
ar
X

iv
:1

90
7.

09
46

8v
1

 [
cs

.A
I]

 2
1

Ju
l 2

01
9

Heuristic solutions to robust variants of the

minimum-cost integer flow problem

Marko Špoljarec
Privredna banka Zagreb

Radnička cesta 44, 10000 Zagreb, Croatia

E-mail: marko.spoljarec@pbz.hr

Robert Manger
University of Zagreb, Faculty of Science, Department of Mathematics

Bijenička cesta 30, 10000 Zagreb, Croatia

E-mail: manger@math.hr

Abstract. This paper deals with robust optimization applied to network
flows. Two robust variants of the minimum-cost integer flow problem are
considered. Thereby, uncertainty in problem formulation is limited to arc
unit costs and expressed by a finite set of explicitly given scenarios. It is
shown that both problem variants are NP-hard. To solve the considered
variants, several heuristics based on local search or evolutionary computing
are proposed. The heuristics are experimentally evaluated on appropriate
problem instances.

Keywords: robust optimization, network flow, minimum-cost flow, heuris-
tic, local search, evolutionary computing.

1 Introduction

Flows in networks are an important modeling paradigm used in optimization. Models
based on flows are applied in different areas, such as transport, logistics, production
planning, network design, etc. There are several types of network flow problems, but
most of them reduce to the relatively general minimum-cost flow problem.

As it is true for any optimization task, an instance of the minimum-cost flow prob-
lem is specified by exact values of parameters within its objective function and its
constraints. However, in real-world situations parameter values are often hard to deter-
mine since they may depend on unpredictable future circumstances or perhaps cannot
be measured accurately. Then we speak about uncertainty in problem formulation. The
traditional approach to optimization tends to ignore uncertainty. It means that param-
eters are very often given approximate, unreliable or ad-hoc values. Unfortunately, such
approach can lead to inferior or even infeasible solutions. Therefore, instead of ignoring

1

http://arxiv.org/abs/1907.09468v1

uncertainty, it is much better to admit its existence and find a more appropriate way
of dealing with it.

A state-of-the-art approach to deal with the mentioned uncertainty is called robust

optimization. According to that approach, a finite or infinite set of scenarios is defined -
each of them specifies a possible combination of parameter values. Only those solutions
are considered that are feasible for all scenarios. The behavior of any solution under
any scenario is measured in some way. For each solution, its worst behavior over the
whole set of scenarios is recorded. As the optimal solution in the robust sense, the one
is chosen whose recorded worst behavior happens to be the best among all solutions. A
consequence of using the robust approach is that the initial (let us say) minimization
problem transforms into a more complex min-max problem. The robust solution does
not need to be really optimal for any scenario, but it is chosen in order to be acceptable
even in the most adverse circumstances.

The foundations of robust optimization have been laid out in the seminal works
[7, 8, 9, 21]. For our purposes the most important reference is the book [21], which
provides a framework for robust discrete (or combinatorial) optimization. More recent
surveys of the whole discipline and its general results are available in [1, 2, 10, 19].

The existing research papers on robust discrete optimization are mostly concerned
with the shortest path problem. Also well covered is the knapsack or the minimum
spanning tree problem. There are not too many works dealing with flows in networks.
The available papers on robust flows [3, 4, 8, 11, 12, 22, 23, 24, 26, 27, 28] are hard
to compare since they use quite different definitions and concepts. Some of them, e.g.
[12, 28], capture uncertainty in parameters by assuming a finite and explicitly given
set of scenarios. Other papers, e.g. [3, 4, 8, 22, 23, 24, 26], assume intervals or even
more general geometric constructs for parameter values, thus dealing implicitly with an
infinite but rather regular set of scenarios. There are also big differences regarding the
scope or extent of uncertainty.

It is well known that the conventional (non-robust) flow problems can be solved
efficiently by polynomial-time algorithms. On the other hand, many robust variants of
flow problems turn out to be NP-hard. Consequently, finding efficient algorithms for
robust variants is a challenging and important research topic. At this moment, there are
not many algorithms found in literature that can be regarded as efficient and suitable
for real-world situations. Authors of the available papers have mainly been concerned
with complexity issues or specialized solutions. For instance, the authors of [28] propose
an algorithm for solving a robust minimum-cost integer flow problem, which relies on
an unspecified sub-algorithm for solving the corresponding (NP-hard) robust shortest
path problem. As far as we know, there are no reports in literature on solving robust
minimum-cost flow problems by standard heuristics or meta-heuristics.

The aim of this paper is to demonstrate that robust flow problems can be solved
with reasonable efficiency even if they are NP-hard. The aim is also to present useful
and practically relevant algorithms for solving some types of robust flow problems.
In order to fulfill its aims, the paper considers two robust variants of the minimum-
cost integer flow problem. Both of them are based on an explicitly given finite set
of scenarios. Uncertainty expressed through scenarios is limited to arc unit costs. It
is shown that both problem variants are NP-hard, which is an indication that they
could be solved efficiently only by approximate algorithms. The paper proposes several
heuristic solutions based on local search and on evolutionary computing, respectively.

2

The proposed heuristics are tested on carefully constructed problem instances, and their
performance is measured in terms of accuracy and speed.

Our decision to study heuristics instead of some other types of algorithms is moti-
vated by the fact that real-world problem instances may be fairly large. It is true that
smaller instances can be solved exactly by general-purpose optimization software pack-
ages. Also, moderately sized tasks can be solved at least approximately by relaxation
(ignoring integrality constraints) and rounding. Still, very large instances may easily
become intractable for general-purpose methods even in the relaxed form, so that they
could be tackled only by heuristics.

Apart from this introduction, the rest of the paper is organized as follows. Section 2
specifies two robust variants of the minimum-cost integer flow problem and shows that
both of them are NP-hard. Section 3 describes some basic procedures with flows that will
further on be used as building blocks for heuristics. Section 4 presents our heuristics for
solving the considered problem variants. Section 5 reports on experimental evaluation
of the heuristics. The final Section 6 gives conclusions.

2 Problem variants and their complexity

We first describe the conventional (non-robust) variant of the minimum-cost integer
flow problem. We use the formulation from [25]. Let G = (V,A) be a network (directed
graph), where V = {v1, v2, . . . , vn} is a set of n elements called vertices and A ⊂ V ×V

is a set of ordered pairs of vertices called arcs . Each arc (vi, vj) is characterized by its
capacity uij and its unit cost cij. Vertex v1 is called the source and vertex vn the sink .
We consider feasible flows that transfer a required amount of flow F from the source
to the sink. Thereby, a feasible flow is a nonnegative function defined on arcs, which
conforms to the flow conservation rule in vertices and to the capacity constraints along
arcs. The arc flow value assigned to an arc (vi, vj) is denoted by xij . The flow cost is
obtained by summing the products cijxij over all arcs (vi, vj). The objective is to find
a feasible flow with minimal cost .

In this paper we assume that all input data uij, cij, F are nonnegative integers.
Moreover, we expect that the flow itself should consist of integer arc values xij . Thus
we indeed consider the minimum-cost integer flow problem. The restriction to integers
makes sense when a discrete phenomenon is modeled, such as transportation of packaged
goods, assignment of tasks to agents, etc.

The described minimum-cost integer flow problem can more formally be defined as
the following integer linear programming problem [25]:

MCIF . . . z =
∑

(vi,vj)∈A

cijxij −→ min

subject to:

∑

vj∈V

(vi,vj)∈A

xij −
∑

vj∈V

(vj ,vi)∈A

xji =











F if vi = v1
−F if vi = vn
0 otherwise

, for all vi ∈ V

0 ≤ xij ≤ uij, for all (vi, vj) ∈ A

xij integer, for all (vi, vj) ∈ A

3

Note that the considered minimum-cost flow problem includes also the well-known
minimum-cost maximal flow problem [13] as a special case. Indeed, for a given network
we can compute its maximal flow value in advance. Then, in order to solve the minimum-
cost maximal flow problem, we can solve our problem with F set to the computed
maximal flow value. Note also that in some literature, e.g. [5, 18, 20], the minimum-cost
flow problem is described in a different way allowing more sources and sinks. Although
seemingly more general, such alternative formulation can easily be reduced to ours.
Reduction is obtained by introducing an additional source and an additional sink, and
by adding arcs with appropriate capacities from the new source to each of the original
sources, as well as from each of the original sinks to the new sink.

Now we describe two robust variants of the minimum-cost integer flow problem.
According to our adopted approach from [21], uncertainty in input data is captured by
a finite set of scenarios S. A particular scenario s ∈ S is expressed through a specific
set of arc unit costs csij. We assume that network structure and arc capacities are the
same for all scenarios. Consequently, the set of feasible flows also remains the same, no
matter which scenario has been chosen.

The first robust variant is called absolute [21] or min-max [1] robust variant. There,
the behavior of a feasible flow under a certain scenario is measured absolutely, i.e. as
the actual flow cost. For each feasible flow, its worst behavior (i.e. its maximal flow
cost) over all scenarios is recorded. As the robust solution, the flow is chosen whose
worst behavior is the best (i.e. minimal) among all feasible flows. More formally, the
absolute robust variant is defined as follows:

RMCIF-A . . . z = max
s∈S







∑

(vi,vj)∈A

csijxij







−→ min

subject to:

∑

vj∈V

(vi,vj)∈A

xij −
∑

vj∈V

(vj ,vi)∈A

xji =











F if vi = v1
−F if vi = vn
0 otherwise

, for all vi ∈ V

0 ≤ xij ≤ uij, for all (vi, vj) ∈ A

xij integer, for all (vi, vj) ∈ A

The second robust variant is called robust deviation [21] or robust min-max regret

[1] variant. There, the behavior of a feasible flow under a certain scenario s is measured
as deviation of the actual cost from the optimal cost zs for that scenario (computed in
advance). Again, the flow is chosen whose worst behavior over the whole set of scenarios
is the best possible. Or more formally, the robust deviation variant is defined in the
following way:

RMCIF-D . . . z = max
s∈S







∑

(vi,vj)∈A

csijxij − zs







−→ min

subject to:

4

∑

vj∈V

(vi,vj)∈A

xij −
∑

vj∈V

(vj,vi)∈A

xji =











F if vi = v1
−F if vi = vn
0 otherwise

, for all vi ∈ V

0 ≤ xij ≤ uij, for all (vi, vj) ∈ A

xij integer, for all (vi, vj) ∈ A

On the first sight, RMCIF-A and RMCIF-D seem to be nonlinear since their ob-
jective functions involve min-max combinations. However, both problems can easily
be transformed into integer linear programming problems. Transformation is done by
introducing an additional variable y in a manner shown in [21]. Indeed, here are the
corresponding “linearized” versions RMCIF-A′ and RMCIF-D′, respectively:

RMCIF-A′ . . . y −→ min

subject to:
∑

(vi,vj)∈A

csijxij ≤ y, for all s ∈ S

∑

vj∈V

(vi,vj)∈A

xij −
∑

vj∈V

(vj,vi)∈A

xji =











F if vi = v1
−F if vi = vn
0 otherwise

, for all vi ∈ V

0 ≤ xij ≤ uij, for all (vi, vj) ∈ A

xij integer, for all (vi, vj) ∈ A

RMCIF-D′ . . . y −→ min

subject to:
∑

(vi,vj)∈A

csijxij ≤ y + zs, for all s ∈ S

∑

vj∈V

(vi,vj)∈A

xij −
∑

vj∈V

(vj ,vi)∈A

xji =











F if vi = v1
−F if vi = vn
0 otherwise

, for all vi ∈ V

0 ≤ xij ≤ uij, for all (vi, vj) ∈ A

xij integer, for all (vi, vj) ∈ A

Note that our two robust variants RMCIF-A and RMCIF-D differ only in the way
how the robust objective function is defined. In some contexts we will treat both variants
together by referring simply to the “robust minimum-cost integer flow problem”. We
will also use the common acronym RMCIF.

To illustrate the introduced problem variants, we give now a simple example. Let
us consider the network shown in Figure 1. All arc capacities are set to 1. Vertex v1
is the source and vertex v14 the sink. The desired flow value is F = 2. Arc unit costs

5

are given by two alternative scenarios and shown as arc labels separated by “/”. We
would like to compute the solution of the conventional variant MCIF for each scenario.
Also, we would like to solve the absolute robust variant RMCIF-A, as well as the robust
deviation variant RMCIF-D.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

1 / 5 1 / 5

2 / 4 2 / 4

3 / 3 3 / 3

4 / 2 4 / 2

Figure 1: A sample problem instance with two scenarios.

As we can see, our network in Figure 1 consists of four separate paths. Each path
connects the source to the sink and has capacity 1. Thus any feasible flow with value
F = 2 must be a combination of exactly two unit flows, each of them sending one unit
of flow through a distinct path.

Let flow 1 be the flow through the uppermost path in Figure 1, flow 2 through the
next uppermost path, . . . , flow 4 through the lowermost path. By examining all six
combinations of two among four flows, we can easily check that the optimal solution
under the first scenario is the combination of flow 1 with flow 2 - the respective cost is
10. Similarly, the optimal solution under the second scenario is flow 3 plus flow 4 with
the cost l4. On the other hand, the combination of flow 2 with flow 4 gives the optimal
solution in the sense of absolute robustness and its cost is 16. Finally, the optimum in
the sense of robust deviation can be achieved either by flow 1 plus flow 4, or by flow 2
plus flow 3 - the optimal deviation of cost is 4.

The presented example clearly shows that a robust solution can differ from any
conventional solution corresponding to a particular scenario. Also, we see that the
considered two criteria of robustness can produce different results.

Now we will discuss computational complexity issues [16, 25] regarding different
variants of the minimum-cost integer flow problem. It is well-known [18] that the con-
ventional (non-robust) variant MCIF can be solved in polynomial time, even if integral
solutions are required. However, by switching to robust versions, the problem becomes
much more complex, as stated by the following proposition.

Proposition 1 The problem variants RMCIF-A and RMCIF-D are both NP-hard.

This claim is true even if the number of scenarios is limited to 2.

6

The proof is obtained by polynomial reduction [16, 25] of suitable shortest path problem
variants to our considered flow problem variants. Namely, the standard source-to-sink
shortest path problem is equivalent to the minimum-cost integer flow problem posed
in the same network, with arc lengths interpreted as unit costs, and with the required
flow value F = 1. Indeed, for F = 1, due to integrality, each flow must be a unit flow.
Any unit flow determines a path from the source to the sink, and vice-versa. Thus the
minimum-cost unit flow is equivalent to the shortest path. Moreover, the solution of
any robust variant of the minimum-cost unit flow problem is equivalent to the solution
of the corresponding robust variant of the shortest path problem. On the other hand,
it has been proved in [21] that both robust variants of the shortest path problem are
NP-hard, even in the case with only 2 scenarios. Therefore the corresponding network
flow variants must also be NP-hard.

In spite of the observed NP-hardness, smaller instances of RMCIF-A or RMCIF-D
can be solved exactly by general-purpose integer programming software packages. There-
by, “linearized” formulations RMCIF-A′ and RMCIF-D′, respectively, should be used.
Still, larger problem instances can easily become intractable. The only practical way of
dealing with such larger instances is switching to approximate solutions.

3 Basic procedures with flows

In this section we present some basic computational procedures dealing with flows.
Most of them are relatively well known since they are incorporated within standard
networking algorithms. However, our intention is to use them in a novel way as building
blocks for heuristics. The procedures are listed and specified in Table 1. It is assumed
that all involved flows operate on the same network.

In the remaining part of this section we briefly describe how the procedures from
Table 1 can be implemented. In many cases, implementation is based on finding a path
in a network. Depending on a particular procedure, here follow the details.

• Summation of flows is implemented in a straightforward way. The same is true
for flow centering .

• To implement flow decomposition, we consider the network consisting of arcs that
are used by f , i.e. arcs whose arc flow values according to f are > 0. Within
that network we find a path from the source to the sink, e.g. with Moore’s BFS
algorithm [18]. The found path determines the first unit flow φ1. We subtract φ1

from f , thus obtaining a simpler integer flow f1 with value F − 1. We repeat the
same routine on f1 in order to obtain the second unit flow φ2, . . . , etc., until all
F unit flows are found.

• Flow augmentation is achieved in the following way. We construct the so-called
displacement or residual network associated with f [13, 18, 20]. Such network
consists of forward arcs (showing where f can be increased) and of backward arcs
(indicating where f can be decreased). We try to find an arbitrary path in the
displacement network from the source to the sink. For this purpose we use e.g.
Moore’s BFS or Tarjan’s DFS algorithm [18]. If the sought path does not exist,
then F cannot be increased since it is already maximal. Otherwise, in order to

7

Procedure Input Output
name

Summation A list of flows The pseudo-flow g equal
of flows f1, f2, . . . , fr to the sum of f1, f2, . . . , fr
Flow An integer flow f A list φ1, φ2, . . . , φF of F unit
decomposition with value F flows whose sum is equal to f
Flow A list of flows The (possibly non-integer) flow
centering f1, f2, . . . , fr g equal to the arithmetic mean

of f1, f2, . . . , fr
Flow An integer flow f An integer flow g with value
augmentation with value F > F , which can be considered

as an augmented version of f
Flow A non-integer flow An integer flow g, which can
rounding f with value F be regarded as an integral

approximation of f , and
whose value is F rounded
to the nearest integer

Flow Two lists of unit An integer flow h, which is a
composition flows, φ1, φ2, . . . , φF sum of roughly equal number

and ψ1, ψ2, . . . , ψF of unit flows from both input
lists, and whose value is F

Flow cost A scenario s, an An integer flow g, which can be
reduction integer flow f with considered as a cost-reduced

value F whose cost version of f , having the same
under scenario s value F but cost (under
is C scenario s) smaller than C

Flow An integer flow f An integer flow g with the same
perturbation with value F value F , which can be regarded

as a slightly perturbed version
of f

Flow Two integer flows An integer flow h with the same
harmonization f and g, both value F , which can be regarded

with value F as an adjusted version of f
being more “similar” to g
than the original version

Finding a An integer F An arbitrary integer flow f

flow with a with value F
given value
Finding a An integer F , An integer flow f with value F ,
minimum-cost a scenario s whose cost (under scenario s)
flow is minimal

Table 1: Specification of our basic procedures with flows.

8

obtain g, we modify f according to the found path, so that the same integral
amount of flow is added to each forward arc and subtracted from the inverse of
each backward arc. The used amount of flow is chosen so that it does not exceed
the limit imposed by arc capacities along the path.

• To implement flow rounding , we consider the pseudo-flow f̄ obtained from f by
rounding all its arc values xij to ⌊xij + 0.5⌋ (i.e. to the nearest integer). Note
that f̄ may violate the conservation rule in vertices, but it still must obey the
capacity constraints along arcs due to the fact that all arc capacities are integral.
We construct the network consisting of arcs whose arc flow values according to
f̄ are > 0. In that network we try to find a path from the source to the sink,
by employing e.g. Moore’s BFS or Tarjan’s DFS algorithm [18]. The found path
determines the first unit flow φ1. We subtract φ1 from f̄ , thus obtaining a simpler
pseudo-flow f̄1 with smaller value. We repeat the same routine on f̄1 in order to
obtain the second unit flow φ2, . . . , etc. Iteration stops after ⌊F + 0.5⌋ steps,
or earlier if the remaining network becomes disconnected (i.e. if there is no path
from the source to the sink). Then we sum up the collected unit flows φ1, φ2, . . .

in order to obtain the first version of g. It is obvious that the obtained g must
be a feasible integer flow, namely it satisfies the flow conservation rule (since it
is a sum of unit flows) and it also obeys the capacity constraints (since its arc
values cannot exceed the corresponding values in f̄). Finally, if the value of g is
less than ⌊F +0.5⌋, we repeatedly modify g by using the previously described flow
augmentation procedure until the desired flow value is reached.

• Flow composition can be done in the following way. A combined list of ≤ F

unit flows is formed by selecting elements from the first and from the second
input list in alternation (a randomly chosen element from the first list, then a
randomly chosen element from the second list, then again from the first list, . . . ,
etc.). During the whole construction process, the already selected unit flows must
be compatible in the sense that their sum is a feasible flow. If in some step
compatibility is violated, then that step may be repeated by randomly choosing
some other element from the same input list. However, even with such repeated
trials, it can still happen that the combined list cannot be completed to length
F because any remaining element from the appropriate input list would lead to
incompatibility. In that case, construction stops with the combined list containing
< F unit flows. Anyway, the elements from the combined list are summed up in
order to produce the first version of the output flow h. If the obtained h has the
value < F , it is repeatedly modified by the flow augmentation procedure until the
desired value F is reached.

• To achieve flow cost reduction, we try to find a negative-length cycle in the cor-
responding displacement network (considering unit costs as arc lengths, assuming
that costs of forward arcs have positive signs and costs of backward arcs negative
signs). To find such cycle we can use e.g. the Floyd-Warshall algorithm [13, 18, 20].
The remaining details regarding how the found cycle is used to transform f into
g are similar as for flow augmentation.

• To realize flow perturbation, we try to find an arbitrary cycle in the corresponding

9

displacement network - it can be done e.g. by the backtracking DFS algorithm
[18]. The remaining steps needed to obtain g from f are analogous as for flow
cost reduction.

• Flow harmonization can be implemented as flow perturbation applied to f . How-
ever, a customized displacement network associated with f is applied. Namely,
only those forward arcs are taken into account that are used by g. Also, only
those backward arcs are considered that correspond to arcs not used by g.

• To find a flow with a given value, we could start from the null flow f and transform
it into a flow with value F by repeated application of the flow augmentation
procedure. There exist also more compact and more efficient implementations,
such as the Edmonds-Karp, Dinic or Malholtra-Kumar-Maheshwari algorithm [18,
20].

• In order to find a minimum-cost flow , we could start from an arbitrary flow f with
value F , e.g. the one obtained by the previously described procedure. Then we
could transform f into a minimum-cost flow by iterating the flow cost reduction
procedure. Again, there exist more compact and more efficient implementations.
Some of them are based on finding shortest paths in networks (considering arc unit
costs as their lengths). Finding shortest paths can be implemented by Dijkstra’s
algorithm (if arc lengths are nonnegative) or by the Bellman-Ford algorithm (if
arc lengths can be negative but there is still no cycle with negative length) [13, 18].

4 Heuristic solutions

In this section we first describe our local search algorithm for solving the RMCIF prob-
lem. Its outline is specified by the pseudo-code shown in Figure 2. Our pseudo-code
follows the well-known overall strategy described e.g. in [25, 29]. Thus for a given prob-
lem instance, the algorithm starts by finding a feasible flow that will serve as the initial
solution, i.e. the first version of the current solution. Then the current solution is iter-
atively improved. In each iteration, the so-called neighborhood of the current solution
is generated. The neighborhood consists of feasible flows obtained by modifying the
current flow in certain ways. All flows in the neighborhood are evaluated according
to the chosen robust criterion of optimality (objective function). The best-evaluated
member of the neighborhood is identified. If the best-evaluated member is better then
the current solution, it becomes the new current solution and the algorithm proceeds
with another iteration. Otherwise the algorithm stops and proclaims the last current
solution to be nearly optimal (in the robust sense) for the considered problem instance.

As indicated by Figure 2, our local-search algorithm relies on two predefined param-
eters: the first of them determines the neighborhood size, and the second is used within
a stopping condition. We see that the whole search can in fact terminate in two ways:
(normally) when the current flow cannot be improved any more, or (exceptionally) when
a predefined limit for total number iterations is reached.

According to the outline shown in Figure 2, there are many possible variants of local
search. First of all, the variants can differ in the chosen robust criterion of optimal-
ity. Indeed, we can choose absolute robustness according to the problem specification

10

Local search for the RMCIF problem {

import the predefined parameters neighborhoodSize, iterationLimit;
input the RMCIF problem instance;

CurrentF low = an initial feasible flow;
evaluate CurrentF low according to the
robust criterion of optimality;

iterationCount = 0;

while (iterationCount < iterationLimit) {

generate the neighborhood N of CurrentF low

consisting of neighborhoodSize feasible flows;

evaluate all flows in N according to the
robust criterion of optimality;

BestF low = the best-evaluated flow in N;
if (BestF low is better than CurrentF low)

CurrentF low = BestF low;
else

break;
iterationCount += 1;

}

output CurrentF low as the solution;

}

Figure 2: Generic pseudo-code of local search.

RMCIF-A, or robust deviation captured by RMCIF-D. Note that in the case of ro-
bust deviation the cost of the minimum-cost flow for each particular scenario is needed
within the objective function. Those costs should be computed in advance by using the
appropriate procedure from the previous section.

After the robust criterion has been chosen, there is still a lot of possibilities how
to construct the initial feasible flow or generate the neighborhood of the current flow.
In this paper we restrict to four local-search variants for each robustness criterion.
The variants (i.e. heuristics) are called LS-1, LS-2, LS-3 and LS-4, respectively. Their
properties are summarized in Table 2.

As it can be seen from Table 2, our four heuristics based on local search start from
different initial flows. However, the neighborhood of a current flow is always generated in
the same manner. One of the heuristics involves repeated execution of the pseudo-code
from Figure 2. All initial flows and neighborhoods are produced by using appropriate
basic procedures from the previous section. Here are some more details.

• In LS-1 the initial flow is constructed in a rather rudimentary way. The idea is
to choose an arbitrary feasible flow whose design is not influenced by the given
scenarios. It can be obtained by finding a flow with a given value.

• In LS-2 the initial flow is chosen by a kind of greedy approach. First, the minimum-
cost flow for each scenario is found. Then, the obtained minimum-cost flows are
evaluated according to the chosen robust criterion of optimality. Finally, the
best-evaluated flow is selected.

11

Initial Neighborhood Repeated
flow generation execution?

LS-1 arbitrary iterated flow no
feasible flow cost reduction

LS-2 best-evaluated iterated flow no
minimum-cost flow cost reduction

LS-3 rounded centered iterated flow no
minimum-cost flow cost reduction

LS-4 minimum-cost flow for iterated flow yes - once for
a particular scenario cost reduction each scenario

Table 2: Variants of local search.

• In LS-3 the initial flow is constructed by using a balanced approach. Again, the
minimum-cost flow for each scenario is found. Next, the centered flow based on
all those minimum-cost flows is computed. Finally, flow rounding is applied to
the centered flow in order to make it integral.

• In LS-4 initialization is subject to multiple trials. The initial flow is again chosen
as the minimum-cost flow for a particular scenario. However, the whole pseudo-
code from Figure 2 is executed separately for each scenario. Finally, among all
solutions obtained in this manner the best one (according to the robust criterion)
is chosen as the final solution.

• In all considered variants of local search, neighborhood generation is based on flow
cost reduction according to various scenarios. Indeed, the current flow is cost-
reduced separately according to each scenario. Thus the neighborhood initially
consists of as many flows as there are scenarios. In order to obtain a larger
neighborhood, cost reduction for a particular scenario can be iterated several
times and all intermediate flows can be recorded.

In the remaining part of this section we describe our evolutionary algorithm for
solving the RMCIF problem. Its outline is given by the pseudo-code in Figure 3. Our
pseudo-code follows the well-known overall strategy described e.g. in [15, 29]. Indeed,
it is a randomized computing process which maintains a population of feasible solutions
(flows). The population is iteratively changed, thus producing a series of population
versions called generations . All flows in a generation are evaluated according to the
chosen robust criterion of optimality (objective function). We expect that the best-
evaluated flow in the last generation should represent a nearly optimal solution (in the
robust sense) for the considered problem instance.

The most important elements of the algorithm from Figure 3 are the evolutionary

operators that produce new flows from old ones, thus changing the current population.
There is a unary operator, called mutation, which makes a small change of a single
flow. There is also a binary operator, called crossover , which creates a new flow (child)
by combining parts of two existing flows (parents). Also an important element of the
algorithm is the initialization procedure, which generates the initial population of flows.

12

Evolutionary computing for the RMCIF problem {

import the predefined parameters populationSize, generationLimit,

noImprovementLimit, similarityThreshold, mutationThreshold;
input the RMCIF problem instance;

initialize the population P so that it

consists of populationSize feasible flows;

evaluate all flows in P according to the
robust criterion of optimality;

generationCount = 0;
noImprovementCount = 0;

while ((generationCount < generationLimit) &&

(noImprovementCount < noImprovementLimit)) {

// crossover
Parent1 = a "good" flow from P selected by tournament;

Parent2 = another "good" flow from P selected by tournament;

Child = crossover of Parent1 and Parent2;
leave Parent1 and Parent2 in P;
evaluate Child according to the
robust criterion of optimality;

insert Child into P by taking

into account similarityThreshold;

// mutation
rand = a random integer between 1 and 100;

if (rand <= mutationThreshold) {
Parent = a randomly chosen flow

from P which is not the best in P;
Mutant = mutation of Parent;
evaluate Mutant according to the
robust criterion of optimality;

replace Parent in P with Mutant;

}
generationCount +=1;

if (the best-evaluated flow in P is now better
than it was in the previous generation)

noImprovementCount = 0;
else

noImprovementCount += 1;

}

output the best-evaluated flow in P as the solution;

}

Figure 3: Generic pseudo-code of evolutionary computing.

13

Note that evolutionary computing described by Figure 3 relies on five predefined
parameters. The first of them determines the population size, and the next two are used
within stopping conditions. We see that the whole computation can stop in two ways:
either when the total number of generations reaches a predefined limit, or when the
best solution does not improve during a predefined number of consecutive generations.
The last but one parameter is used within the procedure for inserting children into the
population, as it will be explained later. The last parameter controls intensity of using
mutation.

An additional element of our evolutionary algorithm is selection of a “good” (or
“bad”) flow from the population. It is accomplished by so-called tournament selection

[15, 29]. Indeed, several flows are picked up randomly, and then the best-evaluated (or
the worst-evaluated) among them is selected.

Yet another part of our evolutionary computing is the insertion procedure used to
insert newly produced solutions (children) into the current population, while keeping
population size constant. As it is suggested by the pseudo-code in Figure 3, our insertion
procedure relies on the concept of similarity and uses the predefined parameter called
similarityThreshold . We say that two flows are similar if the difference of their robust
costs (robust objective function values), expressed as a percentage of the best robust
cost within the population, is not greater than similarityThreshold . Insertion “by taking
into account similarityThreshold” means the following. If there exists another flow in
the population that is similar in the above sense to the new one, then the better of
those two “twins” is retained and the other one discarded. If there is no similar flow,
then the new one is retained, and some other “bad” flow from the population is selected
by tournament and discarded.

The outline shown in Figure 3 allows many possible variants, thus producing slightly
different evolutionary heuristics. First of all, the variants can differ in the chosen robust
criterion of optimality - it can be absolute robustness according to RMCIF-A or robust
deviation specified by RMCIF-D. Again, in the case of robust deviation the minimal
flow costs for particular scenarios have to be computed in advance.

After the robust criterion has been chosen, there are still different options regarding
how the population is initialized or how the evolutionary operators are implemented.
In this paper we study nine evolution variants for each robustness criterion. The vari-
ants (heuristics) are called EC-1, EC-2, . . . , EC-9, respectively. Their properties are
presented in Table 3.

As shown in Table 3, our nine heuristics based on evolutionary computing use es-
sentially the same method to initialize the population. However, they employ three dif-
ferent crossover operators and three mutation operators. All initializations, crossovers
and mutations are realized by combining basic procedures from the previous section.
Here are some details.

• In EC-1, EC-2 and EC-3 the crossover of two flows f and g is obtained in a
relatively straightforward way. First, the centered version of f and g is com-
puted. Then, flow rounding of the centered flow is performed in order to achieve
integrality. The rounded centered flow is output as the child.

• In EC-4, EC-5 and EC-6 the crossover of two flows f and g is obtained in a more

subtle way. Namely, the child is produced by flow harmonization applied to f and
g.

14

Initial Crossover Mutation
population operator operator

EC-1 mutated flow centering, flow
minimum-cost flows flow rounding perturbation

EC-2 mutated flow centering, flow cost
minimum-cost flows flow rounding reduction

EC-3 mutated flow centering, local
minimum-cost flows flow rounding search

EC-4 mutated flow flow
minimum-cost flows harmonization perturbation

EC-5 mutated flow flow cost
minimum-cost flows harmonization reduction

EC-6 mutated flow local
minimum-cost flows harmonization search

EC-7 mutated flow decomposition, flow
minimum-cost flows flow composition perturbation

EC-8 mutated flow decomposition, flow cost
minimum-cost flows flow composition reduction

EC-9 mutated flow decomposition, local
minimum-cost flows flow composition search

Table 3: Variants of evolutionary computing.

• In EC-7, EC-8 and EC-9 the crossover of two flows f and g is constructed in
a rather complex way. The construction starts with flow decomposition, which
breaks both f and g into lists of unit flows. Those two lists are then recombined
through flow composition in order to produce the child flow.

• In EC-1, EC-4 and EC-7 the mutant of a flow f is obtained by applying flow
perturbation to f .

• In EC-2, EC-5 and EC-8 the mutant of a flow f is obtained by applying flow cost
reduction to f according to a randomly chosen scenario s.

• In EC-3, EC-6 and EC-9 mutation is implemented as a full-scale local search. Thus
the mutant of a flow f is produced by running the whole local search algorithm
from Figure 2 with f taken as the initial solution. Consequently, EC-3, EC-6 and
EC-9 can be regarded as hybrids of evolution and local search.

• In all evolution variants, the initial population is generated in the following way.
First, the minimum-cost flow for each scenario is constructed. All obtained flows,
being optimal for particular scenarios, are inserted into the population. If such
population happens to be too small, additional members are produced from the
original ones by applying mutation. Thereby the same mutation operator is used
as in the main part of the algorithm. Even more population members can be pro-
duced by successive mutation, or by collecting intermediate solutions if mutation
is implemented by local search.

15

5 Experimental results

In order to perform experiments, we have implemented our four variants of local search
and nine variants of evolutionary computing (altogether thirteen heuristics) as a single
C# program [30]. Each particular heuristic has been assembled from basic procedures
according to Table 2 or 3 from Section 4. The basic procedures themselves have been
implemented as suggested in Section 3. Thereby the following standard networking
algorithms [18, 20] have been employed:

• the Malholtra-Kumar-Maheshvari algorithm for finding flows with maximal or
given values,

• Moore’s BFS algorithm for finding paths with minimum number of arcs,

• Dijskstra’s and the Bellman-Ford algorithm for finding shortest paths,

• the Floyd-Warshall algorithm for finding negative-length cycles,

• the backtracking DFS algorithm for finding arbitrary cycles.

The implemented high-level algorithms for local search and evolutionary computing
follow the generic pseudo-codes from Figures 2 and 3, respectively. All parameters from
the pseudo-codes are supported. The program is always configured with certain fixed
values of those parameters, but at any time it can easily be reconfigured with some
other values.

The configured program takes as input the specification of a concrete RMCIF prob-
lem instance, i.e.

• the set of vertices V and the set of arcs A with arc capacities uij,

• the desired flow value F ,

• the set of scenarios S with arc unit costs csij for each scenario,

• the minimal flow costs zs for particular scenarios computed in advance.

The given RMCIF problem instance is solved repeatedly:

• according to both problem variants, RMCIF-A and RMCIF-D, respectively,

• with all thirteen heuristics, i.e. LS-1, LS-2, . . . , LS-4, EC-1, EC-2, . . . , EC-9.

For each combination of problem variant and heuristic the program produces the fol-
lowing output:

• full specification of the solution, i.e. the list of arc flow values xij and the value of
the robust objective function,

• time in seconds taken by the program to produce the solution.

16

Our program has been installed on a standard notebook computer with a 2.60 GHz
Intel Core i5-6440HQ processor and 4 GBytes of memory. After some preliminary test-
ing, the program parameters have been set in the following way: neighborhoodSize = 30,
iterationLimit = ∞, populationSize = 30, generationLimit = ∞, noImprovementLimit

= 300, similarityThreshold = 5, mutationThreshold = 1.
In order to measure accuracy of approximate solutions obtained by heuristics, we

have also implemented an exact solver for the RMCIF problem. It is based on the well-
known general-purpose optimization package IBM ILOG CPLEX [17]. Thanks to that
additional software, it was possible to obtain exact solutions (i.e. solutions that are truly
optimal in the robust sense) for smaller problem instances. Thereby the “linearized”
problem versions RMCIF-A′ and respectively RMCIF-D′ were solved. The exact solver
takes similar input data as our heuristics, produces as output the exact robust solution
costs for both robustness criteria, and measures its own computing time during each
computation. It has been installed on the same hardware as the C# program that runs
heuristics.

In our experiments, we have used a set of 30 carefully constructed RMCIF problem
instances, whose identifiers are I-01, I-02, . . . , I-30, respectively. They have been chosen
as large enough to be nontrivial, but still small enough to be solvable by the exact solver.
It means that slightly larger instances (more vertices, arcs or scenarios) cannot anymore
be solved to optimality, at least not with our hardware and software. Namely, on such
larger instances the exact solver fails due to memory overflow.

All our problem instances involve layered networks similar to those occurring in
standard applications of network flows. The idea is illustrated by Figure 4. Thus all
vertices except the source and the sink are distributed among layers. Arcs can connect
only vertices between adjacent layers. Layer width (number of vertices within a layer)
can be fixed (the same for each layer) or varying.

source sink

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

first
layer

second
layer

last
layer

Figure 4: Structure of a layered network.

Important properties of our problem instances are summarized in Table 4. The
values shown in the table have been chosen by hand, and the remaining details not
visible from the table (such as actual configuration of arcs or actual values of uij or c

s
ij)

have been generated randomly. The complete specification of each problem instance
can be obtained upon a request from the first author by e-mail.

17

Regarding our choice of problem instances, one may argue that it would be much
better if we used some standard benchmark data instead of our own synthetic data.
This is certainly true. However, the obstacle is that, to the best of our knowledge, a
suitable benchmark collection does not exist. There are some well-known repositories
of minimum-cost flow problem instances available on Internet, e.g. [6, 14], but they deal
only with the conventional (non-robust) problem variant. Expanding a conventional
benchmark instance with more scenarios would not make sense since it would produce
a completely new instance that cannot be regarded as a benchmark any more.

In our experiments we have run our C# program on all problem instances from
Table 4. Consequently, each problem instance has been solved according to each of the
two robust optimality criteria by each of the thirteen heuristics. The obtained solutions
have been stored in a data file, which is too voluminous to be reproduced here but
is again available from the first author by e-mail. Still, some excerpts from that file
are visible in Table 5. Indeed, for each problem instance and each robustness criterion
the table presents a selected approximate solution. It is the one with the smallest
robust cost among those whose computing time is at most half of the time needed by
the exact solver. To allow comparison, the table also contains the corresponding exact
solutions. Any solution, either exact or approximate, is described by its robust cost (a
whole number) and its computing time in seconds (a decimal number). In case of an
approximate solution, the involved heuristic is also identified.

The raw measurements from the described experiments could be processed in many
different ways. In the remaining part of this section we present a simple analysis based
on the whole collection of values from our data file. Within our analysis we have
computed the relative error of each approximate solution, as the difference between the
approximate robust cost and the corresponding exact cost divided by the exact cost.
Also, we have computed the speedup of each approximate computation as the quotient
of the corresponding “exact” computing time vs. the “approximate” computing time.
The obtained relative errors for a given robust problem variant and a given heuristic
have been averaged over the whole set of problem instances. The same kind of averaging
has also been done with the speedups. All averages obtained in this way are presented in
Table 6. The table reveals “typical” behavior of each heuristic applied to each problem
variant.

Now follows a discussion about the obtained results. The first thing we can imme-
diately observe is a big difference between the RMCIF-A and the RMCIF-D problem
variant. Although the formulations of both variants look similar, they behave quite
differently. From Table 5 it is visible that “exact” computing times for RMCIF-D are
usually much larger than for RMCIF-A, which means that RMCIF-D is harder to solve
exactly. From Table 6 it is visible that relative errors for RMCIF-D are about 4 times
larger than for RMCIF-A, which means that RMCIF-D is also harder to approximate.
Larger relative errors can partially be explained by the following fact: the objective
function in RMCIF-D measures deviations from conventional costs, not actual costs,
and takes therefore smaller values than the objective function in RMCIF-A. Conse-
quently, a certain difference from the exact solution within RMCIF-D will produce a
larger relative error than it would produce within RMCIF-A.

18

Instance Number of Number Number of Flow Number Layer Range
identifier vertices of arcs scenarios value of width for

|V | |A| |S| F layers uij, c
s
ij

I-01 18 80 30 243 2 8 (fixed) 0− 99
I-02 18 56 30 177 4 4 (fixed) 0− 99
I-03 18 32 30 93 8 2 (fixed) 0− 99
I-04 18 34 30 20 7 3,2,2,2,2,2,3 0− 99
I-05 17 60 30 177 3 5 (fixed) 0− 99
I-06 17 42 30 134 5 3 (fixed) 0− 99
I-07 17 59 30 198 2 11,4 0− 99
I-08 24 143 15 456 2 11 (fixed) 0− 99
I-09 24 44 15 48 11 2 (fixed) 0− 99
I-10 24 130 15 104 3 10,9,3 0− 99
I-11 23 112 15 270 3 7 (fixed) 0− 99
I-12 23 60 15 52 7 3 (fixed) 0− 99
I-13 23 72 15 34 3 7,3,11 0− 99
I-14 27 110 10 216 5 5 (fixed) 0− 99
I-15 27 153 10 78 3 3,8,14 0− 99
I-16 26 168 10 506 2 12 (fixed) 0− 99
I-17 26 144 10 270 3 8 (fixed) 0− 99
I-18 26 120 10 228 4 6 (fixed) 0− 99
I-19 26 88 10 229 6 4 (fixed) 0− 99
I-20 26 69 10 112 8 3 (fixed) 0− 99
I-21 26 48 10 108 12 2 (fixed) 0− 99
I-22 26 118 10 16 5 2,4,6,8,4 0− 99
I-23 30 224 5 628 2 14 (fixed) 0− 99
I-24 30 161 5 247 4 7 (fixed) 0− 99
I-25 30 104 5 218 7 4 (fixed) 0− 99
I-26 30 56 5 63 14 2 (fixed) 0− 99
I-27 30 198 5 97 3 7,10,11 0− 99
I-28 29 180 5 356 3 9 (fixed) 0− 99
I-29 29 78 5 97 9 3 (fixed) 0− 99
I-30 29 90 5 30 7 2,5,3,4,6,2,5 0− 99

Table 4: Properties of the chosen RMCIF problem instances.

19

Instance RMCIF-A RMCIF-A RMCIF-D RMCIF-D
identifier exact approximate exact approximate

solution solution solution solution

I-01 39700 5.86s EC-9 40510 2.79s 10612 2557.40s EC-7 11115 3.37s
I-02 47676 29.23s EC-8 48228 1.25s 12746 404.24s EC-9 13507 1.99s
I-03 52501 0.20s EC-6 52642 0.06s 5099 0.29s EC-2 5291 0.06s
I-04 9473 0.25s EC-8 9487 0.11s 801 0.45s EC-3 835 0.11s
I-05 37864 62.78s EC-9 38420 1.79s 10308 1545.33s EC-7 10771 1.29s
I-06 43074 0.56s EC-6 44823 0.16s 10096 26.88s EC-8 10580 1.86s
I-07 32636 5.06s EC-9 32938 2.25s 10641 48.87s EC-9 11185 2.40s
I-08 68343 0.50s EC-4 70835 0.15s 16302 320.35s EC-7 17340 18.97s
I-09 30351 0.23s EC-1 31223 0.05s 5871 0.39s EC-8 6121 0.13s
I-10 18790 9.29s EC-8 19750 1.77s 8379 217.35s EC-7 9226 2.98s
I-11 49736 101.12s EC-9 52057 9.45s 14987 485.17s EC-9 16155 8.32s
I-12 19576 2.37s EC-8 20327 0.47s 8850 1.15s EC-7 9761 0.51s
I-13 7852 0.25s EC-1 8160 0.07s 876 0.67s EC-8 974 0.32s
I-14 59609 22.40s EC-8 61452 6.31s 18005 68.27s EC-8 19671 6.77s
I-15 15388 0.92s LS-2 16199 0.04s 6177 9.97s EC-9 6317 3.48s
I-16 81323 0.25s EC-4 85928 0.07s 15034 77.70s EC-8 16328 29.02s
I-17 49328 61.03s EC-8 52194 8.95s 16579 800.00s EC-9 18626 10.37s
I-18 53075 10.06s EC-7 54322 4.19s 16128 729.75s EC-9 17166 9.17s
I-19 69116 5.89s EC-8 72031 2.82s 20122 18.12s EC-7 22301 6.95s
I-20 48256 0.31s EC-4 52440 0.03s 12369 4.89s EC-7 13765 1.29s
I-21 69159 0.25s EC-5 70111 0.04s 9120 0.32s EC-2 10499 0.08s
I-22 4175 1.91s EC-7 4347 0.16s 2039 1.07s EC-9 2124 0.50s
I-23 75982 0.35s EC-5 80466 0.16s 12821 6.25s EC-6 17979 0.75s
I-24 49509 1.41s EC-4 54611 0.12s 16227 2.03s EC-5 22624 0.09s
I-25 76696 0.29s EC-5 85025 0.07s 15115 3.06s EC-5 20752 0.16s
I-26 46485 0.34s EC-4 47452 0.02s 5972 0.29s LS-2 7211 0.02s
I-27 17451 1.17s EC-5 18668 0.08s 4191 1.34s EC-5 5216 0.17s
I-28 66375 0.71s LS-3 72481 0.03s 13037 1.17s EC-5 17504 0.11s
I-29 44382 0.57s EC-4 46395 0.04s 9203 0.42s EC-5 11250 0.06s
I-30 11269 0.58s EC-5 11737 0.04s 2729 0.43s EC-7 3302 0.20s

Table 5: Solutions for the used RMCIF problem instances.

20

RMCIF-A RMCIF-D

LS-1 14.40% 362.02× 56.89% 25025.52×
LS-2 9.47% 500.43× 41.04% 13789.07×
LS-3 10.80% 232.98× 34.14% 10122.76×
LS-4 8.01% 26.27× 35.62% 489.01×
EC-1 8.98% 52.94× 34.48% 1389.52×
EC-2 8.89% 43.89× 32.83% 975.39×
EC-3 7.49% 17.54× 29.44% 584.88×
EC-4 7.13% 169.01× 35.86% 4901.75×
EC-5 7.31% 151.64× 28.55% 5013.30×
EC-6 6.35% 40.90× 29.26% 1409.51×
EC-7 3.85% 4.81× 15.17% 93.53×
EC-8 3.64% 4.60× 14.49% 107.70×
EC-9 3.77% 3.14× 13.18% 59.02×

Table 6: Average errors (%) and average speedups (×) obtained for different combina-
tions of heuristics vs. problem variants.

The next important thing we can observe from our results is that local search is
in general faster but less accurate than evolutionary computing. This is just what
anybody would expect. However, there are some fine differences in behavior of both
types of heuristics regarding the two problem variants.

Let us restrict for a moment to the part of Table 6 dealing with RMCIF-A. Then we
can see that local search applied to that problem variant can obtain moderate precision
(errors about 8%), while evolutionary computing can reach higher precision (errors
about 4%). Among different variants of local search, the most accurate is LS-4. This
is not a surprise since LS-4 is the only one with repeated execution, i.e. it repeats
the whole searching process several times with different initial flows. On the other
hand, LS-4 is for the same reason the slowest among local-search variants, although
it still achieves a significant speedup (about 26×) compared to exact solving. Among
different variants of evolutionary computing, the most accurate are EC-7, EC-8 and
EC-9. This is also not a surprise since EC-7, EC-8 and EC-9 are again much more
elaborate compared to the remaining evolutionary variants. Namely, their crossover
operator is based on full decomposition of given flows into unit flows and composition
of mutually compatible unit flows into a new flow, which is time-consuming. Moreover,
the mutation operator in EC-9 is a full-scale local search, which is also relatively time-
consuming. As a consequence, EC-7, EC-8 and EC-9 turn out to be rather slow, i.e.
they are in average only 3 to 5 times faster than the exact solver. If we are looking for a
tradeoff among accuracy and speed, we should use a similar evolutionary variant EC-6,
whose accuracy is not much lower (errors about 6%), but whose speedup is higher (over
40×).

Let us finally restrict to the part of Table 6 dealing with RMCIF-D. Here, the relative
errors are worse than for RMCIF-A, but the speedups are better. Relative ranking of
particular heuristics remains roughly the same as for RMCIF-A. A small difference in
ranking of local-search variants is that LS-3 now seems to be slightly more accurate than
LS-4. Also, among the tree previously established most accurate evolutionary variants,

21

EC-9 now appears to be slightly better than the other two. Precision of local search
must be regarded as unsatisfactory (errors greater than 34%). Precision of the best
evolutionary variant EC-9 is better, but not spectacular (errors about 13%). A good
news is that EC-9, although being quite slow, now achieves a good speedup (about 60×)
with respect to the exact solver.

6 Conclusions

In this paper we have considered two robust variants of the minimum-cost integer flow
problem, i.e the absolute robust (min-max) and the robust deviation (min-max regret)
variant, respectively. Uncertainty in problem formulation has been restricted to arc
unit costs, and expressed by explicitly given scenarios. Both problem variants turn out
to be NP-hard, which justifies their approximate solving.

As approximate solutions to the considered problem variants, thirteen heuristics
have been proposed, four of them based on local search, and nine on evolutionary
computing. All heuristics have experimentally been evaluated on a set of problem
instances big enough to be nontrivial but still small enough to be solved exactly.

According to the obtained experimental results, there is a significant difference
among the two considered problem variants. Although both of them look similar on
the first sight, the second one is much harder to solve exactly, and even harder to
approximate. Therefore the results obtained for the absolute robust variant are more
satisfactory than those obtained for the robust deviation variant.

From the obtained experimental results we can also see that the heuristics based
on local search are fast but not very accurate. Luckily enough, better precision is
assured by evolutionary computing. Among nine evolutionary heuristics, the best re-
sults are achieved by the one whose crossover operator is based on flow decomposi-
tion/composition and whose mutation operator is in fact improvement by local search.
Such heuristic can as well be regarded as a hybrid of evolutionary computing and local
search.

A drawback of our most-precise heuristic is its slowness. Indeed, for smaller absolute
robust problem instances it is not much faster than an exact algorithm. Still, its speedup
improves and becomes satisfactory for larger instances. Consequently, we believe that
our most-accurate heuristic will show its full potential on very large instances, i.e. in
situations where exact algorithms (or even their relaxed counterparts) fail.

In our future research, we plan to evaluate our heuristics on much larger problem
instances. Also, our plan is to extend our solutions to more general minimum-cost
integer flow problem variants, which would allow uncertainty in arc capacities as well
as in arc unit costs. A third direction of further research would be to consider solving
the same problems with other meta-heuristics, such as simulated annealing or particle
swarm optimization.

Acknowledgement

This work has been fully supported by Croatian Science Foundation under the project
IP-2018-01-5591.

22

References

[1] Aissi H., Bazgan C., Vanderpooten D., “Min-max and min-max regret versions of
combinatorial optimization problems: A survey”, European Journal of Operational

Research, Vol 197 (2009), 427-438.

[2] Aissi H., Bazgan C., Vanderpooten D., “General approximation schemes for min-
max (regret) versions of some (pseudo-)polynomial problems”, Discrete Optimiza-

ton, Vol 7 (2010), 136-148.

[3] Aissi H., Vanderpooten D., “Robust capacity expansion of a network under demand
uncertainty: a bi-objective approach”, Networks , Vol 68 (2016), 185-199.

[4] Atamtürk A., Zhang M., “Two-stage robust network flow and design under demand
uncertainty”. Operations Research, Vol 55 (2007), 662-673.

[5] Bazaraa M.S., Jarvis J.J., Sherali H.D., Linear Programming and Network Flows ,
Fourth Edition. Wiley, Hoboken NJ, 2010.

[6] Beasley J.E., OR-Library , Brunel University London, 2018.
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html. Access 17 Dec 2018.

[7] Ben-Tal A., El Ghaoui L., Nemirovski A., Robust Optimization, Princeton Univer-
sity Press, Princeton NJ, 2009.

[8] Bertsimas, D., Sim M., “Robust discrete optimization and network flows”, Mathe-

matical Programming , Vol 98 (2003), 49-71.

[9] Bertsimas D., Sim M., “The price of robustness”, Operations Research, Vol 52
(2004), 35-53.

[10] Bertsimas D., Brown D.B., Caramanis C., “Theory and applications of robust
optimization”, SIAM Review , Vol 53 (2011), 464-501.

[11] Bertsimas D., Nasrabadi E., Stiller S., “Robust and adaptive network flows”. Op-

erations Research, Vol 61 (2013), 1218-1242.

[12] Boginski V.L., Commander C.W., Turko T., “Polynomial-time identification of
robust network flows under uncertain arc failures”, Optimization Letters , Vol 3
(2009), 461-473.

[13] Carre B., Graphs and Networks , Oxford University Press, Oxford UK, 1979.

[14] DIMACS - Center for Discrete Mathematics and Theoretical Computer Science,
DIMACS Implementation Challenges , Rutgers University, Piscataway NJ, 2017.
http://archive.dimacs.rutgers.edu/Challenges/. Access 17 Dec 2018.

[15] Eiben A.E., Smith J.E., Introduction to Evolutionary Computing , Second edition,
Natural Computing Series, Springer, Berlin, 2015.

[16] Garey M.R., Johnson D.S, Computers and Intractability: A Guide to the Theory

of NP-Completness , W.H. Freeman, San Francisco CA, 1979.

23

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://archive.dimacs.rutgers.edu/Challenges/

[17] IBM Corporation, IBM ILOG CPLEX Optimization Studio, CPLEX User’s Man-

ual , Version 12, Release 8, IBM Knowledge Center, 2016.
https://www.ibm.com/support/knowledgecenter/SSSA5P 12.8.0.
Accessed 17 December 2018.

[18] Jungnickel D., Graphs, Networks and Algorithms , Fourth Edition, Springer, Berlin,
2013.

[19] Kasperski A., Zielinski P, “Robust discrete optimization under discrete and interval
uncertainty: A survey”. In: Doumpos M., Zopounidis C., Grigoroudis E. (editors),
Robustness Analysis in Decision Aiding, Optimization, and Analytics , Springer,
Cham CH, 2016, pp 113-143.

[20] Korte B., Vygen J., Combinatorial Optimization - Theory and Algorithms , Fifth
Edition, Springer, Berlin, 2012.

[21] Kouvelis P., Yu G., Robust Discrete Optimization and its Applications , Springer,
Berlin, 1997.

[22] Minoux M., “On robust maximum flow with polyhedral uncertainty sets”, Opti-

mization Letters , Vol 3 (2009), 367-376.

[23] Minoux M., “Robust network optimization under polyhedral demand uncertainty
is NP-hard”, Discrete Applied Mathematics , Vol 158 (2010), 597-603.

[24] Ordonez F., Zhao J., “Robust capacity expansion of network flows”. Networks , Vol
50 (2007), 136-145.

[25] Papadimitrou C.H., Steiglitz K., Combinatorial Optimization - Algorithms and

Complexity , Dover Publications, Mineola NY, 1998.

[26] Poss M., “A comparison of routing sets for robust network design”, Optimization

Letters , Vol 8 (2014), 1619-1635.

[27] Righetto G.M., Morabito R., Alem D., “A robust optimization approach for cash
flow management in stationery companies”, Computers and Industrial Engineering ,
Vol 99 (2016), 137-152.

[28] Rui M., Jinfu Z., “Robust discrete optimization for the minimum cost flow prob-
lem”. In: Wang C., Ye Z. (editors), Proceedings of the International Workshop on

Intelligent Systems and Applications - ISA 2009, Wuhan, China, 23-24 May 2009 .
IEEE, Piscataway NJ, 2009.

[29] Talbi E-G., Metaheuristics - From Design to Implementation, Wiley, Hoboken NJ,
2009.

[30] Troelsen A., Japikse P., C# 6.0 and the .NET 4.6 Framework , Seventh Edition,
Apress, New York NY, 2016.

24

	1 Introduction
	2 Problem variants and their complexity
	3 Basic procedures with flows
	4 Heuristic solutions
	5 Experimental results
	6 Conclusions

