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Abstract In this paper, we propose a method to solve a bi-objective vari-
ant of the well-studied Traveling Thief Problem (TTP). The TTP is a multi-
component problem that combines two classic combinatorial problems: Trav-
eling Salesman Problem (TSP) and Knapsack Problem (KP). We address the
BI-TTP, a bi-objective version of the TTP, where the goal is to minimize
the overall traveling time and to maximize the profit of the collected items.
Our proposed method is based on a biased-random key genetic algorithm with
customizations addressing problem-specific characteristics. We incorporate do-
main knowledge through a combination of near-optimal solutions of each sub-
problem in the initial population and use a custom repair operator to avoid
the evaluation of infeasible solutions. The bi-objective aspect of the problem is
addressed through an elite population extracted based on the non-dominated
rank and crowding distance. Furthermore, we provide a comprehensive study
showing the influence of each parameter on the performance. Finally, we dis-
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cuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019
conferences where our method has won first and second places, respectively,
thus proving its ability to find high-quality solutions consistently.

Keywords Combinatorial Optimization · Multi-objective Optimization ·
Real-world Optimization Problem · Traveling Thief Problem · NSGA-II

1 Introduction

In optimization research, problems with different characteristics are investi-
gated. To find an appropriate algorithm for a practical problem, often as-
sumptions about characteristics are made, and then a suitable algorithm is
chosen or designed. For instance, an optimization problem can have several
components interacting with each other. Because of their interaction, they
build an interwoven system (Klamroth et al. 2017a) where interdependencies
in the design and the objective space exist. An optimal solution for each com-
ponent independently will, in general, not be a good solution for the interwoven
optimization problem. Similarly, in multidisciplinary design optimization, var-
ious disciplines are linked with each other and influence the objective value(s).
The optimization of an aircraft wing, for example, combines stress analysis,
structural vibration, aerodynamics, and controls (Jung 1999). Due to the in-
terwovenness modifying a single decision variable is likely to affect all objective
values.

Such complex optimization problems usually require domain knowledge
and a sufficient amount of computational resources to be invested. For this
reason, many researchers prefer solving academic test problems to show the
performance of their algorithms. In order to provide an academic interwoven
optimization test problem, the Traveling Thief Problem (TTP) (Bonyadi et al.
2013) was proposed in 2013, where two well-known subproblems, the Traveling
Salesman Problem (TSP) and the Knapsack Problem (KP), interact with each
other. As in the TSP problem, a so-called thief has to visit each city exactly
once. In addition to just traveling, the thief can make a profit during its tour by
stealing items and putting them in the rented knapsack. However, the thief’s
traveling speed decreases depending on the current knapsack weight, which
then increases the rent that the thief has to pay for the knapsack. Even though
researchers have been investigating both subproblems for many years and a
myriad of optimization algorithms have been proposed, the interaction of both
problems with each other turned out to be challenging. The TTP problem seeks
to optimize the overall traveling time and the profit made through stealing
items. Most of the research focused on the single-objective problem, where
the objectives are composed by using a weighted sum. To be more precise,
the profit is reduced by the costs due to renting the knapsack. The costs are
calculated by multiplying the overall traveling time by a renting rate. However,
because the traveling time and profit represent solutions with different trade-
offs, the problem is bi-objective in its natural formulation.
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In this article, we propose a Non-Dominated Sorting Biased Random-Key
Genetic Algorithm (NDS-BRKGA) to obtain a non-dominated set of solutions
for the BI-TTP. This problem is a bi-objective version of the TTP, where the
goals are to minimize the overall traveling time and to maximize the profit
of the collected items. The algorithm is based on the well-known evolutionary
multi-objective optimization solution strategy NSGA-II (Deb et al. 2002), and
the biased-random key encoding is used to deal with the mixed-variable nature
of the problem. The customization makes use of domain knowledge, which is
incorporated by evolutionary operators. Our method uses existing solvers of
the subproblems for the initial population. It maps a genotype to phenotype
to deal with independent variables. Also, solutions detected as infeasible are
repaired before they are evaluated. Moreover, we use a customized survival
selection to ensure diversity preservation.

The remainder of this paper is structured as follows. In Section 2, we pro-
vide a brief review of the literature about the TTP. Afterward, we present a
detailed description of the BI-TTP, as well as a solution example to demon-
strate the interwovenness characteristic of the problem in Section 3. In Sec-
tion 4, we describe our methodology to address the problem and present results
evaluated on different test problems in Section 5. Finally, the conclusions of
the study are presented in Section 6.

2 Related Work

Thus far, many approaches have been proposed for the TTP. Most research
so far considered the single-objective TTP formulation (TTP1) from Bonyadi
et al. (2013), which is typically the TTP variant that is referred to as the TTP.
The other variant (TTP2) considers two objectives and additionally, a value
drop of items over time. The multi-objective considerations of problems with
interconnected components are becoming increasingly popular.

For the single-objective TTP, a wide range of approaches has been consid-
ered, ranging from general-purpose iterative search-heuristics (Polyakovskiy
et al. 2014), co-evolutionary approaches (Bonyadi et al. 2014; Namazi et al.
2019), memetic approaches (Mei et al. 2014), and swarm-intelligence based
approaches (Wagner 2016; Zouari et al. 2019), to approaches with problem
specific search operators (Faulkner et al. 2015). On a higher, i.e., algorithmic
level, estimation of distribution approaches have been customized (Martins
et al. 2017) and hyper-heuristics (El Yafrani et al. 2018) have been explored.
Wagner et al. (2018) provide a comparison of 21 algorithms for the purpose
of portfolio creation. To better understand the effect of operators on the ca-
pability to find good solutions on a more fundamental level, Yafrani et al.
(2018) and Wuijts and Thierens (2019) present in fitness-landscape analyses
correlations and characteristics that are potentially exploitable.

Optimal approaches are rare but exist. Neumann et al. (2019) showed that
the TTP with fixed tours can be solved in pseudo-polynomial time via dynamic
programming taking into account the fact that the weights are integer. Wu
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et al. (2017) extended this to optimal approaches for the entire TTP, although
their approaches are only practical for very small instances.

In general, the number of works on (static) multi-objective TTP formula-
tions is significantly smaller. Yafrani et al. (2017) created an approach that
generates diverse sets of solutions, while being competitive with the state-of-
the-art single-objective algorithms; the objectives have been travel time and
total profit of items. Wu et al. (2018) considered a bi-objective version of the
TTP; the objectives have been the weight and the TTP objective score. This
hybrid approach makes use of the dynamic programming approach for fixed
tours and then searches over the space of tours only.

Moreover, researchers have participated in the BI-TTP competitions at
the EMO-2019 1 and GECCO-2019 2 conference. For these competitions, an
intermediate version of TTP1 and TTP2 has been proposed. The problem
description can be seen as a TTP1 with two objectives or TTP2 without a value
drop of items over time. The same TTP variant was investigated by Blank et al.
(2017). The proposed problem definition aimed to build the bridge from TTP1
to TTP2 by having two objectives but not adding another complexity to the
problem.

Recently, two dynamic formulations of the TTP have been devised by two
groups and independent of each other: a single-objective variant Sachdeva
et al. (2020) and a multi-objective variant Herring et al. (2020). In the former,
the authors considered the dynamic changes to the availability of cities and
items. They have found that – depending on the size of the instance, the mag-
nitude of the change, and the algorithms in the portfolio – it is preferable to
either restart the optimization from scratch or to continue with the previously
valid solutions. In the multi-objective article, the respective authors considered
dynamic city locations, dynamic item availability, and dynamic item values.
Experimentally, they investigated optimal solutions to TTP components and
their recombination to generate diverse, composite populations for better re-
sponses to dynamic changes.

Furthermore, a more general discussion of a multi-objective approach to
interconnected problems can be found in Klamroth et al. (2017b), and a more
general discussion on the opportunities of multi-component problems can be
found in Bonyadi et al. (2019).

3 Bi-objective Traveling Thief Problem

The TTP is a combinatorial optimization problem that consists of two interwo-
ven problems, the TSP and KP. In the following, first, the two components are
described independently, and then the interaction of the two subcomponents
is shown.

In the TSP (Applegate et al. 2007) a salesman has to visit n cities. The
distances are given by a map represented as a distance matrix A = (dij)

1https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
2https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/
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with i, j ∈ {0, .., n}. The salesman has to visit each city once and the result
is a permutation vector π = (π1, π2, ..., πn), where πi is the i-th city of the
salesman. The distance between two cities divided by a constant velocity v
(usually v = 1) results in the traveling time for the salesman denoted by f(π).
The goal is to minimize the total traveling time of the tour:

min f(π) =

n−1∑
i=1

dπi,πi+1

v
+

dπn,π1

v
(1)

s.t. π = (π1, π2, ..., πn) ∈ Pn

There are (n−1)!
2 different tours to consider, if we assume that the salesman

has to start from the first city and travels on a symmetric map, i.e., di,j =
dj,i, ∀(i, j) ∈ A.

For KP (Lagoudakis 1996) a knapsack has to be filled with items without
violating the maximum weight constraint. Each item j has a value bj ≥ 0 and a
weight wj ≥ 0 where j ∈ {1, ..,m}. The binary decision vector z = (z1, .., zm)
defines, if an item is picked or not. The aim is to maximize the profit g(z):

max g(z) =

m∑
j=1

zj bj (2)

s.t.

m∑
j=1

zj wj ≤ Q

z = (z1, .., zm) ∈ Bm

The search space of this problem is exponential concerning n and contains
2n possible combinations. However, the optimal solution can be obtained by
using dynamic programming with a running time of O(mQ), which makes the
complexity of the problem pseudo-polynomial, when the weights of items are
integer values.

The traveling thief problem combines the above-defined subproblems and
lets them interact with each other. The traveling thief can collect items from
each city he/she is visiting. The items are stored in a rented knapsack carried
by the thief. In more detail, each city πi provides one or multiple items, which
could be picked by the thief. There is an interaction between the subproblems:
The velocity of the traveling thief depends on the current knapsack weight W .
It is calculated by considering all cities, which have been visited so far, and
summing up the weights of all picked items. The weight at city i given π and
z is calculated by:

W (i,π, z) =

i∑
k=1

m∑
j=1

aj(πk) wjzj (3)
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The function aj(πk) is defined for each item j and returns 1 if the item
could be stolen at city πk and 0 otherwise. The current weight of the knap-
sack influences the velocity. When the thief picks an item, the weight of the
knapsack increases, and therefore the velocity of the thief decreases.

The velocity v is always in a specific range v = (vmin, vmax) and cannot
be negative for a feasible solution. Whenever the knapsack is heavier than the
maximum weight Q, the capacity constraint is violated.

v(W ) =

{
vmax − W

Q · (vmax − vmin) if W ≤ Q
vmin otherwise

(4)

If the knapsack is empty, then the velocity is equal to vmax. Contrarily, if
the current knapsack weight is equal to Q, the velocity is vmin.

The traveling time of the thief is calculated by:

f(π, z) =

n−1∑
i=1

dπi,πi+1

v(W (i,π, z))
+

dπn,π1

v(W (n,π, z))
(5)

The calculation is based on TSP, but the velocity is defined by a function
instead of a constant value. This function takes the current weight, which
depends on the index i of the tour. The current weight, and therefore also the
velocity, change on tour by considering the picked items defined by z. In order
to calculate the total tour time, the velocity at each city needs to be known. For
calculating the velocity at each city, the current weight of the knapsack must
be given. Since both calculations are based on z, i.e., the knapsack subproblem
solution, it is challenging to solve the problem to optimality. Such problems are
called interwoven systems as the solution of one subproblem highly depends
on the solution of the other subproblems.

After this preliminary presentation, we finally formalize the TTP as follows.

min f(π, z) =

n−1∑
i=1

dπi,πi+1

v(W (i,π, z))
+

dπn,π1

v(W (n,π, z))
(6)

max g(z) =

m∑
j=1

zj bj

s.t. π = (π1, π2, ..., πn) ∈ Pn
π1 = 1

z = (z1, .., zm) ∈ Bm
m∑
j=1

zj wj ≤ Q
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In order to illustrate the equations and interdependence, we present an
example scenario here (see Figure 1). The thief starts from city 1 and has to
visit city 2, 3, 4 exactly once and to return to city 1. In this example, each
city provides one item, and the thief must decide whether to steal it or not.

Fig. 1: Exemplary traveling thief problem instance.

A permutation vector, which contains all cities exactly once, and a binary
picking vector are needed to calculate the objectives. Even though this is a
very small example with four cities and three items, the total solution space
consists of (n− 1)! ·2m = 6 · 8 = 48 combinations.

In order to understand how the objectives are calculated, an example hand
calculation for the tour [1,3,2,4] and the packing plan [1,0,1] is done as follows.
The thief starts with the maximum velocity, because the knapsack is empty.
He begins its tour at city 1 and picks no item there. For an empty knapsack
W (1,π, z) = 0 the velocity is v(0) = vmax = 1.0. The distance from city 1 to
city 3 is 9.0 and the thief needs 9.0 time units. At city 3 the thief will not pick
an item and continue to travel to city 2 with W (2,π, z) = 0 and therefore
with vmax in additional 5.0 time units. Here he picks item 1 with w1 = 30
and the current weight becomes W (2,π, z) = 30, which means the velocity
will be reduced to v(30) = 1.0 − ( 1.0−0.1

80 ) · 30 = 0.6625. For traveling from
city 2 to city 4 the thief needs the distance divided by the current velocity

5.0
0.6625 ≈ 7.5472. At city 4 he picks item 3 with w3 = 21 and the current
knapsack weight increases to W (4,π, z) = 30 + 21 = 51. For this reason the
velocity decreases to v(51) = 1.0 − ( 1.0−0.1

80 ) · 51 = 0.42625. For returning to
city 1 the thief needs according to this current speed 3.0

0.42625 ≈ 7.0381 time
units. Finally, we sum up the time for traveling from each city to the next∑4
k=1 tπk,πk+1

= 9 + 5 + 7.5472 + 7.0381 = 28.5853 to calculate the whole
traveling time.

The final profit is calculated by summing up the values of all items which
is 34 + 25 = 59. Consequently, the TTP solution [1,3,2,4] [1,0,1] is mapped to
the point (28.59, 59.0) in the bi-objective space.
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Table 1: Hand calculations for [0,2,1,3] [0,1,0,1] on the example scenario.

i πi W (i,π, z) v(W (i,π, z)) dπi,πi+1 tπi,πi+1

∑
1 1 0 1 9 9 -
2 3 0 1 5 5 9
3 2 30 0.6625 5 7.5472 14
4 4 51 0.42625 3 7.0381 21.547
5 1 - - - - 28.585

Below all Pareto-optimal solutions of this example are listed. The Pareto
front contains 8 solutions, of which two has the same minimum f(π, z) value.
The solution for the hand calculation is highlighted in bold.

Table 2: Pareto front of the example scenario.

π z f(π, z) g(z)

[1, 2, 3, 4] [0, 0, 0] 20.0 0.0
[1, 4, 3, 2] [0, 0, 0] 20.0 0.0
[1, 2, 3, 4] [0, 0, 1] 20.93 25.0
[1, 4, 3, 2] [1, 0, 0] 22.04 34.0
[1, 4, 3, 2] [0, 1, 0] 27.36 40.0
[1, 3, 2, 4] [1, 0, 1] 28.59 59.0
[1, 2, 3, 4] [0, 1, 1] 33.11 65.0
[1, 4, 3, 2] [1, 1, 0] 38.91 74.0

Figure 2 shows the objective space by highlighting different tours with dif-
ferent markers. The non-dominated solutions are emphasized by black markers.
We can observe that different Pareto-optimal solutions can have different un-
derlying tours. In addition, we can see that for each solution s where no item
is picked, there is another solution s′ with its tour symmetric to the tour of
s, and, consequently, both solutions s e s′ have the same traveling time, once
we consider that the thief travels on a symmetric map. Also, no solution with
a tour ∇ = [1, 4, 2, 3] exists in the final non-dominated set.

4 A Customized Non-dominated Sorting Based Genetic Algorithm
with Biased Random-Key Encoding

Genetic algorithms (GAs) provide a good starting point because almost no as-
sumptions about the problem properties are made. GAs are highly customiz-
able, and the performance can be improved through defining/redefining the
evolutionary operators. For the BI-TTP, we propose a Non-Dominated Sorting
Biased Random-Key Genetic Algorithm (NDS-BRKGA), which combines two
classical evolutionary metaheuristics: Biased Random-Key Genetic Algorithm
(BRKGA) (Gonçalves and Resende 2011) and Non-Dominated Sorting Ge-
netic Algorithm II (NSGA-II) (Deb et al. 2002). Both concepts come together
to address the following characteristics of the BI-TPP:
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Time
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[1, 2, 3, 4] [1, 2, 4, 3] [1, 3, 2, 4] [1, 3, 4, 2] [1, 4, 2, 3] [1, 4, 3, 2]

20 25 30 35 40 45 50 55 60 65 70
-10

0

10

20

30

40

50

60

70

80
Tours:

Fig. 2: Exemplary traveling thief problem instance. Bold symbols indicate
non-dominated solutions.

(i) Existing solvers for each subproblem: Both subproblems, TSP
and KP, have been studied for decades, and good solvers for each
problem exist. We incorporate this domain knowledge by using a
heuristic-based initial population by combining near-optimal solutions
of each subproblem. In our initial population, we seek to preserve a
high diversity among individuals, in order not to lead our algorithm
to premature convergence.

(ii) Maximum capacity constraint: Through a repair operation before
any evaluation of an individual, the domain knowledge can be incor-
porated to avoid the evaluation of infeasible solutions. An effective
repair allows the algorithm to search only in the feasible space.

(iii) Heterogeneous variable types: A tour (permutation) and a pack-
ing plan (binary decision vector) need to be provided to evaluate a
solution. Both variables are linked with each other. Handling differ-
ent types of variables can be challenging; therefore, we introduce a
real-valued genotype by using the biased-random key principle. This
allows applying traditional evolutionary recombination operators on
continuous variables.

(iv) Bi-objective: The traveling time of the thief is supposed to be min-
imized, and the profit to be maximized. We consider both conflicting
objectives at a time by using the non-dominated sorting and crowd-
ing distance in the survival selection. This ensures the final population



10 Jonatas B. C. Chagas et al.

contains a set of non-dominated solutions with a good diversity in the
objective space.

In the remainder of this section, we first explain the overall procedure and
then the role of each criterion mentioned above.

Overview

Figure 3 illustrates the overall procedure of NDS-BRKGA. At first, we gen-
erate the initial population using efficient solvers for the subproblems inde-
pendently. Afterward, we combine the optimal or near-optimal solutions for
both subproblems and convert them to their genotype representation, which
results in the initial population. For the purpose of mating, the population is

split into an elite population P
(t)
e and non-elite population P

(t)
ē . The individ-

uals for the next generations P (t+1) are a union of the elite population P
(t)
e

directly, the offspring of a biased crossover and mutant individuals. In case an
individual violates the maximum capacity constraint, we execute a repair op-
eration. Then, we convert each individual to its corresponding phenotype and
evaluate it on the problem instance. In order to insert an explicit exploitation
phase in our algorithm, we apply at some evolutionary cycles a local search
procedure in some elite individuals. Finally, the survival selection is applied,
and if the termination criterion is not met, we increase the generation counter
t by one and continue with the next generation. In the following, we describe
the purpose of each of the design decisions we have made and explain what
role it plays during a run of the algorithm.

Initialize Population
Tours: Lin-Kernighan Heuristic 
Packing Plans: Dynamic Programming

𝑃"
($)

			 𝑃"̅
($)	

Survival
Non-Dominated Sorting
Crowding Distance

𝑃($)		

Phenotype to Genotype

dominatednon-dominated

𝑃($())

Crossover
Biased Crossover
Recombine across 
𝑃"
($) and 𝑃"̅

($)

Mutation
Randomly sample 
new Individuals

Evaluate

Genotype to Phenotype

Repair
Heuristic Repair if maximum 
Capacity Constraint violated.

Calculate Time and Profit

𝑁"	 𝑁+	 𝑁,	

𝑡 = 𝑡 + 1
Terminated?

no

𝑃(1)

Heuristic BRKGA NSGA-II Otherwise

Local Search
Try to iteratively improve solutions

t	mod	𝜔	= 0

Fig. 3: NDS-BRKGA: A customized genetic algorithm.
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Genotype to phenotype decoding

In order to facilitate the exploration of the BI-TTP solution space, we represent
the genotype of each individual as a vector of random-keys, which is a vector
of real numbers between the interval [0,1]. It is an indirect representation
that allows us to navigate in the feasible solution space of any optimization
problem through simple genetic operators. This representation strategy has
been successfully applied to several complex optimization problems (Gonçalves
and Resende 2012; Resende 2012; Gonçalves and Resende 2013; Lalla-Ruiz
et al. 2014; Gonçalves and Resende 2015; Santos and Chagas 2018).

Because this representation is independent of the problem addressed, a
deterministic procedure is necessary to decode each individual to a feasible
solution of the problem at hand, i.e., an algorithm that decodes a genotype to
its respective phenotype. In Figure 4, we illustrate the genotype and phenotype
structure for the BI-TTP. The structure can be divided into two parts, the
tour, and the packing plan. The tour needs to be decoded to a permutation
vector. It is known that the thief is starting from city 1 and, therefore, the
order of the remaining n−1 cities needs to be determined. To achieve this, the
sorting of the random key vector with length n− 1 forms a permutation from
1 to n − 1. Then, each value is increased by 1 to shift the permutation from
2 to n. By appending this permutation to the first city, the tour is decoded
to its phenotype. The packing plan needs to be decoded to a binary decision
vector of length m. The decision of whether to pick an item or not is made
based on the value of the biased random key, which has the same length. If the
corresponding value is larger than 0.5, the item is picked up, otherwise not. A
exemplary decoding of the biased random key vector [0.5, 0.1, 0.8, 0.6, 0.1, 0.9]
(see Figure 4) would be the following: First separate the genotype into two
parts [0.5, 0.1, 0.8] and [0.6, 0.1, 0.9]. Then, sort the first vector and increase
each value by 1 results in the permutation [3, 2, 4]. By appending it this vector
to the first city, the tour is π = [1, 3, 2, 4]. For the second part, for each value
in [0.6, 0.1, 0.9] we set the bit if it is larger than 0.5 which results in [1, 0, 1].
Note that this example decodes to the variable used for our hand-calculation
in Section 3. Moreover, the decoding is a many-to-one mapping, which means
different genotypes can represent the same phenotype.

Repair operator

According to the decoding procedure previously described, a genotype can
generate an infeasible phenotype concerning the packing plan. It occurs when
the total weight of the picked items is higher than the maximum limit of the
knapsack. In order to repair an infeasible genotype, we apply an operator that
removes items from the packing plan until it becomes feasible. In this repair
operator, we give preference to keeping items collected last; since this way,
the thief can travel faster at the beginning of its journey. Therefore, we first
remove all items collected from the first city visited by the thief. If the removal
of these items makes the packing plan feasible, the repair operator is finished;
otherwise, we repeat the previous step considering all items of the next city
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Packing Plan Tour 

0.5 0.1 0.8 0.6 0.1 0.9 

n-1 m 

1 1 0 1 

Genotype 

Phenotype 

sort > 0.5 

(repair if  necessary) 

𝜋 𝑧 

       2                   3                  4        1                   2                  3 

3 2 4 

Fig. 4: Chromosome structure: Genotype to phenotype mapping.

visited by the thief. This process repeats until the weight of all remaining items
in the packing plan does not exceed the limit of the knapsack. We also repair
the genotype to avoid propagating non-feasibility throughout the evolutionary
process. For this purpose, we should assign any real number less than 0.5 to
every random-key that references an item that has not been collected. In our
implementation, we have used the number zero.

Initial population

We use a biased initial population to incorporate domain knowledge into the
genetic algorithm. Because both subproblems of the BI-TTP are well-studied,
we make use of existing algorithms to generate a good initial population. We
maintain a population P of N individuals throughout the evolutionary process.
To create the initial population P(0), we combine the tour found by TSP and
the packing plan by KP solvers. To be not too biased to near-optimal solutions
of each subproblem, those combinations represent only a small fraction of the
entire population. Because the corresponding solvers provide the phenotype
presentation, we convert them to their genotype representation to be able
to apply evolutionary operators later on. We complete the population P(0) by
adding randomly created individuals to it, where each random-key is generated
independently at random in the real interval [0, 1].

In Algorithm 1, the required steps to create the initial population P(0)

are described in more detail. At first, we use the Lin-Kernighan Heuristic
(LKH) (Lin and Kernighan 1973) for solving the TSP component (Line 1).
We consider the symmetrical tour found by LHK (Line 2). As we consider
that the thief travels on a symmetric map, where both these tours result in
the same overall traveling time. Note that achieving near-optimal TSP tours is
not a guarantor for near-optimal TTP solutions, and it has been observed that
slightly longer tours have the potential to yield overall better TTP solutions
(Wagner 2016; Wu et al. 2018). However, we observed that near-optimal TSP
tours combined with KP packing with lighter items generate BI-TTP solutions
very close to the Pareto front regarding the traveling time objective.
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Algorithm 1: Generate initial population

1 π′ ← solve the TSP component // LKH algorithm

2 π′′ ← { π1, πn, πn−1, ..., π2 } // symmetric π′

3 z′ ← solve the KP component // GH + DP algorithm

4 z′′ ← ∅
5 S ← { ζ(π′, z′′), ζ(π′′, z′′)}
6 repeat
7 i← select item i ∈ z′ with the highest pi/wi rate
8 z′′ ← z′′ ∪ { i }
9 z′ ← z′ \ { i }

10 if (π′, z′′) is not dominated by (π′′, z′′) then
11 S ← S ∪ { ζ(π′, z′′)}
12 else
13 S ← S ∪ { ζ(π′′, z′′)}
14 end

15 until z′ = ∅
16 A ← select randomly a set of α×N individuals from S using a uniform distribution
17 B ← generate a set of (1− α)×N random individuals

18 P(0) ← A ∪ B
19 return P(0)

ζ(π, z) encodes the BI-TTP solution (π, z) to a vector of random-keys.

Next, we apply a two-stage heuristic algorithm, which has been developed
by us for solving the KP component (Line 3). We named this two-stage heuris-
tic algorithm GH+DP because it combines a Greedy Heuristic (GH) with
classical Dynamic Programming (DP) for solving the knapsack problem. The
GH+DP algorithm starts by sorting all m items according to the profit/weight
ratio in non-increasing order. It then proceeds to insert the first m′ items such

that the total weight
∑m′

i=1 wi is not greater than Q−δ where delta is a param-
eter of our method. Next, it uses the classic dynamic programming algorithm
(Toth 1980) for solving the smaller KP considering the last m−m′ items and

a knapsack of capacity Q−
∑m′

i=1 wi. There is no guarantee that near-optimal
KP packing plans generate near-optimal TTP solutions. However, in contrast
to single-objective approaches, we have observed that we can generate BI-TTP
solutions close to the optimal profit objective by combining near-optimal KP
packing plans with efficient TSP tours (see Section 5.4).

Afterward, we combine TSP and KP solutions to create new individuals
(Line 4 to 15). Note that we first create two individuals (Line 5) from the
tour (and its symmetric tour) found by LKH and from the empty knapsack
solution. Next, iteratively, we create new non-dominated individuals so that
at each iteration a single individual is created from the TSP solutions previ-
ously considered and also from a partial solution of the KP solution found by
GH+DP algorithm. After creating all individuals, we select only a subset of
them to compose the initial population. We randomly select α × N (α is a
parameter with its value between 0 and 1) individuals uniformly distributed
from all individuals generated (Line 16), then we generate (1 − α) × N ran-



14 Jonatas B. C. Chagas et al.

dom individuals (Line 17) in order to complete the initial population, which
is returned at the end of algorithm (Line 19).

Elite and non-elite population

It is a common strategy of multi-objective optimization algorithms to give
more importance to non-dominated solutions in the population during the
recombination and environmental survival Chand and Wagner (2015). We split
the population into two groups: the elites and non-elites. The number of elites
is defined beforehand by the parameter Ne. We use the survival selection of
NSGA-II (Deb et al. 2002) as a splitting criterion (see Figure 5). The current
population P (t) and the offspring Q(t) are merged together and non-dominated
sorting is applied. The outcome is a number of fronts F1, F2, . . . , FL, each of
which is a set of individuals. Because the survival selection requires to select
only |P (t)| individuals from the merged population, it might be the case that
a front needs to be split into surviving and non-surviving individuals. In our
example, F1 and F2 are surviving individuals because of their non-domination
criterion. However, F3 needs to be split. Therefore, a second criterion, crowding
distance, is introduced. Based on the distance to neighboring individuals in
the objective space, a crowding distance metric is calculated and assigned to
each individual.

We use the non-dominated sorting and crowding distance to incorporate
elitism. As is usually done, before calculating the crowding distance, we nor-
malize the objectives in order to avoid a possible higher influence of a single
objective. The number of elite individuals Ne is determined by executing the
NSGA-II survival on our current population P (t) with the goal to let Ne indi-

viduals survive. The resulting survivors are added to the group of elites P
(t)
e

and the remaining to the group of non-elites P
(t)
ē .

Pt

Qt

F1

F2

F3

Rejected

sorting

Crowding
distance
sorting Pt+1

}
{

Rt

Non-dominated

Fig. 5: NSGA-II survival selection (Illustration based on Deb et al. (2002)).
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Biased crossover

With the purpose of diversity preservation, we apply a biased crossover in order
to create new offspring individuals. It is common practice when random-keys
are used as a genotype representation. The biased crossover operator involves

two parents. The first is randomly selected from the elite population P
(t)
e and

the second randomly from the whole population P (t). Moreover, the biased
crossover operator has a parameter ρe, which defines the probability of each
random-keys of the first parent (it always belongs to the elite population) to
be inherited by the offspring individual. More precisely, from an elite parent
a and another any parent b, we can generate an offspring c according to the
biased crossover as follows:

ci ←

{
ai if rand (0, 1) ≤ ρe

bi else
∀i ∈ {1, 2, ..., n− 1 +m}

where ai, bi and ci are, respectively, the i-th random-key of individuals a, b
and c.

Mutant individuals

As in BRKGAs, we are not using any mutation operators, which are com-
monly used in most GAs (Mitchell 1998). In order to maintain diversity in
the population, we use so-called mutant individuals. Mutant individuals are
simply randomly created individuals where each random-key is sampled from
a uniform distribution in the [0, 1] range.

Survival

The population of the next generation P(t+1) is formed based on the current
population P(t). The survival is the union of three different groups of individ-
uals:

(i) Elite population: Part of the survival is based on elitism. Before the
mating, a sub-population Pe of Ne individuals are selected as elites
according to the NSGA-II criteria. This means non-dominated sorting
determines the rank of each solution, and then for each non-dominated
front, the crowding distance is calculated. In the case of a tie, two
solutions are ordered randomly. Based on this absolute ordering, we
pick Ne individuals and directly copy them to P(t+1).

(ii) Mutant individuals: In order to maintain a high diversity, a popu-
lation Pm of Nm mutant individuals are added to P(t+1). The strat-
egy of keeping a separate set with mutants introduces a diversity of
offspring during the mating. Otherwise, the recombination would be
biased towards elites in the population, and a premature converge
through a loss of diversity is likely.

(iii) Offsprings from biased crossover: To complete the number of
individuals in the next population P(t+1), N −Ne −Nm individuals
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are generated and added on it through mating by the biased crossover
operator. The biased crossover chooses one parent from the elites and
another one from the non-elites. This mating is even more biased
towards the elite population than the traditional binary tournament
crossover used in NSGA-II, because it forces for each mating a non-
dominated solution to participate in it.

Finally, the surviving individuals are obtained by merging these three sets
together P(t+1) = Pe∪Pm∪Po. The survival is partly based on elitism through
letting Pe survive for sure, but also adds two more diverse groups through
evolutionary operators.

Local search

At some evolutionary cycles, we apply an exploitation procedure of the
search space by modifying the genotypes of some individuals to enhance the
fitness of the current population. This methodology is commonly applied to
traditional genetic algorithms in order to balance the concepts of exploitation
and exploration, which are aspects of effective search procedures (Neri and
Cotta 2012). Genetic Algorithms (GAs) with exploitation procedure are known
and widely referenced as Memetic Algorithms (MAs). According to Krasnogor
and Smith (2005), MAs have been demonstrated to be more effective than
traditional GAs for some problem domains, especially for combinatorial opti-
mization problems.

In NDS-BRKGA, the local search is only applied to some percentage of
the population and consists of two phases. First, the tour π is considered sep-
arately and the permutation is modified; Second, it considers only the packing
plan z and through bit-flips items are either removed or added. In Algorithm 2
we describe the exploitation phase in more detail. In order to ensure a high di-
versity in the current population, we execute a local search only for 10% of all
elite individuals (Line 1). Initially, we decode each individual to its phenotype
consisting of a tour π and a packing plan z (Line 3). Then, the two phases of
local optimizations are considered. First, we apply a limited local search proce-
dure (Line 4 to 7) to the tour π. The local search makes use of the well-known
2-opt move, which has been successfully incorporated to solve various combi-
natorial optimization problems, including the single-objective TTP (El Yafrani
and Ahiod 2016, 2018). We limited the number of 2-opt moves to a small value
LSπ = min(100, n2) since the exploitation phase may become computationally
expensive when large instances are considered. After all 2-opt moves have been
executed, the tour π and the packing plan z are added to the elite population
Pe if it is not dominated by any solution in Pe (Line 8). Note that in the first
phase, we do not change the packing plan z, which means the second objec-
tive of the problem (KP component) remains unchanged. Second, we intend to
improve the packing plan z by applying bit-flip random moves (Line 9 to 15).
The bit-flip is also a well-known operator widely used in combinatorial opti-
mization problems, including the single-objective TTP as well (Faulkner et al.
2015; Chand and Wagner 2016). Again because of the computational expen-
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siveness, we apply LSz = min(100,m) random bit-flip moves (Line 10-11). As
before, the new BI-TTP solution (π, z′) is insert into Pe if it is not dominated
by any solution in Pe (Line 13). Finally, if Pe contains more than Ne solutions
(Line 17), we select the best Ne according to the their non-dominated rank
and crowding distance (Line 18).

Algorithm 2: Exploitation phase.

1 P̂e ← select randomly 0.1Ne individuals from current elite population Pe

2 foreach p ∈ P̂e do
3 (π, z)← decode p in a feasible BI-TTP solution
4 for i← 1 to LSπ do
5 π′ ← generate a random 2-opt move in π
6 if (π′, z) is not dominated by (π, z) then (π, z)← (π′, z)

7 end
8 if (π, z) is not dominated by any solution in Pe then Pe ← Pe ∪ { ζ(π, z)}
9 for i← 1 to LSz do

10 item← select randomly an item ∈ {1, 2, . . . ,m}
11 if item ∈ z then z′ ← z \ {item} else z′ ← z ∪ {item}
12 if (π, z′) is not dominated by any solution in Pe then
13 Pe ← Pe ∪ { ζ(π, z′)}
14 end

15 end

16 end
17 if |Pe| > Ne then
18 Pe ← select Ne individuals according to the NSGA-II criteria

19 end

ζ(π, z) encodes the BI-TTP solution (π, z) to a vector of random-keys.

To balance the exploration and exploitation phases in a run of the algo-
rithm, we apply the exploitation phase only at every ω evolutionary cycles,
which is another parameter of our proposed method.

5 Computational Experiments

In this section, we present the computational experiments we have employed to
study the performance of our proposed method. We have chosen C/C++ as a
programming language and have used BRKGA framework developed by Toso
and Resende (2015) and the Lin-Kernighan Heuristic (LKH), version 2.0.93.
The experiments have been executed on a high-performance cluster where each
node is equipped with Intel(R) Xeon(R) 2.30 GHz processors. Each run of our
algorithm has been sequentially (nonparallel) performed on a single processor.
Our source code, as well as all non-dominated solutions found for each test
instance, are available online4.

3Available at http://akira.ruc.dk/~keld/research/LKH/
4Available at https://github.com/jonatasbcchagas/nds-brkga_bi-ttp

http://akira.ruc.dk/~keld/research/LKH/
https://github.com/jonatasbcchagas/nds-brkga_bi-ttp
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Table 3: BI-TTP test instances.

Instance n m Q Knapsack Type R

a280 n279 280 279 25936 bsc 01
a280 n1395 1395 637010 usw 05
a280 n2790 2790 1262022 unc 10

fnl4461 n4460 4461 4460 387150 bsc 01
fnl4461 n22300 22300 10182055 usw 05
fnl4461 n44600 44600 20244159 unc 10

pla33810 n33809 33810 33809 2915215 bsc 01
pla33810 n169045 169045 77184794 usw 05
pla33810 n338090 338090 153960049 unc 10

In the following, we evaluate the performance of our proposed method on a
variety of test instances. To be neither biased towards test instances with only
a small or large number of cities and items, we have selected test instances
with the purpose of covering different characteristics of the problem. Due to the
design decisions we have made during the algorithm development, we provide
a detailed parameter study to show the effectiveness of each customization of
the evolutionary algorithm. Moreover, we present the rankings of competitions
where we submitted our implementation to.

5.1 Test instances

In order to analyze the performance, we have considered nine medium/large
instances from the comprehensive TTP benchmark developed by Polyakovskiy
et al. (2014). These instances, which are described in Table 3, have been used
in the BI-TTP competitions at EMO-2019 5 and GECCO-2019 6 conferences.

From Table 3, we can observe the characteristics of the instances, which
involve 280 to 33810 cities (column n), 279 to 338090 items (column m),
and knapsacks (column Q). Furthermore, the knapsack component of each
instance has been built according to the profit/weight ratio of items in three
different ways: bounded strongly correlated (bsc), uncorrelated with similar
weights (usw), and uncorrelated (unc). To diversify the size of the knapsack
component, it has been defined for each instance how many items per city are
available (column R). For instance, when R = 10, then 10 items are available
in each city. For example, assuming a problem with 280 cities, this results in
2790 items in total (as the first city never has any items).

5https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
6https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/
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Table 4: Parameter overview.

Parameter Description

N Population Size

Ne Number of Elites

Nm Number of Mutant Individuals

ρe Probability of Elite during Biased Crossover

α Fraction of near-optimal Solutions obtained by
solving TSP or KP independently

ω Frequency of Local Search Procedures

TSP - t Time in Seconds to solve the TSP problem

KP - δ Gap of Knapsack Capacity Q in between dif-
ferent KP Optimizer Runs

5.2 Parameter Study

Customization often involves adding new parameters to the algorithm. There-
fore, it is crucial to ensure the parameters are chosen well concerning the
performance of the algorithm on a variety of test problems. For this reason,
we investigate the influence of parameters in our proposed method. In the ex-
periment, we run a systemic setup of parameters to finally draw conclusions
regarding their performance on the different types of test instances. Finally, we
provide suggestions on how to choose parameters for new unknown problems.

Our proposed method has eight parameters in total which are shown in
Table 4: Population size N , elite population size Ne, mutant population size
Nm, elite allele inheritance probability ρe, fraction α of the initial population
created from TSP and KP solutions (see Algorithm 1), and the frequency
ω, in terms of evolutionary cycles in which a local search is applied (see Al-
gorithm 2). Furthermore, two subproblem dependent parameters have to be
defined: t, which is the upper bound for the time of the TSP solvers to be
executed, and δ, which is the number of different KP capacities that should be
considered. To evaluate the influence of each parameter, we conduct several
experiments.

In this parameter study, we first investigate the effect of t and δ on the
performance. Both variables affect the initial population that consists partly of
solutions from TSP and KP solvers. For solving the TSP component indepen-
dently, we have used the Lin-Kernighan Heuristic (LKH). The LKH is one of
the most efficient algorithms for generating optimal or near-optimal solutions
for the symmetric traveling salesman problem. Naturally, the LKH has higher
computational costs as TSP instances increase. To balance the computational
cost and the quality of the solution achieved, we limit the LKH execution
time to different values and compare the obtained solution with the optimal
solution. As LKH has random components, we run it ten independent times
and use the average reached by them. In Table 5, for each TSP instance and
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Table 5: Influence of execution time on the LKH heuristic algorithm.

TSP t in seconds

comp. 60 180 300 420 600 1800 3600

a280 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
fnl4461 0.0180% 0.0078% 0.0035% 0.0028% 0.0028% 0.0000% 0.0000%
pla33810 0.6653% 0.5964% 0.4261% 0.3339% 0.2377% 0.1084% 0.0837%

Avg. 0.2278% 0.2014% 0.1432% 0.1122% 0.0802% 0.0361% 0.0279%

each runtime, we show the relative percentage difference between the solution
obtained with limited time and the TSP optimal solution.

Table 5 shows that even for shorter computational times LKH is efficient.
On average, LKH has been able to find solutions with a gap of less than
0.23% to the optimal solutions, even considering only 60 seconds of processing.
Naturally, the quality of solutions increases with longer computational time.
As we do not pursue spending a significant amount of time solving the TSP
independently, we have limited the LKH to 300 seconds in our implementation.
The experiment indicates that this is sufficient to produce near-optimal TSP
solutions to be used in the initial population.7

Moreover, the parameter δ used in the KP solver has to be studied and
the performance of the GH+DP algorithm evaluated. This algorithm has been
developed for solving the KP component independently. For each KP instance,
we have run the GH+DP for different values of δ and have measured the qual-
ity of the solutions obtained. Table 6 shows the difference between the solution
obtained and the KP optimal solution d∗p for different δ values. In addition to
the difference, it provides the computational time required in seconds t(s). We
can observe that for almost all instances, GH+DP has been able to find the
KP optimal solution even with a relatively small δ. Moreover, the larger δ,
the larger the fraction of the knapsack solved using the dynamic programming
algorithm, hence the higher quality of the solution and the longer the compu-
tation time. In order to find the best possible solutions for the KP component
within a reasonable time, we have chosen to use δ = 5 · 104.

This preliminary study on subproblem solvers has shown that t = 300 for
the TSP solver and δ = 5 ·104 for KP solver seem to be reasonable parameters
regarding the trade-off of running time and quality of solutions. So far, we have
evaluated the goodness of each of the subproblems without considering the in-
terwovenness aspect. Next, the parameter α defines how many solutions are
used from those subproblem solvers during the initialization. To draw conclu-
sions about the remaining six parameters, we have conducted an experiment
with predefined parameter settings. The considered parameter values for each
parameter are shown in Table 7. We have considered all 3072 possible combi-
nations that can be formed by combining these values. Because the proposed

7Note that we rotate the computed tours to conform with the requirement for all TTP tours
to start and finish in city number 1.
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Table 6: Influence of δ on GH+DP algorithm.

KP comp.
δ = 103 δ = 5 · 103 δ = 104 δ = 5 · 104 δ = 105 δ = 5 · 105

d∗p t(s) d∗p t(s) d∗p t(s) d∗p t(s) d∗p t(s) d∗p t(s)

n279 0 0 0 0 0 0 0 0 0 0 0 2
n1395 0 0 0 0 0 0 0 3 0 33 0 1364
n2790 0 0 0 0 0 0 0 2 0 18 0 1339

n4460 0 0 0 0 0 1 0 54 0 162 0 9007
n22300 27 0 12 1 12 2 0 105 0 265 0 10234
n44600 0 0 0 0 0 1 0 47 0 136 0 5193

n33809 0 1 0 3 0 6 0 261 0 1149 0 22945
n169045 298 3 298 7 295 14 228 437 11 3980 0 35711
n338090 0 1 0 2 0 5 0 226 0 928 0 19594

Avg. 36.1 0.6 34.4 1.4 34.1 3.2 32.0 126.1 1.2 741.2 0.0 11708.8

Table 7: Parameter values considered during the experiment.

Parameter Values

N 100, 200, 500, 1000

Ne 0.3N , 0.4N , 0.5N , 0.6N

Nm 0.0N , 0.1N , 0.2N

ρe 0.5, 0.6, 0.7, 0.8

α 0.0, 0.1, 0.2, 0.3

ω 1, 10, 50, 100

method contains components with underlying randomness, we have run each
parameter configuration 10 times for 5 hours. Altogether, the experiments
have consumed 1, 382, 400 CPU hours, which is equivalent to almost 158 CPU
years.

We use the hypervolume indicator (HV) (Zitzler and Thiele 1998) as a per-
formance indicator to compare and analyze results obtained from the set of
parameter configurations. It is one of the most used indicators for measuring
the quality of a set of non-dominated solutions by calculating the volume of
the dominated portion of the objective space bounded from a reference point.
Considering the BI-TTP, it considers the dominated volume regarding the min-
imum time and the maximum profit. Note that maximizing the hypervolume
indicator is equivalent to finding a good approximation of the Pareto front,8

thereby the higher the hypervolume indicator, the better the solution sets are
(in general terms). To make the hypervolume suitable for the comparison of
objectives with greatly varying ranges, these need to be normalized before-
hand. Therefore, we have first normalized the values of the objectives between

8However, maximizing the hypervolume is not equivalent to finding the optimal approxima-
tion, see, e.g., Bringmann and Friedrich (2013); Wagner et al. (2015)
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0 and 1 according to their minimum and maximum value found during the
parameter tuning experiments before computing the hypervolume.

Figure 6 shows the convergence according to the hypervolume indicator for
each instance throughout 5 hours, considering 10-minute intervals. For each
interval, we have plotted the result of the best parameter configuration found.
Each parameter configuration is described in Table 8. It is important to note
that the vertical axis (hypervolume values) of the plots are not on the same
scale. The figure shows that our proposed method has been able to quickly
converge for most of the instances, indicating that our algorithm does not need
excessive processing time to achieve good solutions.
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Fig. 6: Convergence plots according to the hypervolume indicator.
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Table 8: Best parameter configurations as observed in the parameter study.

Instance Runtime Best parameter configuration

N Ne Nm ρe α ω

a280 n279 600 500 0.4 0.1 0.7 0.1 10
1200 500 0.4 0.1 0.7 0.2 10
1800 500 0.5 0.0 0.5 0.2 10

2400 - 18000 500 0.3 0.2 0.8 0.3 50

a280 n1395 600 1000 0.6 0.0 0.6 0.3 10
1200 1000 0.6 0.0 0.5 0.2 10

1800 - 2400 1000 0.6 0.1 0.5 0.2 50
3000 - 4800 1000 0.6 0.0 0.5 0.2 50
5400 - 9600 1000 0.6 0.0 0.6 0.2 50

10200 - 15600 1000 0.6 0.0 0.5 0.3 100
16200 - 18000 1000 0.6 0.1 0.8 0.3 50

a280 n2790 600 1000 0.6 0.0 0.6 0.1 100
1200 1000 0.6 0.0 0.5 0.1 50

1800 - 3600 1000 0.6 0.0 0.7 0.2 50
4200 1000 0.6 0.0 0.7 0.1 50

4800 - 6000 1000 0.6 0.0 0.5 0.3 50
6600 - 12000 1000 0.6 0.0 0.5 0.1 50
12600 - 14400 1000 0.6 0.0 0.5 0.3 50

15000 1000 0.6 0.0 0.5 0.2 50
15600 - 18000 1000 0.6 0.0 0.5 0.3 50

fnl4461 n4460 600 500 0.6 0.0 0.5 0.1 50
1200 - 4200 1000 0.6 0.0 0.7 0.1 100
4800 - 9600 1000 0.6 0.0 0.6 0.2 100

10200 - 13800 1000 0.6 0.0 0.5 0.2 50
14400 - 18000 1000 0.6 0.0 0.5 0.3 50

fnl4461 n22300 600 1000 0.5 0.0 0.8 0.1 10
1200 1000 0.6 0.0 0.8 0.2 50

1800 - 6600 1000 0.6 0.0 0.5 0.2 100
7200 1000 0.6 0.0 0.5 0.3 100
7800 1000 0.6 0.0 0.5 0.2 100

8400 - 10200 1000 0.6 0.0 0.5 0.3 100
10800 - 18000 1000 0.6 0.0 0.5 0.1 50

fnl4461 n44600 600 1000 0.6 0.0 0.8 0.3 100
1200 1000 0.6 0.0 0.8 0.3 100

1800 - 15600 1000 0.6 0.0 0.5 0.3 100
16200 - 18000 1000 0.6 0.0 0.5 0.2 100

pla33810 n33809 600 1000 0.3 0.2 0.5 0.1 1
1200 1000 0.6 0.0 0.7 0.2 10
1800 1000 0.5 0.0 0.8 0.3 10
2400 1000 0.6 0.0 0.7 0.3 50
3000 1000 0.6 0.0 0.5 0.2 50
3600 1000 0.6 0.0 0.6 0.2 50
4200 1000 0.6 0.0 0.5 0.2 50
4800 1000 0.6 0.0 0.6 0.1 50
5400 1000 0.6 0.0 0.6 0.3 50

6000 - 11400 1000 0.6 0.0 0.6 0.1 50
12000 - 18000 1000 0.6 0.0 0.6 0.1 10

pla33810 n169045 600 500 0.5 0.0 0.8 0.3 10
1200 100 0.3 0.1 0.8 0.3 1
1800 500 0.5 0.0 0.8 0.2 1

2400 - 3000 500 0.3 0.0 0.8 0.3 1
3600 - 13800 1000 0.3 0.0 0.8 0.3 1
14400 - 18000 1000 0.4 0.2 0.8 0.3 1

pla33810 n338090 600 1000 0.3 0.1 0.8 0.3 1
1200 - 4800 1000 0.6 0.0 0.8 0.3 100
5400 - 8400 1000 0.6 0.0 0.7 0.3 100
9000 - 14400 1000 0.6 0.2 0.5 0.3 100

15000 1000 0.4 0.0 0.8 0.3 1
15600 - 18000 1000 0.3 0.1 0.8 0.3 1
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Table 8 shows that the best parameter configuration for each instance
changes over runtime. However, the number of changes among them decreases
as the runtime increases, which means our method keeps stable regarding
its best parameter configuration as the runtime increases. Although a single
parameter configuration cannot extract the best performance by considering
all instances, we can observe some patterns and trends among the different
parameter configurations. A good parameter configuration is a population with
a larger number of individuals, higher survival rate for the best individuals,
insignificant contribution from mutant individuals, and high contribution of
the TSP and KP solvers for creating part of the initial population.

In the following, we analyze the behavior of the parameters considering
all instances together. In Figure 7, we can visualize the best parameter con-
figurations at six different execution times. In each plot, the best obtained
parameter configuration regarding hypervolume is highlighted in red and pa-
rameter configurations up to 0.1% worse than the best are highlighted in blue.
Note that the intensity of the blue color indicates the importance of values of
each parameter among the best parameter configurations once some parameter
configurations share some parameter values. The following can be observed:

(i) More execution time, better results: The number of parameter
configurations that are capable of generating large hypervolume values
increases as the execution time of our algorithm increases. This means
that in some runs, even though the parameters have not been set
appropriately, the algorithm is still able to converge.

(ii) Importance of TSP and KP solvers: It influences the overall
performance of the algorithm if TSP and KP solvers are used for
initialization, which is determined by α. The best results are obtained
if at least 10% percent of the initial solutions are biased towards those
solutions found a TSP and KP solvers.

(iii) Trends when execution time increases: We can see a trend as
the execution time increases. Our method performs better with a large
population, a high survival rate, a small or no explicit diversification
through mutant individuals, a small influence of single-parent inher-
itance, a minor influence of a good initial population, and significant
influence of local search procedure.

5.3 Competition Results

In order to analyze the efficiency of NDS-BRKGA compared to other meth-
ods, we present the results of the BI-TTP competitions held at EMO-2019
and GECCO-2019 conferences, where our method has been used and its so-
lutions have been submitted. Both competitions did not have any regulations
regarding running time, number of processors, or any other constraint and the
ranking was solely based on the solution set submitted by each participant.
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Fig. 7: Best parameter configurations over all instances with varying execution
times.

Following the criteria of both competitions, we have compared the efficiency
of the solutions of each submission for each test instance according to the hy-
pervolume indicator. For each instance, the reference point used to calculate
the hypervolume has been defined as the maximum time and the minimum
profit obtained from the non-dominated solutions, which have been built from
all submitted solutions.

In both competitions, the number of accepted solutions for each instance
has been limited: For test instances based on a280 to 100, fnl4461 to 50, and
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for pla33810 to 20. Because NDS-BRKGA returns a non-dominated set of
solutions (named here as A), where its size can be larger than the maximum
number of solutions q accepted, we apply the dynamic programming algorithm
developed by Auger et al. (2009), which is able to find a subset A∗ ⊆ A with
|A∗|= q, such that the weighted hypervolume indicator of A∗ is maximal. As
stated by Auger et al. (2009), this dynamic programming can be solved in
time O(|A|3).

For the EMO-2019 competition, we have used a preliminary version of
the NDS-BRKGA described in Section 4. At that time, our method did not
use the local search procedure described in Algorithm 2. Moreover, the initial
population of the algorithm used in that version has been created essentially
at random. Only four individuals have been created from the TSP and KP
solutions, which have been obtained by the same solvers previously described
in this work. More precisely, those four individuals have been built from BI-
TTP solutions (π,∅), (π′,∅), (π, z), and (π′, z), where π is the tour found by
LKH algorithm, π′ is the symmetric tour to π, and z is the packing plan for
the knapsack obtained by GH+DP algorithm.

In addition to our method, five other teams also submitted their solutions
to the EMO-2019 competition. Among all submissions, NDS-BRKGA has had
the best performance in seven of the nine test instances, resulting in the first-
place award. All competition details, classification criteria, and results can
be found at https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/,
where our submission is identified as “jomar” (a reference to the two authors
(Jonatas and Marcone) who first worked on our algorithm). We herewith also
present later a brief summary of these results.

After the EMO-2019 competition, we have realized that the inclusion of
more individuals created from TSP and KP solvers helped the evolutionary
process of our algorithm by combining more individuals with higher fitness
from the first evolutionary cycles. Therefore, we initialize the population as
shown in Algorithm 1. This new initial population initialization has been used
in the GECCO-2019 competition, another BI-TTP competition that has con-
sidered the same criteria and classification rules of the EMO-2019 competition.

In the GECCO-2019 competition, 13 teams have submitted their solutions.
In this competition, NDS-BRKGA has won the second place in the final rank-
ing. All detailed competition results can be found at https://www.egr.msu.
edu/coinlab/blankjul/gecco19-thief/, where our submission is identified
as “jomar” again.

Table 9 shows a summary of the final results of both BI-TTP competitions.
For each instance, we list the hypervolume achieved by the five best approaches
that have been submitted to each competition. Our results from back then are
highlighted in bold.

The results of the EMO-2019 competition show that the difference between
the hypervolume achieved by NDS-BRKGA and by the others on smaller in-
stances has been less significant than on larger instances. Also, it is worth
mentioning that for the instances pla33810 n169045 and pla33810 n338090
the difference between the NDS-BRKGA and the second-best approach has

https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/
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Table 9: Results of the BI-TTP competitions. The results obtained by NDS-
BRKGA were submitted by the team jomar.

Instance
EMO-2019 GECCO-2019

Approach HV Approach HV

a280 n279

jomar 0.893290 HPI 0.898433
ALLAOUI 0.835566 jomar 0.895567

shisunzhang 0.823563 shisunzhang 0.886576
rrg 0.754498 NTGA 0.883706

CIRG UP KUNLE 0.000000 ALLAOUI 0.873484

a280 n1395

jomar 0.816607 HPI 0.825913
shisunzhang 0.756445 jomar 0.821656

rrg 0.684549 shisunzhang 0.820893
ALLAOUI 0.581371 NTGA 0.811490

CIRG UP KUNLE 0.000000 ALLAOUI 0.808998

a280 n2790

jomar 0.872649 jomar 0.887945
shisunzhang 0.861102 HPI 0.887571

rrg 0.704428 ALLAOUI 0.885144
ALLAOUI 0.621785 NTGA 0.882562

CIRG UP KUNLE 0.000000 shisunzhang 0.874371

fnl4461 n4460

jomar 0.794519 HPI 0.933901
shisunzhang 0.719242 jomar 0.932661
ALLAOUI 0.553804 NTGA 0.914043

CIRG UP KUNLE 0.000000 ALLAOUI 0.889219
OMEGA 0.000000 SSteam 0.854150

fnl4461 n22300

shisunzhang 0.670849 HPI 0.818938
jomar 0.554188 jomar 0.814634

ALLAOUI 0.139420 NTGA 0.803470
CIRG UP KUNLE 0.000000 SSteam 0.781462

OMEGA 0.000000 ALLAOUI 0.760480

fnl4461 n44600

shisunzhang 0.540072 HPI 0.882894
jomar 0.534185 jomar 0.874688

ALLAOUI 0.009693 SSteam 0.856863
CIRG UP KUNLE 0.000000 shisunzhang 0.850339

OMEGA 0.000000 NTGA 0.824830

pla33810 n33809

jomar 0.718148 HPI 0.927214
shisunzhang 0.496913 NTGA 0.888680
ALLAOUI 0.090569 ALLAOUI 0.873717

CIRG UP KUNLE 0.000000 jomar 0.845149
OMEGA 0.000000 SSteam 0.832557

pla33810 n169045

jomar 0.697086 HPI 0.818259
shisunzhang 0.022390 SSteam 0.776638
ALLAOUI 0.007377 NTGA 0.773589

CIRG UP KUNLE 0.000000 ALLAOUI 0.769078
OMEGA 0.000000 jomar 0.738509

pla33810 n338090

jomar 0.696987 HPI 0.876129
shisunzhang 0.049182 SSteam 0.853805
ALLAOUI 0.001853 jomar 0.853683

CIRG UP KUNLE 0.000000 ALLAOUI 0.836965
OMEGA 0.000000 NTGA 0.781286
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been larger than 0.65 (65% of the total hypervolume). Regarding the results
of NDS-BRKGA and other submissions, we can clearly see the improvement
achieved, especially for larger instances, by considering the current form of
generating the initial population. The results of the instances fnl4461 n22300
and fnl4461 n44600 have been significantly improved compared to results ob-
tained with the preliminary version of the algorithm submitted to the EMO-
2019 competition.

The results of the competition GECCO-2019 show that NDS-BRKGA was
able to win the test instance a280 n2790 and has reached the second place
five times. For test instances based on pla33810, NDS-BRKGA was able to
achieve one of the top five ranks (11 participants in total). After the GECCO-
2019 competition, we incorporated the exploitation phase as the most recent
enhancement to our method, thus completing the NDS-BRKGA described
in Section 4. In order to compare the performance of all versions, we plot the
hypervolume reached by each version in each instance according to the criteria
of the competitions (see Figure 8). It can be observed that including more
individuals from good solutions of the individual BI-TTP components brought
a significant improvement. However, we did not observe major improvement
after incorporating the exploitation phase after 5 hours running time, except
for the test instance pla33810 n169045 in which the hypervolume increases
around 4.2%. Nevertheless, we have noticed a significant faster convergence
with the incorporation.

HV
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Fig. 8: Hypervolumes obtained by the different NDS-BRKGA versions.
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Table 10: Best result of the BI-TTP competitions vs. our final NDS-BRKGA.

Instance Approach HV Diff.

a280 n279

HPI 0.898433 0.000000
NDS-BRKGA 0.895708 0.002725
shisunzhang 0.886576 0.011857

NTGA 0.883706 0.014727
ALLAOUI 0.873484 0.024949

a280 n1395

NDS-BRKGA 0.826879 0.000000
HPI 0.825913 0.000966

shisunzhang 0.820893 0.005986
NTGA 0.811490 0.015389

ALLAOUI 0.808998 0.017881

a280 n2790

NDS-BRKGA 0.887945 0.000000
HPI 0.887571 0.000374

ALLAOUI 0.885144 0.002801
NTGA 0.882562 0.005383

shisunzhang 0.874371 0.013574

fnl4461 n4460

NDS-BRKGA 0.933942 0.000000
HPI 0.933901 0.000041

NTGA 0.914043 0.019899
ALLAOUI 0.889219 0.044723

SSteam 0.854150 0.079792

fnl4461 n22300

HPI 0.818938 0.000000
NDS-BRKGA 0.814492 0.004446

NTGA 0.803470 0.015468
SSteam 0.781462 0.037476

ALLAOUI 0.760480 0.058458

fnl4461 n44600

HPI 0.882894 0.000000
NDS-BRKGA 0.874688 0.008206

SSteam 0.856863 0.026031
shisunzhang 0.850339 0.032555

NTGA 0.824830 0.058064

pla33810 n33809

HPI 0.927214 0.000000
NTGA 0.888680 0.038534

ALLAOUI 0.873717 0.053497
NDS-BRKGA 0.852836 0.074378

SSteam 0.832557 0.094657

pla33810 n169045

HPI 0.818259 0.000000
NDS-BRKGA 0.781009 0.037250

SSteam 0.776638 0.041621
NTGA 0.773589 0.044670

ALLAOUI 0.769078 0.049181

pla33810 n338090

HPI 0.876129 0.000000
NDS-BRKGA 0.857105 0.019024

SSteam 0.853805 0.022324
ALLAOUI 0.836965 0.039164

NTGA 0.781286 0.094843

Because we have improved our method after the GECCO-2019 competition
has passed, we have reevaluated the results based on the final version of NDS-
BRKGA proposed in this paper. The results are shown in Table 10. In addition
to the results, we present the hypervolume for each instance achieved by the
four best approaches that have been submitted to both BI-TTP competitions.
In the last column of the table, we list the difference between the hypervolume
reached by each approach and that reached by the best one for each instance.
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Table 11: Single-objective comparison of the TTP objectives scores.

Instance TTP score? NDS-BRKGA

a280 n279 18526.000a 18603.120
a280 n1395 112534.000b 115445.521
a280 n2790 436932.000b 429085.353
fnl4461 n4460 263040.254c 257394.821
fnl4461 n22300 1705326.000d 1567933.421
fnl4461 n44600 6744903.000d 6272240.702
pla33810 n33809 1872169.000c 1230174.003
pla33810 n169045 15707829.000d 12935090.876
pla33810 n338090 58236645.120e 55688288.508

? Best scores reported so far in the TTP articles, including in their supplementary files.
a HSEDA proposed by Martins et al. (2017); b MA2B proposed by El Yafrani and Ahiod
(2016); c S5 proposed by Faulkner et al. (2015); d CS2SA proposed by El Yafrani and Ahiod
(2016); e C6 proposed by Faulkner et al. (2015).

One can notice that NDS-BRKGA has outperformed all other approaches
in three instances (a280 n1395, a280 n2790, and fnl4461 n4460 ). For the in-
stances a280 n279, fnl4461 n22300, and fnl4461 n44600, NDS-BRKGA won
the second place with a small difference to the first. For the three largest
instances, NDS-BRKGA won the second place in two cases.

5.4 Comparison with single-objective TTP solutions

Lastly, we build the bridge to the single-objective TTP, which has been mostly
investigated so far. Therefore, we compare our results with the single-objective
TTP objective scores, which come from a comprehensive comparison of effi-
cient algorithms already proposed in the literature. The computational budgets
of the approaches which have obtained the best-known solutions might vary.

Table 11 compares for each instance the best-known score of the TTP with
the best score found by our algorithm when it optimized the BI-TTP. Note
that despite the strong connection of the BI-TTP to the single-objective TTP,
maximizing the single-objective TTP objective score is not an explicit goal
of the BI-TTP. Nevertheless, NDS-BRKGA has found better scores for the
two smallest instances with 280 cities with up to 1395 items. In these cases,
the best single-objective solutions are strictly dominated by our bi-objective
solutions in both the bi-objective space and in the TTP score space.

Figure 9 shows the 100% attainment surface for each instance. For each
problem all non-dominated solutions found by our algorithm and the single-
objective TTP solution obtained by the best performing algorithm (out of 10
runs) are plotted. Moreover, the dotted lines represent the dominated region
of the solution obtained by a single-objective optimizer. The figure clearly
shows that for almost all instances, none or only a few solutions are domi-
nated (see the values in brackets in the figure). Not only this, but also the fact
that not a single but multiple non-dominated solutions have been obtained
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shows the efficiency of our proposed approach. Only for the problem instance
pla33810 n33809 the single-objective optimizer has been able to find signifi-
cantly better results, where the single-objective solutions dominate 18.93% of
the bi-objective solutions.
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Fig. 9: NDS-BRKGA solutions for the present BI-TTP, and solutions gen-
erated by single-objective TTP algorithms. The numbers in brackets show
the percentage of the bi-objective solutions that are dominated by the single-
objective solutions.



32 Jonatas B. C. Chagas et al.

6 Concluding Remarks

In this paper, we have investigated the bi-objective traveling thief problem
where the Traveling Salesman and Knapsack Problem interact with each other.
We have proposed an evolutionary optimization algorithm that uses the prin-
ciples of customization to solve this challenging combinatorial optimization
problem effectively. Each customization addresses one specific problem char-
acteristic that needs either to be considered during the optimization or can be
used to further improve the convergence of the algorithm.

Our proposed method has incorporated problem knowledge by creating a
biased initial population that contains individuals generated by existing effi-
cient solvers for each subproblem independently. Moreover, the constraint has
been handled through a customized repair operator during the evolution, and
the heterogeneous variables have been unified through a genotype to pheno-
type mapping. To address the existence of two objectives, we have used non-
dominated sorting and crowding distance during the environment survival and
to further improve the convergence, a local search has been applied selectively
during evolution.

Since these customizations have come with a few parameters, we have
conducted an extensive experiment to show the effect of each parameter on
the overall performance of the algorithm. Our results have indicated that the
best-performing configurations are those with larger population size, a higher
survival rate for the best individuals, and a high contribution of the TSP and
KP solvers for creating a part of the initial population. The contribution of
mutant individuals has been found to be insignificant.

As a future study, new ways of initializing the population is worth inves-
tigating. So far, we have used solutions obtained by subproblem solvers, but
did not consider seeding it with good already-known TTP solution. Moreover,
we are planning to efficiently incorporate the algorithmic insights gained from
the single-objective approaches into the multi-objective setting; a naive bi-
level approach is known to be computationally impractical. Lastly, it is worth
investigating how the proposed concepts can be used for other optimization
problems where two problems interact with each other. This requires extend-
ing the proposed concepts to interwoven optimization problems in general and
evaluating the method’s generalizability.
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