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Abstract When developing optimisation algorithms, the focus often lies on
obtaining an algorithm that is able to outperform other existing algorithms for
some performance measure. It is not common practice to question the reasons
for possible performance differences observed. These type of questions relate
to evaluating the impact of the various heuristic parameters and often remain
unanswered. In this paper, the focus is on gaining insight in the behaviour of a
heuristic algorithm by investigating how the various elements operating within
the algorithm correlate with performance, obtaining indications of which com-
binations work well and which do not, and how all these effects are influenced
by the specific problem instance the algorithm is solving. We consider two
approaches for analysing algorithm parameters and components — functional
ANOVA and multilevel regression analysis — and study the opportunity of
using both approaches jointly. We present the results of a combined methodo-
logy that is able to provide more insights than when the two approaches are
used separately. The illustrative case study examined in this paper analyses a
large neighbourhood search algorithm applied on the Vehicle Routing Problem
with Time Windows.
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1 Introduction

Experimentation on heuristic algorithms commonly entails the computational
testing of an algorithm on some benchmark problem set and comparing re-
sults against those of known algorithms. The objective is to be better than
the competing algorithms for some performance measure (e.g., solution quality
or computation speed). Such an approach for evaluating algorithms does not
explain, however, ‘why’ one method achieves better results than other ones
[8]. Which algorithm parameters contribute more or less to a good performing
algorithm? Are there specific combinations of parameter values that work well
or not? Or is the observed superior performance due to a more efficient imple-
mentation of the algorithm? These kind of questions often remain unanswered
when following a competitive evaluation methodology. Nevertheless, such in-
sights are necessary to truly understand algorithm behaviour [10] [14].

Recently, methodologies have been proposed for evaluating heuristic algo-
rithms with the aim of gaining a more profound understanding of the heuristic
parameters’ impact on performance [1] [4] [9] [10]. In this research, we consider
two model-based methodologies ([10], [1]) and investigate for a particular ex-
periment case whether both approaches have consistency in the insights they
deliver. More importantly, we look into possible opportunities for a comple-
mentary use of both methodologies. Our focus therefore lies on answering the
following questions. How can both methodologies be formulated in a combined
methodology and what is the added value of jointly applying both approaches?
And are the insights deducted from the analysis results of both approaches con-
sistent or are there any differences observed?

The investigated methodologies are functional analysis of variance (fA-
NOVA) [10] and multilevel regression [1]. fANOVA ranks the effects of al-
gorithm parameters according to the amount of variance in the performance
measure data they explain, giving an indication of which effects are most
important to performance. The multilevel regression methodology explicitly
separates the performance impact of algorithm parameters and problem in-
stances. It is focused on quantifying the relationship algorithm parameters
have with the performance measure and how this relationship is moderated
by the specificities of a certain problem instance. In this paper, we combine
both these methodologies by relying on the importance analysis provided by
fANOVA to formulate a proper regression model for the multilevel methodo-
logy. This prevents an overly complex regression model with many variable
(interactions) that contribute little to performance. The multilevel regression
model offers a more detailed analysis of the algorithm since it can investigate
algorithm parameter effects for a specific setting of the other parameters and
a specific problem instance. Moreover, the interpretation of effects in the fA-
NOVA analysis is carried out through visual inspection of plots, which might
be difficult for interaction effect. The interpretation of the regression analysis
is based on quantified effects and plots are merely used to support and visualise



A combined approach 3

interpretation. The regression analysis also provides a statistical significance
test to indicate whether there really is a link between the values chosen for
a certain algorithm parameter and the obtained performance or whether any
observed relationships are likely due to chance.

Both approaches and their combination are demonstrated on a case study
in which a number of parameter settings for a Large Neighbourhood Search
(LNS) algorithm are tested on a number of problem instances for the Vehicle
Routing Problem with Time Windows (VRPTW). The paper is organized
as follows: the methodologies of fANOVA and multilevel regression analysis
are introduced in section 2 along with the proposed combination of the two
approaches, the case study with LNS and VRPTW is explained in section
3, the applications of fANOVA and multilevel regression analysis on the case
study are shown in section 3.1. Finally, conclusions and future work are given
in section 4.

2 fANOVA and multilevel regression models

2.1 fANOVA

The fANOVA proposed in [10] is an approach for analysing the importance
of algorithm parameters on the algorithm performance using a random forest
prediction model and the functional analysis of variance [7]. The approach
studies the contribution of every single parameter and every parameter inte-
raction on the performance of the algorithm. In particular, given a data set of
performance values of different algorithm parameter settings on a number of
problem instances, fANOVA first builds a random forest-based prediction mo-
del to predict the average performance of every algorithm parameter setting
over the whole problem instance space. Afterwards, the functional analysis of
variance [7] is applied on the prediction model to decompose the overall algo-
rithm performance variance into additive components, each one corresponds
to a subset of the algorithm parameters. The ratio between the variance as-
sociated with each component and the overall performance variance is used
as an indicator of the importance of the corresponding algorithm parameter
subset. For example, the following shows a part of the output of an fANOVA
analysis on the Large Neighborhood Search algorithm used in our study for a
Vehicle Routing Problem with Time Windows problem instance set:

Sum of fractions for main effects 75.10%

Sum of fractions for pairwise interaction effects 6.26%

72.62% due to main effect: repair

1.72% due to main effect: destroy

1.60% due to interaction: repair x destroy

The interpretation of the first two lines is that 75.10% of the algorithm
performance variance can be explained by single parameters, and 6.26% by
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Fig. 1: fANOVA’s marginal plot for the main effect of the single parameter
repair.

the interactions of every pair of algorithm parameters. The remaining 18.64%
is explained by higher order (≥3) interactions and error inherent in the model.
The third line indicates that the algorithm parameter repair is the most im-
portant parameter, as the parameter itself can explain a huge part (72.62%)
of the overall algorithm performance variance. The other parameter destroy
and the pairwise interaction of the two parameters repair and destroy are less
important. The details of the algorithm and those parameters will be further
described in sections 3 and 3.1.

In addition to the value indicating the importance of each algorithm para-
meter subset, fANOVA also provides some insights on which regions are good
and bad (with a degree of uncertainty) for each parameter inside the subset
throughout a marginal plot.

Given a specific value for each algorithm parameter in the subset, the cor-
responding marginal prediction value is the average performance value of the
algorithm over the whole configuration space associated with all parameters
not belonging to the subset. A marginal plot shows the mean and the vari-
ance of the marginal prediction values given by the random forest’s individual
trees. Figure 1 shows the marginal plot of the algorithm parameter repair.
This categorical parameter has a domain of three values: Greedy, Regret2 and
GreedyRegret2, each of which is associated with a boxplot in Figure 1. The box-
plot for Greedy, for example, shows the mean and the variance of the average
algorithm performance values over the whole problem instance space of all
algorithm parameter settings having repair = Greedy. The plot implies that
Regret2 is the best choice for the parameter repair.
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An implementation of fANOVA is provided by the approach’s authors as a
Python package at https://github.com/frank-hutter/fanova. As a choice
of implementation, the package only gives analysis results on the single pa-
rameter and pairwise interaction effects. The higher order (≥ 3) interactions
are left out, probably due to potentially expensive computation time requi-
red and the fact that in many practical cases, single parameter and pairwise
interaction effects are usually sufficient to explain the majority of algorithm
performance variance.

2.2 Multilevel regression

The multilevel methodology proposed by Corstjens et al. [1] is an approach for
analysing the relationships between algorithm parameters, problem instance
characteristics and algorithm performance using a multilevel regression (MLR)
model. The approach studies how the performance measure (e.g., distance tra-
velled) will change when modifying a parameter from one value to another and
how this change is influenced by the problem instance the algorithm is solving.
Unlike fANOVA, regression models do not focus on the variance in the data
that is explained by each of the investigated variables, but on estimating the
variable coefficients [11]. More precisely, regression is applied to describe the re-
lationship between a response variable and variables that explain the response,
the explanatory variables. This relationship is formulated mathematically in
a regression model which describes how the response value will change when
an explanatory variable changes with some value [12]. For every calculated
coefficient estimate a confidence interval is provided to indicate whether the
estimated performance change by some parameter value is significantly diffe-
rent from zero or not. If not, the observed impact is likely due to chance.

Furthermore, the multilevel aspect of the methodology enables to efficiently
study how effects vary by group by relying on multilevel models[2]. Within the
context of heuristic experimentation it is possible to identify a multilevel struc-
ture when experimenting with different parameter settings on a single problem
instance of some combinatorial optimisation problem. We interpret a parame-
ter setting as a set of values and included operators. Any observed differences
in performance can then be attributed to the algorithm parameters and not
the problem instance. To expose the influence of the problem instance, this
structure is repeated for multiple problem instances. It can then be analysed
how the performance impact of the various parameters changes when consi-
dering different problem instances. It enables answering questions like ”Does
a heuristic operator work equally well on instances with a few customers and
instances with many customers? When service time is long on average, is it
better to lower the cooling rate within simulated annealing or increase it? ...”
These are the types of questions that can be answered by using a multilevel
model [1].
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Given a data set of performance values of different algorithm parameter
settings on different problem instances, a multilevel regression model is formu-
lated to predict the average expected performance for a particular parameter
setting and problem instance. Note that the interpretation of predictions be-
tween fANOVA and MLR differs. Evaluating a certain parameter by fixing it
at different values, fANOVA predicts an average performance for every value
taking into account all values of all other algorithm parameters and the entire
problem space. MLR, on the other hand, predicts for each value the average
performance given a fixed setting of the other parameters and considering a
specific problem instance. The regression model therefore enables a more de-
tailed analysis of parameter effects.

The multilevel regression model can be considered as an extension to a
classical regression model in which the coefficients have their own probability
model, being the second, higher level. It has accompanying parameters which
are the predictors at this second level [5]. A possible formulation of a multilevel
regression model — using the same example as in section 2.1 — is given in
equations (1) to (3) where three algorithm parameters are considered and three
problem instance characteristics operating at the problem (i.e., group) level.

Yi = αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + β3j[i]Randomi + εi (1)

αj = µα0 + µα1 customersj + µα2 demandj + µα3 servicetimeje+ ηαj (2)

βkj = µβk

0 + µβk

1 customersj + µβk

2 demandj + µβk

3 servicetimej + ηβk

j (3)

where

i ∈ I denotes the scenario, a combination of a certain problem instance
with a certain parameter setting
j ∈ J denotes the problem instance
The index variable j[i] codes problem instance membership (j[i] = j),
e.g., j[90] = 5 means the 90th scenario solves problem instance 5
Yi is the objective function value of scenario i
Greedyi, Regret2i and Randomi are the values set for the parameters in
scenario i
customersj , demandj and servicetimej are the values for these problem
instance characteristics in problem instance j
αj is the varying regression intercept, representing the solution quality
given problem instance j when all algorithm parameters are set
equal to 0
βkj represents the varying effect of algorithm parameter k on Y
given scenario i and problem instance j
µ0 represents a mean problem effect
µ1,2,3 represent the effect of the problem-level predictors on the varying
algorithm parameter effects
ηj is the error at the problem level and is assumed to be ∼ N(0,σ2)
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εi is the random error of scenario i and is assumed to be ∼ N(0,σ2
e)

Equation (1) represents the lowest level where the objective function va-
lue for scenario i is observed, with a scenario defined as the combination of
a certain problem instance with a certain parameter setting. The objective
function value observed is hypothesised to depend on the values that are set
for the various heuristic parameters, as indicated by the variables Greedyi,
Regret2i and Randomi, and with the β coefficients representing the perfor-
mance impact of each parameter. Equations (2) and (3) represent the problem
level and define how the effects in equation (1) (i.e., the β’s) are moderated by
the problem instance characteristics, represented by the variables customersj ,
demandj and servicetimej . With this model we can learn the impact a single
algorithm parameter has on performance and how it is influenced by the pro-
blem instance characteristics.

In the next subsection we explore the complementary use of fANOVA and
multilevel regression.

2.3 A combined methodology

For the multilevel regression approach, the search for a suitable regression
model that includes all relevant variables can be a cumbersome task [5]. The
more variables and variable interactions are included, the more complex the
model becomes and the more arduous it is to interpret the estimated effects.
The challenge thus lies in deciding which explanatory variables and interacti-
ons to include in the model. We tackle this issue by relying on the results of
the fANOVA analysis. Since it gives a ranking on the importance of effects, a
regression model could then be formulated based on this ranking in order to
prevent an overly complex model with many variables. The regression analysis
can then more easily focus on these important effects, enabling a more detailed
study of how they relate to the response variable. Furthermore, the multilevel
regression adds contribution on the importance analysis by calculating confi-
dence intervals for each of the effects. This indicates which effects are actually
statistically significant and which are likely due to chance.

In the following sections a case study is performed on both analysis appro-
aches.

3 Case study

Experiments are performed on a Large Neighbourhood Search algorithm (LNS).
Our implementation of this algorithm is a simplification of the well-known



8 Corstjens, Dang, Depaire, Caris and De Causmaecker

Adaptive Large Neighbourhood Search (ALNS) metaheuristic developed by
Pisinger and Ropke [13] that is able to solve multiple variants of the vehi-
cle routing problem, among which the VRPTW. The algorithm iteratively
destroys and repairs the current solution, each time randomly selecting a de-
stroy and repair operator from a set of operators. The more an operator has
contributed to finding a better solution, the greater the probability it will be
chosen in future iterations. This process is repeated until some stopping cri-
terion is met. This algorithm was chosen because of its popularity and the
multitude of parameters it contains, making it a suitable research subject
for parameter analysis. However, a simplification is performed to reduce the
number of parameters to investigate as it is currently not our aim to make
performance statements about the ALNS, but rather focus on establishing the
methodology to evaluate heuristic methods. Therefore, a less elaborate version
of the heuristic method is preferred. The LNS algorithm does not adjust the
probabilities for selecting repair and destroy operators every iteration based
on their performance, but keeps them fixed and equal throughout the search
process. We also consider less operators, more specifically three destroy and
two repair operators.

The LNS algorithm is run on a data set consisting of 4000 different combi-
nations of problem instances and parameter settings. The data set is generated
according to a two-phase sampling scheme as applied in [1]. First, 200 instances
for the vehicle routing problem with time windows (VRPTW) are generated
by drawing random values for the problem instance characteristics listed in
Table 1. For each of the generated problem instances 20 parameter setting
variants are defined again by drawing random values for each of the algorithm
parameters listed in Table 2.

The algorithm is run for each of the 4000 scenarios and returns a total
cost measure indicating the total distance travelled by all vehicles to provide
service to all customers in the problem.

3.1 Analysis of results

First, fANOVA is applied on the given algorithm performance data set. Then,
a multilevel regression model is formulated based on the importance analysis
provided by fANOVA, in particular all algorithm parameters and problem
instance characteristics having a contribution percentage value higher than
1% are included. As will be discussed, the conclusions of both approaches are
quite consistent, however, not all effects taken from fANOVA are statistically
significant according to the multilevel regression model.



A combined approach 9

Table 1: Problem instance characteristics of the
VRPTW and their ranges

Problem characteristics
Characteristic Type Value ranges
number of customers Integer U[25, 400]
customer demand Integer U[10,50]
average service time Integer TRIA(min,max)

min∼U[10,30]
max∼U[30,50]

average time window width Integer TRIA[min,max]
min∼U[20,50]
max∼U[50,80]

maximum running time Integer TRIA(60,1800)

Only the characteristics that will be used in our algorithm
performance analysis are listed. For a full list of all characte-
ristics, the reader is referred to Table 4 in the Appendix.

Table 2: Parameters of the Large Neighbourhood Search algo-
rithm

Algorithm parameters
Parameter Type Value ranges
random seed Integer U[1, 1000000]
determinism parameter Integer U[1, 100]
noise parameter Continuous U[0, 1]
cooling rate Continuous U[0.01,0.99]
start temperature

Continuous U[0.01,1]
control parameter

destroy operators Categorical

Random, Worst, Related,
RandomWorst,
RandomRelated,
WorstRelated

repair operators Categorical
Greedy, Regret2,
GreedyRegret2

3.1.1 Application of fANOVA

fANOVA is basically a tool for analysing the importance of algorithm para-
meters on algorithm performance over a problem instance set. However, it can
also be used to study the interaction between the algorithm parameters and
the problem instance’s characteristics by simply adding those features into the
prediction model of fANOVA. The features are treated exactly in the same way
as the algorithm parameters. In the fANOVA analysis on our case study, the
definition of the algorithm parameters and the problem instance features, in-
cluding names, types and domains, are the same as described in Tables 1 and 2.

Since the range of the cost values returned by the algorithm can vary
among different instances, we first normalize the cost on an instance-basis
before fANOVA is applied:
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pcj =
(f cj −minc′∈Cj , f

c′

j )

(maxc′∈Cj , f
c′
j −minc′∈Cj , f

c′
j )

(4)

where f cj and pcj are the original and the normalized cost values of parame-
ter setting c on problem instance j, and Cj is the set of all parameter settings
that have been run on instance j.

Following is the output generated by fANOVA. Since we want to focus on
important effects, only the ones with the contribution percentage values higher
than 1% are listed. This threshold is chosen arbitrarily.

Sum of fractions for main effects 60.56%

Sum of fractions for pairwise interaction effects 16.54%

53.03% due to main effect: repair

4.73% due to interaction: repair x customer_number

4.36% due to interaction: repair x destroy

3.52% due to main effect: customer_number

3.05% due to interaction: destroy

2.96% due to interaction: destroy x customer_number

The marginal plot for each effect is given in Figure 2. Since we are only
interested in the algorithm parameters and their interactions with the problem
instance features, the main effect customer number is omitted.

The single parameter repair explains a huge part (53.03%) of the total al-
gorithm performance variance, indicating that this parameter plays the most
important role in the performance of the algorithm. Figure 2a shows that
Greedy is clearly the worst choice for the parameter repair. The algorithm
gains the best overall performance with Regret2 as the only repair operator,
although GreedyRegret2 comes quite close. How the impact of the chosen re-
pair operator(s) changes given different problem instance sizes is explained
in Figure 2b. We can see that the disadvantage of using the repair operator
Greedy is getting clearer as the number of customers increases, especially when
the number of customers is larger or equal to 50. The performance distinction
between the two repair operators Regret2 and GreedyRegret2 only starts to
become visible when the number of customers reaches 200.

The second categorical algorithm parameter, destroy, has much less impor-
tance than repair. For this parameter, the choice of values, sorted in increasing
order of marginal normalized cost values — i.e., from good to bad performance
—, is as follows: RandomRelated, RandomWorstRelated, Random, WorstRela-
ted, RandomWorst, Related, Worst. The influence of different problem sizes on
the impact of the chosen destroy operator(s) is depicted in Figure 2d, but this
marginal plot is difficult to interpret visually.
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The final marginal plot shows the pairwise interaction between the two ca-
tegorical parameters — plotted in Figure 2e — and indicates consistency with
the observations obtained from the main effects: Greedy is always the worst
choice, despite its combination with any destroy operator; and the choice of
Regret2 generally offers better performance than GreedyRegret2, although not
very clear. Moreover, among all combinations of repair and destroy opera-
tors, using Regret2 as a repair operator combined with the destroy operator
Random is predicted to perform best.

In the next section the multilevel evaluation methodology is applied and
compared to the discussed fANOVA findings.

3.1.2 Application of multilevel regression

The multilevel regression analysis is performed on a second, independent, data
set of 4000 scenarios which was generated according to the same sampling pro-
cedure as for the data set used by the fANOVA analysis. The motivation is
to prevent overfitting analysis findings to a single data set. Searching for a
model that is the best fit for a single data set might risk fitting noise in the
data — patterns present in the sample but not in the population — and might
result in a model which performs poorly on other data points from the same
population. A fitted model should be able to make accurate predictions for
new data points instead of only the data points used to learn the model [3].
Therefore, the multilevel regression analysis is performed using new sample
data.

The fitted multilevel regression model includes the effects that account for
1% or more of the variance in the data according to the fANOVA results. It is
then verified whether the model complied with the statistical assumptions of
independence, normality and homoscedasticity typically underlying regression
models. Such a model is found after taking the reciprocal transformation of the
response variable and the cube root of the centred problem instance charac-
teristic Customer Number, the same transformations as applied in Corstjens
et al.[1]. The resulting model describes a non-linear relationship between the
performance measure and the algorithm parameters explaining it. It is formu-
lated as in equations (5)-(7).

1

Yi
=αj[i] + β1j[i]Greedy + β2j[i]Regret2 + β3j[i]Random+ · · ·+

β8j[i]RandomRelated+ β9j[i]Greedy ×Random+ · · ·+
β20j[i]Regret2×RandomRelated+ εi

(5)

αj = µα0 + µα1Customer Number
1/3 + ηαj (6)

βzj = µβz

0 + µβz

1 Customer Number1/3 + ηβz

j (7)
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(a) repair (b) repair x customer number

(c) destroy (d) destroy x customer number

(e) repair x destroy

Fig. 2: Marginal plots of main effects and pairwise interaction effects of the
fANOVA analysis (Only effects with the percentage of contribution on perfor-
mance variance larger than 1% are shown.)
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All operator effects are modelled as varying effects depending on the pro-
blem instance characteristic Customer Number as indicated by the fANOVA
output. Table 3 lists all significant effects, meaning the 95% confidence in-
terval of the impact estimate [l-95% CI, u-95% CI] does not include zero.
The complete regression table can be found in Table 5 in the Appendix. The
regression table shows significant effects for all but one individual operator
effect and for all but one interaction between Greedy and the destroy ope-
rators. The interactions between Regret2 and the destroy operators are not
indicated significant. Furthermore, the individual repair operator effects are
significantly influenced by the the problem size. The same goes for three in-
dividual destroy operator effects (Random, Related and RandomRelated) and
four interactions between Greedy and the destroy operators. It influences the
interaction of Greedy with Random, Related, RandomWorst and WorstRela-
ted. All other operator effects show no significant influence of problem size. In
the following paragraphs we discuss the interpretation of the significant effects.

Table 3: Regression table of significant effectsa

Variable Estimate Est.Error l-95% CI u-95% CI

Interceptb,c 4, 151.65 128.11 3, 899.79 4, 398.53
Greedy −133.46 5.48 −144.15 −122.90
Regret2 16.98 3.66 9.78 24.18
Random 21.28 3.47 14.27 28.06
Worst −11.32 3.69 −18.62 −3.98
Related −60.46 4.70 −69.83 −51.33
RandomWorst 9.20 3.66 1.91 16.30
WorstRelated −13.92 3.56 −20.97 −6.96

Customer Number1/3 −453.86 29.99 −513.62 −396.08
Greedy × Random −88.45 7.90 −103.98 −72.62
Greedy × Worst −89.67 8.87 −107.18 −72.35
Greedy × Related 68.31 6.76 55.07 81.35
Greedy × RandomWorst −95.71 7.61 −110.70 −80.76
Greedy × RandomRelated 15.19 5.74 3.96 26.44

Greedy × Customer Number1/3 −16.51 1.23 −18.89 −14.11

Regret2 × Customer Number1/3 2.91 0.81 1.35 4.49

Random × Customer Number1/3 3.84 0.77 2.35 5.35

Related × Customer Number1/3 −9.73 1.05 −11.80 −7.70

RandomWorst × Customer Number1/3 1.59 0.82 0.02 3.21

Greedy × Random × Customer Number1/3 −15.83 1.76 −19.25 −12.36

Greedy × Related × Customer Number1/3 10.56 1.54 7.50 13.53

Greedy × RandomWorst × Customer Number1/3 −11.61 1.68 −14.87 −8.36

Greedy × WorstRelated × Customer Number1/3 3.13 1.45 0.25 5.94

a Since the reciprocal transformation of the response variable returned very small values causing difficulties in the sampling procedure
of the brms package, all transformed (response) values were multiplied by a constant 100 000 000.

b The effects of Greedy & Regret-2 and Random, Worst & Related, the reference levels for the repair and destroy operator dummies,
are accounted for in the Intercept.

c The Intercept value is backtransformed to the original scale through division by 100 000 000 and taking the inverse of the resulting
value.
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The operator variables are defined differently for this analysis compared
to the fANOVA analysis. In order to enable the study of the impact of each
possible combination of repair operators and of each possible combination of
destroy operators on performance, dummy or binary variables are defined such
that an effect estimate is obtained for each combination. So instead of one re-
pair variable and one destroy variable, we have respectively three and seven
variables in the regression model. Because of collinearity issues, not all repair
and destroy dummies could be included and therefore one repair and one de-
stroy operator configuration is chosen as a baseline. In both cases, it is the
configuration including all repair or destroy operators. So the estimates for
Greedy and Regret2 represent the change in total cost when switching from
using both repair operators (GreedyRegret2 ) to using only one of both. The
estimates for Random, RandomRelated, and so on represent the change in total
cost when switching from using all three destroy operators (RandomWorstRe-
lated) to a configuration with less destroy operators.

Figure 3 plots the predicted objective function values for all repair and de-
stroy operator configurations, all other variables fixed at their average value.
By plotting the repair configurations on the horizontal axes we can observe the
change in the predicted value when switching from one repair configuration to
another one. Panel (a) displays the effect of switching to Greedy and shows the
solution quality is expected to worsen for every destroy operator configuration
it is combined with. The largest performance deterioration and overall worst
result is predicted for the combination with Worst, while Greedy obtains its
best performance result with RandomRelated. With GreedyRegret2 best and
worst performance results are expected with respectively Random and Related.
The switch from GreedyRegret2 to Regret2 is plotted in panel (b) of Figure
3 and shows an expected performance improvement for all destroy operator
combinations, but the best and worst combinations are the same as for Greedy-
Regret2. These predictions show that using regret-2 as the sole repair operator
is expected to give the best performance results for all destroy operators it
is combined with, while relying only on greedy repair is expected to give the
worst results for all destroy operator combinations. It is also observed that the
relative performance of the destroy operators per individual repair operator
differs. The way a solution is destroyed has an impact on how good Greedy
or Regret2 is at repairing this solution. Greedy seems to have more difficulty
in repairing a solution from which customers were removed randomly while
Regret2 is better able to cope with such a situation. Regret2, however, appears
to find it more difficult to repair a solution from which related customers were
removed — with relatedness interpreted in terms of distance as in Pisinger
and Ropke [13]. These insights, confirming the analysis of Corstjens et al. [1],
spark a new research challenge to discover why certain operator combinations
perform (relatively) different.

The previous observations are valid for an average instance having 211 cu-
stomers, 29.93 units of average demand per customer, an average service time
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Fig. 3: Predicted total cost for an average problem instance (211 customers,
29.93 units of average demand) based on the non-linear model.

at each customer of 29.57 minutes and an average time window width of 50
minutes. Now, we investigate how these observations might be altered when
the considered problem instance characteristic Customer Number diverts from
its average level of 211 customers. This is the aforementioned group effect — or
problem instance effect in our case — on the performance impact of the repair
operators. Customer Number is the only problem instance characteristic that
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the fANOVA output indicates as having an important influence. Examination
of the effect estimates in Table 3 shows that the number of customers to be ser-
ved has a negative influence on the effect of switching to greedy (−16.51) and a
positive influence on the effect of switching to regret-2 (2.91). This means that
the more customers have to be served, the larger the performance gap with
both repair operators becomes and the better regret-2 performs compared to
greedy. For example, the estimated impact on performance for Greedy is for-
mulated as −133.46− 16.51 ∗∆Customers1/3. The more customers, the more
negative the estimate becomes. Besides a significant influence on the individual
repair operator effects, the regression table also indicates a significant influ-
ence of Customer Number on certain interaction effects. The interaction effect
of Greedy with Random is negatively influenced, as indicated by the negative
effect estimate −15.83 for Greedy × Random × Customer Number. This influ-
ence can be interpreted as that the combination greedy and random is expected
to perform increasingly worse than the combination of greedy with all destroy
operators as more and more customers have to be served. The estimated im-
pact is now expressed as (−133.46−16.51∗∆Customers1/3)+(−88.45−15.83∗
∆Customers1/3). Comparing the marginal effects of switching from both re-
pair operators to greedy alone for the smallest (a) and largest (b) instance size
in Figure 4 shows an increasing deterioration in performance when switching
to Greedy as well as the effect with Random shifting away from the effect with
RandomWorstRelated. In a similar way the significant interaction effects bet-
ween Greedy and Related, RandomWorst and WorstRelated are analysed. For
Related and RandomWorst additional customers strengthen the positive and
negative effect these combinations have on performance. For the combination
with WorstRelated, the negative performance impact is softened slightly when
more customers have to served. There are no significant interactions effects
with Regret2, implying that the various combinations’ marginal effect is no
different from the combinations with GreedyRegret2. Therefore, the influence
of problem size on the effects with regret-2 is derived solely from the inte-
raction term Regret2 × Customer Number. Figure 5 plots the marginal effect
for the smallest and largest problem size. On the smallest problem instances,
the marginal effect is insignificant indicating that there is no benefit of relying
solely on regret-2 over using both repair operators. On the largest problem
size, there is a clear significant improvement observed. The threshold value at
which the effect turns significantly positive — i.e., where the 95% confidence
interval no longer includes zero — is around 186 customers.

Similarly, the influence of Customer Number on the effect of switching from
RandomWorstRelated to any other (set of) destroy operator(s) can be inves-
tigated. The positive effects of Random (21.28) and RandomWorst (9.20) are
further positively influenced when more customers have to be served, while
the negative effect of Related(−60.46) is further negatively influenced. On the
smallest problem instances the performance of the various destroy operators
cannot be distinguished. Relying on worst removal alone is the only parameter
setting that is expected to significantly — although barely — deteriorate the
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Fig. 4: Marginal effect of Greedy for a problem instance with (a) 25 customers
and (b) 400 customers.
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Fig. 5: Marginal effect of Regret-2 for a problem instance with (a) 25 customers
and (b) 400 customers.

solution quality. On the larger problem instances choosing for Random clearly
results in the largest improvement over RandomWorstRelated, while Related
is expected to lead to a large deterioration in performance. Figure 6 plots the
marginal effects of the destroy operators for a problem instance with (a) 25
customers and (b) 400 customers. These observations are valid for the com-
binations with GreedyRegret2 and Regret2 given that there are no significant
interactions between regret-2 and the destroy operators. For the combinations
with Greedy, there are significant interactions effects, some of which are also
significantly influenced by the problem instance size. For example, there is a
negative impact of switching to random removal alone when combined with
greedy repair alone as deducted from the equation 21.28−88.45 = −67.17. This
negative impact will be softened by the positive influence of problem size on
Random, but also intensified by the negative influence on the interaction term
Greedy × Random for each additional customer above the average problem size
(i.e., (21.28 + 3.84 ∗∆Customers1/3) + (−88.45− 15.83 ∗∆Customers)). On
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the smallest problem instances the performance impact shifts to zero and be-
comes insignificant while on the larger problem instances the impact becomes
increasingly negative. The same goes for the performance impact of Random-
Worst, but it remains always significantly different from RandomWorstRelated.
The impact of Related with Greedy is not significantly different from Rand-
omWorstRelated with Greedy and this for all problem sizes. The influence of
Customer Number on related removal and on its interaction with greedy seem
to neutralize each other. Finally, the significant influence on the interaction
between WorstRelated and Greedy does not make this effect statistically dif-
ferent from the effect of RandomWorstRelated with Greedy, it remains at the
border of significance. Figure 7 plots the marginal effects for the combination
with Greedy.
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Fig. 6: Marginal effect of destroy operators (with GreedyRegret2 or Regret2 )
for a problem instance with (a) 25 customers and (b) 400 customers.
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Summarising the observations, the regression model suggests to avoid re-
lying only on greedy repair as it is expected to give the worst results in all
considered conditions. Concerning the sole use of regret-2, distinct conclusions
are drawn for smaller and larger instances due to the significant influence of
the number of customers an instance has to serve. On the smallest instances,
there is no significant improvement over using both repair operators observed.
Furthermore, most of the performance differences between the various destroy
operator configurations cannot be distinguished from each other as well, mea-
ning the choice of destroy operators is irrelevant for these problem sizes. Only
the combination with worst removal is indicated as performing significantly
worse than the scenario with all destroy operators. On the larger instances,
performance differences are more clear. Regret-2 performs significantly better
for all destroy operator combinations, but the combination with related remo-
val is not recommended since it leads to the smallest expected performance
improvement. Random removal is the preferred combination.

Comparing the regression analysis findings to the conclusions of the fA-
NOVA analysis, conclusions are in general consistent. On the larger problem in-
stances, both approaches find that using regret-2 alone combined with random
removal is expected to perform best. For the smaller problem instances, there
is consistency on that there is no clear performance difference between using
either regret-2 alone or together with greedy. Concerning the destroy ope-
rators, the regression analysis cannot identify any (combination of) destroy
operator(s) as the preferred one to use since their performance cannot be
distinguished from each other. The fANOVA analysis is less clear on their per-
formance for these problem instance sizes due to the difficulty of interpreting
the provided marginal plot. The regression analysis thus provides a more clear
interpretation. Furthermore, the observations on the problem size influence in
both analysis are deducted from different effects. In the fANOVA results the
2-way interaction between repair/destroy operator(s) and customer number is
considered an important effect. The multilevel regression analysis, however,
also analyses the influence of problem size in the 3-way interactions between
repair and destroy operators and customer number, an effect that the fANOVA
tool does not take into account. The observed consistencies do make the regres-
sion analysis more robust since these findings are confirmed by a methodology
(fANOVA) which does not rely on the statistical assumptions of independence,
normality and homoscedasticity of the error terms.

In addition, the regression model facilitates a more detailed analysis since
it provides effect estimates for a particular parameter setting and problem,
while the fANOVA analysis estimates marginal performance for a particular
parameter value by averaging over all other parameters and problem instance
characteristics. The regression results are able to identify for each combination
of repair and destroy operators a problem size interval for which a significant
difference in performance is expected. For example, combined with both re-
pair operators Random is expected to outperform Worst for 134 customers or



20 Corstjens, Dang, Depaire, Caris and De Causmaecker

more, Related for 125 customers or more, RandomWorst for 214 customers or
more, WorstRelated for 166 customers or more, RandomRelated for 209 cus-
tomers or more, and RandomWorstRelated for 173 customers or more.

Finally, the formulated regression model would have been different if a fA-
NOVA analysis was not performed in advance. We would have sought to fit a
multilevel regression model that included all algorithm parameters and compo-
nents and all problem-level predictors since there would be no prior knowledge
on which elements have an important or significant impact on performance.
Furthermore, parameter interactions would be included as well. In short, this
more extensive model would have to estimate substantially more effects than
the simpler model based on fANOVA. A possible extensive model was fitted
(see Table 6 in Appendix) to illustrate our case. First of all, the time required
to fit the model is almost twice as long for the extended model (about 44
hours) compared to the simple model (about 22 hours plus one hour for the
fANOVA analysis). Then, comparing the significant effects of both models, it
is observed that the majority of effects are significant in both models. One
effect appear no longer significant in the larger model. This can be because of
collinearity issues arising when including more and more variables in a regres-
sion model, which may cause variance estimates of coefficients to be inflated
thereby possibly incorrectly showing non-significance of effects. This appears
to be the case for the mentioned effect when calculating its variance inflation
factor (VIF)[6]. For example, the effect showing the influence of problem size
on the destroy operator set random and worst removal has a VIF of 6.26 indi-
cating that the standard error of this coefficient is more than double (

√
6.26)

as large as it would be if it was uncorrelated with the other predictor varia-
bles. For the simpler model based on fANOVA the VIF is smaller (6.02) and
therefore the standard error is less inflated. The difference in VIF is small, but
because the effect is at the border of significance, the slightly higher VIF ma-
kes the effect insignificant. Furthermore, no large value changes are observed
when comparing the significant effect estimates from both models. This shows
that the simple model does not lack any important variable which might bias
the effect estimates, an issue known in statistics as ‘omitted variable bias’ [15].

Studying the predictive influence of every problem instance characteristic
in the extended model, it can concluded that the problem size is the most in-
fluential problem instance characteristic as changing this factor leads to large
changes in the total cost values. The other problem instance characteristics
show influence as well for particular operator combinations, but the perfor-
mance change they bring about is of a much smaller order than is the case
for varying problem size values. Therefore, fANOVA understandably denoted
the problem size as the most important problem characteristic. Furthermore,
the predictions for varying problem sizes are in both models almost the same
so the larger model does not provide additional information that alters these
predictions. However, it does provide additional information on operator be-
haviour for other problem instance characteristics. For example, for greedy
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repair wider time windows increasingly worsens the solution quality with all
destroy operators, except related removal, for which the deterioration becomes
smaller. In conclusion, we believe the regression model based on fANOVA is a
sufficiently detailed model that provides insight into the effects related to the
largest shifts in algorithm performance.

4 Conclusion

In this paper, we have presented the complementary use of two approaches for
analysing performance of heuristic algorithms with multiple parameters: fA-
NOVA [9] and multilevel regression (MLR) [1]. The analysis results provided
by fANOVA are useful when formulating a proper regression model in MLR
since it leads to a more concise regression model with less input variables.
MLR, on the other hand, provides a more detailed analysis of the effects of
algorithm parameters. The two methodologies are applied on different data
sets drawn from the same algorithm parameter and problem characteristic
distributions, thereby avoiding ”overfitting” analysis findings. Experimental
results on a case study for a large neighbourhood search algorithm applied on
instances of the vehicle routing problem with time windows have shown that
the MLR can help to give additional insights on the analysis results provided
by fANOVA. Moreover, due to the fact that the current fANOVA toolbox only
gives main and pairwise interaction effects’ results, MLR can also help to in-
vestigate higher-order interaction effects (three-way interaction in this study)
on selected important variables, thus giving a better understanding on the
most important effects obtained from fANOVA. We believe that this line of
research would make a contribution towards the engineering cycle of develo-
ping optimization algorithms.

Meanwhile, fANOVA is available as a Python package, and the multilevel
regression needs to be implemented manually. For future work, we are consi-
dering making the combination of the two approaches more ready to use, i.e.,
the addition and the interpretation of the multilevel regression into fANOVA
should be automated.
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Appendix

Table 4: Problem Instance Characteristics

Problem instance characteristics
Characteristic Type Value ranges
number of customers Integer U[25, 400]
vehicle capacity Integer 150
x/y-coordinates Integer U[0,500]
customer demand Integer U[10,50]
Service time Integer TRIA(min,max)

min∼U[10,30]
max∼U[30,50]

time window depot Integer Start = 0; End = 900
time window customer
- time window centre Integer U[0 + travel time, 900 - travel time - service time]
- time window width Integer TRIA[min,max]

min∼U[20,50]
max∼U[50,80]

- start Centre - 0.5*width
- end Centre + 0.5*width
Maximum running time Integer TRIA(60,1800)
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Table 5: Regression table

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 151.65 128.11 3, 899.79 4, 398.53
Greedy −133.46 5.48 −144.15 −122.90
Regret2 16.98 3.66 9.78 24.18
Random 21.28 3.47 14.27 28.06
Worst −11.32 3.69 −18.62 −3.98
Related −60.46 4.70 −69.83 −51.33
RandomWorst 9.20 3.66 1.91 16.30
WorstRelated −13.92 3.56 −20.97 −6.96
RandomRelated 2.50 3.56 −4.46 9.55

Customer Number1/3 −453.86 29.99 −513.62 −396.08
Greedy × Random −88.45 7.90 −103.98 −72.62
Greedy × Worst −89.67 8.87 −107.18 −72.35
Greedy × Related 68.31 6.76 55.07 81.35
Greedy × RandomWorst −95.71 7.61 −110.70 −80.76
Greedy × WorstRelated 5.65 6.39 −6.70 18.42
Greedy × RandomRelated 15.19 5.74 3.96 26.44
Regret2 × Random −8.77 5.06 −18.68 1.43
Regret2 × Worst 2.32 5.22 −7.96 12.43
Regret2 × Related −5.04 5.54 −15.91 5.86
Regret2 × RandomWorst −3.68 5.14 −13.65 6.61
Regret2 × WorstRelated −2.14 5.01 −11.93 7.85
Regret2 × RandomRelated −0.65 5.14 −10.71 9.39

Greedy × Customer Number1/3 −16.51 1.23 −18.89 −14.11
Regret2 × Customer Number1/3 2.91 0.81 1.35 4.49

Random × Customer Number1/3 3.84 0.77 2.35 5.35

Worst × Customer Number1/3 0.58 0.82 −1.03 2.20

Related × Customer Number1/3 −9.73 1.05 −11.80 −7.70
RandomWorst × Customer Number1/3 1.59 0.82 0.02 3.21

WorstRelated × Customer Number1/3 −1.26 0.80 −2.81 0.34

RandomRelated × Customer Number1/3 0.79 0.78 −0.73 2.31

Greedy × Random × Customer Number1/3 −15.83 1.76 −19.25 −12.36
Greedy × Worst × Customer Number1/3 −3.20 1.96 −7.03 0.60

Greedy × Related × Customer Number1/3 10.56 1.54 7.50 13.53

Greedy × RandomWorst × Customer Number1/3 −11.61 1.68 −14.87 −8.36
Greedy × WorstRelated × Customer Number1/3 3.13 1.45 0.25 5.94

Greedy × RandomRelated × Customer Number1/3 2.01 1.27 −0.49 4.48

Regret2 × Random × Customer Number1/3 −2.06 1.14 −4.31 0.16

Regret2 × Worst × Customer Number1/3 −1.25 1.16 −3.51 1.03

Regret2 × Related × Customer Number1/3 −1.77 1.25 −4.19 0.66

Regret2 × RandomWorst × Customer Number1/3 −1.19 1.15 −3.45 1.02

Regret2 × WorstRelated × Customer Number1/3 −0.37 1.13 −2.56 1.84

Regret2 × RandomRelated × Customer Number1/3 −1.24 1.14 −3.48 0.95

a The effects of Regret-2 & Greedy and Random, Worst & Related, the reference levels for the repair and
destroy operator dummies, are accounted for in the Intercept.
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Table 6: Regression table large model

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 155.43 127.41 3, 901.56 4, 402.79
Greedy −134.86 5.28 −145.22 −124.59
Regret2 17.19 3.62 9.93 24.22
Random 20.76 3.46 13.92 27.58
Worst −11.20 3.63 −18.36 −4.13
Related −60.37 4.40 −68.99 −51.79
RandomWorst 9.94 3.67 2.74 17.01
WorstRelated −13.64 3.56 −20.64 −6.73
RandomRelated 2.67 3.49 −4.17 9.56
Cooling rate 2.14 2.24 −2.23 6.59
Start temperature ctrl param −2.45 2.11 −6.59 1.75
Noise param −10.51 3.41 −17.08 −3.79
Determinism param 0.10 0.05 −0.003 0.21

Customer Number1/3 −460.22 29.13 −516.48 −403.65
Avg demand 311.17 134.11 54.63 578.72
Avg service time −52.64 30.16 −112.13 6.94
Avg time window width 43.59 20.86 1.25 83.80
Runtime 27.54 23.19 −19.01 72.27
Greedy × Random −84.60 7.79 −100.09 −69.34
Greedy × Worst −86.67 8.43 −103.29 −70.35
Greedy × Related 69.73 6.78 56.50 82.87
Greedy × RandomWorst −92.14 7.44 −106.74 −77.80
Greedy × WorstRelated 6.41 6.22 −5.56 18.75
Greedy × RandomRelated 17.86 5.66 6.87 29.00
Regret2 × Random −9.39 5.08 −19.30 0.69
Regret2 × Worst −0.41 5.19 −10.64 9.78
Regret2 × Related −7.11 5.42 −17.59 3.52
Regret2 × RandomWorst −3.29 5.18 −13.52 6.97
Regret2 × WorstRelated −2.87 5.00 −12.66 7.21
Regret2 × RandomRelated −1.50 5.09 −11.45 8.60
Random × Determinism param −0.06 0.08 −0.21 0.09
Worst × Determinism param −0.20 0.08 −0.36 −0.04
Related × Determinism param −0.48 0.08 −0.64 −0.32
RandomWorst × Determinism param −0.06 0.08 −0.22 0.09
WorstRelated × Determinism param −0.10 0.07 −0.25 0.05
RandomRelated × Determinism param −0.03 0.07 −0.18 0.11
Greedy × Noise param −22.22 5.20 −32.55 −12.00
Regret2 × Noise param −3.13 4.71 −12.28 6.05

Greedy × Customer Number1/3 −16.40 1.18 −18.72 −14.08
Greedy × Avg demand 3.41 5.29 −6.98 13.76
Greedy × Avg service time 1.91 1.28 −0.59 4.40
Greedy × Avg time window width −2.30 0.82 −3.89 −0.69
Greedy × Runtime 0.41 0.99 −1.55 2.33

Regret2 × Customer Number1/3 3.00 0.81 1.43 4.57
Regret2 × Avg demand −0.59 3.86 −8.36 6.87
Regret2 × Avg service time −0.86 0.89 −2.60 0.87
Regret2 × Avg time window width 0.40 0.56 −0.70 1.49
Regret2 × Runtime −0.02 0.67 −1.35 1.26

Random × Customer Number1/3 3.78 0.76 2.27 5.25
Random × Avg demand −1.20 3.42 −7.96 5.40
Random × Avg service time 0.29 0.85 −1.38 1.98
Random × Avg time window width −0.07 0.55 −1.15 0.99
Random × Runtime −0.28 0.63 −1.53 0.96

Worst × Customer Number1/3 0.46 0.83 −1.20 2.10
Worst × Avg demand −0.65 3.33 −7.29 5.86
Worst × Avg service time −0.24 0.90 −1.99 1.54
Worst × Avg time window width −0.45 0.57 −1.56 0.66
Worst × Runtime 0.49 0.72 −0.95 1.90

Related × Customer Number1/3 −9.83 1.01 −11.82 −7.85
Related × Avg demand −0.24 4.27 −8.67 8.15
Related × Avg service time 0.48 1.07 −1.64 2.59
Related × Avg time window width −2.43 0.72 −3.84 −1.02
Related × Runtime 2.64 0.82 1.02 4.21
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RandomWorst × Customer Number1/3 1.53 0.82 −0.07 3.11
RandomWorst × Avg demand 0.62 3.89 −7.05 8.29
RandomWorst × Avg service time −0.77 0.93 −2.58 1.05
RandomWorst × Avg time window width 0.36 0.57 −0.75 1.47
RandomWorst × Runtime 0.02 0.68 −1.32 1.33

WorstRelated × Customer Number1/3 −1.24 0.79 −2.80 0.33
WorstRelated × Avg demand 3.96 3.25 −2.38 10.29
WorstRelated × Avg service time 0.55 0.86 −1.17 2.23
WorstRelated × Avg time window width −0.29 0.53 −1.29 0.74
WorstRelated × Runtime 0.70 0.69 −0.64 2.06

RandomRelated × Customer Number1/3 0.79 0.79 −0.77 2.33
RandomRelated × Avg demand −0.30 3.48 −7.10 6.43
RandomRelated × Avg service time −0.26 0.85 −1.92 1.42
RandomRelated × Avg time window width −0.56 0.55 −1.63 0.51
RandomRelated × Runtime 1.00 0.67 −0.33 2.31

Cooling rate × Customer Number1/3 −0.70 0.50 −1.68 0.27
Cooling rate × Avg demand −0.18 2.37 −4.80 4.53
Cooling rate × Avg service time −0.29 0.56 −1.37 0.81
Cooling rate × Avg time window width −0.72 0.36 −1.42 −0.02
Cooling rate × Runtime −0.83 0.42 −1.64 −0.01
Start temperature ctrl param × Customer Number1/3 −0.54 0.48 −1.48 0.39
Start temperature ctrl param × Avg demand 0.02 2.23 −4.32 4.39
Start temperature ctrl param × Avg service time 1.03 0.52 −0.003 2.03
Start temperature ctrl param × Avg time window width −0.19 0.35 −0.86 0.49
Start temperature ctrl param × Runtime −0.17 0.40 −0.96 0.61

Determinism param × Customer Number1/3 −0.0003 0.01 −0.01 0.01
Determinism param × Avg demand 0.02 0.02 −0.03 0.06
Determinism param × Avg service time −0.001 0.01 −0.01 0.01
Determinism param × Avg time window width 0.001 0.004 −0.01 0.01
Determinism param × Runtime −0.01 0.004 −0.01 0.002

Noise param × Customer Number1/3 −1.20 0.50 −2.18 −0.20
Noise param × Avg demand 0.27 2.32 −4.28 4.83
Noise param × Avg service time −0.71 0.54 −1.78 0.36
Noise param × Avg time window width −0.62 0.35 −1.31 0.08
Noise param × Runtime 0.89 0.41 0.08 1.68

Greedy × Random × Customer Number1/3 −15.25 1.72 −18.55 −11.86
Greedy × Random × Avg demand −2.10 8.59 −18.77 15.04
Greedy × Random × Avg service time 0.61 1.93 −3.18 4.44
Greedy × Random × Avg time window width −1.30 1.19 −3.64 1.06
Greedy × Random × Runtime 3.43 1.46 0.58 6.34

Greedy × Worst × Customer Number1/3 −2.62 1.95 −6.39 1.23
Greedy × Worst × Avg demand −1.55 8.70 −18.66 15.49
Greedy × Worst × Avg service time 1.76 2.01 −2.20 5.68
Greedy × Worst × Avg time window width −1.45 1.35 −4.10 1.20
Greedy × Worst × Runtime 3.00 1.65 −0.28 6.24

Greedy × Related × Customer Number1/3 10.38 1.54 7.35 13.43
Greedy × Related × Avg demand 10.60 7.09 −3.15 24.54
Greedy × Related × Avg service time −1.34 1.64 −4.57 1.90
Greedy × Related × Avg time window width 2.79 1.12 0.59 4.96
Greedy × Related × Runtime −1.05 1.32 −3.61 1.57

Greedy × RandomWorst × Customer Number1/3 −10.93 1.69 −14.26 −7.62
Greedy × RandomWorst × Avg demand 0.80 7.70 −14.09 15.89
Greedy × RandomWorst × Avg service time 3.09 1.81 −0.49 6.61
Greedy × RandomWorst × Avg time window width −1.52 1.14 −3.76 0.74
Greedy × RandomWorst × Runtime 2.51 1.37 −0.15 5.19

Greedy × WorstRelated × Customer Number1/3 2.92 1.42 0.09 5.67
Greedy × WorstRelated × Avg demand 6.12 6.62 −6.90 19.12
Greedy × WorstRelated × Avg service time −1.04 1.54 −4.10 2.03
Greedy × WorstRelated × Avg time window width 0.49 0.98 −1.43 2.41
Greedy × WorstRelated × Runtime 0.50 1.24 −1.94 2.91

Greedy × RandomRelated × Customer Number1/3 1.86 1.25 −0.53 4.35
Greedy × RandomRelated × Avg demand −0.65 5.67 −11.78 10.50
Greedy × RandomRelated × Avg service time 0.32 1.34 −2.30 2.95
Greedy × RandomRelated × Avg time window width 0.65 0.86 −1.02 2.34
Greedy × RandomRelated × Runtime −1.33 1.08 −3.42 0.78

Regret2 × Random × Customer Number1/3 −2.14 1.12 −4.31 0.10
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Regret2 × Random × Avg demand 1.06 5.56 −9.82 12.02
Regret2 × Random × Avg service time 0.57 1.24 −1.84 3.00
Regret2 × Random × Avg time window width −0.03 0.79 −1.59 1.54
Regret2 × Random × Runtime 0.62 0.93 −1.20 2.42

Regret2 × Worst × Customer Number1/3 −1.80 1.17 −4.12 0.54
Regret2 × Worst × Avg demand 2.41 5.23 −7.67 12.74
Regret2 × Worst × Avg service time 0.54 1.27 −1.92 3.03
Regret2 × Worst × Avg time window width −0.05 0.85 −1.72 1.62
Regret2 × Worst × Runtime −0.59 0.97 −2.47 1.33

Regret2 × Related × Customer Number1/3 −1.64 1.22 −4.02 0.77
Regret2 × Related × Avg demand 2.88 5.72 −8.37 14.13
Regret2 × Related × Avg service time −0.06 1.37 −2.75 2.64
Regret2 × Related × Avg time window width 0.35 0.86 −1.35 2.03
Regret2 × Related × Runtime −1.23 0.99 −3.18 0.70

Regret2 × RandomWorst × Customer Number1/3 −1.22 1.15 −3.48 1.05
Regret2 × RandomWorst × Avg demand −1.90 5.75 −12.99 9.55
Regret2 × RandomWorst × Avg service time 1.72 1.27 −0.77 4.26
Regret2 × RandomWorst × Avg time window width −0.40 0.79 −1.93 1.20
Regret2 × RandomWorst × Runtime −0.39 0.93 −2.19 1.45

Regret2 × WorstRelated × Customer Number1/3 −0.79 1.12 −3.00 1.42
Regret2 × WorstRelated × Avg demand 2.40 5.22 −7.70 12.67
Regret2 × WorstRelated × Avg service time −0.34 1.23 −2.73 2.10
Regret2 × WorstRelated × Avg time window width −0.03 0.78 −1.57 1.50
Regret2 × WorstRelated × Runtime −0.53 0.92 −2.34 1.28

Regret2 × RandomRelated × Customer Number1/3 −1.13 1.13 −3.31 1.09
Regret2 × RandomRelated × Avg demand −0.50 5.51 −11.25 10.30
Regret2 × RandomRelated × Avg service time 0.63 1.23 −1.76 3.06
Regret2 × RandomRelated × Avg time window width 0.55 0.82 −1.05 2.16
Regret2 × RandomRelated × Runtime −0.75 0.95 −2.62 1.16


