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Objective Scaling Ensemble Approach for Integer Linear
Programming

Abstract: The objective scaling ensemble approach is a novel, two-phase heuristic for inte-

ger linear programming problems shown to be effective on a wide variety of integer linear

programming problems. The technique identifies and aggregates multiple partial solutions

to modify the problem formulation and significantly reduce the search space. An empirical

analysis on publicly available benchmark problems demonstrate the efficacy of our approach

by outperforming standard solution strategies implemented in modern optimization software.

1. Introduction

Integer programming (IP) is a fundamental approach to NP-hard combinatorial problems

that arise in wide range of application areas including production, scheduling, finance, net-

work design, and others (Nemhauser and Wolsey 1988, Zhang and Wang 2017, Zhang et al.

2018, ZHANG and ZHAO 2010, Zhang and Nicholson 2016a, Zhang and Yao 2010, Zhang

et al. 2017, Zhang and Wang 2016). There are both linear and non-linear formulations of

IP problems. In this investigation we focus on the former. Broadly defined, an mixed inte-

ger linear program (MILP) aims at optimizing a linear objective function (without loss of

generality we assume minimization) subject to a set of linear equality/inequality constraints

over real and integer/binary variables. Borrowing notation from Fischetti and Lodi (2003),

we define the MILP problem as

(ILP) min z(x) = cTx (1)

Ax ≥ b (2)

xj integer ∀j ∈ G (3)

xj ∈ {0, 1} ∀j ∈ B (4)

xj ≥ 0 ∀j ∈ N . (5)

Here, c is an n-dimensional vector of costs, x is an n-dimensional vector of decision variables,

A is an m × n constraint matrix, b is an m-dimensional vector of parameters, and N is a

set of variable indices {1 . . . n} partitioned into three sets, N = {B,G, C} associated with

binary, integer, and continuous variables, respectively. If C and I = {B,G} are non-empty,
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the problem is a mixed integer linear program (MILP). If C = ∅ and G 6= ∅, the problem is

a pure integer problem. If C and G are empty, but B 6= ∅, it is a binary programming (BP)

problem. If G is empty, but C and B are not, it is a mixed binary problem (MBP). Finally, if

I is empty, the problem is not an integer problem but a linear programming (LP) problem.

Various IP solution approaches entail temporarily removing the integrality constraints in (3)

and (4) solving the associated LP relaxation.

Commercial MILP solvers, such as CPLEX and Gurobi used in both academia and in-

dustry, leverage branch-and-bound and cutting planes algorithms with linear programming

relaxation to find exact optimal solution (Lodi 2010). Due to the time and/or resource com-

plexity of finding exact MILP solutions, there is value in obtaining near-optimal solutions to

such problems quickly. A large body of research has been directed towards finding solution

approaches applicable to particular subclasses of MILP problems, e.g. fixed-charge network

flow problems (Bertsimas and Sim 2003), network design (Crainic et al. 2000), vehicle routing

(Gulczynski et al. 2011), and scheduling (Hoffman and Padberg 1993, van den Akker et al.

2000, Beliën 2007). General-purpose MILP solution approaches on the other hand include

“pivot and complement” for BP problems (Balas and Martin 1980), “pivot and shift” for

MILP problems (Balas et al. 2004), “pivot, cut and dive” (Eckstein and Nediak 2007), OC-

TANE for BP problems (Balas et al. 2001), relaxation induced neighborhood search (RINS)

(Danna et al. 2005), local branching (Fischetti and Lodi 2003), feasibility pump (Fischetti

et al. 2005, Achterberg and Berthold 2007, Bonami et al. 2009), and others (Blum and Roli

2003, Patel and Chinneck 2007). Approximate solutions may be of sufficient quality to stand

on their own or be used in combination with an exact procedure to find feasible solutions.

Modern solvers incorporate many heuristics as part of the overall optimization strategy to

improve time to solution (Linderoth and Lodi 2010).

In this paper, we introduce an heuristic technique and basic framework suitable for a wide

variety of MILP problems. This algorithm, which we call the ensemble approach (OSEA), is

inspired by RINS (Danna et al. 2005) and slope scaling (Kim and Pardalos 1999) techniques.

Section 2 reviews these techniques, explains the motivation of OSEA, and formally defines

the framework. Section 3 describes the problem testbed and reports the computational

results. We summarize the work in Section 4.
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2. Objective Scaling Ensemble Approach

2.1 Motivation

Relaxation induced neighborhood search (Danna et al. 2005) is one of several heuristic tech-

niques used in conjunction with exact solution approaches to MILP problems. Branch-and-

bound (or branch-and-cut) explore the MILP solution space by iteratively fixing one or more

integer variables (a partial solution) and solving the remaining subproblem as a linear re-

laxation. The partial solutions are typically referred to as nodes in the search tree. The

best integer feasible solution found during the process is called an incumbent solution and is

updated whenever a better feasible solution is found. The process is iterated until the entire

solution space has been implicitly examined and a provably optimal solution is found (assum-

ing a feasible solution exists). Many heuristic search techniques, on the other hand, search a

neighborhood, a local space “close” to a particular point within the solution space (as defined

by some distance measure), to find improved solutions, e.g. local branching (Fischetti and

Lodi 2003), tabu search (Glover and Laguna 1999), simulated annealing (Kirkpatrick et al.

1983), and machine learning (Zhang and Nicholson 2016b, Nicholson and Zhang 2016) See

Gendreau and Potvin (2010) for an excellent resource regarding a wide variety of metaheuris-

tic techniques. The local search is then repeated based on the neighborhood of the improved

solution. Neighborhood search procedures are often terminated based on some pre-specified

criteria and do not guarantee the global optimality of the final solution.

RINS employs information from the branch-and-bound process to form a search neigh-

borhood of an incumbent feasible solution. The intuition is that some subset of variables

in a linear relaxation for a given search node will share values with the current incumbent

solution. The variables which do agree are fixed to their incumbent values. The solution

space for the resulting subproblem defines the neighborhood of the incumbent and this space

is searched using an exact technique. Any integer feasible solution found is a globally feasible

solution and possibly will improve the incumbent solution. The sub-IP problem is poten-

tially large and some stopping criterion is used to terminate the local search. The master

branch-and-bound process is resumed with a potentially improved incumbent. RINS can

be employed at any search node. At each node the LP relaxation may result in a different

solution and thus the overall search is diversified.

Slope-scaling, and in particular the dynamic slope scaling procedure (DSSP) (Kim and

Pardalos 1999), was originally designed for the fixed-charge network flow (FCNF) problems
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and has been applied to a various problem types including the piecewise linear network

flow problem (Kim and Pardalos 2000), the multicommodity fixed-charge network problem

(Crainic et al. 2004), the multicommodity location problem (Gendron et al. 2003), the min-

imum toll booth problem (Bai et al. 2010), and stochastic integer programming (Shiina and

Xu 2012). With respect to the original application, DSSP employs a series of linearizations

of the FCNF discontinuous objective function in (6),

min
∑

(i,j)∈A

(cijxij + fijyij) (6)

where A is the set of arcs in the network, x is a vector of continuous arc flow values, y is a

vector of binary decision variables, and the cost vectors c and f are the unit flow costs and

fixed costs, respectively. DSSP removes the binary variables y from the objective, iteratively

scales the fixed cost f and adds them to the variable flow cost c. Similar to RINS, OSEA

uses information from linearized formulations to form a smaller search space. The relaxation

formulation differs from RINS in that the relaxation is not based on a search node (partial

solution), but based on a series of slope-scaling inspired relaxations.

OSEA defines the search space based on variable agreement between (i) an incumbent

solution and one or more solutions of the linearized formulations (i.e., an ensemble of solu-

tions) or (ii) entirely from agreement between solutions in the ensemble. Solution ensembles

have been exploited in a variety of ways such as variable fixing based on value agreement

among solutions (e.g., as in RINS) or “voting” among the solutions (e.g., 4 of 5 solutions

have variable x1 = 17). The latter is commonly employed in the field of statistical learning

(e.g., Breiman 1996). OSEA takes a relatively conservative approach in using the ensemble

to define a sub-MIP problem to be solved exactly.

2.2 OSEA Framework

In many instance of large, real-world IP problems, only a small percentage of the integer

variables have non-zero values in the optimal solution. It is worth noting that among the

larger MILP instances available in the IP benchmark problem library MIPLIB 2010 (Koch

et al. 2011), the relative number of non-zero integer variables in the optimal solutions is very

low. Table 1 shows the summary statistics (minimum, first quartile, median, mean, third

quartile, and maximum) for the percentage of integer variables used in the optimal solution

for the 36 MIPLIB 2010 solved problems that have at least 10,000 integer variables. The
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Table 1: Integer Variables Used in Large MIPLIB instances

Min Q1 Median Mean Q3 Max
0.01% 0.28% 1.30% 3.69% 2.89% 34.41%

median is 1.3% and 75% of the optimal solutions use less than 2.89% of the possible integer

variables. Motivated by this feature of IP problems, OSEA attempts to eliminate integer

variables from the problem formulation and the ensemble aggregation method for OSEA is

designed with this characteristic in mind.

Let E = {s1, s2, . . . , sk} denote an ensemble of k solutions (possibly including infeasible

solutions) to an MILP problem. The set of solutions may be generated through slope-scaling

techniques, LP relaxations, known feasible solutions, accumulating incumbent solutions in

a branch-and-bound algorithm, or other methods. In particular, OSEA fixes the jth integer

variable to 0 if for all solutions s ∈ E , the jth variable, sj, equals 0. That is,

xj ←

{
fix to 0 if sj = 0 ∀s ∈ E
do not fix otherwise

∀j ∈ I.

The integer variables which are left open in the corresponding sub-MIP problem form a

reduced search space. An exact search of the reduced problem space produces the OSEA

solution and objective.

It is important to note that the ensemble does not necessarily consist of high quality

solutions to the original problem. In fact, from initial testing we place a priority on diversity

of quality. If the solutions in E are diverse, then the variables that are unused by every

solution in the ensemble share at least one characteristic: they are each “unattractive” to a

wide range of solutions. Since OSEA fixes variables to 0, by allowing poorer quality solutions

in the ensemble, we take a more conservative approach. That is, only variables that are not

used among a variety of solutions (e.g., good, median, poor) are discarded.

Moreover, if a given integer variable is not used in a linearized optimal solution when the

cost is adjusted to a fraction of its original cost, then the intuition is that the integer variable

is not likely useful in the original problem. The absolute cost associated with a variable is

not as important as the cost relative to other variables. The iterative scheme in slope-

scaling techniques and in OSEA updates individual variable costs throughout the process.

This update scheme dynamically affects the relative costs of the variables. Variables which
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may be too costly to use in a linearized solution during the earlier iterations may become

cost-effective in the latter ones.

The ensemble E must be populated with solutions or partial solutions. For OSEA, this is

primarily accomplished in the objective scaling iteration phase. The scaling process is now

described.

OSEA scales the coefficients of the discrete variables and iteratively solves the relaxed

problem (7),

(LPn) min zLPn (x) =
∑
j∈C

cjxj +
∑
j∈I

c̄nj xj

Ax ≥ b

0 ≤ xj ≤ 1 ∀j ∈ B

xj ≥ 0 ∀j ∈ N

(7)

where c̄nj for j ∈ I is the scaled cost coefficient of the integer variable. Let x̃n denote the

solution to LPn. This solution is used to update the integer coefficient for the next iteration

n+ 1 as follows,

c̄n+1
j ← cj

x̃nj + 1
∀j ∈ {I : x̃nj > 0} (8)

Note in DSSP, the fixed cost value is scaled by 1/x̃n
j , however there are two benefits that

result from modifying this for general application. First, since MILP problems may have

negative integer variable cost coefficients, as the relaxed solution approaches 0, the scaled

costs may approach negative infinity,

lim
x̃n
j→0

−1

x̃nj
= −∞

and a counterintuitive result ensues, namely the attractiveness of the variable increases

without bound as the value of the variable decreases. This effect is bounded by a simple

modification of the denominator in Equation 8. And secondly, the resulting bound is intuitive

lim
x̃n
j→0

cj
x̃nj + 1

= cj.

Slope-scaling dynamically modifies the costs of different variables throughout the search

process to alter their relative attractiveness in the relaxations. While it is true that modi-

fication in Eq. (8) impacts the appealing characteristic of the final iteration N of DSSP in
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which the scaled objective value reflects the true solution cost (i.e., it includes the full fixed

cost incurred in the corresponding network flow solution),∑
j∈C

cjx̃
N
j +

∑
j∈I

c̄Nj [x̃Nj > 0]

where [xNj > 0] denotes the Iverson bracket which returns a 1 if xNj > 0 and 0, otherwise.

However, this outcome is not critical to the success of DSSP. That is, the best solutions from

DSSP are not necessarily found in the final iteration (Nahapetyan and Pardalos 2008). At

earlier iterations n < N , the scaled fixed costs do not represent the true value:∑
j∈I

c̄nj x̃
n
j 6=

∑
j∈I

c̄Nj [x̃Nj > 0].

This suggests that the search path induced by the procedure is of more importance than the

objective value of the final iteration.

The integer variable cost coefficients are initialized to a fraction of the original cost by

scaling by the inverse of the relatively large value M ,

M =
∑
j∈I

|cj|.

Thus,

c0j ←
cj
M

∀j ∈ I

and the update scheme is then,

cnj =


cj

x̃n−1
j +1

if x̃n−1j > 0

cn−1j otherwise
∀j ∈ I.

In the objective scaling phase of OSEA there are N > 0 iterations and consequently N

linearized solutions: a subset of which will be added to the ensemble E . For large N , the

number of different solutions that could be added to E is also large. If |E| is too large, the

reduced search space is potentially too large for practical purposes. Therefore, we select a

subset of the iterated linear solutions to be added to the ensemble. Let S denote this subset.

On the other hand, if |E| is too small or if it does not contain sufficient diversity, then there

may be insufficient options in the search space to generate good solutions to the original

MILP. A number of possible strategies can be designed to build the set S. We devise one

such possible strategy to emphasize ensemble diversity in Section 3.
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If the ensemble E does not contain a feasible solution then OSEA may or may not produce

a feasible solution. However, if a feasible solution is included in E then OSEA is guaranteed to

find a feasible solution in the reduced search space. In our implementation of the framework,

we take a hybrid approach in which we utilize the already existing pre-processing, heuristics,

and branch-and-cut algorithms readily available in commercial software such as Gurobi and

CPLEX to briefly search for a feasible solution that can be added to E . This will be described

in more detail in Section 3.

There are multiple possible stopping criterion for OSEA. Similar to DSSP, the iterative

objective scaling phase will stop once there are no new cost coefficient updates for the integer

variables. In some cases it might be prudent to provide an upper limit on the total number

of iterations allowed for the iterative scaling procedure. Let Nmax denote the max allotted

iterations. Additionally, since OSEA is meant as an heuristic technique to quickly reduce

the search space of complex problems, a time limit could also be imposed on the scaling

phase. The complete OSEA logic (including the iteration limit, but not the time limit) is

summarized in Figure 1.
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Data: ILP instance, Nmax

Result: zOSEA, xOSEA

begin
compute M : M ←

∑
j∈I |cj|

initialize integer costs : c0j ←
cj
M
∀j ∈ I

optional: initialize E by including one or more feasible solution(s) to MILP
n← 0
while n ≤ Nmax do

x̃n ← solution to Problem LPn

c̄nj ←


cj(

x̃n−1j + 1
) if x̃n−1j > 0

c̄n−1j otherwise
∀j ∈ I

if c̄nj = c̄n−1j ∀j ∈ I then

break
n← n+ 1

S ← a subset of {x̃1, . . . , x̃N}
E ← E ∪ S

xj ←

{
fix to 0 if sj = 0 ∀s ∈ E
do not fix otherwise

∀j ∈ I

zOSEA, xOSEA ← solve reduced MILP problem

Figure 1: Objective Scaling Ensemble Approach for MILP problems
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3. Computation Results

3.1 Experimental Design

The MIPLIB 2010 (Koch et al. 2011) is a publicly available library of pure and mixed inte-

ger programming problem instances assembled by researchers and practitioners over several

years. This library of benchmark problems is used in evaluating software performance of

commercial solvers (Gurobi Optimization 2012). The library contains 361 instances classi-

fied into 3 difficulty levels: 185 easy, 42 hard, and 134 open problems. The latter problem

class contains the instances which have yet to be solved optimally. The instances are further

described by 8 characterizations types: benchmarks (B) are solvable within 2 hours on a PC,

infeasible (I), primal (P) instances have the LP relaxation objective equal to the optimal

objective, extra-large problems (X), reoptimize (R) instances require a relatively long time

to solve the LP relaxations, tree (T) instances have a large number of enumeration trees,

unstable (U) instances have poor numerical properties, and challenge (C) instances which

are classified generally as difficult to solve. The majority of the instances in the library also

include information relating to the problem application area (e.g. lot sizing, open pit mining,

network design, etc.)

OSEA is tested on a 170 problem subset of the 361 MIPLIB problems. Since OSEA

is appropriate only for problems with integer variables in the objective function, any prob-

lems without this characteristic are discarded (87 problems). Infeasible problems are also

eliminated from testing (22 problems). Instances which exceed the memory capacity of our

available computer equipment (23 problems) and those in which a feasible solution was not

found within 60 seconds are not included in the experimentation (59 problems).

The experiments will be conducted as follows. To increase the likelihood that an integer

feasible solution is included in the ensemble E , we will employ the existing pre-processing

and heuristic algorithms of the optimization software by attempting to solve each problem

for one second using commercially available optimization software. If a feasible solution is

found in the time limit, it will be added to the ensemble. Regardless, the scaling phase begins

and we select solutions discovered during this iterative stage to be added to the ensemble.

Based on initial testing we emphasize ensemble diversity by including three solutions from

the scaling iterations into the ensemble: the solutions associated with the best, worst, and

median MILP objective values.

The maximum running time for OSEA including initial one second search, objective scal-
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ing phase, and solving the reduced problems is set to 60 seconds. To compare the OSEA

solution quality with the state-of-the-art exact techniques, we will use the Gurobi optimiza-

tion software version 5.6.3 with a time limit of 60 seconds. According to the Gurobi product

website, this solver includes 14 different MIP heuristics, 16 cutting plane strategies, and a

variety of presolve techniques (Gurobi Optimization 2014). We use the default parameter

settings for Gurobi with all heuristics activated (including RINS). The best objective value

found using the default settings of the Gurobi optimization software and the time to find

that value are recorded. All tests are performed on a Windows 7 64bit machine with Intel

Xeon CPU E5-1620 and 8 GB RAM with a single thread.

OSEA is inherently dependent on an IP solver. The technique iteself is used in conjuction

with a solver to reduce the IP search space. The empirical analysis will compare the results

of using OSEA with a commercial solver against using the same commercial solver without

OSEA. While the commericial solver is not being tuned specifically for each problem, the

settings are identical for the OSEA test. That is, the only difference is the additional OSEA

overhead to the commercial solver.

3.2 Experimental Results

Let tpOSEA and tpstandard denote the computing time to solve problem p ∈ P using OSEA and

the standard (solver without OSEA), respectively. Similarly, the best objective values found

for problem p ∈ P denoted by zpOSEA and zpstandard, respectively. Additionally, the solution

gap (ILPgap) is used to evaluate solution quality. Let Gp
X denote the MILP gap for approach

X ∈ {OSEA, standard} on problem p ∈ P ,

Gp
X =

|zpbound − z
p
X|

|zpX|
× 100%, ∀X ∈ {OSEA, standard},

where zpbound is the known optimal objective value for Easy and Hard problems, and is the

linear relaxed objective value for Open instances. Note if zpX = 0, a small positive value is

added to the denominator.

Let γ denote the percentage of integer variables removed in the objective scaling phase

of OSEA. The distribution of γ depicted in Figure 2 shows that OSEA removes a significant

percentage of integer variables for the majority of test bed. Overall, OSEA removes an

average of 61.97% of the integer variables. Reducing the MILP solution space can lead to

notable improvements in computation time.
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Figure 2: Distribution of γ

The results are summarized in Table 2 where n equals the number of problem instances

in each cell. Overall, using a paired t-test, the difference in computing time and objective

values of OSEA against the baseline are statistically significant. Both techniques find optimal

solutions for 40% of the Easy and Hard problems, albeit the instances differ. That is, OSEA

finds optimal solutions to certain instances that the standard approach failed to find within

the time limit, and visa versa. Among the Easy and Hard problems, OSEA terminates faster

than the standard technique, and while the average optimality gap is smaller for OSEA, the

solution quality differences are not significant at a 95% confidence level. For the Open

problems, the results are statistically significant: OSEA produces a higher quality solution

within the time limit and does so in less time.

We use the performance profile technique from Dolan and Moré (2002) to further evaluate

OSEA. The baselines for comparisons on problem p ∈ P are set as the best MILP gap and

computing time, respectively. Let rtp,X denote the performance ratio of computing time on

problem p ∈ P using technique X,

rtp,X =
tpX

min{tpOSEA, t
p
standard}

, ∀X ∈ {OSEA, standard}.

Let ρtX(τ) denote the probability for approach X that rtp,X is within a factor τ of the best
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Table 2: Statistical Analysis of Performance by Difficulty Level

Computing Time Objective Value

Difficulty n tOSEA tstandard p-value GOSEA Gstandard p-value

Easy 108 19.84 41.41 < 0.0001 3.12% 4.9% 0.066
Hard 32 30.39 60.03 < 0.0001 8.4% 12.51% 0.072
Open 30 42.31 60.09 0.0004 1226.25% 1227.02% 0.028

Overall 170 25.26 47.99 < 0.0001 212.73% 214.77% 0.014

ratio in terms of computing time,

ρtX(τ) =
1

|P |
size
{
p ∈ P : rtp,X ≤ τ

}
, ∀X ∈ {OSEA, standard}.

Similarly, let ρGX(τ) denote the probability that approach X is within a factor of τ from

the best MILP gap ratio. In both cases, larger values are preferred. The cumulative distri-

butions of ρtX(τ) and ρGX(τ) form the respective performance profiles. Performance profiles

evaluate the overall performance of a solution technique and when |P | is sufficiently large,

are relatively robust with respect to performance outliers of individual problem instances

(Dolan and Moré 2002).

The performance profile for solution times are presented in Figures 3 and 4 with two

different ranges for τ each. The probability that OSEA terminates earlier than the standard

approach is 0.829 (see Figure 3 when τ = 1). OSEA solves 100% of the problems within

a factor of 6.1 for the computation time ratio, i.e., ρtOSEA(6.1) = 1, whereas ρtstandard(6.1) is

only 0.606. The performance profile for the standard approach demonstrates that OSEA is

much faster for many problems, e.g., ρtstandard(τ) ≤ 0.9 for τ ≤ 872 (depicted in Figure 4.)

That is, OSEA terminates 872 times faster than the standard approach on 10% of benchmark

problems.

While the reduced problems solve faster than the original problems, the solution qualities

must be examined. Figure 5 shows the performance profile of solution quality for τ ∈
[1, 10]. OSEA is more likely to outperform the standard method, i.e., ρGOSEA(1) = 80% >

ρGstandard(1) = 67%. OSEA solves 90% of all problems within a factor of 1.5 of the best

technique. The OSEA solution quality performance profile is equal to or superior than the

standard performance profile across all values of τ . Note the minimum values of τ necessary

to capture all problems: ρGOSEA(86) = 100%, whereas ρGstandard(1173) = 100% (not shown in
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Figure 3: Computation time performance profile for 1 ≤ τ ≤ 10

figure) implying that OSEA performs, at worst, 86 times as bad as the standard technique,

whereas the standard technique performed, up to 1173 times worse than OSEA.
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Figure 5: Solution quality performance profile for 1 ≤ τ ≤ 10
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4. Conclusions

The objective scaling ensemble approach is a novel, two-phase heuristic solution procedure

that iteratively solves scaled linear versions of the original MILP problem and uses a subset

of the LP relaxation results to form an ensemble of solutions. This ensemble is aggregated

in such a way to identify integer variables which are not likely to be used in an optimal

solution. These variables are removed from the MILP to create a reduced problem space.

Exact techniques such as branch-and-cut are applied to the revised problem formulation. If

the reduced search space is sufficiently large, a feasible and even possibly optimal solution

for the original MILP can be found. If the space is small enough, the revised problem space

can be searched more efficiently.

The inspiration for OSEA comes from well known and successful heuristic approaches

which have been used in conjunction with other techniques to produce a more efficient search

of complex problem spaces. Many advanced heuristic approaches are often invoked by default

in commercial optimization software. We compare the solution quality of OSEA in the first 60

seconds of optimization time to that of the assortment of heuristics, cutting plane strategies,

and exact search algorithms implemented in Gurobi 5.6.3. OSEA successfully reduces the

search space in a way which is competitive with industry leading optimization software.

The empirical results on 170 publicly available benchmark integer programming problems

and rigorous analysis indicate that OSEA can improve MILP solution quality on a wide range

of problems without compromising the computation time. Among the benchmark problems,

many are well documented and related to published work (e.g., Fischetti et al. 2005, Bley

et al. 2010, Raack et al. 2011). The instances include a wide variety of problem types

and application areas including network design, open pit mine production, the p-Median

problem, crew scheduling, and lot sizing, among others. The problems range in size from

hundreds of integer variables to several orders of magnitude more. For certain problem

types evaluated, OSEA performs exceptionally well, e.g. open pit mining. For others, the

results while promising, are mixed, e.g. network design problems. In future work we will

examine the particular nature of certain problem formulations to understand whether or not

the outstanding results are generalizable to the problem class.

OSEA can be easily applied to any MILP problem with integer variables in the objective

function. However, OSEA is not meant to be used exclusive of traditional IP solvers, but

ideally to be incorporated as yet another of the integrated heuristics used in software. In

17



our initial experimentation to this end, we find OSEA to improve the solution performance

at the root node of the branch-and-bound algorithm, but not to work well at subsequent

nodes. While some heuristics (e.g., RINS) are activated at various nodes of branch-and-

bound, earlier indications are that OSEA is a beneficial initial heuristic applied specifically

at the root node to find better incumbent solutions early on.
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Dolan, E., J. Moré. 2002. Benchmarking optimization software with performance profiles.

Mathematical programming 91 201–213.

Eckstein, J., M. Nediak. 2007. Pivot, cut, and dive: a heuristic for 0-1 mixed integer

programming. Journal of Heuristics 13 471–503.

Fischetti, M., F. Glover, A. Lodi. 2005. The feasibility pump. Mathematical Programming

104 91–104.

Fischetti, M., A. Lodi. 2003. Local branching. Mathematical programming 98 23–47.

Gendreau, M., J.-Y. Potvin. 2010. Handbook of metaheuristics , vol. 2. Springer.

Gendron, B., J.-Y. Potvin, P. Soriano. 2003. A tabu search with slope scaling for the

multicommodity capacitated location problem with balancing requirements. Annals of

Operations Research 122 193–217.

Glover, F., M. Laguna. 1999. Tabu search. Springer.

Gulczynski, D., B. Golden, E. Wasil. 2011. The multi-depot split delivery vehicle routing

problem: An integer programming-based heuristic, new test problems, and computational

results. Computers and Industrial Engineering 61 794 – 804.

Gurobi Optimization, Inc. 2012. Gurobi solves the hardest models. http://www.gurobi.

com/company/news/gurobi-solves-the-previously-unsolvable. Accessed: 11-20-

2015.

Gurobi Optimization, Inc. 2014. Features and benefits overview. http://www.gurobi.com/

products/gurobi-optimizer/features-and-benefits. Accessed: 12-31-2014.

Hoffman, K.L, M. Padberg. 1993. Solving airline crew scheduling problems by branch-and-

cut. Management Science 39 657–682.

20

http://www.gurobi.com/company/news/gurobi-solves-the-previously-unsolvable
http://www.gurobi.com/company/news/gurobi-solves-the-previously-unsolvable
http://www.gurobi.com/products/gurobi-optimizer/features-and-benefits
http://www.gurobi.com/products/gurobi-optimizer/features-and-benefits


Kim, D., P. Pardalos. 1999. A solution approach to the fixed charge network flow problem

using a dynamic slope scaling procedure. Operations Research Letters 24 195–203.

Kim, D., P. Pardalos. 2000. Dynamic slope scaling and trust interval techniques for solving

concave piecewise linear network flow problems. Networks 35 216–222.

Kirkpatrick, S., C. Gelatt, M. Vecchi. 1983. Optimization by simulated annealing. Science

220 671–680.

Koch, T., T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. Bixby, E. Danna, G. Gam-

rath, A. Gleixner, S. Heinz, et al. 2011. Miplib 2010. Mathematical Programming Com-

putation 3 103–163.

Linderoth, J., A. Lodi. 2010. MILP software. J. Cochran, L. Cox, P. Keskinocak,

J. Kharoufeh, J. Smith, eds., Wiley Encyclopedia of Operations Research and Manage-

ment Science. Wiley, New York.

Lodi, A. 2010. Mixed integer programming computation. M. Jünger, T. Liebling, D. Naddef,
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