
Journal of Heuristics (2021) 27:459–496
https://doi.org/10.1007/s10732-021-09466-0

Weighted proximity search

Filipe Rodrigues1 · Agostinho Agra2 · Lars Magnus Hvattum3 ·
Cristina Requejo2

Received: 26 June 2020 / Revised: 28 December 2020 / Accepted: 6 January 2021 /
Published online: 30 January 2021
© The Author(s) 2021

Abstract
Proximity search is an iterative method to solve complex mathematical programming
problems. At each iteration, the objective function of the problem at hand is replaced
by the Hamming distance function to a given solution, and a cutoff constraint is added
to impose that any new obtained solution improves the objective function value. A
mixed integer programming solver is used to find a feasible solution to this modified
problem, yielding an improved solution to the original problem. This paper introduces
the concept of weighted Hamming distance that allows to design a new method called
weighted proximity search. In this new distance function, low weights are associated
with the variables whose value in the current solution is promising to change in order
to find an improved solution, while high weights are assigned to variables that are
expected to remain unchanged. The weights help to distinguish between alternative
solutions in the neighborhood of the current solution, and provide guidance to the
solver when trying to locate an improved solution. Several strategies to determine
weights are presented, including both static and dynamic strategies. The proposed
weighted proximity search is compared with the classic proximity search on instances
from three optimization problems: the p-median problem, the set covering problem,
and the stochastic lot-sizing problem. The obtained results show that a suitable choice
of weights allows the weighted proximity search to obtain better solutions, for 75% of
the cases, than the ones obtained by using proximity search and for 96% of the cases
the solutions are better than the ones obtained by running a commercial solver with a
time limit.

Keywords Mixed integer programming · Matheuristic · Local search

1 Introduction

Heuristic strategies are of vital importance to obtain good quality solutions for prob-
lems that cannot be solved to optimality within a reasonable time. Several heuristic
strategies exploring different lines of thought have been proposed in the literature

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-021-09466-0&domain=pdf
http://orcid.org/0000-0002-3770-5456
http://orcid.org/0000-0002-4672-6099
http://orcid.org/0000-0003-0490-9978
http://orcid.org/0000-0003-0529-5090

460 F. Rodrigues et al.

(Boussaïd et al. 2013; Hvattum and Esbensen 2011). One of those lines consists of
searching for better solutions by exploring neighborhoods of given reference solutions.
Some examples are large-neighborhood search (Shaw 1998), iterated local search
(Agra et al. 2016, 2018a; Fischetti and Lodi 2003), relaxation induced neighborhood
search (Danna et al. 2005), feasibility pump (Fischetti et al. 2005), proximity search
(Fischetti andMonaci 2014), and other methods based on a large-neighborhood search
framework such as Rothberg (2007).

Proximity searchwas proposed in 2014 by Fischetti andMonaci (2014) as a promis-
ing approach for solving 0–1 mixed-integer convex programs. The preliminary tests
were performed on set covering, network design, and machine learning classification
instances from the literature. Despite being a very promising heuristic, revealing a
good performance when employed, the applications of proximity search in the liter-
ature are still scarce. A heuristic framework combining ad-hoc heuristics and mixed
integer programming (MIP) was proposed in Fischetti and Monaci (2016) to solve the
wind farm design problem. In such heuristics, the proximity search is used to refine
the current best solution iteratively. Fischetti et al. (2016) proposed a MIP branch-
and-cut framework for solving the uncapacitated facility location problem, in which
the solutions for a master problem are generated by a local branching heuristic and
then improved by the proximity search heuristic.

To the best of our knowledge, only two applications of proximity search to problems
involving uncertainty can be found in the literature. Boland et al. (2016) introduced a
variant of proximity search that drives a Benders decomposition, specially designed
to handle MIP problems arising in stochastic programming. To evaluate the perfor-
mance of the proposed heuristic, benchmark instances of three different stochastic
problems (capacitated facility location, network interdiction, and fixed charge multi-
commodity network design) were considered. Alvarez-Miranda et al. (2014) proposed
a three-phase heuristic algorithm to solve hard instances of the single-commodity
robust network design problem. The proximity search is incorporated into the third
phase of the algorithm to enhance the solutions obtained in the second phase by a
neighborhood search heuristic.

Proximity search improves a given feasible solution by searching for a solution
that has a better objective function value, while being close in Hamming distance to
the current solution. As the Hamming distance is used in the objective function of
the proximity search, the objective function does not provide guidance to distinguish
between the quality of equally distant solutions, nor does it incorporate information
already available regarding the values of variables. In this paper we propose a new
method called weighted proximity search that replaces the objective function by a
weighted Hamming distance function, where different coefficients may be assigned
to the variables. By using this distance function, we expect to solve each subproblem
faster and thus obtain better quality solutions, in particular when weights are based on
exploiting problem-dependent structures.

Our main contributions are the following:

1. Propose a new method, called weighted proximity search, based on replacing the
Hamming distance function by a weighted Hamming distance function.

123

Weighted proximity search 461

2. Propose several strategies to compute the weights used in the weighted Hamming
distance function and discuss advantages and disadvantages of each of them.

3. Show the benefits of using the weights to improve the classic proximity search
based on extensive computational results on three different problems: the p-median
problem, the set covering problem, and the stochastic lot-sizing problem.

The paper is organized as follows. In Sect. 2 we review the proximity search pro-
posed in Fischetti and Monaci (2014) and introduce the new weighted proximity
search. Several approaches to determine the weights are discussed in Sect. 3. The
optimization problems used to evaluate the proposed weighted proximity search are
presented in Sect. 4, while some implementation details are presented in Sect. 5.
Computational results are reported in Sect. 6, and concluding remarks are given in
Sect. 7.

2 Search procedures

In this section we review the classic proximity search (PS) and introduce the proposed
weighted proximity search (WPS). Regarding the notation used, each vector (either of
constants or of decision variables) is denoted by x and xi denotes the i th component
of that vector; when x is a vector of decision variables, x̄ denotes the value of the
decision variables x in the current iteration of the procedure.

We consider general MIP problems of the form

min f (x, y)

s.t . gi (x, y) ≤ 0, i ∈ I ,

x ∈ {0, 1}n,
y ∈ R

p × Z
q , (2.1)

where I is a set of indices, and f and gi , i ∈ I , are real functions (linear or not) defined
overRn+p+q . The binary decision variables x could also be part of the decision vector
y (composed of p continuous variables and q integer variables), however, since the
discussed methods specifically affect the binary variables x, they are kept separately.
We assume that it is mainly due to the presence of the x-variables that the problem is
difficult to solve, and when their values are fixed, the values of the y-variables can be
quickly determined. This is the case of optimization problems with either few or no
integer variables.

2.1 Proximity search

The most common enumeration methods used to solve MIP problems, such as the
branch-and-bound and the branch-and-cut methods (Achterberg et al. 2005; Morrison
et al. 2016), are based on exploiting the neighborhood of the solution provided by
the linear programming (LP) relaxation. As a result, large search trees are generated
around the solution of the LP-relaxation. Since feasible solutions are more likely to be

123

462 F. Rodrigues et al.

located in the lower part of the tree, finding such solutions can be very time-consuming,
specially when the search tree is large. The PS procedure was proposed to overcome
some of these problems by searching a neighborhood of an integer solution instead of
searching a neighborhood of the LP-relaxation solution. This can be done by replacing
the objective function of the problem by the Hamming distance function centered in
the current solution.

Define N := {1, . . . , n}. The Hamming distance function centered in a current
solution (x̄, ȳ) is defined as

�(x, x̄) :=
∑

j∈N |x̄ j=0

x j +
∑

j∈N |x̄ j=1

(1 − x j). (2.2)

By using the Hamming distance function, the PS can be described as follows. Start
with a feasible solution (x0, y0). Then, at each iteration the cutoff constraint

f (x, y) ≤ f (x̄, ȳ) − θ, (2.3)

(depending on a given cutoff tolerance value θ > 0) is added to the MIP problem
and the objective function is replaced by the Hamming distance function defined in
expression (2.2). The obtained solution is then used to recenter the Hamming distance
function and to define the new cutoff constraint, and the process is repeated until a
given stopping criterion is reached. Algorithm 1 describes the PS procedure proposed
in Fischetti and Monaci (2014).

Algorithm 1 Proximity Search

1: Let (x0, y0) be an initial feasible solution. Set (x̄, ȳ) := (x0, y0).
2: repeat
3: add the cutoff constraint (2.3) to the MIP problem
4: replace f (x, y) by the Hamming distance function �(x, x̄)
5: run the MIP solver on the modified program until a termination condition is reached
6: if a new feasible solution (x̄, ȳ) is found then
7: refine ȳ by solving the problem ȳ = argmin{ f (x, y) : gi (x, y) ≤ 0, x = x̄, i ∈ I }
8: end if
9: update θ (optional)
10: until a given stopping criterion is reached

At each iteration of Algorithm 1, two different problems are solved. The first one
is solved at Step 5 and is referred to as the modified problem, since its optimal value
is not a bound for the original problem (2.1). The second problem is solved at Step
7 and is called the restricted main problem, since its optimal value is an upper bound
for the original problem (2.1) given that the binary variables x are fixed.

If the stopping criterion used at Step 10 is to prove that the currentmodified problem
is infeasible then the cutoff value θ can be regarded as the algorithm tolerance. In
particular, when the objective function of the original problem is integer-valued, the
optimality of a given solution can be proved by showing that the modified problem

123

Weighted proximity search 463

is infeasible for θ lower than or equal to one. When other stopping criteria are used,
such as a running time limit, the PS becomes a heuristic procedure.

The PS used exactly as described in Algorithm 1 is known as PS with recentering.
However, two other variants of PS were introduced in Fischetti and Monaci (2014):

• PSwithout recenteringTheHamming distance function in Step 4 remains centered
on the first solution (x0, y0) considered, i.e., using �(x, x0) instead of �(x, x̄).

• PS with incumbent The cutoff constraint added in Step 3 is soft, in the sense
that the feasible solution found in the previous iteration is also feasible for the
current iteration but is highly penalized in the objective function. Hence, the cutoff
constraint (2.3) is replaced by the soft cutoff constraint

f (x, y) ≤ f (x̄, ȳ) − θ + u, (2.4)

with a continuous slack variable u ≥ 0, and the Hamming distance function is
replaced by

�(x, x̄) + Mu, (2.5)

where M is a sufficient large constant.

2.2 Weighted proximity search

The PS proposed in Fischetti and Monaci (2014) aims to improve a given feasible
solution x̄ by exploring its neighborhood, where the closest neighbors are those that
minimize the Hamming distance function. Since all the variables x j , j ∈ N , have
the same coefficient (equal to 1) in the Hamming distance function, no additional
information is provided to the MIP solver regarding the quality of the current value of
the variables. To guide the PS, we introduce a new distance function, called weighted
Hamming distance function, relative to a given feasible solution (x̄, ȳ), defined by

�w(x, x̄) :=
∑

j∈N |x̄ j=0

w j x j +
∑

j∈N |x̄ j=1

w j (1 − x j) (2.6)

where w j∈ R represents the weight of variable x j , j ∈ N . By setting w j = 1 for
all j ∈ N , the weighted Hamming distance function reduces to the classic Hamming
distance function.

This new distance function intends to inform the MIP solver about which variables
are more promising to change in order to find an improved solution. Hence, given
a feasible solution, higher weights should be assigned to the variables that are less
promising to change, while lower weights should be associated with the variables that
are more promising to change (i.e., the ones that one expects to be different in similar
solutions with better objective function values).

Moreover, when using an unweighted Hamming distance function, the MIP solver
is unable to differentiate between alternative improving solutions equally close to the
current solution. If those solutions are of substantially different quality, the PS may
require many iterations where only small improvements of the objective function are

123

464 F. Rodrigues et al.

observed. With a weighted Hamming distance function, we may be able to differen-
tiate between these alternative improving solutions, thus making the procedure more
efficient. The WPS that we propose is described in Algorithm 2.

Algorithm 2Weighted Proximity Search

1: Let (x0, y0) be an initial feasible solution. Set (x̄, ȳ) := (x0, y0).
2: repeat
3: add the cutoff constraint (2.3) to the MIP problem
4: for each variable x j , j ∈ N , compute the associated weight w j
5: replace f (x, y) by the weighted Hamming distance function �w(x, x̄)
6: run the MIP solver on the modified program until a termination condition is reached
7: if a new feasible solution (x̄, ȳ) is found then
8: refine ȳ by solving the problem ȳ = argmin{ f (x, y) : gi (x, y) ≤ 0, x = x̄, i ∈ I }
9: end if
10: update θ (optional)
11: until a given stopping criterion is reached

Algorithm 2 corresponds to the WPS version with recentering. The other two vari-
ants of the PS presented in the previous section (PS without recentering and PS with
incumbent) can also be obtained for the WPS by making identical modifications.

3 Strategies for determining weights

In this section we explain strategies to determine weights. First, we introduce several
approaches to compute weights. Second, we present different processes of discretizing
weights such that only a small number of distinct weights appear in the objective
function.

3.1 Computing weights

Here we discuss several ways for computing the weights used in the weighted Ham-
ming distance function and classify them into two classes: static and dynamic. In the
static class the weights are obtained through calculations performed only once, while
in the dynamic class, calculations performed at each iteration of the WPS are required
to obtain the weights.

3.1.1 Static weights

In this class, the weights needed at each iteration use calculations performed only
once, at the beginning of the algorithm. The classic PS heuristic is in this class since
the weights are unchanged at each iteration and are equal to one for all the variables.

When the problem (2.1) cannot be solved to optimality in a reasonable amount of
time, heuristic strategies can sometimes be employed to obtain feasible solutions in a
short time. Depending on the heuristic used, the quality of these solutions can vary.
However, if a large enough number of solutions is generated, it may be possible to

123

Weighted proximity search 465

identify binary variables that are consistently taking a specific value. Such consistent
variables have been exploited in heuristics such as tabu search (Glover and Laguna
1997) and in an adjustable sample average approximation method (Agra et al. 2018b).
The consistent variables are the key issue of the first approach presented here to
compute the weights.

A common approach to obtain feasible solutions is to use the information result-
ing from the LP-relaxation. The optimal solution of the LP-relaxation is frequently
infeasible for the original problem. Furthermore, rounding each integer variable with
a fractional value in the LP-relaxation to the nearest integer can still lead to infeasi-
ble solutions for the original problem. Berthold (2014) proposed an heuristic called
relaxed enforced neighborhood search, that explores the set of feasible roundings of
an optimal solution of a linear or nonlinear relaxation. There are also cases in which
the LP-relaxation solution is close to the optimal solution of the original problem. In
those cases, the LP-relaxation solution can be used to determine the weights of the
variables at each iteration. The second and third approaches presented below use the
solutions of LP-relaxations to compute the weights.

Consistent Variables Identification (CVI) The idea of this approach is to improve
the current solution x̄ using the observed frequency of each binary variable taking
the values zero or one in a set of heuristic solutions. Start by generating m feasible
solutions of the problem (2.1), denoted by (x̄1, ȳ1), . . . , (x̄m, ȳm). Then, for each
variable x j , j ∈ N , calculate and store r j,1 := ∑m

i=1 x̄
i
j and r j,0 := m − r j,1.

Afterwards, at each iteration, the initially stored values are used to define the weight
associated with variable x j , j ∈ N as follows:

w j =
{
r j,1, x̄ j = 1,

r j,0, x̄ j = 0.

For clarification, let us suppose that we havem feasible solutions in which variable
xk, k ∈ N , takes the value one more frequently than the value zero. Then, from a
heuristic point of view, it may seem more promising to fix the value of xk to one,
rather than to zero. If the value of variable xk is one in the current solution of theWPS,
its weight will be high to encourage the variable to keep its value. If variable xk is
currently zero, its weight will be low to entice the variable to change.

Notice that m is a predefined static value that does not change from iteration to
iteration, and all them solutions required to compute the weights are determined once
at the beginning of the search. Therefore, the values r j,1 and r j,0 are computed only
once, making the CVI a static approach.

Linear Relaxation Proximity (LRP) In this approach, the LP-relaxation of the original
problem (2.1) is solved first, yielding optimal values x̄LP . At each iteration, the weight
associated with the variable x j is defined as

w j = 1 − |x̄ j − x̄ L Pj |.

123

466 F. Rodrigues et al.

Hence, the highest weights are associatedwith the variables x j for which its value in
the current solution is closer to its value in the LP-relaxation. This approach resembles
the relaxation induced neighborhood search heuristic (Danna et al. 2005), but the
variables with the same value in both the current solution and the LP-relaxation are
not fixed when using the LRP.

Linear Relaxation Loss (LRL) In this approach 2N + 1 linear problems are initially
solved and their optimal values f jk, j ∈ N , k ∈ {0, 1}, and f0,0 are stored. Each
value f jk is the optimal value of the LP-relaxation of the original problem (2.1) with
the binary variable x j fixed to k (while the remaining variables xi , for i ∈ N\{ j}, are
free) and f0,0 is the value of the LP-relaxation of problem (2.1) without any variable
fixed.

By using the initially stored values, at each iteration, the weight associated with the
variable x j , j ∈ N , is defined as:

w j =
{
f j,0 − f0,0, x̄ j = 1,

f j,1 − f0,0, x̄ j = 0.

In this setting, the weight of each variable is related with the loss corresponding to
solving the LP-relaxation of the original problem with the value of that variable fixed
to the opposite value in the current solution. When f j,1 > f j,0, it is more promising
for x j to take the value zero than the value one (by assuming that the LP-relaxation
solution is close to the optimal solution of the original problem). This approach was
inspired in the strong branching technique, see Linderoth and Savelsbergh (1999).

Remark 1 The number (2N + 1) of linear problems to solve in this approach can be
reduced by taking into account the solution of the LP-relaxation of problem (2.1). If
the variable x j takes the value zero (one) in the LP-relaxation solution then f j,0 (f j,1)
coincides with the value of the LP-relaxation f0,0.

Remark 2 For each non-basic variable x j in the optimal solution of the LP-relaxation,
the weightw j can be approximated by the absolute value of the corresponding reduced
cost.

3.1.2 Dynamic weights

In this class, the major effort to compute the weights is taken at each iteration of
Algorithm 2, either taking into account the solutions obtained in the previous iterations
or by analyzing the impact of changing the value of eachvariable in the current solution.

Recent Change Indicator (RCI) Let (x̄0, ȳ0) := (x0, y0), the initial feasible solution
for the original problem, and let (x̄k, ȳk) be the solution obtained at iteration k, k ≥ 1.
Thefirst iteration is performedwith all theweights equal to one. Then, at every iteration

123

Weighted proximity search 467

k, k > 1 the weight of variable x j is defined as follows

w j =
{

wM , x̄ k−1
j �= x̄ k−2

j ,

1, x̄ k−1
j = x̄ k−2

j ,

where wM is a predefined real number greater than one. This approach assumes that a
variable whose value changed in iteration k−1 should preferably not be changed again
in iteration k. The reason is that since the variable was already changed to improve
the solution, it is less likely that changing it back to its previous value will help to
improve the solution.

Weighted Frequency (WF) Represent by f 0 the objective function value of the initial
feasible solution (x0, y0). This approach starts by performing the first iteration with all
the weights equal to one. Then, at every iteration k, with k > 1, and for each variable
x j , j ∈ N , compute the values

p j,1 :=
k−1∑

i=1

(f 0 − f i)x̄ ij and p j,0 :=
k−1∑

i=1

(f 0 − f i)(1 − x̄ ij)

where x̄ ij and f i are, respectively, the value of the variable x j in iteration i, 1 ≤ i < k,
and the objective function value of the solution obtained in that iteration.

Values p j,0 and p j,1 can be seen as the frequency that variable x j takes the values
zero and one, respectively, weighted by the objective function value of the solutions
obtained in the previous iterations. Hence, smaller coefficients (f 0 − f i), 1 ≤ i < k,
are associatedwith the solutions obtained in the earlier iterations (with worse objective
function values). Those weighted frequencies are expected to be good indicators for
whether a variable x j will take the values zero or one in near-optimal solutions. Thus,
the weight associated with variable x j can be defined as

w j =
{
p j,1, x̄ j = 1,

p j,0, x̄ j = 0.

Loss/Saving (LS) In this approach, n independent subproblems are solved to obtain
the values f ∗

j , j ∈ N , at each iteration. Each value f ∗
j is the optimal value of problem

(2.1) with all variables xi , i �= j, fixed to their value in the current solution (that is,
xi = x̄i) and with variable x j fixed to the opposite value in the current solution (that
is, x j = 1 − x̄ j).

Denoting by f̄ the objective function value of the current solution (x̄, ȳ), the weight
associated with each variable x j , j ∈ N , is defined as follows:

w j = f ∗
j − f̄ .

123

468 F. Rodrigues et al.

The difference f ∗
j − f̄ is the saving or the loss obtained by fixing variable x j to its

opposite value in the current solution while keeping the remaining variables fixed.
Hence, variables with lower weights are more promising to change since such change
may result in an improvement of the current solution.

Remark 3 The obtained weights can be negative when changing the variable value
leads to a lower cost solution.

Remark 4 In some optimization problems, changing the value of a single binary
variable in a feasible solution can lead to infeasible solutions. In those cases, the
computation of the weights needs to be adjusted. A simple adjustment strategy con-
sists of attributing a high weight to the variables for which the change of its value leads
to infeasibility. More sophisticated strategies based on recourse actions can also be
employed. That is, when a change on the value of the variable leads to the infeasibility
of the current solution, the feasibility can be restored by allowing some additional
changes in the remaining variables.

3.1.3 A deeper look at each approach

In this section we discuss the main advantages and shortcomings of each approach
proposed to determine the weights, and identify general features of the problems under
which each approach becomes more suitable to use.

Consistent Variables Identification The CVI approach starts by creating a pool
of feasible solutions for the problem. Therefore, the performance of this approach
strongly depends on the heuristic used to obtain such solutions. This approach is
problem dependent and it is particularly suitable for optimization problems for which
feasible solutions can easily be determined. The main advantage of this approach is
that after determining the pool of feasible solutions, the weights are computed very
quickly at each iteration. This is an advantage shared by all the static approaches.

Linear Relaxation Proximity The LRP approach only requires solving the LP-
relaxation at the beginning of the algorithm, which makes this general approach
applicable to any optimization problem. Moreover, the total computational time
required for determining the weights is independent of the number of iterations and
corresponds to the time associated with solving the LP-relaxation. Since the LRP
approach aims to find solutions close to the LP-relaxation solution, a better perfor-
mance is expected for optimization problems in which the optimal solution is close to
the solution of the LP-relaxation.

Linear Relaxation Loss The LRL is a general approach that can be applied to a
wide range of problems.However, it starts by solving a large number of linear problems
(at most two for each binary variable), thus it can be impractical for optimization
problems with a large number of binary variables as well as for optimization problems
for which the LP-relaxation solution is not quickly determined. As the LRP, the LRL is
more suitable for optimization problems in which the LP-relaxation is a good indicator
of the optimal solution.

Recent Change Indicator andWeighted Frequency The RCI and theWF are general
approaches that can be applied to any optimization problem since they depend on

123

Weighted proximity search 469

the solutions determined by the algorithm, keeping memory of previously obtained
solutions. Another advantage of these approaches is that the total time required to
compute the weights is very short. These two approaches are suitable for problems
where Algorithm 2 will perform a large number of iterations.

Loss/Saving The main advantage of the LS approach is the ability to take into
account the impact of changing the value of each variable in the current solution. One
of the main drawbacks is that when a single binary variable changes its value, the
resulting solution can become infeasible. In those cases, the LS approach needs to be
adapted to restore the feasibility of the solution and such an adaptation is problem
dependent. Moreover, this approach can be very time-consuming when the number of
binary variables is large.

Therefore, the LS is more suitable for problems where feasible solutions can be
easily computed and in which the number of binary variables x is not high. Addition-
ally, it is also desirable to consider optimization problems with a small number of
integer variables to ensure that the subproblem associated with each binary variable
is quickly solved.

3.2 Weights discretization

The weights as described above can take a wide range of values. For the LS approach
they can even be negative. Using such weights directly makes each modified problem
hard to solve, as observed in preliminary tests reported in Sect. 6.3. To better deal with
the weights generated by each approach, we propose to map them into a small set of
discrete values. We consider three different discretization schemes:

• R-Discretization (RD) In this scheme the weights are discretized into R different
values {1, . . . , R}, where R is an integer number greater than one defined a pri-
ori. Denoting by {w1, . . . , wn} the initial weights, the corresponding discretized
weights {wd

1 , . . . , wd
n } are computed as follows:

wd
j := (R + 1) −

⌈
R − (w j − wmin)(R − 1)

wmax − wmin

⌉

where wmin := min{w j : j ∈ N } and wmax := max{w j : j ∈ N }. This process
of discretizing the weights corresponds to converting the initial weights varying
in [wmin, wmax] into modified weights in the interval [1, R] and then round the
obtained values.

• Two-Value System (2-VS) In this scheme the weights are initially discretized using
the R-discretization process. Then, the resulting weights are converted into a two-
value system as follows:

w̄d
j =

{
1, if 1 ≤ wd

j ≤ t1,

R, if t1 < wd
j ≤ R,

where t1 is an integer threshold value between 1 and R defined a priori.

123

470 F. Rodrigues et al.

• Three-ValueSystem (3-VS)Weights are initially discretizedusing theR-discretization
scheme. Then, the resulting weights are converted into a three-value system as fol-
lows:

w̄d
j =

⎧
⎪⎨

⎪⎩

1, if 1 ≤ wd
j ≤ t2,

R
2 , if t2 < wd

j ≤ t3,

R, if t3 < wd
j ≤ R,

where t2 and t3 are integer threshold values between 1 and R defined a priori such
that t2 ≤ t3.
The three-value system is an extension of the two-value system with an inter-
mediate level. This system assigns the weight one to the variables that are more
promising to change, the weight R to the variables that are unpromising to change
and an intermediate value to the variables for which there is not a clear evidence
indicating whether they should change its value or not.

Remark 5 All the discretization schemes described in this section are tested in the
computational section, including the choice of the parameters R, t1, t2 and t3.

4 Optimization problems

In this sectionwe describe the optimization problems considered to evaluate the perfor-
mance of the proposed WPS. We consider three different problems: the uncapacitated
p-median problem, the set covering problem, and the stochastic lot-sizing problem
with setups. These problems were chosen since they are structurally different and
exhibit different properties, in terms of feasibility and of the nature of the variables.

In the set covering problem there is only a single group of binary variables and
all of them are used in the weighted Hamming distance function. In the p-median
problem there are two sets of binary variables, but only one of them is used in the
weighted Hamming distance function. In the SLS problem with setups, there is a set
of binary variables (used in the weighted Hamming distance function), a set of integer
variables, and a set of continuous variables. For this problem, any realization of the
binary setup variables leads to a feasible solution. This is not the case of the p-median
problem and of the set covering problem for which changing the value of one binary
variable can render the solution infeasible.

4.1 The uncapacitated p-median problem

Given a set N = {1, . . . , n} of facilities and a set M = {1, . . . ,m} of customers, the
p-median problem consists of selecting p facilities such that the sum of the distances
between the customers and the selected facilities is minimized. Let us denote by d ji

the distance between facility j ∈ N and client i ∈ M and let us consider the following
binary decision variables: x j indicates whether facility j ∈ N is selected or not, and
y ji indicates whether customer i ∈ M is served by facility j ∈ N . The uncapacitated

123

Weighted proximity search 471

p-median problem (Beasley 1985) can be formulated as follows:

min
∑

j∈N

∑

i∈M
d ji y ji

s.t .
∑

j∈N
y ji = 1, i ∈ M,

y ji ≤ x j , j ∈ N , i ∈ M,
∑

j∈N
x j = p,

x j ∈ {0, 1}, j ∈ N ,

y ji ∈ {0, 1}, j ∈ N , i ∈ M .

The objective function minimizes the total distance between the customers and the
selected facilities. The first set of constraints ensure that each customer is served by
exactly one facility. The second set of constraints imposes that a customer can only
be served by a facility if that facility is selected, while the third constraint ensures that
exactly p facilities must be selected.

4.2 The set covering problem

Given a set M = {1, . . . ,m} of customers and a set N = {1, . . . , n} of services, where
each service has an associated cost, the set covering problem (Chvatal 1979) consists
of finding the set of services with the minimum cost that covers all the customers.

Let us consider an m × n matrix A, where each entry a ji is one if customer j ∈ M
is covered by service i ∈ N and zero otherwise. Denoting by ci the cost associated
with the service i and considering the binary variables xi indicating whether service
i ∈ N is chosen or not, the set covering problem is formulated as follows:

min
∑

i∈N
ci xi

s.t .
∑

i∈N
a ji xi ≥ 1, j ∈ M,

x j ∈ {0, 1}, j ∈ N .

The objective function minimizes the total cost associated with the choice of the
services while the constraints ensure that all the customers are covered.

4.3 The stochastic lot-sizing problemwith setups

The stochastic lot-sizing (SLS) problem (Rodrigues et al. 2020) is defined over a finite
set of n time periods, N = {1, . . . , n}. We assume that the demand in one period can
either be met in that period (using production of that period or using stocks from

123

472 F. Rodrigues et al.

production in previous periods), or satisfied with delay in a later period. The demand
satisfied with delay in a given time period is referred to as the backlog (Rodrigues
et al. 2019). Consider for each time period t ∈ N , the unit holding cost ht , the unit
backlog cost bt , and the unit production cost ct . The demand in each time period
t ∈ N is assumed to be uncertain and to follow a uniform distribution in the interval
[0.8d̄t , 1.2d̄t], where d̄t represents the expected demand value in period t . To deal with
the stochastic demands we follow the sample average approximation method. Let �

represent a finite set of scenarios for the demands, and dtw define the demand on time
period t when scenario w ∈ � occurs. Define I0 as the initial inventory level, P as the
production capacity in each time period, andC as the setup cost. The binary variable xt
indicates whether there is a setup in period t or not, while variable y pt ∈ N0 represents
the quantity to produce in that time period. Variables yatw are auxiliary variables used
to compute the holding cost or the backlog cost in period t for scenario w.

The SLS problem can be formulated as follows:

min
∑

t∈N

(
Cxt + ct y

p
t + 1

|�|
∑

w∈�

yatw

)

s.t . yatw ≥ ht

⎛

⎝I0 +
t∑

j=1

(y pj − d jw)

⎞

⎠ , t ∈ N , w ∈ �,

yatw ≥ −bt

⎛

⎝I0 +
t∑

j=1

(y pj − d jw)

⎞

⎠ , t ∈ N , w ∈ �,

y pt ≤ Pxt , t ∈ N ,

xt ∈ {0, 1}, t ∈ N ,

y pt ∈ N0, t ∈ N ,

yatw ≥ 0, t ∈ N , w ∈ �.

The objective functionminimizes the setup costs plus the total production costs plus
the expected value of both the storage and the backlog costs. The first and the second
sets of constraints compute the storage and the backlog cost for each time period in
each scenario, respectively. The third set of constraints ensures that production can
only occur in a given time period if there is a setup in that period.

5 Implementation details of the weighted proximity search

Here we describe implementation details associated with the computation of the
weights for the three test problems.

123

Weighted proximity search 473

5.1 Heuristic used in the CVI approach

The CV I approach requires the determination of a large number of feasible solutions
to determine the weights for the binary variables x. In our experiments we used a
randomized construction heuristic to obtain those solutions. The heuristic starts by
defining a performance measure for the problem that allows to determine a score s j
for each binary variable x j , j ∈ N . Defining Q := ∑

i∈N si , selection probabilities
for the variables x can be defined such that higher probabilities are associated with
higher scores. Hence, for each variable x j , the corresponding selection probability is
defined as

s j + ε

Q + nε
,

where ε is a small positive value lower than one (0.01 in our experiments) used to
ensure that all the variables have a non-zero selection probability. By using such
probabilities, the variables x are successively selected (i.e., assigned with the value
1) until a given stopping criterion is met. The process is then repeated until the total
number of required solutions is obtained. The randomized construction heuristic is
described in Algorithm 3.

Algorithm 3 Randomized construction heuristic
1: Define a performance measure for the problem
2: repeat
3: consider all the variables x as non-selected, that is, x j = 0 for all j ∈ N
4: repeat
5: compute the score and the selection probability for all the non-selected variables x
6: randomly select a variable x to be fixed to one
7: until a given stopping criterion is verified
8: until the total number of required solutions is achieved

Next we identify the performance measure used for each one of the three optimiza-
tion problems considered and explain how the scores are computed in each case.

In the p-median problem, the performance measure is based on the sum of costs
between a facility and all the customers. Hence, for each variable x j , the corresponding
score is

s j := dmax −
∑

i∈M
d ji

where dmax = max j∈N
{∑

i∈M d ji
}
. The internal loop in the algorithm (Steps 4–7)

ends when exactly p facilities are selected, meaning that a feasible solution is found.
In the set covering problem, the performance measure is related to the total number

of customers covered and the cost associated with the services: For each variable x j ,

123

474 F. Rodrigues et al.

the corresponding score is defined as

s j := #customers to cover that are covered by service j

cost o f the service j
.

The internal loop in the algorithm (Steps 4–7) endswhen all the customers are covered,
meaning that a feasible solution is found.

In the SLS problem, the LP-relaxation provides a good indicator of the optimal
solution (Rodrigues et al. 2020). Therefore, the performance measure is the proximity
to the solution of the LP-relaxation, and the score associatedwith variable x j is defined
as

s j := x LRj

where x LRj is the optimal value of variable x j in the LP-relaxation. With this perfor-
mance measure, the variables whose values in the LP-relaxation are closer to one are
more promising to be selected (fix to one in the obtained solution). In the SLS problem,
any realization of the binary variables results in a feasible solution, and the stopping
criterion for the internal loop in the algorithm (Steps 4–7) is therefore defined using
the sum of all the scores associated with the non-selected variables. Denote by Qt the
sum of the scores associated with the non-selected variables in iteration t . That is,

Qt :=
∑

j∈N |x j is non-selected at iteration t
s j .

Then, the internal loop stops at iteration k, where k corresponds to the smallest
index for which the relation Qk ≤ 0.5 × Q holds, where Q is the sum of the score
values of all the variables x. This stopping criterion leads to solutions in which the
number of production periods (binary variables with value one) is about half of the
total number of production periods, n.

For each instance of the three optimization problems considered, 100 solutions are
generated by the randomized construction heuristic. However, to obtain better weights
for the CVI approach, the weights are computed by using only the 50 best solutions
found.

5.2 Dealing with infeasibility in the LS approach

In the SLS problem, the feasibility of a given feasible solution is kept when any binary
variable changes its value. Hence, for this problem, the LS approach can be used as
described in Sect. 3.1.2. However, in both the p-median and the set covering problems,
the feasibility of a given feasible solution can be lost when a binary variable changes
its value (see Remark 4).

Since a feasible solution of the p-median problem requires exactly p variables x
with value one, changing one variable from zero to one (one to zero) requires the
change of another variable from one to zero (zero to one). The weight associated with

123

Weighted proximity search 475

each variable x j , j ∈ N , is determined as follows. Let us denote by S̄ := {�1, . . . , �p}
the set of the selected facilities in the current solution x̄.

• If facility j belongs to S̄ (i.e., x̄ j = 1), then it is removed from S̄ and one facility
i, i ∈ N\{ j} (such that x̄i = 0) is selected. Hence, a new set S̃ of selected facilities
defined as S̃ := S̄\{ j} ∪ {i} is obtained. The facility i to be selected is the one
such that the total distance of the customers to the new set S̃, denoted by f̃ j , is
minimized.

• If facility j does not belong to S̄ (i.e., x̄ j = 0), then it is added to S̄ and one facility
i, i ∈ S̄\{ j} becomes a non-selected facility. Hence,we have that S̃ := S̄\{i}∪{ j}.
The facility i that becomes non-selected is the one that minimizes the total distance
f̃ j of the customers to the new set S̃ of open facilities.

After selecting the set of facilities, we can compute by inspection which customers
are associated with each facility, and consequently, the cost of the solution. The weight
associatedwith the variable x j is determined asw j := f̃ j − f̄ , where f̄ is the objective
function value of the current solution.

In the set covering problem, a feasible solution is a solution in which all customers
are covered by the selected services. Hence, for this problem, the weights are deter-
mined as follows. Let us denote by S̄ := {�1, . . . , �t } the set of the selected services
in the current solution x̄ and by f̄ the cost of that solution.

• If service j belongs to S̄ (i.e., x̄ j = 1), then it is removed from S̄ and the cost of the
resulting solution is updated to f̃ j := f̄ − c j . If the resulting solution is infeasible
(meaning that there is at least one customer not covered), another service is added
to S̄. The service i chosen is the one that covers the largest number of uncovered
customers (and the one with the lowest cost, in case of ties). The cost of the current
solution is then updated to f̃ j := f̃ j + ci . If the current solution is still infeasible
the process is repeated until feasibility is achieved.

• If service j does not belong to S̄ (i.e., x̄ j = 0), then it is added to S̄, i.e., S̃ := S̄∪{ j},
and the cost of the resulting solution is updated to f̃ j := f̄ + c j . The resulting
solution is always feasible and in some cases the feasibility can be kept even if
some services are removed from S̄. Hence, for each service i ∈ S̃\{ j} (starting
from the ones having the higher cost) we check if the feasibility of the solution
is kept when service i is removed from S̃. If yes, then service i is removed from
S̃ and the cost of the current solution is updated to f̃ j := f̃ j − ci . The process is
repeated until it is not possible to remove any service while keeping the feasibility
of the solution.

For both cases, theweight associatedwith variable x j is determined asw j := f̃ j− f̄ .

6 Computational results

This section reports the computational experiments carried out to compare the perfor-
mance of the proposed WPS heuristic (with all the variants: CV I , LRP , LRL , RC I ,
WF , and LS) against the classic PS heuristic. All tests were run using a computer with

123

476 F. Rodrigues et al.

an Intel Core i7-4750HQ 2.00 GHz processor and 8 GB of RAM, and were conducted
using the Xpress-Optimizer 8.6.0 solver (XpressMosel Version 4.0.3) with the default
options using up to 8 threads and 4 cores.

The LRL approach requires the solution of a large number of LP-relaxations. In
both the p-median and the set covering problems the total time required to solve a
single LP-relaxation for typical instances is greater than 9s. Thus, the LRL is only
tested for the SLS problem. Having solved the LP-relaxation of problem (2.1) to
obtain the value f0,0, each value f j,0 (f j,1) can be obtained in two different ways:
(i) by imposing the constraint x j = 0 (x j = 1) and solving the LP-relaxation of
the original problem (2.1) with this new constraint; or (ii) by imposing the constraint
x j = 0 (x j = 1) and applying the dual simplex algorithm to the optimal tableau
associated with the solution of the LP-relaxation problem. Preliminary tests showed
that it is more efficient to obtain the values f j,0 and f j,1 when Xpress is used with the
Newton–Barrier method (without reoptimization) than when it is used with the dual
simplex algorithm (with reoptimization). For example, for the SLS instances with
n=90 the computational time required for determining the weights in the first case is
220s while in the second case it is around 1129s.

6.1 Training set and test set

In our experiments we consider two sets of instances: a training set and a test set. The
test set consists of 16 groups of instances (nine from the p-median problem, four from
the set covering problem and three from the SLS problem), with L = 10 randomly
generated instances each (giving a total of 160 instances). The training set consists of
16 instances (nine from the p-median problem, four from the set covering problem
and three from the SLS problem) differing from the ones in the test set, but generated
in the same way. The training set is used for parameter tuning. Data for the instances
in the test set are available at: http://home.himolde.no/~hvattum/benchmarks/.

For the p-median problem we consider three different values for the number m
of customers (500, 750, and 1000) and assume that every customer location is also a
facility location, that is, n = m and N = M . The exact number p of facilities to select
is 5, 15, and 25. The combinations of the different values for the number of customers
and facilities lead to nine sets of instances, each with ten instances that differ in terms
of the distance matrix. The distances d ji , j ∈ N , i ∈ M are integer, symmetric and
randomly generated in the interval [1, 100] for i �= j , and they are set equal to zero
for j = i .

For the set covering problem we consider randomly generated instances with either
m = 1000 or m = 2000 customers, and either n = 500 or n = 1000 services. The
combinations of different values for m and n give rise to four sets of instances, each
with ten instances. These ten instances differs in terms of both the costs ci , i ∈ N ,

associated with the services (randomly generated in the interval [50, 150]) and the
binary coefficients matrix (randomly generated such that the percentage of non-zero
elements is 30%).

The computational experiments for the SLS problem use instances generated as
in Rodrigues et al. (2020). The total number n of periods considered is 60, 90, or

123

http://home.himolde.no/~hvattum/benchmarks/

Weighted proximity search 477

Table 1 Gaps obtained by Xpress after 1200s

Gap1 Gap2

Average (%) Standard deviation Average (%) Standard deviation

p-median 39 1.8 65 4.6

Set covering 57 1.3 139 6.6

Stochastic lot-sizing 39 0.9 63 2.6

120. For each time period, t ∈ N , the nominal demand d̄t is randomly generated in
[0, 50] and the demand dtw corresponding to scenario w ∈ � is randomly generated
in [0.8d̄t , 1.2d̄t]. For each instance we consider 100 scenarios, i.e., |�| = 100.

The initial stock level at the producer, I0, is randomly generated between 0 and
30, the production capacity P and the setup cost are constants and equal to

∑
t∈T d̄t

and 150, respectively. The production, holding, and backlog costs are ct = 1, ht = 4,
bt = 6, respectively, for all t ∈ N . A set of ten random instances is generated for each
of the three values of n.

To evaluate the hardness of the instances in the test set we solve each one of the
160 instances using Xpress with a time limit of 1200s. For ease of presentation we
grouped all the instances of each problem and present the average and the standard
deviation of the obtained gaps in Table 1. The gaps identified as Gap1 and Gap2 are
defined by

Gap1 = UB − LB

U B
× 100 and Gap2 = UB − LB

LB
× 100

where UB and LB are the upper bound and the lower bound obtained after 1200s,
respectively.

The results presented in Table 1 show that the instances considered are hard to solve,
since the minimum average gaps are about 39% and 63%. The standard deviations
associated with the gaps are small, indicating that for each instance the corresponding
gap is close to the average.

6.2 Performancemeasures

The approaches are compared using two metrics. The first metric is an approximation
of the primal integral (Achterberg et al. 2012; Berthold 2013). The primal integral
measures the trade-off between the quality of the solutions obtained by a particular
method and the running time required in their computation. Denoting by z∗ the cost
of the optimal solution of the problem and by z(t) the cost of the best feasible solution
found until time t , the primal gap function v is defined by

v(t) =
{
1, if no feasible solution is found until time t,

γ (z(t)), otherwise,

123

478 F. Rodrigues et al.

where function γ (z(t)) is the primal gap defined as

γ (z(t)) =

⎧
⎪⎨

⎪⎩

0, if z∗ = z(t),

1, if z(t)z∗ < 0,
z(t)−z∗

max{z∗,z(t)} , otherwise.

The primal integral of a running time tmax is

P(tmax) =
∫ tmax

0
v(t)dt .

This metric allows a global vision of the heuristic performance until time tmax ,
with lower values indicating a better heuristic performance. The computation of the
primal integral measure requires the knowledge of the optimal value of the problem.
As reported in Table 1, our test set is composed of instances that are difficult to solve
and for which the optimal solution is not known, making the use of the primal integral
measure impractical. Hence, in our experiments we use an approximation called the
primal integral approximation measure, in which the optimal value z∗ is replaced by
the cost of the best solution found among all the approaches considered. The primal
integral measure (and consequently the primal integral approximation measure) is
highly affected by the performance of the heuristic in the early search phases, meaning
that heuristics that take more time to find feasible solutions tend to have high primal
integral values, even when they are able to find good solutions later on.

To circumvent the drawbacks of the primal integral approximation, we create a
second metric, called the signal metric, that is computed in relation to the classic PS
heuristic. Denoting by zPSi (t) and by zW PS

i (t) the values of the best solutions found
by the classic PS heuristic and by theWPS heuristic, for instance i ∈ {1, . . . , L}, until
time t , we compute the value

hi (t) =

⎧
⎪⎨

⎪⎩

0, if zPSi (t) = zW PS
i (t),

−1, if zPSi (t) < zW PS
i (t),

1, if zPSi (t) > zW PS
i (t),

(6.1)

and finally the signal metric

H(t) := 1

L

L∑

i=1

hi (t)

which varies between −100 and 100%. When H(t) = 100%, this metric indicates an
absolute better performance of the WPS heuristic, meaning that for all the L instances
tested the WPS heuristic always obtains a better solution than the one obtained by the
PS heuristic until time t . Analogously, H(t) = −100% indicates an absolute better
performance of the PS heuristic.

123

Weighted proximity search 479

6.3 Calibration

In this section we explain the choice of some parameters and the use of some proce-
dures. These experiments are conducted on the 16 instances of the training set.

Among the three variants of the classic PS heuristic (without recentering, with
recentering, and with incumbent) the PS with incumbent is known to be the best
(Fischetti and Monaci 2014, 2016). Preliminary results conducted on the training set
instances corroborated this result as the solutions obtained by the PS with incumbent
after 1200s are around 2.5% better than the ones by the PS with recentering, and
around 5% better than the ones obtained by the PS without recentering. Therefore, all
the preliminary tests and computational results reported next for both the PS and the
WPS correspond to the variant with incumbent.

All the three discretization schemes described in Sect. 3, (RD, 2-V S, 3-V S), require
the definition of the maximum possible value for the weights (previously denoted by
R). To determine the most suitable value for R, we conducted some preliminary tests
(reported in the appendix) from which we chose R = 10. After choosing the value R
we test several different schemes to define the weights:

(i) Use the initial weights directly, without discretization (denoted by WD).
(ii) Use all the weights equal to one, which corresponds to the classic PS heuristic

(denoted by PS).
(iii) The R-discretization scheme (denoted by RD).
(iv) Three variants of the two-value system corresponding to threshold values t1 equal

to 3, 5 and 7 (denoted by 2-V S(3), 2-V S(5) and 2-V S(7), respectively).
(v) Three variants of the three-value system corresponding to threshold values (t2, t3)

equal to (2, 4), (3, 6) and (4, 8) (respectively denoted by 3-V S(2,4), 3-V S(3,6) and
3-V S(4,8)).

Apart from the second scheme (corresponding to the classic PS heuristic) all the
other schemes used to define the weights are tested on the WPS heuristic with the
Loss/Savingvariant. Theobtained results are reported inTable 2. Thefirst column iden-
tifies the weights scheme used. The second column reports the average gaps obtained
by solving all the 16 instances of the training set for 1200s. Gaps are computed with
respect to the best feasible solution found by the set of the nine discretization schemes
tested. In the third column, the value of the final solution obtained by each method
after 1200s is divided by the best feasible solution found by all the schemes, and
the average value over all the 16 instances is displayed. The last column reports the
number of best solutions found by each of the schemes.

The results presented in Table 2 show that it is beneficial to discretize the weights,
since the largest gaps are obtained when the weights are not discretized. The two-value
system and the three-value system seem to performwell for the lower threshold values
tested. The scheme with the best global performance is the three-value system with
thresholds (t2, t3) = (2, 4). Therefore, in what follows, we use this scheme in all the
variants of the WPS heuristic.

Each iteration of the PS and WPS heuristics stops when the first feasible solution
is found with the slack variable u equal to zero (Fischetti and Monaci 2014). We also
consider a time limit of 1200s and a cutoff tolerance of θ = 1. For the cutoff tolerance,

123

480 F. Rodrigues et al.

Table 2 Comparison of the schemes to define weights

Avg. Gap Norm. values # Best solutions found

WD 12.9 1.13 1

PS 4.9 1.05 0

RD 4.5 1.05 3

2-V S(3) 4.3 1.04 1

2-V S(5) 4.2 1.04 0

2-V S(7) 5.1 1.05 0

3-V S(2,4) 1.2 1.01 7

3-V S(3,6) 2.2 1.02 3

3-V S(4,8) 6.1 1.06 0

θ = 1 was shown to perform better than the alternatives θ = 10 and θ = 20 tested for
all three problems. For brevity, we omit these tests here. The value of M associated
with the slack variable u is set to 105.

6.4 Main results

In this section we report the computational results performed on instances of the
p-median problem, the set covering problem, and the stochastic lot-sizing problem.
The results are aggregated for each problem and they are presented following the
same pattern. We start by presenting a table reporting some information about the
number of iterations performed and the computational times. Then, we present two
tables comparing variants of the WPS against the PS in terms of the minimum, the
average, and the maximum gaps obtained after 1200s. For a better understanding of
the behavior of each approach over time and not only at the end of the time limit,
we present plots showing the primal integral approximation measure and the signal
metric. To improve the readability of the primal integral approximation plots, we add
symbols to each line. These symbols help to identify each line, and their x-coordinates
correspond to the time instants {0, 200, . . . , 1200}. A similar strategy is used for the
signal metric plots, with x-coordinates of the points corresponding to the time instants
{0, 100, . . . , 1200}.

After presenting and analyzing the plots associated with both the primal integral
approximation measure and the signal metric, we compare the PS and the best variant
of the WPS with solving the original problem directly using Xpress, by imposing a
time limit corresponding to the total time spent by PS and WPS. The comparison is
done in terms of the primal integral approximation measure, the signal metric, and
also in terms of the final gap obtained after the time limit is reached.

6.4.1 Computational results for the p-median problem

As described in Sect. 6.1, we consider nine sets of instances of the p-median problem
with ten instances each. These sets result from the combination of the different numbers

123

Weighted proximity search 481

Table 3 Minimum, average, and maximum computational times and number of iterations for the p-median
instances with a time limit of 1200s

Minimum values Average values Maximum values

Appr. Wtime Itime Rtime #I t Wtime Itime Rtime #I t Wtime Itime Rtime #I t

PS 0 45 51 5 0 132 263 9 0 220 630 23

LS 9 17 12 6 342 67 494 13 911 122 968 31

LRP 11 46 96 4 47 125 278 9 92 205 606 24

CVI 29 42 85 4 128 112 311 9 292 180 631 25

RCI 0 47 60 4 0 139 281 9 0 227 684 23

WF 0 48 80 5 0 127 273 9 0 219 684 23

of customers considered (500, 750, and 1000) and the exact number of facilities to
select (5, 15, and 25). The initial solution used in both the PS and the WPS heuristics
is obtained by solving the original model for 120s using Xpress.

Table 3 reports minimum, average, andmaximum computational times (in seconds)
and number of iterations corresponding to the average values obtained for the 9 sets
of instances used. The first column identifies the approach. Columns Wtime show
the total time spent on computing weights, while columns Itime report the average
time spent on solving each modified problem (for each iteration, not including the
time spent on computing weights). For all the approaches, a time limit of 1200s is
imposed. Columns Rtime show the difference between the time limit imposed and the
time corresponding to the last solution found improving the objective function value.
The number of iterations is reported in columns #I t .

The results reported in Table 3 indicate that the LS approach performs more itera-
tions than the other approaches, while the computational time associated with solving
themodified problem at each iteration (after theweights are determined) ismuch lower
than the alternative approaches. The total computational time spent on computing the
weights in the LS approach increases as the number of customers n and the value of
p increase. Moreover, since the number of iterations performed by the LS approach
is usually high (specially for the instances with p = 25) and the weights need to
be computed at each iteration, a large portion of the 1200s is used to compute such
weights.

Next, we compare the final solutions provided by the variants of WPS with the
solutions obtained by PS. For each of the 90 instances we compute a gap according to
the formula:

gap := zX − zPS

zPS
, (6.2)

where zPS is the value of the solution obtained by PS heuristic and zX is the value
of the solution found by each variant of the WPS heuristic. Then, we group all the
instances by sets and compute the average value of the gaps within each set (giving a
total of 9 gaps). Finally, in Table 4 we report the minimum, average, and maximum of
those average gaps.

123

482 F. Rodrigues et al.

Table 4 Average gaps (%)
obtained for the p-median
instances after 1200s

LS LRP CVI RCI WF

Minimum −7.5 −2.4 −2.4 −0.6 −0.8

Average −4.3 −0.4 −0.4 0.2 1.0

Maximum −0.7 0.2 0.5 0.9 4.9

Table 5 Minimum, average, and maximum gaps (%) obtained for the p-median instances after 1200s for
the LS approach

n = 500 n = 750 n = 1000

p 5 15 25 5 15 25 5 15 25

Minimum −3.4 −4.7 −8.3 −4.0 −8.0 −12.8 −20.8 −10.2 −12.5

Average −0.7 −1.6 −3.3 −1.7 −5.1 −7.4 −4.2 −6.5 −7.5

Maximum 0.2 2.3 2.5 1.1 0.6 1.4 −0.7 −0.8 −0.9

Negative gaps indicate a better quality of the solutions obtained by the correspond-
ing variant of the WPS heuristic. Hence, despite the large amount of time spent by
LS to compute weights, the approach can still provide better solutions than the ones
obtained by the classic PS heuristic. The static approaches (LRP and CV I) also
perform slightly better than the PS heuristic. However, the PS heuristic provides, on
average, better results than the ones obtained with the dynamic approaches RC I and
WF .

Since the best results among all the WPS variants considered were obtained with
the LS approach, we report in Table 5 more specific gaps for this approach computed
as follows. First we calculate the gap for each of the 90 instances according to formula
(6.2). Then we group all the instances by sets and report the minimum, average, and
maximum gaps in each one of the sets.

Table 5 shows that for the instances with 1000 customers (the hardest ones), the
solutions obtained by the LS approach are always better than the ones obtained by the
PS heuristic, since the maximum gaps are negative. Moreover, for some instances, the
LS can provide solutions up to 21% better than PS, while PS is at most 2.5% better
than LS on the instances considered.

Table 4 gives a general idea of the behavior of the approaches at the end of the
1200s, while the primal integral approximation measure and the signal metric provide
a better vision of such behavior over the time. The primal integral approximation
measure and the signal metric for the nine sets of instances of the p-median problem
aggregated are reported in Figs. 1 and 2, respectively.

In Figs. 1 and 2 the dominance of the LS approach is evident. The primal integral
approximation measure for this approach is much lower than the one corresponding
to the PS heuristic. Analyzing the signal metric, we can see that the LS approach
not only performs better in the later instants, but also early in the runs. For the other
approaches, there is no clear evidence indicating which of them performs better.

To demonstrate the benefits of the LS approach we compare it against the use of
the commercial MIP solver Xpress, imposing a time limit of 1200 + 120 = 1320 s

123

Weighted proximity search 483

Seconds
0 200 400 600 800 1000 1200

Pr
im

al
 In

te
gr

al
 A

pp
ro

xi
m

at
io

n

0

20

40

60

80

100

PS LS LRP CVI RCI WF

Fig. 1 Average primal integral approximation measure for instances of the p-median problem

Seconds
0 200 400 600 800 1000 1200

Si
gn

al
 M

et
ric

-100

-50

0

50

100
PS LS LRP CVI RCI WF

Fig. 2 Signal metric for instances of the p-median problem

123

484 F. Rodrigues et al.

Seconds
0 200 400 600 800 1000 1200

Pr
im

al
 In

te
gr

al
 A

pr
ox

im
at

io
n

0

30

60

90

120

PS LS Xpress

Seconds
0 200 400 600 800 1000 1200

Si
gn

al
 M

et
ric

-100

-50

0

50

100

Fig. 3 Average primal integral approximation measure and signal metric for the 9 sets of instances of the
p-median problem

Table 6 Minimum, average and
maximum gaps for the 9 sets of
instances of the p-median
problem aggregated after 1200s

Minimum Average Maximum

PS −16.1 −5.9 13.3

LS −18.7 −9.9 −1.1

for the latter. The 120s correspond to the computational time required for finding the
initial solution used in both the PS and the WPS. In the PS and the WPS variants, the
120s required to find the initial solution are not included in the time limit of 1200s.

Figure 3 presents the average primal integral approximation measure (on the left)
and the signal metric (on the right) for Xpress, for the PS heuristic, and for the LS
heuristic (which is the best variant of the WPS for the p-median problem), for the
nine sets of instances. The signal metric is computed with respect to Xpress, that is,
in formula (6.1) zXpressi (t) is used instead of zPSi (t) and zXi instead of zW PS

i , where

X denotes the approaches PS and LS, and zXpressi (t) denotes the solution obtained by
Xpress for instance i at time t .

Figure 3 indicates that both the PS and the LS heuristics outperform the direct use
of Xpress. In the beginning of the search, Xpress is able to find better solutions than
both the PS and the LS heuristic. However, at later stages of the search, the opposite
behavior is observed.

Table 6 reports the average gaps obtained by the PS and by the LS heuristics
computed with respect to the solution obtained by Xpress after 1320s. The gaps are
computed as in formula (6.2), but replacing zPS with the value of the best solution
found with Xpress. The results indicate that the solutions obtained by LS are better
than the ones obtained by Xpress for all the 90 instances of the p-median problem.
The maximum gap reported for the PS heuristic (13.3%), is an outlier value in the set
of the 90 instances and corresponds to an instance with 1000 costumers and p=5. The
second highest gap for this approach is around 6%. On average, the final solutions
obtained by the PS and by the LS heuristic are, respectively, 6% and 10% better than
the ones obtained by Xpress.

123

Weighted proximity search 485

6.4.2 Computational results for the set covering problem

Weconsider four sets of instances for the set covering problem,with ten instances each.
These instances result from the combinations of the number of customers (m = 1000
and m = 2000) and the number of services (n = 500 and n = 1000). The initial
solution used in both the PS and the WPS heuristics is the same and corresponds to
solving the original model for 120s using Xpress. Minimum, average, and maximum
computational times and number of iterations for the four sets of instances aggregated
are reported in Table 7.

The results reported in Table 7 indicate that the number of iterations performed is
similar for all the approaches. The CV I approach seems to be the one for which the
time per iteration is lower. However, this approach also presents, in general, higher
Rtime values, indicating that the early iterations are fast and that the value of the
objective function is not improved in the later stages of the search. In terms of the
computational time spent to compute the weights, we can see that it is short (in all the
approaches) when compared with the time limit of 1200s.

Table 8 reports the minimum, the average, and the maximum of the average gaps
for all the variants of the WPS heuristic, obtained after the time limit is reached.
The reported gaps are obtained following the same procedure used for Table 4. The
displayed results indicate that, in terms of the final solutions obtained, the LS, the
LRP , the CV I and the WF approaches perform, on average, better than the classic
PS heuristic. However, PS performs better than the RC I approach for the four sets of
instances. Table 9 reports the minimum, average, and maximum gaps associated with
the LS approach for the four sets of instances after 1200s, independently.

Table 9 shows that the LS approach is unable to obtain consistently better solutions
than the classic PS heuristic for all the instances. However, when it performs better,
the improvement can reach 7%. The primal integral approximation measure and the
signal metric for the four sets of instances of the set covering problem are reported in
Figs. 4 and 5, respectively.

Figures 4 and 5 confirm the dominance of the LS approach (and also the good
performance of the LRP ,CV I , andWF approaches) when compared with the classic
PS heuristic. The poor performance of the RC I approach is also shown in these figures.

Now we compare the PS and the LS heuristics against Xpress. Figure 6 presents
the average primal integer approximation measure (on the left) and the signal metric
(on the right) for Xpress, for the PS heuristic, and for the LS heuristic (which is the
best variant of the WPS for the set covering problem), for the four sets of instances
aggregated. The signal metric is computed with respect to Xpress as in the previous
section.

Figure 6 indicates the superiority of both the PS and the LS heuristics in relation to
Xpress. The plot associated with the signal metric indicates that after 100s almost all
the solutions found by the LS approach are better than the ones obtained by Xpress.
Table 10 reports the minimum, average, and maximum gaps obtained by the PS and
by the LS heuristics computed with respect to the solution obtained by Xpress. On
average, the final solutions obtained by the PS and by theLS approach are, respectively,
up to 4% and 5% better than the ones obtained by the Xpress.

123

486 F. Rodrigues et al.

Ta
bl
e
7

M
in
im

um
,a
ve
ra
ge
,a
nd

m
ax
im

um
co
m
pu

ta
tio

na
lt
im

es
an
d
nu

m
be
r
of

ite
ra
tio

ns
fo
r
th
e
se
tc
ov
er
in
g
in
st
an
ce
s
w
ith

a
tim

e
lim

it
of

12
00

s

M
in
im

um
va
lu
es

A
ve
ra
ge

va
lu
es

M
ax
im

um
va
lu
es

A
pp

r.
W

ti
m
e

I t
im

e
R
ti
m
e

#
It

W
ti
m
e

I t
im

e
R
ti
m
e

#
It

W
ti
m
e

I t
im

e
R
ti
m
e

#
It

PS
0

50
42

8
8

0
60

64
2

9
0

78
78

1
11

L
S

9
33

29
9

9
34

57
60

9
10

67
10

5
81

8
11

L
R
P

3
27

64
3

8
12

40
78

4
10

27
51

91
1

11

C
V
I

64
5

69
4

7
15

3
16

89
6

10
27

4
33

10
23

11

R
C
I

0
66

37
0

7
0

83
52

7
8

0
12

6
66

0
10

W
F

0
10

43
3

9
0

45
74

0
10

0
72

11
11

12

123

Weighted proximity search 487

Table 8 Average gaps (%)
obtained for the set covering
problem instances after 1200s

LS LRP CVI RCI WF

Minimum −1.8 −2.3 −2.2 1.1 −1.2

Average −1.2 −0.4 −0.5 1.8 −0.7

Maximum −0.6 1.0 1.2 2.3 −0.2

Table 9 Minimum, average, and
maximum gaps (%) obtained for
the set covering instances after
1200s for the LS approach

n = 500 n = 1000

m 1000 2000 1000 2000

Minimum −3.9 −6.9 −4.4 −6.5

Average −1.1 −1.3 −0.5 −2.1

Maximum 1.3 3.7 0.9 5.5

Seconds
0 200 400 600 800 1000 1200

Pr
im

al
 In

te
gr

al
 A

pp
ro

xi
m

at
io

n

0

20

40

60
PS LS LRP CVI RCI WF

Fig. 4 Average primal integral approximation measure for the instances of the set covering problem

6.4.3 Computational results for the stochastic lot-sizing problemwith setups

For the stochastic lot-sizing problemweuse three sets of instances corresponding to the
number of periods n equal to 60, 90, and 120. Each of the sets contains ten instances.
Since the LP-relaxations of the SLS problem are solved very quickly, the instances
of this problem can be used to test the LRL approach. The LRL was not applied
to the p-median and to the set covering problems, due to the large time required to
solve all the LP-relaxations. For both the PS and theWPS heuristics, the initial solution
considered is obtained by solving a deterministic lot-sizing problemwith the demands
fixed to their expected values for 120s using Xpress.

123

488 F. Rodrigues et al.

Seconds
0 200 400 600 800 1000 1200

Si
gn

al
 M

et
ric

-100

-50

0

50

100
PS LS LRP CVI RCI WF

Fig. 5 Signal metric for the instances of the set covering problem

Seconds
0 200 400 600 800 1000 1200

Pr
im

al
 In

te
gr

al
 A

pr
ox

im
at

io
n

0

30

60

90

PS LS Xpress

Seconds
0 200 400 600 800 1000 1200

Si
gn

al
 M

et
ric

-100

-50

0

50

100

Fig. 6 Average primal integral approximation measure and signal metric for instances of the set covering
problem

Table 10 Minimum, average
and maximum gaps for the
instances of the set covering
problem after 1200s

Minimum Average Maximum

PS −12.2 −4.4 1.8

LS −12.5 −5.6 0.0

The minimum, average, and maximum computational times and number of iter-
ations for all the approaches are reported in Table 11. The total computation time
required to determine the weights in the LS approach can be large when the number
of scenarios considered is large. We consider SLS instances with 100 scenarios, but
in order to determine the weights in the LS approach more efficiently (decreasing the
time spent on their computation), we used only 20 of those 100 scenarios (randomly
selected at each iteration).

123

Weighted proximity search 489

Table 11 shows that the variation of the number of iterations among the approaches
is small. The lowest computational times per iteration required to solve the modified
problem (after the weights are determined) are provided by the LS approach.

Table 12 reports the minimum, the average, and the maximum of the average gaps
for all the variants of the WPS heuristic, obtained after the time limit is reached. The
reported gaps are obtained following the same procedure used for Table 4.

These results show that there are no large differences between the average cost of
the final solutions obtained. When comparing the WPS against PS, the WPS variants
provide final solutions that are, in general, better for instances with 60 and 90 time
periods and worse for instances with 120 time periods. However, in all the three cases,
the best results are obtained by the LS approach.

In Table 13 we report the minimum, average, and maximum gaps obtained for LS
(the best approach in terms of the average cost of the final solutions obtained) for the
three sets of instances of the SLS problem after 1200s. Moreover, we also present the
gaps associated with both the LRP and the LRL since these approaches also perform
reasonably well.

The results presented in Table 13 reveal that the largest improvements in terms of
gaps with respect to the solutions of the PS heuristic are associated to the instances
with 90 time periods and are at most 2.3%. Moreover, we can see that in terms of the
absolute values, the minimum gaps are higher than the maximum gaps (for n = 60
and n = 90), which also indicate a better performance of the threeWPS variants when
compared against the PS heuristic.

Remark 6 A particular feature of the SLS instances tested is that large changes in
the structure of the solutions usually do not lead to a large variation in the objective
function value, while the objective function value itself is often high. This can help to
explain why the reported gaps reported in this section for the SLS problem are small.
Indeed, the largest gap obtained among all the approaches computed between the initial
solution considered and the final solution obtained (after 1200s) is only 6%. However,
the SLS problem arises in capital intensive markets, thus modest improvements on the
solutions may result in considerable profits.

Figures 7 and 8 report the average primal integral approximation measure and the
signal metric for the three sets of instances aggregated. Regarding the primal integral
approximation measure, the PS heuristic is completely dominated by the LS, LRP
and LRL approaches. A similar behavior is observed for the signal metric plot.

Figure 9 presents the average primal integral approximation measure (on the left)
and the signal metric (on the right) for Xpress used directly, for the PS, and for the LS
approach, for the three sets of instances aggregated. The signal metric is computed
with respect to Xpress as in the previous sections.

The behavior of the primal integral approximation measure for the instances of the
SLS problem is similar to the one observed for the instances of both the set covering
problem and p-median problem. However, the plot associated with the signal metric is
very different to the ones presented for those problem. The PS and the WPS heuristics
start from an initial solution obtained by solving the deterministic problem (with
only one scenario) and such solution is, in general, a good solution for the stochastic
problem. Xpress gives the value of the solution obtained with the solver considering

123

490 F. Rodrigues et al.

Ta
bl
e
11

M
in
im

um
,a
ve
ra
ge
,a
nd

m
ax
im

um
co
m
pu

ta
tio

na
lt
im

es
an
d
nu

m
be
r
of

ite
ra
tio

ns
fo
r
th
e
SL

S
in
st
an
ce
s
w
ith

a
tim

e
lim

it
of

12
00

s

M
in
im

um
va
lu
es

A
ve
ra
ge

va
lu
es

M
ax
im

um
va
lu
es

A
pp

r.
W

ti
m
e

I t
im

e
R
ti
m
e

#
It

W
ti
m
e

I t
im

e
R
ti
m
e

#
It

W
ti
m
e

I t
im

e
R
ti
m
e

#
It

PS
0

89
17

5
2

0
19

7
33

4
6

0
37

2
42

0
9

L
S

42
46

14
2

4
14

0
10

5
39

4
7

25
7

16
6

76
0

9

L
R
P

1
77

12
7

2
3

21
4

36
7

6
5

42
6

58
2

8

L
R
L

90
55

19
9

1
37

4
15

3
34

1
6

69
5

30
6

61
6

9

C
V
I

12
77

15
1

2
22

21
3

37
4

6
12

39
0

44
2

8

R
C
I

0
89

16
6

2
0

21
0

33
0

6
0

39
0

44
2

9

W
F

0
82

23
0

2
0

20
4

30
5

7
0

39
6

40
8

11

123

Weighted proximity search 491

Table 12 Average gaps (%)
obtained for the SLS instances
after 1200s

LS LRP LRL CVI RCI WF

Minimum −0.9 −0.3 −0.4 −0.2 −0.1 −0.1

Average −0.3 −0.1 −0.1 −0.0 0.0 −0.0

Maximum −0.2 0.2 0.3 0.2 0.0 0.2

Table 13 Minimum, average, and maximum gaps (%) obtained for the SLS instances after 1200s for the
LS, LRP , and LRL approaches

n = 60 n = 90 n = 120

LS LRP LRL LS LRP LRL LS LRP LRL

Minimum −0.8 −0.7 −0.5 −2.3 −1.2 −0.8 −1.2 −0.3 −0.2

Average −0.2 −0.1 −0.1 −0.9 −0.3 −0.3 −0.2 0.3 0.1

Maximum 0.1 0.5 0.2 0.5 0.9 0.5 0.6 0.8 0.8

Seconds
0 200 400 600 800 1000 1200

Pr
im

al
 In

te
gr

al
 A

pp
ro

xi
m

at
io

n

0

3

6

9

12

15

18

PS LS LRP LRL CVI RCI WF

Fig. 7 Average primal integral approximation measure for the instances of the SLS problem

the stochastic model with all the scenarios (which is a largemixed-integer model) after
the time limit is reached. This fact explains why there is no intersection between the
line associated with Xpress and the other two lines at time zero.

Table 14 reports the minimum, average, and maximum gaps obtained by the PS
and by the LS approach, computed with respect to the solutions obtained by Xpress
after 1320s. The final solutions obtained by the PS and by the LS approach are always
better than the ones obtained by Xpress, having average gaps around 9%.

123

492 F. Rodrigues et al.

Seconds
0 200 400 600 800 1000 1200

Si
gn

al
 M

et
ric

-100

-50

0

50

100
PS LS LRP LRL CVI RCI WF

Fig. 8 Signal metric for the instances of the SLS problem

Seconds
0 200 400 600 800 1000 1200

Pr
im

al
 In

te
gr

al
 A

pr
ox

im
at

io
n

0

20

40

60

80

PS LS Xpress

Seconds
0 200 400 600 800 1000 1200

Si
gn

al
 M

et
ric

-100

-50

0

50

100

Fig. 9 Average primal integral approximation measure and signal metric for the instances of the SLS
problem

Table 14 Minimum, average,
and maximum gaps for the
instances of the SLS problem
after 1200s

Minimum Average Maximum

PS −13.0 −9.0 −5.1

LS −12.6 −9.1 −5.7

7 Conclusion

This paper introduces a new method referred to as weighted proximity search (WPS).
InWPS, aweighted version of theHammingdistance function used in PS is introduced.
The aim is to guide a MIP solver to identify better feasible solutions faster.

123

Weighted proximity search 493

Six strategies to compute weights are proposed and their advantages and disad-
vantages are discussed. Considering the information used and the moments in which
weights are computed, the strategies can be classified into two classes: static and
dynamic. Each strategy proposed for computing the weights leads to a variant of the
WPS heuristic. Some of the variants of the WPS presented (LRL, LRP, WF and RCI)
are very general and easy to implement, meaning that they can directly be applied to
a wide range of optimization problems. This is not the case of the CVI and the LS
variants since they need to be adapted to each particular problem.

TheWPSheuristic is applied to a set of 160 randomly generated hard instances from
three optimization problems: the p-median problem, the set covering problem, and
the stochastic lot-sizing problem. Among all the variants of the WPS heuristic tested,
the dynamic Loss/Saving (LS) approach, in which the weights are computed at each
iteration, is the one with the best performance. Themost important conclusion that can
be drawn from our computational study is that the LS approach provides results that
are consistently better than the ones obtained by both the classic PS heuristic and a
commercial MIP solver used as reference methods. Besides of being generally better
in terms of the quality of the obtained solutions, the LS approach is also better in
terms of the computational time required to obtain such solutions.

For future research, it would be interesting to investigate other forms of computing
Loss/Savings that could enable the use of WPS as a problem-independent procedure.
Another line of future research is to explore the best way to use parallel computing in
the context of WPS.

Acknowledgements The authors wish to thank the anonymous reviewers, whose comments and sugges-
tions helped us to improve the manuscript. The research was partially supported by the Center for Research
and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Sci-
ence and Technology (FCT - Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020
and UIDP/04106/2020. The research of the first author was also partially supported by the Project
CEMAPRE/REM - UIDB/05069/2020, financed by FCT/MCTES through national funds. The third author
was supported by the AXIOM project, partially funded by the Research Council of Norway.

Funding Open Access funding provided byMolde University College - Specialized University in Logistics

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Here we report some preliminary results used to determine themaximum value R used
in the discretization schemes described in Sect. 3.2. Such results can also be used to
understand the potential of the proposed WPS heuristic and are obtained as follows:

123

http://creativecommons.org/licenses/by/4.0/

494 F. Rodrigues et al.

(i) use Xpress for solving the original model (2.1) until the first feasible solution is
found. Let us denote such solution by (x̄0, ȳ0);

(ii) run the classic PS heuristic by imposing a time limit of 500s and save both the
initial solution (x̄0, ȳ0) and the final solution (x̄ f , ȳ f) obtained;

(iii) use these solutions to define static weights for the WPS heuristic as

w j =
{
1, if x̄0j �= x̄ f

j ,

R̄, otherwise,

where R̄ is an integer number greater than one;
(iv) run the WPS heuristic, starting from the solution (x̄0, ȳ0), until a solution better

than or equal to the one obtained by the classic PS is found;
(v) compare the computational times.

For the parameter R̄ we tested 4 different values (2, 5, 10 and 20) on the training
set of instances. The obtained average results are reported in Table 15. The first row
identifies the problem. The second row reports the average running times associated
with the best solutions found by the PS heuristic, while the remaining four rows report
the average running times spent by the WPS heuristic for the different values of R̄
considered to obtain a solution better than or equal to the one obtained by the PS
heuristic.

The results presented in Table 15 clearly indicate that, when both the initial and the
final solutions obtained with the PS heuristic are assumed to be known, assigning dif-
ferent weights to the variables may lead to significant improvements by distinguishing
between variables that changed their value and those that did not. Moreover, accord-
ing with Table 15, the lowest computational times correspond to the value R̄ = 10.
Therefore, we consider R = R̄ = 10.

Remark 7 The main goal of the results presented in Table 15 is not to compare the
classic PS heuristic against the WPS heuristic. This table is used to show that by
attributing different weights to different variables, a target solution can be reached
more quickly.

Table 15 Computational times,
in seconds, associated with the
PS heuristic and with the WPS
for different values of R̄

p-median Set covering Stochastic lot-sizing

PS 455 281 379

WPS2 271 135 251

WPS5 197 146 218

WPS10 30 58 237

WPS20 65 88 290

123

Weighted proximity search 495

References

Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)
Achterberg, T., Berthold, T., Hendel, G.: Rouding and propagation heuristics for mixed integer program-

ming. In: Klatte, D., Lüthi, H.-J., Schmedders, K. (eds.) Operations Research Proceedings 2011, pp.
71–76. Springer, Berlin (2012)

Agra, A., Christiansen,M., Hvattum, L.M., Rodrigues, F.: AMIP based local search heuristic for a stochastic
maritime inventory routing problem. In: Paias, A., Ruthmair, M., Voß, S. (eds.) Lecture Notes in
Computer Science, Computational Logistics, vol. 9855, pp. 18–34. Springer, Berlin (2016)

Agra, A., Christiansen, M., Hvattum, L.M., Rodrigues, F.: Robust optimization for a maritime inventory
routing problem. Transp. Sci. 52(3), 509–525 (2018a)

Agra, A., Requejo, C., Rodrigues, F.: An adjustable sample average approximation algorithm for the
production-inventory-routing problem. Networks 72(1), 5–24 (2018b)

Alvarez-Miranda, E., Cacchiani, V., Lodi, A., Parriani, T., Schmidt, D.: Single-commodity robust network
design problem: complexity, instances and heuristic solutions. Eur. J. Oper. Res. 238(3), 711–723
(2014)

Beasley, J.: A note on solving large p-median problems. Eur. J. Oper. Res. 21, 270–273 (1985)
Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6), 611–614 (2013)
Berthold, T.: RENS—the optimal rounding. Math. Program. Comput. 6, 33–54 (2014)
Boland, N., Fischetti, M., Monaci, M., Savelsbergh, M.: Proximity Benders: a decomposition heuristic for

stochastic programming. J. Heuristics 22, 181–198 (2016)
Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)
Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve mip solutions.

Math. Program. 102(1), 71–90 (2005)
Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)
Fischetti, M., Ljubic, I., Sinnl, M.: Redesigning Benders decomposition for large-scale facility location.

Manag. Sci. 63(7), 2146–2162 (2016)
Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)
Fischetti, M., Monaci, M.: Proximity search for 0−1 mixed-integer convex programming. J. Heuristics

20(6), 709–731 (2014)
Fischetti, M., Monaci, M.: Proximity search heuristics for wind farm optimal layout. J. Heuristics 22(4),

459–474 (2016)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publisher, Boston (1997)
Hvattum, L.M., Esbensen, E.F.: Metaheuristics for stochastic problems. In: Cochran, J., Cox Jr., L.,

Keskinocak, P., Kharoufeh, J., Smith, J. (eds.) Wiley Encyclopedia of Operations Research and Man-
agement Science, pp. 3218–3229. Wiley, New York (2011)

Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed integer pro-
gramming. INFORMS J. Comput. 11(2), 173–187 (1999)

Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound algorithms: a survey of recent
advances in searching, branching, and pruning. Discr. Optim. 19, 79–102 (2016)

Rodrigues, F., Agra, A., Christiansen,M., Hvattum, L.M., Requejo, C.: Comparing techniques formodelling
uncertainty in a maritime inventory routing problem. Eur. J. Oper. Res. 277(3), 831–845 (2019)

Rodrigues, F., Agra, A., Requejo, C., Delage, E.: Lagrangian duality for robust problemswith decomposable
functions: the case of a robust inventory problem. INFORMS J. Comput. (2020). https://doi.org/10.
1287/ijoc.2020.0978

Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS
J. Comput. 19, 534–541 (2007)

Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In:
Maher,M., Puget, J.-F. (eds.) Principles and Practice ofConstraint Programming—CP98, pp. 417–431.
Springer, Berlin (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1287/ijoc.2020.0978
https://doi.org/10.1287/ijoc.2020.0978

496 F. Rodrigues et al.

Affiliations

Filipe Rodrigues1 · Agostinho Agra2 · Lars Magnus Hvattum3 ·
Cristina Requejo2

B Lars Magnus Hvattum
hvattum@himolde.no

Filipe Rodrigues
frodrigues@iseg.ulisboa.pt

Agostinho Agra
aagra@ua.pt

Cristina Requejo
crequejo@ua.pt

1 Department of Mathematics, ISEG-School of Economics and Management, University of
Lisbon, Lisbon, Portugal

2 Department of Mathematics, University of Aveiro, Aveiro, Portugal

3 Faculty of Logistics, Molde University College, Molde, Norway

123

http://orcid.org/0000-0002-3770-5456
http://orcid.org/0000-0002-4672-6099
http://orcid.org/0000-0003-0490-9978
http://orcid.org/0000-0003-0529-5090

	Weighted proximity search
	Abstract
	1 Introduction
	2 Search procedures
	2.1 Proximity search
	2.2 Weighted proximity search

	3 Strategies for determining weights
	3.1 Computing weights
	3.1.1 Static weights
	3.1.2 Dynamic weights
	3.1.3 A deeper look at each approach

	3.2 Weights discretization

	4 Optimization problems
	4.1 The uncapacitated p-median problem
	4.2 The set covering problem
	4.3 The stochastic lot-sizing problem with setups

	5 Implementation details of the weighted proximity search
	5.1 Heuristic used in the CVI approach
	5.2 Dealing with infeasibility in the LS approach

	6 Computational results
	6.1 Training set and test set
	6.2 Performance measures
	6.3 Calibration
	6.4 Main results
	6.4.1 Computational results for the p-median problem
	6.4.2 Computational results for the set covering problem
	6.4.3 Computational results for the stochastic lot-sizing problem with setups

	7 Conclusion
	Acknowledgements
	Appendix
	References

