for each instance class (least-squares

regression of an affine function on the log-log graph). The observed CPU time of HILS-Complete

grows as O(n1.49). In contrast, the time of DH-DLS grows at a rate which is faster than cubic

for some instance sets, with power laws of the form nβ where 2.45 ≤ β ≤ 3.62.

16

Instance HILS-Complete ILS-Simple PH DH-LDS BKS

Class ρ Gap T(s) Opt Gap T(s) Opt Gap T(s) Opt Gap T(s) Opt Bins Opt

t

0 0.00 0.93 40.0 1.44 0.97 25.3 0.00 0.00 40 – – – 77.50 40

10 0.00 1.05 40.0 1.26 1.12 26.1 2.08 134.03 2 0.00 11.93 40 77.55 40

20 0.00 1.77 40.0 0.72 1.67 29.4 1.20 131.98 9 0.00 21.93 40 77.73 40

30 0.21 19.99 32.8 0.45 7.88 27.2 0.71 115.05 18 0.06 24.15 39 78.33 40

40 0.00 8.78 40.0 0.23 4.09 30.0 0.14 24.55 36 0.00 19.30 40 94.10 40

50 0.00 11.35 40.0 0.29 5.00 27.9 0.00 12.73 40 0.00 18.69 40 117.93 40

60 0.00 13.10 40.0 0.28 5.87 28.3 0.00 21.98 40 0.00 14.18 40 141.53 40

70 0.00 15.85 40.0 0.27 6.89 23.6 0.00 16.10 40 0.00 10.31 40 164.33 40

80 0.00 16.94 40.0 0.15 7.36 29.3 0.00 10.18 40 0.00 8.57 40 187.78 40

90 0.00 18.22 40.0 0.08 8.17 32.0 0.00 4.15 40 0.00 5.51 40 210.58 40

u

0 0.00 0.56 40.0 0.00 0.26 40.0 0.31 75.95 18 – – – 188.53 40

10 0.00 0.60 40.0 0.00 0.28 40.0 0.11 57.33 31 0.00 29.43 40 188.53 40

20 0.00 0.60 40.0 0.00 0.27 40.0 0.10 57.78 32 0.00 31.63 40 188.53 40

30 0.05 2.65 38.7 0.12 1.32 36.9 0.27 76.15 25 0.00 37.26 40 188.53 40

40 0.09 58.14 34.1 0.39 20.12 24.9 0.79 91.95 14 0.00 57.83 40 194.03 40

50 0.00 41.99 39.1 0.62 22.43 18.2 0.10 46.80 34 0.00 50.78 40 236.80 40

60 0.00 44.72 39.9 0.36 27.02 21.6 0.06 61.93 34 0.00 34.85 40 284.80 40

70 0.01 62.13 38.8 0.45 35.54 18.0 0.06 64.40 32 0.00 28.84 40 330.43 40

80 0.00 68.64 39.5 0.35 42.03 18.0 0.03 59.70 36 0.00 23.78 40 376.73 40

90 0.00 55.48 40.0 0.16 47.72 23.8 0.00 37.88 39 0.00 19.57 40 423.68 40

ta

10 0.00 1.52 40.0 0.74 1.42 29.2 – – – 0.00 51.24 40 77.73 40

20 0.00 2.46 40.0 0.57 1.84 30.9 – – – 0.00 42.81 40 77.78 40

30 0.33 16.99 30.9 0.76 6.73 23.4 – – – 0.11 72.27 36 77.80 40

40 0.28 34.60 30.5 0.28 13.58 30.1 – – – 0.27 112.75 28 78.03 40

50 0.42 74.85 21.0 0.42 25.38 21.0 – – – 0.42 120.84 21 78.03 40

60 0.06 93.88 32.0 0.06 20.04 32.0 – – – 0.06 80.08 32 78.40 36

70 0.00 107.48 32.0 0.10 16.37 30.9 – – – 0.00 86.29 32 78.50 32

80 0.44 82.58 20.3 1.66 16.72 10.5 – – – 0.12 9.40 38 79.00 40

90 0.59 100.13 27.2 1.66 10.27 16.2 – – – 0.13 91.72 26 82.75 30

ua

10 0.01 2.46 39.3 0.02 1.14 39.0 – – – 0.00 74.71 40 187.58 40

20 0.01 0.81 39.7 0.01 0.48 39.6 – – – 0.00 74.44 40 188.35 40

30 0.00 0.71 40.0 0.00 0.40 40.0 – – – 0.00 69.08 40 187.90 40

40 0.00 3.69 39.7 0.06 1.79 38.7 – – – 0.00 69.72 40 186.78 40

50 0.00 4.07 40.0 0.05 1.72 39.0 – – – 0.00 66.68 40 186.93 40

60 0.02 13.52 38.6 0.18 8.54 34.1 – – – 0.00 81.51 40 187.03 40

70 0.10 75.84 30.7 0.54 39.83 18.0 – – – 0.03 106.85 38 187.48 39

80 0.18 306.37 21.8 1.08 86.13 2.0 – – – 0.00 171.81 34 187.75 34

90 0.26 909.73 24.9 1.91 63.73 3.7 – – – 0.07 605.47 24 189.33 30

d

10 0.00 0.00 30.0 0.00 0.00 30.0 – – – – – – 43.90 30

20 0.00 5.22 30.0 0.06 2.52 28.7 – – – – – – 58.67 30

30 0.01 9.31 29.5 0.13 3.13 26.1 – – – – – – 87.67 30

40 0.00 10.70 30.0 0.17 3.57 25.8 – – – – – – 114.30 30

50 0.00 13.59 30.0 0.02 4.05 28.6 – – – – – – 147.63 30

60 0.00 16.14 30.0 0.11 4.82 24.0 – – – – – – 174.07 30

70 0.00 17.90 29.9 0.11 5.81 22.6 – – – – – – 204.40 30

80 0.00 19.58 30.0 0.03 6.50 26.8 – – – – – – 235.07 30

90 0.00 21.82 30.0 0.04 7.83 25.3 – – – – – – 261.93 30

da

10 0.00 0.00 30.0 0.00 0.00 30.0 – – – 0.04 92.49 29 43.90 30

20 0.00 0.00 30.0 0.00 0.00 30.0 – – – 0.09 84.50 29 43.80 30

30 0.38 3.29 28.0 0.38 0.22 28.0 – – – 0.00 36.71 30 44.17 30

40 0.55 18.54 23.6 0.69 4.09 22.4 – – – 0.00 79.81 28 44.03 28

50 1.97 67.05 4.6 2.40 10.05 1.6 – – – 0.00 81.00 24 44.43 24

60 2.30 74.63 0.0 2.65 12.14 0.0 – – – 0.04 384.41 2 45.50 3

70 3.12 47.54 2.1 3.27 15.25 2.0 – – – 0.04 543.40 3 49.77 3

80 2.43 35.15 7.0 2.52 16.01 6.0 – – – 0.21 348.24 7 60.30 8

90 0.55 28.96 10.0 0.57 14.78 10.0 – – – 0.34 170.71 7 81.33 10

Table 2: Comparison of th current state-of-the-art BPPC heuristics for each instance set and
density ρ.

17

1.73 times smaller than DH-LDS, and 1.10 times smaller than PH, using processors of similar or

close generation.

Set T

droplevels(interaction(Size, Method))

Ti
m

e(
s)

HILS DH−LDS

0
25

50
75

10
0 Set U

droplevels(interaction(Size, Method))

Ti
m

e(
s)

HILS DH−LDS

0
50

10
0

15
0

20
0

25
0

Set TA

droplevels(interaction(Size, Method))

Ti
m

e(
s)

HILS DH−LDS

0
10

0
20

0
30

0
40

0
50

0
60

0

Set UA

droplevels(interaction(Size, Method))

Ti
m

e(
s)

HILS DH−LDS

0
50

10
0

15
0

20
0

25
0

30
0

Set DA

droplevels(interaction(Size, Method))

T
im

e(
s)

HILS DH−LDS
0

50
0

10
00

15
00

Figure 5: Test

We also notice very different behaviors for different data sets. This effect is visible in Figure 7,

which displays the boxplots of the percentage gap for each combination of class × number of

items. For the data sets (t), (u), and (d) with interval conflict graph, the optimal solution

was attained by HILS-Complete on nearly all instances (1063/1070). As a consequence, the

boxplots are represented as a single line at a gap of 0.00% and any other gap value appears

as an outlier. The other data sets, especially (ta) and (da) with arbitrary conflict graph, are

noticeably more difficult, such that a gap of 0.00% does not represent the average behavior of

18

Figure 5: CPU time, in seconds, of HILS-Complete and DH-LDS. One boxplot for each group ×
instance size in terms of number of items.

We also analyzed the impact of some instance characteristics on the performance of HILS-

Complete. Figure 6 displays the boxplots of the percentage gap for each combination of class ×
number of items. For the data sets (t), (u), and (d) with interval conflict graph, the optimal

solution was attained by HILS-Complete on nearly all instances. As a consequence, the boxplots

are represented as a single line at a gap of 0.00% and any other gap value appears as an outlier.

The other data sets, especially (ta) and (da) with arbitrary conflict graph, are more difficult,

such that a gap of 0.00% does not represent the average behavior of the method anymore. The

difficulty of the instances tends to grow with their size, although this effect is counterbalanced

by the way the “gap” metric is defined: on small instances with few bins in the optimal solution,

a mistake of one bin directly translates into a large gap (e.g., 5% if the BKS includes 20 bins)

leading to some outliers for small problems.

Instance class and size are not the only factors which impact the performance of the methods.

The density of the conflict graph is also important. This effect is illustrated in Figure 7, which

displays the boxplots of the percentage gap as a function of density. Generally, the most difficult

instances are neither those with low density (equivalent to a bin packing problem), nor those with

high density (equivalent to a tightly-constrained coloring problem), but those which combine

18

● ●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●

●●

●●

●●●●●●●●●●

●●●●

●●●●●

●

●●

●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●●●●●

●●●

●●

●●

●●

●●

●

●

●

●●●●●●●

●●●

●●●●

●●

●

●●

●

●●

●

●

●

●

●

●●●●●●

●

●●●●

●●●●

●

●●

●

●

●

●●●

●

●

●●●●●

●●●

●

●●

●

●●●●

●

●

●

●●●●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●
●
●
●●●●●●●●●●●●
●●
●
●
●●
●
●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●
●
●●
●
●●●●●
●
●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●
●●●●●●●●●●●●
●
●●●
●●
●●
●
●
●●●
●
●●●
●●●
●
●
●●●●●●●●●●●●●●●
●

●●●

●

●

●

●

●●●●

●●

●

●
●
●●
●
●●

●●●●

●●●●●

●

●

●

●●●

●●

●●●●

●

●

●

●

●

●●●

●

●●●

●

●●
●

●

●●

●

●

●●
●●
●

●●
●●
●

●
●●●●
●

●
●●

●

●●

●

●●

●

●

●

●

●
●

Class x Number of Items

G
ap

(%
)

D DA T TA U UA

0
5

10

Figure 6: HILS-Complete GAP by each group of instance.

the effects of both packing and conflict constraints at a density level between 50% and 80%.

HILS-Complete appears to perform very well for problem instances with low density (up to 20%).

On these instance, the BKS has been systematically reached and even sometimes improved, as

highlighted by the two outliers located below 0.00%.

●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●

10 20 30 40 50 60 70 80 90

0
5

10

Density

G
ap

(%
)

Figure 7: HILS-Complete GAP by density of the conflict graph.

We also evaluated the impact of the large neighborhoods, comparing the results of ILS-Simple

and HILS-Complete. We observe a significant difference of solution quality, confirmed by a

pairwise Wilcoxon test (p-value ≤ 10−64). The large neighborhoods have a positive impact

on solution quality, but consume some additional CPU time (49.85 seconds in average per

instance with the large neighborhoods, and 12.53 seconds without). Note that we also conducted

side experiments to investigate whether an increase in the number of iterations of ILS-Simple

19

could help to profit from this additional CPU time to reach better solutions, but the quality

improvements were only minor when doubling the number of iterations (see Section 4.2).

Finally, we analyzed the time consumption of each component of the method. The results of

this analysis are reported in Figure 8, which displays the percentage CPU time of each main

component of the approach. This metric has been aggregated per instance class × number of

items. The printed article contains the figure in black and white, and we refer to the on-line

article for a color figure. The search effort appears to be well distributed among the search

components, i.e., no specific neighborhood consumes the majority of the time. Overall, the

assignment neighborhood, local search and zero-cost moves are the largest time consumers. In

contrast, the ejection chains and grenade neighborhoods use less than 6% and 4% of the CPU

time, respectively. The computational burden of the 0-cost moves mostly relates to the fact that

it constitutes the first loop of the local search, and thus involves many moves evaluations which

are later known as non-improving, and thus pruned in subsequent local search iterations. In

line with the previous discussions, we also observe that the neighborhood based on set covering

requires a larger amount of CPU time for difficult instances with an arbitrary conflict graph,

such as (ta) and (da).

T U TA UA D DA

0

25

50

75

100

60 120 249 501 120 250 500 1000 60 120 249 501 120 250 500 1000 120 250 500 120 250 500

Instance Class x Number of items

C
P

U
 T

im
e(

%
)

Component

Other

SetCovering

Assignment

EjectionChains

Grenade

ZeroCost

LocalSearch

Figure 8: Time consumption of each component of HILS-Complete.

Overall, from these experiments, HILS-Complete is a promising alternative method for

the BPPC, producing high quality solutions with an overall gap of 0.22% from the BKS, and

improving upon the previous best metaheuristic for the problem in a more controlled CPU time

than existing mathematical programming-based methods. Having two alternative methods with

their own strengths (near optimality for DH-LDS, and good scalability for HILS) will be a good

20

asset for future works, which can explore new hybridizations. This option was kept aside in this

work in order to better concentrate on the neighborhood aspects. Since these neighborhoods are

central in the design of the method, we now go a step further to identify the most promising

search components and measure the impact of its key parameters. This is the subject of a

detailed analysis in the next section.

4.2 Sensitivity Analysis – Search Parameters and Neighborhoods

This section analyses the sensibility of the method to a change of its parameters, and evaluates

the contribution of its key components and neighborhoods. Starting from the standard HILS-

Complete configuration, we varied one parameter/factor at a time (OFAT approach) and tested

the resulting configurations. These experiments are summarized in Tables 3 to 5. Each line

presents the performance of an alternative configuration of the method (indexed from A to R),

in terms of average gap and time, on the six classes of instances. To maintain a reasonable

computational effort, a single run was performed for each configuration on the 2060 instances.

Impact of the general search parameters. Our first investigation concerns the shaking

operator and the termination criterion, as these parameters are recurrent in all metaheuristics

based on iterated local search. In the first two alternative configurations, we modified the

periodicity of the shaking operator, i.e., the number Nls of zero-cost moves and local search phases

before shaking. This parameter is halved in configuration A, and doubled in configuration B. Since

the product Nshak×Nls governs the total number of local search descents before termination, we

kept it constant by updating Nshak accordingly. The configurations C and D aim to investigate

the impact of longer and shorter runs, respectively, by doubling or halving the value Nshak

without impacting Nls. Finally, the configurations E, F and G investigate alternative strengths

for the shaking operator, which may involve to perform stronger shaking for a better exploration

of the search space (Sshak = 5), or weaker shaking for further intensification (Sshak = 1 or 2).

Nshak Nls Sshak
(t) (u) (ta) (ua) (d) (da)

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Standard 50 100 3 0.02 9.97 0.01 34.44 0.23 52.22 0.05 190.40 0.00 11.78 1.16 31.45

A. More Frequent 100 50 3 0.02 13.76 0.01 42.16 0.22 80.40 0.04 250.58 0.00 13.81 1.16 57.97

B. Less Frequent 25 200 3 0.04 10.96 0.02 32.58 0.26 46.08 0.10 73.39 0.00 13.05 1.40 22.70

C. Longer Run 100 100 3 0.02 21.03 0.00 67.83 0.21 97.67 0.03 382.53 0.00 25.35 1.09 59.95

D. Shorter Run 25 100 3 0.04 5.65 0.02 20.18 0.28 34.69 0.10 50.05 0.01 6.45 1.47 15.60

E. Stronger Shaking 50 100 5 0.03 10.93 0.01 37.71 0.24 56.82 0.09 111.00 0.00 12.87 1.17 31.18

F. Weaker Shaking 1 50 100 1 0.02 10.56 0.01 31.57 0.18 76.25 0.06 166.64 0.00 12.47 1.42 25.78

G. Weaker Shaking 2 50 100 2 0.03 11.03 0.01 32.81 0.24 62.01 0.07 132.53 0.00 12.73 1.29 30.31

Table 3: Impact of some variations of the shaking and termination parameters.

21

The changes of parameter setting for the configurations A, B, E, F and G are generally

detrimental for the performance of the method. It appears that strengthening the shaking, or

calling upon this operator more frequently has only a small impact on performance, but the

inverse process would have a larger negative impact. The configuration D allows a longer run,

and thus naturally leads to better solutions. This improvement of solution quality, however,

remains minor in comparison to the additional CPU time.

Contribution of the large neighborhoods. The second experiment aims to evaluate

the respective role of each large neighborhood as well as the 0-cost moves, which are critical

for search diversification. We thus deactivated, in the configurations H to K, each one of the

four large neighborhoods. In configuration L, we deactivated all four neighborhoods. Finally, no

0-cost moves are applied in configuration N.

(t) (u) (ta) (ua) (d) (da)

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Standard 0.02 9.97 0.01 34.44 0.23 52.22 0.05 190.40 0.00 11.78 1.16 31.45

H. No Assign 0.03 5.21 0.01 24.38 0.27 43.48 0.10 61.89 0.00 4.73 1.29 28.37

I. No Ejection Chains 0.02 9.99 0.01 30.92 0.24 56.67 0.07 108.31 0.00 11.58 1.23 28.87

J. No Grenade 0.02 9.84 0.02 34.99 0.25 46.49 0.07 70.97 0.01 11.58 1.21 29.51

K. No Set Covering 0.37 9.28 0.03 33.16 0.54 33.76 0.30 46.34 0.00 11.88 1.40 13.75

L. No Large Neighborhoods 0.49 4.50 0.24 18.66 0.72 11.35 0.43 18.98 0.07 3.97 1.36 7.39

M. No Large Neighborhoods ++ 0.39 50.21 0.15 65.62 0.65 27.61 0.39 47.52 0.05 15.56 1.22 16.33

N. No 0-cost Moves 0.10 9.52 0.02 32.63 0.31 57.97 0.07 172.05 0.00 10.15 3.16 17.06

Table 4: Sensitivity analysis when deactivating some neighborhoods.

All search components appear to contribute positively to the final solution quality. By order

of magnitude, the largest loss occurs when deactivating the 0-cost moves, as they contribute very

significantly to diversity the search. In second position, deactivating all large neighborhoods (as

in ILS-Simple) also leads to a large loss of solution quality, but also to a gain of computational

time. We tested longer runs (configuration M, via a fourfold increase of Nshak) without the

large neighborhoods, and this was not sufficient to regain the solution quality of the complete

method.

The large neighborhood based on set covering has the largest impact on the search, especially

for the instance classes (t) and (ua). As noted in Figure 8, on these particular instances, the

set covering problem is conveniently solved in small CPU time. This allows to use a larger

pool of columns, thus increasing the chances of solution improvement. Finally, the last three

neighborhoods, ejection chains, assignment, and grenade have a more moderate impact on

solution quality. Their contributions are only observed on the difficult instances: (ta), (ua) and

(da). Nevertheless, note that the removal of these three neighborhoods together is more largely

detrimental (compare configurations K and L). The three neighborhoods provide different forms

22

of solutions improvement and diversification, which are not critical when taken one by one, but

much more significant when considered as a whole.

Impact of the set-covering parameters. The last parameters of the method concern

the set covering neighborhood. Our preliminary calibration led to a time limit TLimit = 20

seconds for the solver, as well as an adaptive mechanism for the size of the pool, starting from a

pool size of Spool = 1500 columns. We thus tested the impact of this adaptive mechanism in

the configurations O to Q, by evaluating three static pool size values of 1000, 1500 and 2000

columns, along with a time of 10, 20 and 60 seconds, respectively, for the resolution of the set

covering problem. Finally, the last configuration R considers a possible replacement of the set

covering by a set partitioning formulation, using an equality in Equation (11).

Adapt Spool TLimit
(t) (u) (ta) (ua) (d) (da)

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Standard Yes 1500 20 0.02 9.97 0.01 34.44 0.23 52.22 0.05 190.40 0.00 11.78 1.16 31.45

O. Static Pool – No 1000 10 0.05 9.80 0.02 34.14 0.33 41.57 0.16 44.97 0.00 11.84 1.30 16.58

P. Static No 1500 20 0.04 9.85 0.02 35.18 0.26 54.75 0.14 48.92 0.00 11.80 1.20 24.84

Q. Static Pool + No 2000 60 0.03 11.42 0.02 34.29 0.20 95.66 0.11 71.90 0.00 11.93 1.28 58.21

R. Set Partitioning Yes 1500 20 0.02 10.19 0.01 33.85 0.22 52.82 0.07 122.83 0.00 12.13 1.20 27.71

Table 5: Sensitivity analysis on the parameters of the set covering neighborhood.

In these experiments, we observe that the size of the pool is a very sensible parameter. A

small value leads to simple set covering problems which are not likely to result in solution

improvements, even when solved to optimality, while a larger value opens the way to more

improvement opportunities, at the risk of not solving the mathematical model in the allowed

time. For the instances of class (da), an intermediate pool size of 1500 appears to be desirable,

while for other instances, e.g., (ta) and (ua), a larger pool size with 2000 columns leads to

solutions of better quality at the cost of additional computational time. Clearly, the best

parameter setting is dependent on the instance characteristics. This led us to use the adaptive

mechanism, which performs better overall than each of the static configurations. Finally, using

either the set covering or the set partitioning model did not lead to a significant difference of

solution quality.

5 Conclusions

In this paper, we introduced an ILS based on several classes of local and large (exponential-

sized) neighborhoods for the BPPC. We intentionally relied on simple metaheuristic concepts

so as to draw the complete focus on the large neighborhoods and accurately measure their

contribution to the search. We proposed O(1) move evaluation procedures for the local search,

23

polynomial variants of ejection chains and assignment neighborhoods, as well as an adaptive

search mechanism for the set covering-based neighborhood. We also introduced a controlled use

of 0-cost moves to further diversify the search.

The resulting ILS produces solution of good quality on the classic BPPC benchmark instances,

with an average gap to the BKS of 0.22%. This is a better solution quality than the previous best

metaheuristic, the genetic algorithm of Fernandes Muritiba et al. (2010), and a slightly lower

quality than the diving heuristic with limited discrepancy search (DH-LDS) of Sadykov and

Vanderbeck (2013). Still, the current instances are an ideal testing ground for column-generation-

based methods, e.g. DH-LDH, as they contain very few items per bin (2.87 in average). On the

other hand, the proposed metaheuristic exploits different search concepts, and scales very well

with an increase of problem size, with a measured CPU time in O(n1.49). In comparison, the

CPU time of DH-LDH tends to increase by a factor ten for each twofold increase of problem size.

Finally, we conducted extensive experiments to measure the contribution of each neighborhood as

well as the impact of the key search parameters. As underlined by these experiments, the 0-cost

moves are critical for the search performance, as well as the set covering-based neighborhood.

The other large neighborhoods, i.e., ejection chains, assignment, and grenade, have a smaller

individual impact but contribute significantly to the search when used together.

Many research perspectives are open on this class of problems. First, future hybridizations

should allow to combine the strengths of both neighborhood-centered search and column-

generation based-heuristics, with the aim of keeping both near-optimality and tractability.

Future research should thus be done along the path of matheuristics, aiming to harness the

strength of mathematical programming and neighborhood search. Second, populations of

solutions and more advanced memory structures can be a strong asset to help diversifying the

search and favoring the discovery of better solutions. Finally, as the current benchmark instances

are now solved to near-optimality, new and larger test sets, in terms of overall number of items,

and number of items per bin, should also be investigated.

References

Ahuja, R. K., O. Ergun, J. B. Orlin, A. P. Punnen. 2002. A survey of very large-scale neighborhood

search techniques. Discrete Applied Mathematics 123(1-3) 75–102.

Avanthay, C., A. Hertz, N. Zufferey. 2003. A variable neighborhood search for graph coloring. European

Journal of Operational Research 151(2) 379–388.

Blöchliger, I., N. Zufferey. 2008. A graph coloring heuristic using partial solutions and a reactive tabu

scheme. Computers & Operations Research 35(3) 960–975.

Blum, C., A. Roli. 2003. Metaheuristics in combinatorial optimization: overview and conceptual

comparison. ACM Computing Surveys 35(3) 268–308.

Deineko, V. G., G. J. Woeginger. 2000. A study of exponential neighborhoods for the travelling salesman

problem and for the quadratic assignment problem. Mathematical Programming 87(3) 519–542.

24

Delorme, Maxence, Manuel Iori, Silvano Martello. 2016. Bin packing and cutting stock problems:

Mathematical models and exact algorithms. European Journal of Operational Research 255(1)

1–20.

Dowsland, K.A., J.M. Thompson. 2008. An improved ant colony optimisation heuristic for graph colouring.

Discrete Applied Mathematics 156(3) 313–324.

Elhedhli, S., L. Li, M. Gzara, J. Naoum-Sawaya. 2011. A branch-and-price algorithm for the bin packing

problem with conflicts. INFORMS Journal on Computing 23(3) 404–415.

Epstein, L., A. Levin. 2008. On bin packing with conflicts. SIAM Journal on Optimization 19(3)

1270–1298.

Epstein, L., A. Levin, R. Stee. 2008. Two-dimensional packing with conflicts. Acta Informatica 45(3)

155–175.

Falkenauer, E. 1996. A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2(1)

5–30.

Fernandes Muritiba, A.E., M. Iori, E. Malaguti, P. Toth. 2010. Algorithms for the bin packing problem

with conflicts. INFORMS Journal on Computing 22(3) 401–415.

Fleszar, K., C. Charalambous. 2011. Average-weight-controlled bin-oriented heuristics for the one-

dimensional bin-packing problem. European Journal of Operational Research 210(2) 176–184.

Galinier, P., J. Hao. 1999. Hybrid evolutionary algorithms for graph coloring. Journal of combinatorial

optimization 3(4) 379–397.

Gendreau, M., G. Laporte, F. Semet. 2004. Heuristics and lower bounds for the bin packing problem

with conflicts. Computers & Operations Research 31(3) 347–358.

Glover, F. 1996. Ejection chains, reference structures and alternating path methods for traveling salesman

problems. Discrete Applied Mathematics 65(1-3) 223–253.

Gutin, G. 1999. Exponential neighbourhood local search for the traveling salesman problem. Computers

& Operations Research 26(4) 313–320.

Hamdi-Dhaoui, K., N. Labadie, A. Yalaoui. 2014. The bi-objective two-dimensional loading vehicle routing

problem with partial conflicts. International Journal of Production Research 52(19) 5565–5582.

Hertz, A., D. de Werra. 1987. Using tabu search techniques for graph coloring. Computing 39(4) 345–351.

Jansen, K. 1999. An approximation scheme for bin packing with conflicts. Journal of Combinatorial

Optimization 3(4) 363–377.

Jansen, K., S. Öhring. 1997. Approximation algorithms for time constrained scheduling. Information

and Computation 132(2) 85–108.

Khanafer, A., F. Clautiaux, E. Talbi. 2010. New lower bounds for bin packing problems with conflicts.

European Journal of Operational Research 206(2) 281–288.

Kuhn, H. W. 1955. The hungarian method for the assignment problem. Naval research logistics quarterly

2(1-2) 83–97.

Laporte, G., S. Desroches. 1984. Examination timetabling by computer. Computers & Operations

Research 11(4) 351–360.

Lewis, R., J. Thompson, C. Mumford, J. Gillard. 2012. A wide-ranging computational comparison of

high-performance graph colouring algorithms. Computers & Operations Research 39(9) 1933–1950.

25

Lewis, R.M.R. 2016. A guide to graph colouring: algorithms and applications. Springer International

Publishing.

Malaguti, E., M. Monaci, P. Toth. 2008. A metaheuristic approach for the vertex coloring problem.

INFORMS Journal on Computing 20(2) 302–316.

Malaguti, E., P. Toth. 2010. A survey on vertex coloring problems. International Transactions in

Operational Research 17(1) 1–34.

Masson, R., T. Vidal, J. Michallet, P. H. V. Penna, V. Petrucci, A. Subramanian, H. Dubedout. 2013. An

iterated local search heuristic for multi-capacity bin packing and machine reassignment problems.

Expert Systems with Applications 40(13) 5266–5275.

Minh, T. T., T. V. Hoai, T. T. N. Nguyet. 2013. A memetic algorithm for waste collection vehicle

routing problem with time windows and conflicts. B. Murgante, ed., Computational Science and Its

Applications – ICCSA 2013 . Springer, Berlin, Heidelberg, 485–499.

Monaci, M., P. Toth. 2006. A set-covering-based heuristic approach for bin-packing problems. INFORMS

Journal on Computing 18(1) 71–85.

Morgenstern, C. 1996. Distributed coloration neighborhood search. D.S. Johnson, M.A. Trick, eds., Dis-

crete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence,

RI, 335–358.

Muter, I., S. I. Birbil, G. Sahin. 2010. Combination of metaheuristic and exact algorithms for solving set

covering-type optimization problems. INFORMS Journal on Computing 22(4) 603–619.

Quiroz-Castellanos, M., L. Cruz-Reyes, J. Torres-Jimenez, C. Gómez, H. J. F. Huacuja, A. C.F. Alvim.

2015. A grouping genetic algorithm with controlled gene transmission for the bin packing problem.

Computers & Operations Research 55 52–64.

Sadykov, R., F. Vanderbeck. 2013. Bin packing with conflicts: a generic branch-and-price algorithm.

INFORMS Journal on Computing 25(2) 244–255.

Sarvanov, V.I., N.N. Doroshko. 1981. The approximate solution of the travelling salesman problem by

a local algorithm with scanning neighborhoods of factorial cardinality in cubic time (in Russian).

Software: Algorithms and Programs 31 . Mathematical Institute of the Belarusian Academy of

Sciences, Minsk, 11–13.

Sörensen, K. 2015. Metaheuristics – the metaphor exposed. International Transactions in Operational

Research 22(1) 3–18.

Subramanian, A., E. Uchoa, L.S. Ochi. 2013. A hybrid algorithm for a class of vehicle routing problems.

Computers & Operations Research 40(10) 2519–2531.

Thompson, P.M., H.N. Psaraftis. 1993. Cyclic transfer algorithms for multi-vehicle routing and scheduling

problems. Operations Research 41(5) 935–946.

Toth, P., A. Tramontani. 2008. An integer linear programming local search for capacitated vehicle routing

problems. B. Golden, S. Raghavan, E. Wasil, eds., The vehicle routing problem: latest advances and

new challenges. Springer, Boston, MA, 275–295.

Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2013. Heuristics for multi-attribute vehicle routing

problems: a survey and synthesis. European Journal of Operational Research 231(1) 1–21.

26

	1 Introduction
	2 Related literature
	3 Methodology
	3.1 Initial Solution
	3.2 Local Search
	3.3 Large Neighborhoods
	3.3.1 Assignment Neighborhood
	3.3.2 Ejection Chains
	3.3.3 Grenade Neighborhood
	3.3.4 Adaptive Set Covering

	3.4 Perturbation

	4 Computational Experiments
	4.1 Performance Evaluations
	4.2 Sensitivity Analysis – Search Parameters and Neighborhoods

	5 Conclusions

