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Abstract In this paper, we describe a matheuristic to solve the stochastic facility location problem which deter-
mines the location and size of storage facilities, the quantities of various types of supplies stored in each facility,
and the assignment of demand locations to the open facilities, which minimize unmet demand and response
time in lexicographic order. We assume uncertainties about demands, inventory spoilage, and transportation
network availability. A good example where such a formulation makes sense is the the problem of pre-positioning
emergency supplies, which aims to increase disaster preparedness by making the relief items readily available
to people in need. The matheuristic employs iterated local search techniques to look for good location and
inventory configurations, and uses CPLEX to optimize the assignments. Numerical experiments on a number of
case studies and random instances for the pre-positioning problem demonstrate the effectiveness and efficiency
of the matheuristic, which is shown to be particularly useful for tackling larger instances that are intractable for
exact solvers. The matheuristic is therefore a contribution to the literature on heuristic approaches to solving
facility location under uncertainties, can be used to further study the particular variant of the facility location
problem, and can also support humanitarian logisticians in their planning of pre-positioning strategies.

Keywords Facility location · Iterated local search · Matheuristic · Humanitarian logistics

1 Introduction

The mathematical science of facility locating has attracted much attention in discrete and continuous optimiza-
tion for over a century. Investigators have focused on both formulations and algorithms in diverse settings in
both the private sectors (e.g., industrial plants, banks, retail facilities, etc.) and the public sectors (e.g., hospi-
tals, post stations, etc.) [24]. Since demands, travel times and other inputs to the facility location models might
be highly uncertain, the development of models and solution procedures for facility location under uncertainty
has in particular become a high priority for researchers in both the logistics and optimization communities [69].
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In this paper, we consider a stochastic capacitated facility location problem which determines the location
and category of storage facilities, the quantities of various types of supplies stored in each facility, and the
assignment of demand locations to open facilities which minimize

– unmet demand, and
– response time

in lexicographic order, under budget restrictions. We assume uncertainties about

– demands (which can also be zero, so that even the set of demand locations is uncertain),
– inventory spoilage (a facility might not be operational, or remain only partially operational with only some

percentage of goods which remain usable), and
– transportation network availability (some transportation links might be unusable).

The particular version of the stochastic facility location problem under study is NP-hard (as an extension of
the simplest, but NP-hard uncapacitated facility location problem [17, 28]) and (meta)heuristics are therefore
needed to solve problem instances of realistic size. In addition, multi-objective problems in practice need to be
solved multiple times, by considering e.g., different weights in the objective function, different values of ε in
ε-constraint methods, or in order to let managers choose between a number of non-dominated solutions. Despite
facility location being a strategic problem, it is for these reasons that an effective and efficient heuristic solution
procedure is necessary. If there is no computational infrastructure available, or if the managers lack sufficient
mathematical background, the simplicity of the solution procedure can also be crucial.

Humanitarian logistics is a good example of an application domain where the aforementioned problem
assumptions and heuristic requirements make sense. Indeed, the policies and models developed for commercial
supply chains most often cannot be directly applied to manage humanitarian inventories, due to the unique
characteristics of the humanitarian setting [35]. For example, even though both customer service and low logistics
costs are important for humanitarian organizations and business enterprises, efficiency is crucial for commercial
supply chains, whereas satisfying beneficiary needs is always the utmost priority for humanitarian organizations.
In a commercial setting, the demands are known or can be easily predicted, whereas in most humanitarian
settings, there is a high level of uncertainty associated with location, type and amount of demand. The network
infrastructure is generally stable and reliable in a commercial supply chain, whereas post-disaster network may
be damaged and involve uncertainties [5]. The same is true for the survivability of the stockpiles: the stored
goods might be destroyed in the disaster, so that the storage facilities should not necessarily be located close
to the disaster area, as they run the risk of also being affected by the disaster (whereas in business logistics,
proximity to the customers is crucial) [11,66]. For example, a look at the 2010 earthquake in Haiti, shows that
local capacity in terms of relief items and human resources was in place before the disaster, yet these resources
were located so close to the disaster site that they were destroyed during the tremor [14].

More precisely, the particular definition of the stochastic facility location problem above is a suitable de-
scription of the problem of pre-positioning emergency supplies, which aims to increase disaster preparedness by
storing the relief items at strategic locations, in order to make them readily available to people in need [74]. In-
deed, the agility and readiness in the distribution of critical relief commodities (such as water, food, or medicine)
are shown to be crucial, especially in the first 72 hours after the event, so that rescue teams can begin their
activities and victims can thus stabilize their lives. The importance of pre-positioning relief supplies was demon-
strated when Hurricane Katrina devastated New Orleans in 2005. The lack of pre-positioned materials and the
delay in arrival of these supplies hampered further relief to the victims [9]. Public records and interviews with
the individuals directly involved in the logistical response indicate that the Federal Emergency Management
Agency started deploying supplies just a day before the Katrina landfall (which was soon suspended because
of the risks posed by the imminent strike of the hurricane) and was consequently still focused on procuring
and deploying resources when it was expected to have those services already available to victims. Next to the
time-consuming and bureaucratic nature of the procurement process, the supplies that can be expected to be
high in demand tend to be more difficult to find, and it comes as no surprise that in this case the suppliers
were not able to supply goods in the necessary quantities. It has also been argued that the selection of storage
facilities delayed the immediate response, since some supplies were stored too far away from the affected areas.
For these reasons, some people in need of assistance have not received the needed supplies until 7 to 10 days
after landfall, and the quantities of supplies received were significantly lower than the quantities requested [37].

The requirements for the efficiency and simplicity of the solution techniques also makes sense for pre-
positioning of relief items. Indeed, most relief organizations use public buildings like gyms or town halls as
provisional warehouses or shelters for evacuees and do not build new facilities. Therefore, decisions where to
store relief items are often made on a short-term basis (e.g., as soon as a hurricane forecast is available, usually
three to five days prior to a landfall, although hurricane path and strength can change within few hours) [32].
As a result, pre-disaster decisions tend to develop a more operational character and hence solution times gain
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massively in importance [31]. In addition, the simplicity of the solution procedure might be very beneficial
as it can be directly used for planning of emergency strategies. Despite a substantial body of literature on
humanitarian logistics and discontent with current practices, interviews with humanitarian logistics experts
indicate that decision support tools and advanced planning approaches are extremely rarely employed in the
humanitarian sector (unlike in the private sector logistics) [82]. The main reasons for this are staff capacity (not
enough staff, and staff that is not sufficiently skilled to use these techniques) and the related costs - the increase
in effectiveness realized by advanced planning may not outweigh the cost of implementation, operation, and
maintenance of an expensive tool or staff training (”such IT system may deliver slightly higher efficiency, but
may cost one vehicle”) [82]. In addition, systems involving black box optimization (i.e., a complex system or
device whose internal workings are hidden or not readily understood) may fail to meet humanitarian standards
concerning transparency [81].

The main contribution of this paper lies in the effective, efficient and easy-to-understand heuristic to solve a
particular realistic variant of the stochastic facility location problem. In addition, the heuristic is used to find the
first, and thus benchmark, solutions for the only publicly shared instances for the facility problem under study
(with complete solutions made available). Finally, since the problem formulation corresponds to the problem of
pre-positioning emergency supplies, the heuristic can be used to further study the pre-positioning problem and
to support the planning of disaster preparedness strategies.

We start the paper with the literature review on the facility location problem, with the focus on the facility
location under uncertainties in Section 2.1, and facility location for pre-positioning of relief items in Section 2.2.
Section 3 gives a detailed description of the particular stochastic facility location problem under study, and
introduces the corresponding mathematical model. The matheuristic we developed for the problem is introduced
in Section 4, and evaluated in Section 5. The paper ends with a discussion about the main contributions and
limitations, and the resulting interesting directions for future work in Section 6.

2 Literature review

Facility location models are used in a variety of applications, including locating warehouses within a supply
chain to minimize the average time to market, locating noxious material to maximize their distances from
the public, locating railroad stations to minimize the unpredictability of delivery schedules, locating automatic
teller machines to serve bank customers better, etc. [24]. For surveys of the literature on facility location,
see [1, 17, 18,25,27,45,47,54,63,64,70,71].

The study of location theory formally began in 1909 when Alfred Weber considered how to position a single
warehouse (in a plane) so as to minimize the total distance between the facility and customers [84]. Location
theory gained renewed interest in 1964 with a publication by Hakimi [34], who considered the problem of locating
one or more facilities on a network so as to minimize the total distance between customers and their closest
facility, or to minimize the maximum such distance [58].

The most basic facility location problem formulations can be characterized as uncapacitated, static and
deterministic, and can be classified into median, covering and center problems. The p-median or minsum problem
looks for an assignment of all demand locations to a given number p of open facilities, which minimizes the
total or average distance. For some applications (e.g., locating fire stations or ambulances), however, selecting
locations which minimize the average distance traveled might not be the most suitable. Set covering problem
aims to minimize the facility opening costs (which is equivalent to minimizing the number of open facilities, if
there is no difference in facility costs) such that the distance between any demand location to an open facility
(so called coverage) is under a given maximum acceptable limit. Since set covering problem becomes infeasible
in many practical applications, it makes sense to consider a maximal covering problem which maximizes the
amount of demand covered within a given acceptable distance. Another class of problems which can avoid
the infeasibility of set covering problems is the center problem which endogenously determines the minimum
coverage distance associated with locating a given number of facilities. The center problem, also known as
the minmax problem, looks for the assignment of all demand locations to open facilities which minimizes the
maximum distance between a demand location and the nearest facility [58].

The problem investigated in this paper resembles the median problem. For a given number of facilities
to be open, the problem is polynomial, but it is NP-hard if the number of open facilities can vary [58]. Our
problem further differs from the standard formulation with respect to a number of elements. Firstly, deterministic
formulations are not able to adequately model the uncertainties inherent in making real-world strategic decisions.
Section 2.1 gives a literature review on facility location under uncertainties. Next to the uncertainties about
a number of classes of input parameters, we also consider different objective functions and incorporate many
realistic assumptions, e.g., facilities are capacitated, we consider facilities with different capacities and opening
costs (so that, in addition to the location, we also need to decide on the category of facility to be open), we
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consider multiple commodity types with different volumes and acquisition costs, etc. Note than only relaxing the
assumption on uncapacitated facilities makes the problem much more complicated, since demand locations are
naturally assigned to the nearest facility in the standard formulation, so that the integrality constraints on the
assignment decision variables can be relaxed to a simple non-negativity constraint in the simplified problem [58].
This particular formulation make sense in practice as it can be used to describe the problem of pre-positioning
emergency supplies; in Section 2.2 we discuss approaches to the stochastic facility problem in the humanitarian
logistics literature.

2.1 Facility location under uncertainties

More often than not, the facilities, plants or distribution centers function for years or decades, during which
time the environment (costs, demands, travel times) in which they operate may change substantially. It is
therefore important to study facility location under uncertainties [69]. In certainty situations, all parameters are
deterministic and known, whereas problems under uncertainty involve randomness, and the goal of is to find a
solution that will perform well under any possible realization of the random parameters. Some reviews of the
literature on facility location under uncertainties can be found in [58,69].

One class of formulations of uncertainty are robust optimization problems, with no information about the
probabilities of the uncertain parameters and the goal of optimizing worst-case (minmax) performance. Alter-
natively, the values of uncertain parameters can be governed by probability distributions known to the decision
maker, with the goal of optimizing the expected value (minsum). This stochastic formulation can either explicitly
consider the probability distribution of uncertain parameters, or it can capture uncertainty through scenario
planning. The primary attraction of minmaxmeasures is that they do not require the planner to estimate scenario
probabilities, or even to formulate scenarios if data are described using intervals. However, minmax problems
seem to be employed more in the academic literature than in practice. In many situations, it is more practical
to plan based on a fractile target than on the worst case [69].

In 1961, Manne published one of the earliest papers [53] to consider stochastic problem inputs. In this paper,
the problem of capacity expansion over an infinite horizon is examined, with the objective of selecting expansion
sizes which minimize the sum of discounted installation costs. Cooper considers the Weber problem in which
the locations of the demand points may be random [16]. A bivariate normal distribution for these locations is
assumed. The objective is to choose a point for the single facility location to minimize the expected demand
weighted distance to the customers, and the iterative algorithm that solves the first-order conditions is shown
to be globally convergent in [41]. Manne and Cooper model demand probabilistically.

However, the scenario approach generally results in more tractable models, and furthermore, it has the
advantage of allowing parameters to be statistically dependent. Dependence is often necessary to model reality,
since, for example, demands are often correlated across time periods or geographical regions [69]. The problem
studied in this paper belongs to the last class of stochastic, scenario approaches, and is commonly modelled as a
two-stage stochastic linear program [8,40]. The first-stage facility decisions are optimized before any particular
scenario outcome, and the second-stage recourse decisions on the allocation of demand locations to open facilities
define the actions to be taken in response to each random outcome.

The L-shaped method [79] (also known as the stochastic Benders decomposition) is a classical approach
for solving this class of problems [32]. Louveaux presents the stochastic version of the capacitated p-median
problem in which demands, production costs, and selling prices are random, and the constraint requiring p
facilities to be opened is replaced by a budget constraint on the total cost [51]. The goal is to choose facility
locations, determine their capacities, and decide which customers to serve and from which facilities to maximize
the expected utility of profit. Since demands are random and facilities are capacitated, the facilities chosen in
the first stage may be insufficient to serve all of the demands in the second stage; hence a penalty for unmet
demand is included in the models. Louveaux and Peeters present a dual-based heuristic for this problem [52],
and Laporte et al. present an optimal algorithm based on the L-shaped method in [46]. Although the (adjusted)
L-shaped method exploits the specific structure of the problem, many large scale problems (e.g., with a large
number of scenarios) remain unmanageable without the use of heuristics. The facility decisions may even be
better than the ones derived by exact methods from a simplified problem formulation using only a small number
of scenarios [31].

Weaver and Church present a Lagrangian relaxation algorithm for the stochastic p-median problem on a
general network discussed by Mirchandani and Odoni [55], relaxing the assignment constraints [83]. Mirchandani
et al. [56] begin with the same formulation as Weaver and Church in [83], also suggesting a Lagrangian relaxation
method, but instead of relaxing the assignment constraints, they relax the single constraint requiring p facilities
to be opened. The authors solve this subproblem using the DUALOC algorithm [23] and update the multiplier
using a subgradient method. A location-inventory model is introduced in [19] which minimizes the expected
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cost of locating facilities, transporting material, and holding inventory under stochastic daily demand, and is
solved using Lagrangian relaxation. The same model is also solved using column generation in [68].

A stochastic programming model is introduced in [49] for choosing facility locations involving the collection,
recycling, and reuse of sand from demolition sites. The uncertainties are assumed for the demands (for recycled
sand) and for the amount and location of supply (of waste sand). The model is solved using CPLEX. In [12],
”stochastically processed demands” are considered, i.e., demands that arise from a queueing process at the
customer, with the objective of minimizing the expected cost. A heuristic using stochastic decomposition (an
extension of Benders decomposition) and space-filling curves is employed to solve the problem.

Exact solution techniques are often not the most suitable approach for realistic facility location problems,
as they are not able to solve larger instances and/or to provide solution within a reasonable computation time.
Moreover, understanding and implementing these or related techniques requires sufficient mathematical back-
ground (as most of them are based on Benders decomposition and/or Lagrangian relaxation, column generation
or dual problem) and computational infrastructure, and they therefore cannot be easily used in many practical
applications.

Widely used straightforward heuristic approaches to solving different location problems belong to the class of
locate-allocate heuristics [39], first proposed in [15]. The location-allocation heuristic alternates between solving
the location and allocation sub-problems that are easy to solve in separation: given a facility configuration, a
simple allocation method is to assign every demand vertex to its closest facility; given the allocation of demand
locations among the facilities, the problem is reduced to the solution of a number of independent single facility
problems [80]. This fails to remain true for the stochastic facility location problem, since different sets of demand
locations are allocated to a facility across different scenarios.

In the existing literature on stochastic facility location which introduces heuristic solution approaches for the
problem, a number of simplifying assumptions are considered, compared to our problem definition. A literature
review on facility location under uncertainties [58] underlines the need for improved heuristics to support the
solution of larger, more complex and more realistic facility location problem instances. The increased use of
scenario planning techniques will drive such solution advances, as scenario-based models grow rapidly with the
number of scenarios generated [58].

2.2 Pre-positioning emergency supplies

Even in the growing body of literature on the topic of pre-positioning emergency supplies (for a recent literature
survey, see [5, 31]), the particular variant of the stochastic facility location problem which describes the pre-
disaster planning has not yet been solved with an effective, efficient and transparent heuristic. Indeed, as we
summarize in Table 1, most of the articles on emergency pre-positioning do not incorporate on or more of the
elements listed below:

– realistic problem assumptions
– proper formulation of the aid distribution sub-problem
– appropriate objective function
– (simple) heuristic solution algorithm
– multiple problem instances to reliably demonstrate the heuristic effectiveness,

as we elaborate in greater detail in the remainder of this section.
Firstly, there are many formulations of the pre-positioning problem that fail to consider the crucial complexi-

ties of the problem: some do not consider multiple facility categories (that can be opened at any potential facility
location) or commodity types, some do not consider uncertainties about demand, survivability of pre-positioned
aid or network damage, some do not incorporate facility or inventory decisions (Table 1). Furthermore, in some
articles the authors assume uncapacitated facilities or, e.g., assume a single open facility, or a single demand
location in each disaster scenario. These assumptions significantly simplify the mathematical formulation of the
problem, and in particular the algorithms that solve the problem. Our problem definition adopts the assumptions
introduced in [60], seen as a benchmark in the literature [32].
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Table 1 Literature review on the problem of pre-positioning emergency supplies shows that most of the articles do not consider all the problem aspects, often minimize costs and only employ
a commercial solver to solve a single case study.
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Distribution formulation Objective function

[2] - ✓ ✓ ✓ ✓ ✗ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✓ ✓

[3] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ Maximum covering problem Met demand ✗ ✗

[7] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ Maximum covering problem Coverage; Opening cost; Sum of transportation
and penalty costs

✗ ✗

[13] - ✗ ✓ ✓ ✗ ✗ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[20] - ✗ ✓ ✓ ✓ ✗ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[9] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ Transportation problem Sum of logistics and penalty costs ✗ ✗

[21] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✓ ✓

[22] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ Transportation problem Demand-weighted time ✗ ✗

[30] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[33] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ Network flow problem Logistics costs; Met demand ✗ ✓

[38] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ Network flow problem Logistics costs ✗ ✗

[42] - ✓ ✓ ✗ ✓ ✗ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[43] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[44] ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ Assignment problem Minimum and average weight of open facilities;
Distance

✗ ✓

[48] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[60] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✓ ✗

[61] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[62] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ Routing problem Sum of met demand utility and residual budgets ✗ ✓

[65] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Transportation problem Demand-weighted time; Sum of logistics and
penalty costs

✗ ✗

[67] - ✗ ✓ ✗ ✗ ✗ ✓ ✓ Network flow problem Sum of logistics and penalty costs ✗ ✗

[72] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Network flow problem Logistics costs; Time; Sum of penalty costs ✓ ✓

[73] ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ Routing problem Logistics costs; Met demand ✗ ✗

[76] - ✗ ✓ ✓ ✗ ✗ ✓ ✓ Network flow Demand-weighted distance ✓ ✗

[77] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ Routing problem Sum of logistics costs and coverage reliability ✗ ✗

This article ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Assignment problem Met demand; Time ✓ ✓



A matheuristic for the stochastic facility location problem 7

Next to the underlying problem assumptions mentioned, the mathematical models that are used to describe
the pre-positioning problem vary greatly with respect to the formulation of the aid distribution sub-problem
(Table 1). The aid distribution is commonly modelled as a network flow problem per commodity, most prob-
ably due to existence of efficient algorithms that solve it, e.g., [26, 29, 57]. Such formulation over-simplifies the
distribution problem as it does not allow to easily take into account the capacity nor the number of vehicles
needed to transport different commodities. In most cases, the general model used only provides the flow amounts
between vertices without specifying the destined path of the flow, making the solution difficult to implement in
a real-world system (Figure 1). Furthermore, serving a demand location from multiple facilities is operationally
overly complex and might pose significant risks in a chaotic setting after a disaster, e.g., carrying out a plan
where 17% (i.e., any percentage in the interval (0, 100)) of demand for one commodity and 54% of demand
for another commodity at an affected location are served by one facility (and at one point in time), and the
remainder by another (or more) facilities. The latter is the reason why we also did not choose to formulate the
aid distribution as a transportation problem.

Commodity k = 1 Commodity k = 2

Fig. 1 The aid distribution sub-problem is commonly modelled using a network flow formulation per commodity, with the graph
vertices corresponding to facility or (zero) demand locations, and the graph edges corresponding to the flows of goods over the
respective transportation links. The general network flow formulation makes it difficult to implement the solution in the real-world.
How many vehicles need to leave vertex i = 1 to distribute the commodity k = 1? How is the flow of 40 on the edge (1, 3) distributed
between these vehicles? Does the flow of 10 on the edge (2, 5) belong to the path 1−2−5, 1−3−2−5, or 1−3−4−2−5? If there is
commodity k = 1 pre-positioned at a facility open at vertex i = 3, the flow on the edge (2, 5) might also belong to the path 3−2−5
or 3 − 4 − 2 − 5. The demand of a vertex i = 2 is served from a number of different places, and often a non-empty vehicle leaves
the vertex without meeting its demand; this can pose a security risk, since the aid is being distributed to the next location, while a
part of the population has not received the needed assistance. If the network flow problem is solved as a series of single-commodity
problems, the distribution scheme becomes even more chaotic, as different commodities might have to be distributed from different
facilities, and using very different transportation links.

On the other hand, the formulation of the aid distribution sub-problem as a routing problem is a waste
of computational effort. Indeed, in the preparedness phase before a disaster, one is only interested in deciding
where to open the facilities and what to store there; the aid distribution sub-problem is only solved to provide
an evaluation of the quality of the pre-positioning facility and inventory decisions. Once a disaster happens,
it is highly unlikely that it will completely match one of the considered disaster scenarios, implying that the
optimized routing schemes would be of no use. In our formulation, we consider the aid distribution as an
assignment problem, deciding which demand locations are served by which open facilities.

Furthermore, although the objective of humanitarian relief is to minimize human suffering [36] (what is an
important distinction from commercial supply chains, as mentioned earlier), cost minimization is the common
objective in the pre-positioning problem formulations. Since meeting all demand after an emergency is rarely
possible, the objective function is usually defined to be the sum of logistics costs and different types of penalty
costs, e.g., costs for unmet demand or delayed service (Table 1). Finding reasonable values for these penalty
costs is not an easy task, while the quality of the emergency plan is extremely sensitive to these intangible
coefficients [4,59,67,78], that are also controversial as they assign a price to human suffering. In [74], we discuss
the appropriate choice of the objective function in the mathematical models that describe humanitarian logistics
problems, and show that an alternative formulation that directly minimizes unmet demand and response time in
lexicographic order is able to circumvent all the issues of the cost-minimizing model, without any performance
loss. This objective directly reflects the priorities of disaster relief: provide assistance to the greatest number
of people possible, as soon as possible. In addition, in [74] we illustrate how the alternative model also offers
practitioners the flexibility to explore a number of diverse emergency plans in a straightforward manner, which
helps to provide insights into the problem and can be of use in many aspects of disaster response planning.

Independent from the particular choice of the objective function(s), the pre-positioning problem is multi-
objective in nature, and the multiple objectives can be tackled in a number of different ways which all require
solving a problem many times if they aim to provide appropriate support in the decision-making process [74].
In addition, multiple (nondominated, or good) solutions can provide more flexibility to the decision makers by
allowing them to incorporate some planning components that are difficult to include in the mathematical model,
such as political concerns. Despite this obvious need for efficient heuristics, most of the articles do not consider
heuristic techniques to solve the pre-positioning problem (Table 1).

In Table 1, there are four articles which consider the same assumptions as in this paper: [30, 60, 61, 72]. No
solution procedure is introduced in [30] (rather, the authors propose a methodological tool kit for humanitarian
logistics to support practitioners to identify, compare, and apply suitable OR model), and CPLEX is used to
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find the best pre-positioning strategy for the case study focused on hurricane threat in the Gulf Coast area of
the US in [61]. Heuristics algorithms are introduced in the remaining two studies, but these rely on a number
of complex techniques. In [60], L-shaped method is used to solve the master problem, Lagrangian relaxation
is employed to tackle the sub-problem (standard techniques to solve this class of problems, as elaborated in
Section 2.1), and a network simplex algorithm solves the minimum cost flow problems, for the same Gulf Coast
hurricane case study. In [72], a (inefficient) population-based differential evolution metaheuristic is used to
design an earthquake humanitarian relief chain in Tehran, together with a weighted augmented ε-constraint
method, fuzzy chance constrained programming approach and fuzzy ranking method. In addition, as indicated
in Table 1, these articles differ from this paper with respect to the aid distribution sub-problem and objective
function formulation.

Finally, in most of the papers, the authors use only a single, often very small, case study to confirm their
findings (Table 1), without much statistical confidence. The few articles that employ more than a single problem
instance rarely comment on the diversity of the instances, e.g., with respect to the network topology or the
relationship between the instance parameters. For example, 17 instances that are used in [2] are all based on
the nominal data with little variation, and are therefore all focused on the disaster of the same type, scale, that
occurred in the same region. In [21], 15 different instances are used, but they are all randomly generated and
there is little evidence provided that these instance resemble any realistic disaster. In this paper, we employ 30
diverse case studies and 10 random instances introduced in [75] to show good performance of the matheuristic.
The instances and complete solutions are made publicly available to allow comparison with other heuristics and
to foster further research on the pre-positioning problem.

3 Problem definition

In this section, we briefly describe an instance, a solution, and the mathematical formulation of the particular
stochastic facility location problem under study. An example of an instance can be found in the Appendix, and
more details and further argumentation behind the choice of such a problem definition can be found in [74].

As already mentioned, we assume a number of uncertainties, and model them as a random vector with a finite
number of possible realizations, called scenarios s ∈ S, which occur with probabilities P s. The transportation
network in every scenario s ∈ S is represented by a directed graph Gs = (V,Es). Every vertex i ∈ V represents
a city or village that has a demand for Dks

i units of commodity k ∈ K in scenario s ∈ S (which can be zero).
The set of edges Es represents the transportation links, with the weight of an edge (i, j) being the distance Ls

ij

from vertex i ∈ V to vertex j ∈ V in scenario s ∈ S. If there is no edge between vertices i ∈ V and j ∈ V in
scenario s ∈ S, we set Ls

ij = −1.

A facility of any category q ∈ Q might be open at any location i ∈ V′ (V′ ⊆ V), if the facility budget A
permits. The facility categories differ in volume Mq and opening cost Aq. At any open facility, commodities of
different types k ∈ K (such as food, water, or medicine) can be stored, if the facility capacity and acquisition
budget B constraints are respected. The commodity types differ in unit volume Mk, unit acquisition cost Bk

and unit transportation cost Ck. A percentage Rks
i of stored commodity type k ∈ K at vertex i ∈ V remains

usable in a scenario s ∈ S, and can be distributed via the traversable edges to the demand locations, as long as
the transportation budget C is not violated.

Given a problem instance described above, we want to determine the best possible strategy which determines:

– the location and category of storage facilities to open, represented by binary variables x = [xiq] that indicate
whether a facility of category q ∈ Q is open at vertex i ∈ V′,

– the amounts y = [yki ] of commodity k ∈ K to store at a facility open at vertex i ∈ V′, and
– the assignments of demand locations to open facilities, represented by binary variables z = [zsij ] that indicate

whether a facility open at vertex i ∈ V′ serves the demands of vertex j ∈ V in scenario s ∈ S.

These strategies are developed before any scenario outcome when the logisticians only care to know where to
open the facilities and what to store there, so that the distribution decisions z are not truly a part of a solution.
However, the decisions about the transportation of the stored goods from the storage facilities to the demand
locations in every possible scenario are made in order to ensure that the facility capacity, transportation network
availability and transportation budget are respected, and to evaluate the quality of the facility and inventory
decisions we consider implementing. The notation for an instance and a solution of the problem is summarized
in Table 2.

Deciding on the best strategy is formulated as a two-stage stochastic mixed-integer programming problem,
with the facility and inventory decisions x = [xiq] and y = [yki ] as the first-stage variables (made before there
is knowledge of any specific scenario outcome), and the scenario-specific assignment decisions z = [zsij ] as the
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Table 2 Notation for the instance and solution of the problem.

Sets

Q set of facility categories
K set of commodities
S set of scenarios
V set of vertices
V′ set of potential facility locations, V′ ⊆ V
Es set of edges in scenario s ∈ S

Coefficients

Mq volume capacity of a facility of category q ∈ Q (m3)
Aq opening cost of a facility of category q ∈ Q (e)

Mk unit volume of commodity k ∈ K (m3)
Bk unit acquisition cost of commodity k ∈ K (e)
Ck unit transportation cost of commodity k ∈ K (e)

W average speed (km/h)

P s probability of scenario s ∈ S
Dks

i demand for commodity k ∈ K at vertex i ∈ V in scenario s ∈ S
Rks

i percentage of stored commodity k ∈ K that remains usable at vertex i ∈ V′ in scenario s ∈ S

Ls
ij

{

distance from vertex i ∈ V to vertex j ∈ V in scenario s ∈ S (km), (i, j) ∈ Es

−1, otherwise

A total budget for opening the facilities (e)
B total budget for acquisition of supplies (e)
C total budget for transportation (e)

Decision variables

xiq

{

1, if a facility of category q ∈ Q is open at vertex i ∈ V′

0, otherwise

yki amount of commodity k ∈ K stored at vertex i ∈ V′

zsij

{

1, if the facility open at vertex i ∈ V′ fully meets the demands of vertex j ∈ V in scenario s ∈ S

0, otherwise

Table 3 Auxiliary coefficients that can be derived from a problem instance.

Auxiliary coefficients

Ds
i average percentage of the total demand in scenario s ∈ S that is needed at vertex i ∈ V, Ds

i = 1

|K|

∑

k∈K

Dks
i∑

j∈V
Dks

j

Ls
ij











shortest path distance from vertex i ∈ V to vertex j ∈ V in scenario s ∈ S (km),

if there is a path from vertex i ∈ V to vertex j ∈ V in graph Gs = (V,Es)

−1, otherwise

Cs
ij



















cost of transporting the demands of vertex j ∈ V via the shortest path from vertex

i ∈ V to vertex j ∈ V in scenario s ∈ S (e), Cs
ij = Ls

ij

∑

k∈K
CkDks

j ,

if there is a path from vertex i ∈ V to vertex j ∈ V in graph Gs = (V,Es)

−1, otherwise

T s
ij











shortest path travel time from vertex i ∈ V to vertex j ∈ V in scenario s ∈ S (h),

if there is a path from vertex i ∈ V to vertex j ∈ V in graph Gs = (V,Es)

−1, otherwise

second-stage (recourse) variables. The model aims to minimize unmet demand and response time in lexico-
graphic order, under resource and capacity constraints. In the context of pre-positioning emergency supplies,
this corresponds to providing assistance to the greatest number of people possible, as soon as possible. A de-
tailed argumentation behind the choice of such a formulation and methods to easily adapt the definition of
lexicographic order is given in [74].
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In order to improve the readability of the model, we calculate a few auxiliary coefficients using the instance
information (Table 3). The model is now as follows.

max
∑

s∈S

∑

i∈V′

∑

j∈V

P sDs
jz

s
ij (1)

∑

k∈K

Mkyki ≤
∑

q∈Q

Mqxiq (i ∈ V′) (2)

∑

i∈V′

zsij ≤ 1 (j ∈ V)(s ∈ S) (3)

∑

j∈V

Dks
j zsij ≤ Rks

i yki (i ∈ V′)(k ∈ K)(s ∈ S) (4)

zsij ≤ 1 + Ls
ij (i ∈ V′)(j ∈ V)(s ∈ S) (5)

∑

i∈V′

∑

q∈Q

Aqxiq ≤ A (6)

∑

i∈V′

∑

k∈K

Bkyki ≤ B (7)

∑

i∈V′

∑

j∈V

Cs
ijz

s
ij ≤ C (s ∈ S) (8)

xiq ∈ {0, 1} (i ∈ V′)(q ∈ Q) (9)

yki ≥ 0 (i ∈ V′)(k ∈ K) (10)

zsij ∈ {0, 1} (i ∈ V′)(j ∈ V)(s ∈ S) (11)

The objective of the model is to maximize the expected (over scenarios) average (over commodities) percent-
age of met demand (1), i.e., to minimize the percentage of unmet demand. The first set of constraints (2) limits
the amount of stored supplies at a vertex to the capacity of a facility opened there. The second set of constraints
(3), together with (11), ensures that every vertex is served by at most one facility, and only if there is enough of
stored goods that remained usable to serve the demands of that vertex (4), while (5) make sure that a demand
vertex is only assigned to a facility if it can be reached from it. The constraints (6)-(8) represent the facility,
acquisition and transportation budget limitations, respectively. Finally, constraints (9)-(11) are integrality and
positivity constraints.

Let D∗ be the optimal percentage of met demand, i.e., the objective function value of the optimal solution
obtained by solving the model above. To further optimize response time in lexicographic order, an additional
model needs to be solved that minimizes total expected response time subject to the same constraints (2)-(11),
with an additional constraint that guarantees that the met demand is (greater than or) equal to the optimal
value D∗ obtained from (1)-(11).

min
∑

s∈S

∑

i∈V′

∑

j∈V

P sT s
ijz

s
ij (12)

(2)− (11) (13)
∑

s∈S

∑

i∈V′

∑

j∈V

P sDs
jz

s
ij ≥ D∗ (14)

4 Matheuristic

As mentioned in first part of the paper, any reasonable planning of best facility strategy requires solving the
facility location problem many times. For most realistic problem instances, this calls for an efficient and effective
heuristic solution procedure. We start this section with a general description of the heuristic that we implemented
for the problem, and proceed to illustrate each of the heuristic components in greater detail in the subsequent
subsections.

To build a solution means to determine the values of decision variables x = [xiq], y = [yki ] and z = [zsij ],
i.e., to determine where to open the storage facilities, what to store there, and which demand vertices will be
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served by each facility in each scenario. If possible, it seems natural to try to resort to an exact solver, such as
CPLEX, to make the optimal choices for one of the three sets of decisions, and optimize the remaining two sets
of decision variables heuristically.

Designing a matheuristic that employs an exact solver to optimize the facility decisions x is not straightfor-
ward. Indeed, if y and z decisions are made heuristically so that there exist feasible x, constraints (2) make it
trivial to find x: at each vertex i ∈ V where some goods are stored (yki > 0 for some commodity k ∈ K), there
must be a facility open (xiq = 1 for some facility category q ∈ Q that is able to store the sum of volumes of yki ,
across all k ∈ K).

The same holds for using a solver to optimize inventory decisions y, although it might seem the most
reasonable to optimize y using an LP solver, as they are continuous variables. Indeed, if x and z are optimized
heuristically so that there exist feasible y, constraints (4) imply that the usable amount of each commodity
stored at vertex i ∈ V must be sufficient to meet the demands of all the vertices that are assigned to it, so that
it becomes trivial to calculate y:

yki = max
s∈S

∑

j∈V

Dks
j

Rks
i

zsij

Therefore, using an exact solver to optimize y would also be a waste of efforts.

It is important to note here that the feasibility of the decisions made in each scenario does not imply the
feasibility of a solution. Let us consider a small example with 1 facility category, 2 commodity types (water and
food) and 2 scenarios, with the facility budget A that allows only one facility to be opened. A solution with two
open facilities (possibly in disconnected regions), with each of them serving a number of demand vertices in one
of the scenarios, can be feasible for each scenario, but such a solution violates the facility budget constraint.
Consider further a solution with a single open facility, with 1000 units of water and 50 units of food transported
from the facility to some demand vertices in scenario s = 1, and 300 units of water and 80 units of food in
scenario s = 2. In order to be able to serve the demand of selected vertices, we would have to store 1000 units
of water and 80 units of food, which can easily violate the facility capacity or inventory budget constraints. In
general,

max
s∈S

∑

k∈K

Bk 1

Rks
i

∑

j∈V

Dks
j zsij ≤ B ;

∑

k∈K

max
s∈S

Bk
∑

j∈V

Dks
j

Rks
i

zsij ≤ B.

For these reasons, it is not straightforward to divide the optimization of the facility or inventory decisions into
sub-problems corresponding to different scenarios.

On the other hand, if the (feasible) facility and inventory decisions x and y are made heuristically, the
assignments z can immediately be optimized using an exact solver. Moreover, the assignment problem can be
solved separately for each scenario: the only equations that include z in the mathematical model, equations (3),
(4), (5), (8), (11), consist of a separate constraint for each scenario.

In our solution procedure, we therefore employ CPLEX to search for good assignments, but we note that
the importance of CPLEX is less crucial than it might appear. Indeed, the inventory decisions y are continuous
and thus difficult to optimize heuristically. However, the amounts of goods to be stored can be naturally derived
from the assignments and it is for this reason that we always let the assignments z guide the inventory decisions
y. As already noted, the assignment decisions z = [zsij ] are made for each scenario, while the inventory decisions

y = [yki ] need to be universal across all scenarios. Assigning vertices per scenario and deducing the inventory
scheme would yield |S| different inventory configurations. In order to obtain a single inventory plan, for each
open facility and each commodity we would have to take the maximum amount stored across all scenarios, but
such an inventory plan is most likely infeasible due to a violation of the acquisition budget or facility capacity
constraints. Therefore, we adjust the inventory scheme after every single assignment of a vertex in a scenario.
It is only after the heuristic optimization of assignments (that is used to guide the inventory optimization)
that we use CPLEX to further optimize the assignments. Since heuristic efficiency is a priority, CPLEX is used
to optimize the assignments only of a limited number of selected solutions. This is later explained in greater
detail. As noted earlier, the assignments are not actually part of the solution, but are only used to evaluate the
quality of the facility and inventory decisions. However, using CPLEX to improve the assignments can help us
identify the promising facility and inventory configurations that could be missed if the assignments were made
heuristically.

The solution procedure that we implemented is therefore a matheuristic that optimizes the facility and
inventory decisions x and y heuristically, and employs CPLEX to further improve the assignment decisions z.
In the remainder of this section, we first describe each of the matheuristic elements separately and then explain
how we combined them together in the final subsection.
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4.1 Initial solution

The initial solution is built using a greedy heuristic (Figure 2). Firstly, we must decide on the location and
category of open facilities x = [xiq]. It seems reasonable to open facilities in areas where the demand is high,
although we aim to avoid opening facilities at vertices where a significant percentage of the stored goods would
not remain usable across a number of scenarios. For this reason, the facility location decisions are guided by the
total demand of a certain number of neighbouring vertices and the percentage of goods that remains usable.
We therefore start by ordering vertices from the greatest to the lowest expected average percentage of demand
of neighbouring vertices, taking the percentage of goods that remains usable at the given vertex into account:

Xi(m) =
∑

s∈S

P s
∑

k∈K

Rks
i

∑

j∈V(i,m)

Dks
j

∑

v∈V Dks
v

,

where V(i,m) ⊆ V is the set of m vertices that are the closest to vertex i ∈ V (including vertex i itself).
We consider all the neighbouring vertices that can be reached from vertex i ∈ V, rather than only the demand
vertices, as this helps to additionally minimize the response time as it prefers to open facilities that have demand
vertices within a shorter distance. The number m of neighbouring vertices is a parameter of the constructive
heuristic.

Following this order, we open as many new facilities as the facility budget permits. We note here that these
facility opening decisions are not deterministic, as a quick sort procedure is used to sort the neighbours according
to distance, and the vertices according to demand measure Xi(m) of m neighbouring vertices. Indeed, quick sort
takes a random pivot when sorting, and if there is a few vertices that are at the same distance from a given
vertex i ∈ V, the set of neighbours V(i,m) does not always include the same vertices. These neighbours that
are at the same distance from i ∈ V probably have different demands, so that the total demand measure of the
neighbourhoud varies according to the choice of neighbours. In addition, it can also happen that a few potential
facility locations have the same Xi; quick sort would not rank these candidates always in the same order.

To decide on the category of the facility to be opened, it seems reasonable to aim to be able to store sufficient
amounts of goods to meet the demand of the neighbouring vertices in each scenario. Since a percentage of goods
might be destroyed in some of the outcomes, the amounts of commodity k ∈ K that need to be stored at vertex
i ∈ V to meet the demand of m neighbouring vertices in scenario s ∈ S, are

Yks
i (m) =

⌈

∑

j∈V(i,m)

Dks
j

Rks
i

⌉

.
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Let i0 ∈ V′ be the
(next) vertex with
the greatest Xi(m).

(∃k ∈ K)(∃s ∈ S) :
Rks

i0
> 0

Let q0 ∈ Q be the
facility category
with the lowest

Mq ≥ Vi0 (m) (largest
category if its capacity
is lower than Vi0 (m)).

Facility budget
constraint (6) is

respected.

There are more facility
categories to consider.

Let q0 ∈ Q be
the (next) facility

category with largest
storage capacity Mq .

Open facility of
category q0 at

vertex i0 (xq0
i0

= 1).

There are more
vertices to consider.

Let j0 ∈ V and
s0 ∈ S be the (next)
unassigned vertex
and scenario with
greatest P s × Ds

j .

Let i0 ∈ V′ be the
(next) closest open
facility to vertex
j0 in scenario s0.

Facility capacities,
acquisition and

transportation budget
constraints (2), (7),
(8) are respected.

There are more open
facilities connected to

j0 to consider.

Assign vertex j0
to facility open at

vertex i0 in scenario
s0 (zs0i0j0 = 1) and
increase inventories
yki0 accordingly.

There are more
unassigned demand

vertices to consider in
some scenarios.

Return the so-
lution x,y, z.

yes

no

yes

no

yes

no

yes
no

yes

no

yes

no

yes

no

Fig. 2 greedy constructive heuristic(instance, m). Starting from an empty solution x = y = z = 0, facility decisions are made in a greedy way and vary according to the number m of
neighbouring vertices (left), and next the assignment of demand locations to open facilities across scenarios is done in a greedy fashion, with simultaneous increase of inventory (right). The
initial solution is chosen as the best solution constructed for different values of parameter m.
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In the case that the percentage Rks
i of supplies that remains usable is zero, no amount of stored goods

would be sufficient to meet the demands of neighbouring vertices and therefore we set Yks
i (m) to zero (although

facilities will not be open at these vertices due to the first step, if there are better options, otherwise the solution
would meet no demand). In order to be able to meet the demands of neighbouring vertices in all scenarios, the
amounts to be stored at vertex i ∈ V would be

Yk
i (m) = max

s∈S
Yks
i (m).

The category of facility that we aim to open is therefore the category with minimum capacity that is able to
store the volume of goods above:

Vi(m) =
∑

k∈K

MkYk
i (m).

In case there is no such category as the total volume of supplies is too large, or if the facility budget would be
violated, we open a facility of the largest possible capacity. Facilities are opened in this manner as long as the
facility budget A is respected, or we have exploited all potential facility locations i ∈ V′ (Figure 2, left).

Secondly, we make the inventory and assignments decisions y = [yki ] and z = [zsij ] simultaneously, due to
their natural inter-connectedness that was elaborated earlier in this section. In every step, we perform a single
assignment of a vertex in a scenario and increase the inventory accordingly, if necessary. We do this also in a
greedy way, starting from the vertex i ∈ V and scenario s ∈ S with the greatest weighted percentage of demand,
multiplied by the scenario probability, P s×Ds

i , as this assignment will increase the primary objective the most.
Every vertex is assigned to the closest facility possible, in order to increase the secondary objective the least,
and to keep the transportation costs below the budget limit (Figure 2, right).

Instead of tuning the parameter m of the greedy heuristic, we run it for different values of m and choose
the best found solution as the initial solution. The first reason for doing so is that for different instances the
m that produces the best solution varies greatly, hence it becomes highly likely we would often miss out on
good solutions by running the heuristic for a single value of m returned by the parameter tuning. Secondly, it
might be of interest to practitioners to already produce a number of diverse solutions that can immediately offer
insights into the structure of good solutions, which is an asset of such a constructive procedure. For instances
of reasonable size (such as, e.g., all the case studies used in this paper), we run the greedy heuristic for any
number of neighbours m ∈ {1, 2, ..., |V |}, as this takes less than one second of computation time. For large
instances, we limit the calculations to only a few values of the parameter m not to waste too much computation
time on finding an initial solution, especially since the quality of the solution rarely varies significantly with
small changes of m. The computation time necessary to construct a solution for any m depends greatly on the
number of assignments that have to be made after the empty facilities are open, in order to make inventory and
assignment decisions (Figure 2, right). The maximum number of assignments that can be made to construct
a single solution is the total number of nonzero demand pairs (i, s) of vertices i ∈ V and scenarios s ∈ S.
Therefore, the number of different solutions constructed, i.e., the number of different evenly distributed values
of m ∈ {1, 2, ..., |V |} for which the constructive heuristic is run, is such that the total number of assignments to
be made is lower than 25 000, unless more assignments need to be made to construct a single solution.

4.2 Optimization of facility configuration x

The facility configuration is optimized using the iterated local search metaheuristic [50]. In the local search, we
make small changes to the facility configuration to find the local optimum, and then perform a perturbation in
order to explore the solution space, i.e., to find the best out of many local optima.

The facility local search move closes a facility, proceeds to closing all empty facilities in order to increase
the available facility budget, and opens a new facility. The new facility must be open at a different location or
of a different category. In order to evaluate the quality of the new facility neighbour, we unassign all vertices,
empty the facilities and perform a greedy assignment of vertices with simultaneous inventory increase (Figure
2, right).

Ideally, we would like to optimize the solution (i.e., the inventory and assignment decisions) after each such
move to properly evaluate the quality of the new facility configuration, but that would be computationally too
demanding. We thus resort to the greedy assignment with simultaneous inventory increase as a proxy evaluation
of a facility neighbour. This often provides a good estimate of the quality of a facility configuration. If, however,
the inventory optimization has a considerable probability of significantly improving the quality of the solution,
we also perform the inventory optimization after the greedy assignment in order not to miss a promising facility
neighbour with a poor evaluation. The inventory optimization can provide a much better idea of the quality of a
facility configuration if the total number of assigned vertices is not too large (we limit it to 50), as the inventory
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local search changes the inventory according to only a single unassignment of a vertex, followed by one or a few
assignments (see the description of the inventory optimization in Section 4.3); it is therefore limited to only 1
second of computation time.

The facility perturbation starts with closing a number of random facilities. This number is not a given
percentage of open facilities, as this percentage would be difficult to tune since it does not give a very good idea
of the measure of the change in a solution. For example, for a solution with 3 open facilities, the perturbation
percentage 5, 10, 20 and 30 would all yield closing a single facility. It seems reasonable to close 2 random facilities
each time, as making a random move in a neighbourhood of higher order than the one used by local search is
a common perturbation that produces satisfactory results [50]. However, if we wish to be able to explore the
solution space completely, we must also allow that closing a number of smaller facilities can ensure opening a
facility with larger capacity. In order to do this, we need to enable closing a number of facilities such that the
savings in the total facility cost can be sufficient to open a facility of a larger capacity. For this reason, the
number of facilities to be closed is a random number drawn from a uniform distribution from the following set

{

2, 3, . . . , max
q∈{1,...,|Q|−1}

⌈Aq+1

Aq

⌉}

.

Next we open some facilities at random vertices and of a random category, until all vertices and categories
are checked for opening or the facility budget constraint would not allow to open even the facility of the smallest
category. New facilities cannot be open at the same locations where facilities were closed. After unassigning
all vertices and emptying all facilities, the greedy assignment of vertices with simultaneous inventory increase
(Figure 2, right) is performed to make reasonable assignment and inventory decisions for the new facility
configuration. Of course, in order to allow a fair comparison of this solution to the facility neighbours in the
next facility local search, we also perform an inventory local search if it is highly likely that it can significantly
improve the solution (see above).

The facilities that are closed in the perturbation are blocked for opening in the next facility local search, to
avoid returning to the same local optimum. To diversify the search even further, the facility perturbation is not
performed on the best found solution, but rather on the last facility local optimum.

4.3 Optimization of inventory configuration y

The inventory configuration is optimized also using the iterated local search metaheuristic, guided always by
the changes in the assignments. The reason for this is that the inventory decisions are continuous and thus
difficult to otherwise optimize heuristically. Besides, it seems natural to only store the amounts of goods that
are necessary to cover the demands of vertices that we plan to serve. In the local search, we make small changes
to the inventory configuration to find a local optimum, and then perturb the solution in order to explore the
solution space, i.e., find the best out of many local optima.

The inventory(-assignments) local search move unassigns a vertex and decreases the inventory accordingly,
then assigns a vertex and increases the inventory accordingly, and then performs a greedy assignment of vertices
with simultaneous inventory increase (Figure 2, right). The new assignment must be an assignment of either a
new vertex, or to a new facility, or in a new scenario (e.g., we can perform an assignment of the same vertex in
the same scenario that has been unassigned, if we assign it to another open facility).

The inventory-assignments perturbation starts with the unassignment of the given percentage of random
vertices with a simultaneous inventory decrease. Tuning the percentage of vertices to unassign is inconclusive,
as the percentage of vertices to unassign that yields the best solutions varies greatly across different problem
instances. We therefore let this percentage be a random number drawn from a uniform distribution from the
interval [5,20]. The number of vertices that will be unassigned is the given percentage of the number of unassigned
demand vertices, rather than the given percentage of the number of assigned vertices. We do this to avoid lacking
vertices that are not blocked for assignment in the next iteration of assignments. In addition, if there are much
more unassigned demand vertices than assigned vertices, this would mean we would have to unassign all vertices.
This seems reasonable, as this actual number of vertices to unassign should indeed depend on the size of the
pool of possibilities we have not tried out.

Next we start assigning random vertices to random facilities, increasing inventory accordingly. We stop
when all vertices, scenarios, and facilities are checked for assignment. The combinations of vertices, facilities
and scenarios that were unassigned are blocked for assignment in the local search to follow. To diversify the
search even further, the inventory perturbation is also not performed on the best found solution, but rather on
the last inventory local optimum.
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The inventory local search changes the solution only slightly, so that the computation time for inventory
optimization is divided in a way that enforces at least three iterations (i.e., perturbations) of inventory iterated
local search, in order to examine at least a few different inventory configurations.

4.4 Optimization of assignments z

Let Xiq, Y
k
i (i ∈ V′, q ∈ Q, k ∈ K) be a given facility-inventory configuration. In order to evaluate these facility

and inventory decisions, and subsequently identify the best one, we must calculate the assignment of demand
locations to the facilities. This allows us to assess the objective function value of a solution, i.e., to calculate
its met demand and response time. The greedy assignment of vertices that is performed in the heuristic to
guide the inventory optimization gives only an approximation of the met demand and response time that can
be achieved with the given facility-inventory configuration, and as such can miss some promising configurations.
To reduce the possibility of that happening, we use CPLEX to further optimize the assignments. In order to
not compromise the heuristic efficiency, we optimize the assignments only of the local facility-inventory optima,
rather than of every solution (Figure 3). The optimal assignment of demand vertices to open facilities for each
scenario is calculated using CPLEX by solving the two models below.

max
∑

i∈V′

∑

j∈V

Ds0
j zs0ij (15)

∑

i′∈V

zs0ij ≤ 1 (j ∈ V) (16)

∑

j∈V

Dks0
j zs0ij ≤ Rks0

i Y k
i (i ∈ V′)(k ∈ K) (17)

zsij ≤ 1 + Ls0
ij (i ∈ V′)(j ∈ V) (18)

∑

i∈V′

∑

j∈V

Cs0
ij z

s0
ij ≤ C (19)

zs0ij ∈ {0, 1} (i ∈ V′)(j ∈ V) (20)

The objective of the model is to maximize the average percentage of met demand (15), similarly to the
objective function (1) of the original model, but for a fixed scenario s = s0. In the given scenario, the constraints
(16), (17), (18) (19), (20) correspond to constraints (3), (4), (5), (8), and (11) respectively.

Let D∗(s0) be the optimal met demand in scenario s0, i.e., the objective function value of the optimal
solution obtained by solving the model above. To further optimize the response time in lexicographic order, it
remains to solve the following model.

min
∑

i∈V′

∑

j∈V

T s0
ij zs0ij (21)

(16)− (20) (22)
∑

i∈V′

∑

j∈V

Ds0
j zs0ij ≥ D∗(s0) (23)

The objective of the model is to minimize the response time (21) so that the standard constraints (22)
are satisfied, together with the constraint that ensures that the met demand is (greater than or) equal to the
previously obtained optimal met demand in scenario s0 ∈ S (23).

4.5 Termination criterion

We choose a given maximum computation time as the termination criterion of the matheuristic, for a number
of reasons. First of all, even for medium-sized problem instances, only the facility local search as the first
heuristic step can take a very long time, as there can be many facility neighbours to explore. Most of the
other termination criteria, such as the number of iterations (without improvement) could let the matheuristic
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Facility local search.

Inventory(-assignments) iterated local search.

Assignment CPLEX.

Decrease of inventory to amounts
used, greedy assignment of vertices
with simultenous inventory increase,
decrease of facility capacities if pos-
sible, closure of empty facilities.

There is computation time left.
Random perturbation of facil-
ity locations and categories.

Return the best found solution.

no

yes

Fig. 3 iterated local search(solution). In the improvement phase, we optimize the facility and inventory configuration using an
iterated local search metaheuristic, while the assignments are optimized using CPLEX.

run for a very long time (even for a very limited number of iterations). Secondly, computation time seems as
the most straightforward stopping criterion since it does not require the user to have any understanding of
algorithms in general or the matheuristic elements in particular (e.g., notion of an iteration). Finally, such a
stopping criterion offers the most flexibility to the user as it allows them to run the heuristic as long as time
permits. If, for example, the practitioners want to carry out a sensitivity analysis on the effect of budgets on the
solution quality and solve the problem for thousands of budget combinations, they might want to allow only a
few seconds per each run, whereas they can allow more computation time for finding a solution for the chosen
budget combination.

Before we explain how the given maximum computation time is divided between different heuristic elements
described in previous subsections, we take a look at how they are combined (Figure 3). As mentioned before,
the optimization of assignments would ideally be enclosed within the inventory iterated local search that would
further be enclosed within the facility iterated local search. In other words, every change in the inventory
levels would be followed by finding the optimal assignments, and every change in the facility configuration
would be followed by a complete inventory and assignments optimization. Since this would be computationally
too demanding (and most often unnecessary), every change in the facility or inventory is only followed by a
greedy assignment with simultaneous inventory increase (Figure 2, right), except for some small instances where
facility configurations are evaluated by the greedy assignment followed by an inventory iterated local search
(Section 4.2). The greedy procedure serves to approximately evaluate if the change in the facility or inventory
yielded an improvement, or to reasonably complete a solution after a perturbation. It is for this reason that the
inventory and assignments of the initial solution are not optimized: although better, the facility neighbours in
the facility local search evaluated only with a greedy assignment (Figure 3, node 1) could hardly compete with
the optimized initial solution.

However, in order to provide for a better evaluation of at least the promising facility and inventory con-
figurations, every facility and inventory local optimum is further optimized by (inventory and) assignments
optimization to better identify the global optimum. In order to improve the matheuristic efficiency, no compu-
tation efforts are wasted on inventory and assignment optimization of the poor facility local optima (with the
gap from the current best solution greater than 20%). In this case, the facility perturbation is not performed
on the (poor) last facility local optimum (Section 4.2), but rather on the best found solution.

In order to use the computation time allocated to each heuristic element effectively, some adaptations to
these elements are made. If not given enough computation time, for most problem instances, the facility local
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search would not examine every facility neighbour. It is therefore a good idea to prune the search by starting
with promising neighbours, and we do this by trying to close the facilities where the average percentage of
unused goods across scenarios is the greatest, as this might allow for opening new facilities where the supplies
could be exploited more effectively. Furthermore, the time allocated to optimizing the assignments is often not
sufficient to find the optimal solution, but we let CPLEX find the best solution within the given time limit.
We start by optimizing the assignments in the scenario with the greatest probability (in order to decrease
the unmet demand and response time the most), letting CPLEX use the computation time designated for the
optimization of assignments. The remaining time is used for optimizing other scenarios in the same order. In
every scenario, the first half of the computation time is invested in minimizing unmet demand, and the other
half in minimizing response time. Obviously, the assignment found by CPLEX is only accepted if it is better
than the greedy assignment.

Lastly, a simple final step is performed after employing CPLEX to optimize the assignments. Indeed, even if
the optimal assignments were found, the inventory (that remains unchanged during assignments optimization)
is often not being used completely. Decreasing the inventory to the amounts used can gain some savings in the
inventory costs, that can be utilized to store more supplies at some open facilities and thereby enable serving
a few additional vertices. For every facility-inventory-assignments local optimum, we therefore decrease the
inventory to the amounts used and perform the greedy assignment of vertices with a simultaneous inventory
increase (Figure 3, node 4).

5 Numerical experiments

In this section, we carry out numerical experiments to tune the distribution of the total computation time
between the facility, inventory and assignments optimization (Section 5.1), and to evaluate the performance of
the matheuristic (Section 5.2) for the best identified computation time distribution.

The only instances available for the particular stochastic capacitated facility location problem we are aware
of are the pre-positioning problem case studies (Figure 4) and random instances described in detail in [75]. The
case studies were constructed from the instances originally introduced in [10], [6], [73] and [60], which focus on
disasters of different type and scale that occurred in different parts of the world. To tune the computation time
distribution, we employ 75% of each group of case studies and random instances, and use the remaining 25% of
the instances to evaluate the matheuristic performance.

5.1 Tuning the distribution of the total computation time

The matheuristic termination criterion is the total computation time (Section 4.5). In order to determine how
to distribute the total computation time between the time given to the optimization of facility, inventory and
assignment decisions, we run the matheuristic for every selected pre-positioning problem instance according to
16 distributions of the total computation time:

– only one set of decisions is optimized (distributions 1-0-0, 0-1-0, 0-0-1),
– only two sets of decisions are optimized, with the total computation time equally distributed between them

(distributions 0.5-0.5-0, 0.5-0-0.5, 0-0.5-0.5),
– every set of decisions is optimized, and

• the total computation time is distributed equally (0.33-0.33-0.34),
• one set of decisions is optimized for 50% of the total computation time, and the remaining computation
time is equally distributed between the optimization of the other two sets of decisions (0.5-0.25-0.25,
0.25-0.5-0.25, 0.25-0.25-0.5),

• the greatest computation time allocated for the optimization of one set of decisions is double the compu-
tation time for the other set of decisions, which is then double the computation time for the optimization
of the remaining set of decisions (0.57-0.29-0.14, 0.57-0.14-0.29, 0.29-0.57-0.14, 0.14-0.57-0.29, 0.29-0.14-
0.57, 0.14-0.29-0.57).

For example, the distribution 0.57-0.29-0.14 means that 57% of the computation time is allocated to facility
optimization, 29% to inventory optimization, and the remaining 14% to the assignments optimization.

There are two issues that need to be addressed to properly assess the quality of each computation time
distribution. Since the greedy heuristic is not deterministic and therefore might return different initial solutions
across different runs (Section 4.1), we start the experiment by running the greedy heuristic once to find an initial
solution (otherwise, good or poor performance of a particular matheuristic computation time distribution might
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*2
(a) case-study-47-1-4-1 (b) case-study-14-1-1-9

(c) case-study-30-1-1-10 (d) case-study-30-3-3-51

Fig. 4 Network graphs G1 = (V,E1) of the 4 base case studies that inspired the generation of the 30 pre-positioning case studies:
(a) Chile 2010 earthquake and tsunami (b) Turkey 1999 earthquake (c) Senegal Mboro region disaster threat (d) US Gulf Coast
hurricane threat.

be accredited to a good or poor starting solution). For the next 5 minutes, the matheuristic tries to improve
the initial solution according to the given computation time distribution.

Secondly, although the matheuristic employs CPLEX to optimize the assignment sub-problem (decisions z),
CPLEX is given a limited computation time and therefore the assignments are not necessarily optimal. If, for
example, two solutions returned by the matheuristic are reported to have unmet demand 21% and 22%, it might
be the case that the unmet demand (of the solutions, with optimal assignments) is 20.5% and 20% respectively,
so that the latter solution is better. As already mentioned, solving the considered facility problem means deciding
on the facility and inventory configurations, whereas the assignments are made only to evaluate the quality of
those decisions. After running the matheuristic for 5 minutes (see above), we therefore give CPLEX additional
5 minutes to optimize the assignments decisions and thereby better assess the quality of the solutions returned
by different computation time distributions. Since the improvement of the solution quality with respect to the
initial solution varies across different problem instances, we evaluate the different computation time distributions
with the unmet demand improvement, relative to the best improvement for a given problem instance.

Table 4 registers the performance of the average of 5 runs of the matheuristic for different distributions of
the total computation time of 5 minutes, averaged across the 75% of selected instances introduced in [75]. As
already mentioned, CPLEX is given additional 5 minutes to optimize the assignments of the solution returned
by the matheuristic, in order to better assess the quality of the solution. There is a number of different total
computation time distributions that perform similarly well, because the relative unmet demand improvements
are averaged across various problem instances, and different matheuristic components are particularly important
for different instances. However, it is clear that the worst-performing are the distributions that do not include
any facility or inventory optimization. It is also important to note that further optimizing the assignments (the
math part of our heuristic) in order to better identify promising facility-inventory local optima is shown to have
an added value.

In order to properly interpret the tuning results, it is important to have in mind how the facility, inventory
and assignment optimization are combined together (Section 4.5). For example, the distribution 0.57-0.29-0.14
means that atmaximum 57% of total computation time is spent on facility local search, 29% is spent on inventory
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Table 4 Tuning the distribution of the total computation time between different matheuristic components on 75% of the 30 case
studies and 10 random instances shows that it is best to allocate 29% of the time to facility local search, 14% to the inventory iterated
local search, and the remaining 57% to the further optimization of the assignments (or facility iterated local search iterations).

Facility
optimization

0.29 0.57 0.25 0.14 0.33 0.14 0.57 0.50 0.29 0.25 0.50 0.50 1.00 0.00 0.00 0.00

Inventory
optimization

0.14 0.14 0.25 0.29 0.33 0.57 0.29 0.25 0.57 0.50 0.50 0.00 0.00 0.50 1.00 0.00

Assignments
optimization

0.57 0.29 0.50 0.57 0.34 0.29 0.14 0.25 0.14 0.25 0.00 0.50 0.00 0.50 0.00 1.00

Relative
unmet demand
improvement

0.90 0.89 0.89 0.88 0.87 0.87 0.86 0.86 0.86 0.84 0.82 0.77 0.75 0.68 0.60 0.33

(and assignments) iterated local search, and CPLEX is given at maximum 14% of the total computation time
to further optimize the assignments of the facility-inventory local optima (in order to choose better between
them). Since the inventory optimization is directly guided by the changes in the assignments (Section 4.3), even
the matheuristic under 0.5-0.5-0 includes some (heuristic) optimization of the assignments. Since CPLEX often
does not take a lot of time to optimize the assignments, the success of the distribution 0.14-0.29-0.57 should
not necessarily be attributed to the assignments optimization - it is rather possible that additional facility
perturbations are responsible for the improvements in the solution.

Note that this means that, although further optimization of assignments by CPLEX can improve the
matheuristic performance, the simplified heuristic 0.5-0.5-0 without the exact solver is not much worse, com-
pared to the best distribution of computation time. The iterated local search can thus replace the matheuristic
if there is a need for a simple solution procedure.

Overall, we can conclude that the best strategy is to allocate a limited proportion of the total computation
time to the inventory optimization, and use the remaining time to optimize the facility and assignments decisions.
One of the best computation time distributions is 0.57-0.14-0.29, which uses the majority of the computation time
for the facility local search. The other best performing distributions allocate the majority of the computation
time to the assignment optimization, but as previously mentioned, CPLEX often uses less computation time
to optimize the assignments, so that the remainder of the time can be used for further iterations of the facility
iterated local search. The facility moves yield the greatest change in the solution, and it is therefore not surprising
that facility optimization is crucial.

5.2 Matheuristic performance evaluation

In this section, we evaluate the performance of the matheuristic for the best identified computation time distri-
bution 0.29-0.14-0.57, on the remaining 25% of the each group of case studies (Figure 4) and random instances
introduced in [75].

An instance with |V| vertices, |Q| facility categories, |K| commodity types and |S| possible scenarios is named
instance-|V|-|Q|-|K|-|S|. Before we describe the experimental set-up and results, we note here that the notion
of instance size or complexity is not straightforward for the particular stochastic facility location problem. Some
obvious numerical parameters that give an idea about the “size” of an instance are the aforementioned number
of vertices, number of facility categories, number of commodity types or number of scenarios. However, there are
other properties that can significantly influence the instance complexity. For example, the number of potential
facility locations obviously influences the complexity of finding good facility configurations. Furthermore, in the
set of instances with the same values of aforementioned numerical parameters, one instance might have only a
few demand vertices in each scenario, while every vertex can be a demand location in every scenario for another
instance. For instance, the group of case studies based on case-study-30-1-1-10 and case-study-30-3-3-51

both have 30 vertices, but each of them have non-zero demand in every disaster scenario for case-study-30-1-
1-10, but there is only a few non-zero demand vertices in each scenario for case-study-30-3-3-51. The facility
capacity can also influence the difficulty of finding near-optimal solutions, but also the strictness of the facility,
inventory and transportation budgets A,B, and C. In the extreme cases where these budgets are all zero or all
extremely large (i.e., more than sufficient to meet all demand), solving the instance (with any aforementioned
numerical parameters) is trivial, and varying these budgets might take CPLEX between less than a second to
a few days to solve to optimality (unless it runs out of memory).
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Since the facility problem with the same assumptions has not yet been solved for the same problem instances
in the literature, we cannot compare our solutions to the results from other articles. We therefore use CPLEX
to help us evaluate the matheuristic performance. Table 5 gives an overview of the performance of the greedy
constructive heuristic, and the best solution found by the matheuristic and by employing CPLEX to solve the
models that minimize unmet demand (1)-(11), and minimize unmet demand and response time in lexicographic
order (1)-(11), (12)-(14). The matheuristic is given 5 minutes (divided to different components according to
the 0.29-0.14-0.57 distribution), and CPLEX is given a maximum computation time of 6 hours. As already
mentioned, we evaluate the matheuristic performance on the remaining 25% of the each group of case studies
(Figure 4) and random instances introduced in [75], but for the sake of completeness, we show the results for all
problem instances. For every instance and every solution procedure, the averages across 5 runs for are reported.
When employing CPLEX to find the solution that minimizes the two objectives in lexicographic order, solving
the first model that minimizes unmet demand is limited to the first 3 hours, while solving the second model
that minimizes the response time is limited to the remaining 3 hours. When solving the second model, we
provide CPLEX with the solution with the best found unmet demand as the starting solution, as in this case
even finding a feasible solution is difficult. We also supply CPLEX with an initial solution in the matheuristic:
the greedy assignment is provided as the initial solution when CPLEX looks for the assignment with minimum
unmet demand, and the assignment with the minimum unmet demand is provided to the model that looks for
the assignment with minimum response time. Whenever CPLEX is used to minimize both objectives and solving
the first model that minimizes unmet demand returns a solution with zero response time, the same solution is
immediately returned by the second model that minimizes response time.

For the case studies (which are, on average, the smaller and simpler in the set of considered problem
instances), CPLEX reports a small MIP gap (Table 5), implying that it is able to find a solution that is (close
to) optimal within 6 hours of computation time. However, due to the numeric difficulties that CPLEX cannot
handle, this gap is calculated to be 0% for some of the instances, although the matheuristic is able to find better
solutions. For larger random instances, CPLEX is not even able to build the model within 6 hours of given
computation time, or it runs out of memory, and therefore the best found solution is the trivial solution with
unmet demand percentage of 100% and response time of 0 hours.

The experimental results demonstrate a promising matheuristic performance (Table 5). For the instances
where CPLEX can find a near-optimal solution within 6 hours, the matheuristic finds solutions in only 5 minutes
with the unmet demand that is the same or not much greater (e.g., on average 0.32% from the optimal solution
for the first group of instances with 14 vertices, 1 facility type, 1 commodity type and 9 scenarios). As expected,
the matheuristic becomes crucial for larger instances, as it is able to return a good solution for any instance in a
limited computation time. The matheuristic does not face any numeric difficulties and can thus prove beneficial
even for simple instances. Overall, for the highlighted validation set of problem instances listed in Table 5,
the matheuristic yields solutions with the unmet demand that is, on average, 14.92% lower than the solutions
calculated by CPLEX when minimizing unmet demand, and 23.03% lower than the solutions calculated by
CPLEX when minimizing unmet demand and response time (and 18.18% and 34.14% respectively across the
complete set of instances introduced in [75]).

The response time as the secondary objective is reported in Table 5, but any comparison of the solution
procedures with respect to response time is senseless, as they yield solutions that do not have the same unmet
demand.

The numerical results also show that the greedy constructive procedure itself builds a very good initial
solution very fast. Actually, the facility-inventory configuration (the actual decisions of the stochastic facility
problem, e.g., the actual pre-positioning decisions made during the disaster preparedness phase) of the initial
solution is better than it might appear in Table 5. Indeed, the assignments of the initial solution are never
optimized to more accurately evaluate the initial facility and inventory decisions, in order to allow a fair
comparison with the facility-inventory configurations explored in the facility local search that are only evaluated
with a greedy assignment (Section 4.2). Letting CPLEX optimize the assignments of the initial solution for a
few seconds offers a better evaluation of the unmet demand, that is often significantly lower than the unmet
demand of the initial solution given in the Table 5 (the same is true for the quality of the facility and inventory
decisions yielded by the matheuristic).

We also compare the performance of the matheuristic to that of CPLEX, for the same amount of computation
time. Figure 5 depicts the average across all instances (and over 5 runs) for 30, 300, 600, 1200, 2700 and 3600
seconds, and clearly shows that the matheuristic outperforms CPLEX for any of the given computation times.
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Table 5 Given a maximum computation time of 5 minutes, the matheuristic yields solutions with the unmet demand that is
14.92% lower on average across the validation set of problem instances, compared to the strategies obtained by CPLEX within 6
hours. This gap is even greater (23.03%) if we compare the matheuristic results to the results obtained by CPLEX when minimizing
both objectives in lexicographic order. The greedy constructive heuristic is very fast and produces solutions with the unmet demand
that is on average 3.82% greater from the unmet demand of the best found solution the matheuristic returns after 5 minutes.

Instance Greedy heuristic Matheuristic
CPLEX min CPLEX min unmet
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case-study-14-1-1-9 29.45 0.33 0.01 28.83 0.44 28.71 0.01 0.40 6.77 28.71 0.01 0.40 0.00 16.72
case-study-14-1-1-9 1 27.73 0.51 0.01 25.80 0.69 25.40 0.01 0.72 6.15 25.40 0.01 0.71 0.00 28.86
case-study-14-1-1-9 2 56.02 0.18 0.01 41.84 0.21 41.84 0.00 0.21 1.78 41.84 0.00 0.21 0.00 2.08
case-study-14-1-1-9 3 17.66 0.37 0.01 17.30 0.38 17.39 0.01 0.40 3.14 17.38 0.01 0.37 0.00 6.14
case-study-14-1-1-9 4 58.38 0.18 0.01 46.66 0.25 45.18 0.01 0.27 2.25 45.18 0.01 0.27 0.00 3.53
case-study-14-1-1-9 5 15.02 0.79 0.01 14.39 0.59 14.39 0.01 0.68 3.13 14.39 0.01 0.59 0.00 5.98

case-study-30-1-1-10 34.85 5.46 0.05 34.81 7.95 34.81 0.01 7.28 6.52 100.00 − 0.00 − −

case-study-30-1-1-10 1 39.13 4.97 0.05 39.07 7.80 39.07 0.00 7.49 2.26 100.00 − 0.00 − −

case-study-30-1-1-10 2 12.06 10.92 0.05 12.01 9.98 12.02 0.01 13.29 28.92 100.00 − 0.00 − −

case-study-30-1-1-10 3 17.70 13.59 0.07 17.67 11.85 17.67 0.01 18.45 473.06 100.00 − 0.00 − −

case-study-30-1-1-10 4 42.34 5.31 0.06 37.44 10.12 37.44 0.14 11.39 21714.90 100.00 − 0.00 − −

case-study-30-1-1-10 5 54.34 12.20 0.03 52.04 18.47 51.76 0.07 20.03 21715.50 51.76 0.07 19.23 7.58 20630.30
case-study-30-1-1-10 6 52.51 16.96 0.05 50.89 22.10 48.35 0.16 31.19 21756.20 54.97 0.19 7.91 6.19 15128.10
case-study-30-1-1-10 7 22.36 10.29 0.06 17.23 9.49 17.20 0.01 13.99 212.06 17.20 0.01 9.83 0.01 786.51
case-study-30-1-1-10 8 23.96 9.09 0.06 19.13 10.39 18.96 0.01 11.33 16156.50 100.00 − 0.00 − −

case-study-30-3-3-51 14.38 77.91 1.51 14.10 72.54 13.76 1.09 96.04 21755.60 100.00 − 0.00 − −

case-study-30-3-3-51 1 15.65 85.41 1.38 14.21 84.82 13.82 1.15 98.71 21777.90 100.00 − 0.00 − −

case-study-30-3-3-51 2 18.74 92.22 0.71 18.46 95.71 18.10 2.26 94.37 21600.10 18.12 2.98 75.36 53.60 21605.90
case-study-30-3-3-51 3 29.51 64.82 0.55 28.41 70.64 27.43 0.01 67.35 1946.39 27.43 0.01 65.21 0.00 2662.23
case-study-30-3-3-51 4 51.11 0.61 0.49 39.36 2.24 36.69 0.00 1.96 27.10 36.69 0.00 1.51 0.00 79.24
case-study-30-1-3-51 39.24 0.49 0.41 39.24 0.49 39.24 0.00 1.13 23.02 39.24 0.00 0.45 0.00 70.06

case-study-47-1-4-1 21.49 1666.12 0.05 19.82 2907.64 100.00 0.00 0.00 0.40 100.00 0.00 0.00 − 0.42
case-study-47-1-4-6 1 31.68 1312.32 0.30 29.68 2587.19 37.73 0.00 3445.32 3.54 37.70 0.00 876.24 0.01 11.37
case-study-47-1-4-6 2 55.29 638.74 0.31 53.29 1918.59 100.00 0.00 0.00 2.53 100.00 0.00 0.00 − 2.53
case-study-47-1-4-6 3 28.40 1494.88 0.31 27.32 2202.40 100.00 0.00 0.00 1.54 100.00 0.00 0.00 − 1.97
case-study-47-1-4-6 4 53.27 766.67 0.31 52.44 1738.19 100.00 0.00 0.00 1.97 100.00 0.00 0.00 − 2.20
case-study-47-2-4-1 1 21.44 1667.28 0.06 19.76 2962.28 100.00 0.00 0.00 0.37 100.00 0.00 0.00 − 0.32
case-study-47-2-4-1 2 41.51 1062.20 0.05 41.47 2131.50 100.00 0.00 0.00 0.15 100.00 0.00 0.00 − 0.31
case-study-47-2-4-6 1 49.14 843.62 0.32 49.10 1241.62 54.39 0.00 2906.61 2.29 54.38 0.00 429.62 0.01 5.05
case-study-47-2-4-6 2 66.73 498.19 0.30 66.70 869.77 100.00 0.00 0.00 2.02 100.00 0.00 0.00 − 1.87

rand-instance-50-2-4-50 43.32 139.82 1.03 30.13 109.94 56.81 0.00 119.45 405.93 56.80 0.00 3.60 0.01 563.53
rand-instance-50-3-1-100 55.24 240.36 0.24 55.24 242.90 55.24 0.00 242.22 508.10 55.24 0.00 238.48 0.01 2741.61
rand-instance-50-3-3-100 45.92 226.12 2.33 40.99 266.16 100.00 0.00 0.00 553.94 100.00 0.00 0.00 − 1086.48
rand-instance-100-2-1-30 83.94 23.92 0.33 83.93 24.84 83.93 0.00 24.65 224.65 83.93 0.00 23.69 0.01 2362.43
rand-instance-100-2-3-200 47.71 195.67 9.49 41.41 234.86 100.00 − 0.00 21600.00 100.00 − 0.00 − 10800.00
rand-instance-100-3-3-50 28.98 117.18 6.04 22.40 108.13 19.86 0.00 386.83 4013.93 19.86 0.00 39.38 0.01 10023.60
rand-instance-100-3-3-100 79.93 72.70 1.27 79.87 73.42 80.66 0.00 84.84 8219.22 100.00 − 0.00 − 10800.00
rand-instance-200-2-1-50 72.37 266.23 0.49 53.14 365.16 100.00 − 0.00 21600.00 100.00 − 0.00 − 10800.00
rand-instance-200-3-3-100 18.94 116.93 36.06 18.94 116.93 100.00 − 0.00 21600.00 100.00 − 0.00 − 10800.50
rand-instance-200-3-5-200 70.09 257.28 15.82 66.09 341.89 100.00 − 0.00 21600.10 100.00 − 0.00 − 10800.10

Average validation set 41.50 173.75 5.35 37.68 259.37 52.60 0.00 293.60 5962.85 60.71 0.00 44.23 0.00 2505.87
Average 39.69 300.47 2.02 36.52 522.01 54.70 0.14 192.67 6239.00 70.66 0.12 44.83 3.55 4119.69

Next to the instances, the complete solutions for any solution procedure and computation time listed in
Table 5 or Figure 5 can be found on the following website:

http://antor.uantwerpen.be/members/renata-turkes/.

Based on the experimental results, we can see that a very simple way to improve our matheuristic would be
to let the matheuristic run for most of the given computation time, but to also allocate a very limited amount
of time (only a few seconds) for CPLEX. The final solution would of course be chosen as the better of the
two solutions, yielded by the matheuristic and by CPLEX. Such a heuristic has the best of both worlds: it will
identify the optimal solution for small instances which CPLEX can solve to optimality, find good solutions even
for large instances and detect CPLEX numeric difficulties for any instance.



A matheuristic for the stochastic facility location problem 23

30 1800 3600

30

40

50

60

70

80

90

100

Runtime (s)

U
n
m
et

d
em

a
n
d
(%

)

all instances

CPLEX

matheuristic

30 1800 3600

30

40

50

60

70

80

90

100

Runtime (s)

U
n
m
et

d
em

a
n
d
(%

)

(small) case studies

CPLEX

matheuristic

30 1800 3600

30

40

50

60

70

80

90

100

Runtime (s)

U
n
m
et

d
em

a
n
d
(%

)

(large) random instances

CPLEX

matheuristic

Fig. 5 The matheuristic outperforms CPLEX for any given computation time, especially for large instances.

6 Conclusions, limitations and future research

The main aim of this work has been to develop an effective and efficient procedure that can solve a realistic
version of the stochastic facility location problem. With realistic, we mean both a sensible problem formulation,
and problem instances of reasonable size and complexity.

In our problem formulation, we have incorporated a number of complex elements, such as both the facility
and inventory decisions, multiple facility and commodity types, uncertainties related to the demands, survival
of stored supplies and transportation network availability. The objective is to minimize the unmet demand and
response time in lexicographic order.

To be able to solve instances of reasonable size and complexity that most often become intractable for exact
methods, we have developed a matheuristic algorithm that is able to find solutions also for very large instances.
In addition, even though the facility problem is strategic, it is also inherently multi-objective and thus the
decision-making process requires solving the problem many times. For this reason, a heuristic procedure often
becomes necessary even for smaller instances and the efficiency of the heuristic is a requisite.

The matheuristic we developed is based on the iterated local search procedure, with the assignment sub-
problem intermittently solved with an exact solver. The second-stage assignment sub-problem assigns demand
locations to the storage facilities that meet those demands, and is solved in order to evaluate the first-stage
facility and inventory decisions. The efficiency of the heuristic is guaranteed by the maximum computation time
that serves as the heuristic termination criterion. Given any amount of computation time that the user might
have at their disposal, the heuristic is thus able to find a solution even for very large problem instances. The
effectiveness of the heuristic is demonstrated by comparing its performance to that shown by CPLEX for a
number of diverse case studies and random instances of different sizes. For any given computation time, the
matheuristic produces solutions that are, on average, significantly better than solutions calculated by CPLEX;
in particular for larger instances where CPLEX fails to find non-trivial solutions in any reasonable computation
time. Since these problem instances were not yet solved in the literature, our numerical experiments offer
benchmark solutions for this set of case studies and random instances.

In addition, the numerical results show that the greedy constructive procedure itself builds a very good
initial solution very fast. The greedy heuristic is simple and intuitive and can be used to even manually calculate
good solutions and thus provides a rule of thumb for facility planning. In addition, for different parameters of
the constructive heuristic (the initial solution is chosen to be the best out of a number of solutions), different
strategies are obtained, which allows experimentation with a pool of solutions that can incorporate, e.g., political
or other factors that cannot be taken into account in a mathematical model. Also, the quality of any given
facility configuration can be estimated extremely quickly by the greedy assignment with simultaneous inventory
increase.

The stochastic facility problem under study corresponds to the formulation of the problem of pre-positioning
emergency supplies. The first-stage decisions correspond to pre-disaster decisions about the location and category
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of storage facilities and amounts of different types of aid to be stored, and the second-stage distribution sub-
problem assigns people in need of assistance to the storage facilities that meet their needs. The objectives
directly reflects the priorities of disaster relief: provide assistance to as many people as possible, as soon as
possible. The matheuristic in this paper can be therefore use to further study the pre-positioning problem
and to find good emergency strategies. Due to a lack of strong mathematical background or computational
infrastructure common in humanitarian settings, the simplicity of the heuristic and the good performance of
the greedy heuristic can be of particular importance as they can be directly used to guide disaster preparedness
planning.

Although the heuristic can be used by practitioners for pre-disaster decision making, simpler rules of thumb
are more easily integrated in practice; such straightforward guidelines are indeed what most practitioners rely
on [82]. The matheuristic introduced in this paper can therefore be used to also derive general guidelines for
practitioners trough carefully designed experiments that study the effects of some disaster properties on the
solution structure. For example, it would be interesting to investigate how the demand network topology (i.e.,
if the disaster is localized or dispersed), the level of transportation network damage and/or the relationship
between the capacities and costs of different facility types or different budgets influence the number, type and
location of storage facilities to open. Paring down the models and solution techniques in such manner into simple
guidelines that workers can use on the ground, is one way of responding to the challenge of carrying theory into
practice that has been widely acknowledged in the humanitarian logistics literature.
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Appendix: Matheuristic steps on a toy example

An example of a toy instance for the considered stochastic facility location problem with 3 cities, 2 facility
categories, 2 commodities and 2 scenarios is given in Table 6 and Figure 6. We assume that vertices i = 2
and i = 3 are the potential facility locations, i.e., they belong to the set V′. The facility, acquisition and
transportation budgets are A = 18 000, B = 500 000 and C = 10 000 respectively. The average speed is W = 50,
and the distances in the two disaster scenarios are the following:

L1 =





0 300 400
350 0 410
400 400 0



 , L2 =





0 300 400
350 0 −1
420 −1 0



 .

The transportation networks are represented by directed graphs and we therefore do not impose any restrictions
on the symmetry of the distance matrices. If the distance between vertices i ∈ V and j ∈ V, and j ∈ V and
i ∈ V, are not the same (e.g., if there are multiple one-way roads of different lengths connecting the vertices,
and/or one direction is not traversable due to debris or a flood), the distance matrices might be asymmetric.

Table 6 Toy instance facility categories that might be opened at potential facility locations differ in their volume capacity Mq

and opening cost Aq . For the different types of goods that are in demand and might be stored at open facilities, their unit volume
Mk, unit acquisition cost Bk and unit transportation cost Ck are given.

Facility category q Mq Aq

1 (small facility) 5 00 8 000
2 (big facility) 2 000 18 000

Commodity k Mk Bk Ck

1 (water) 2 200 0.1
2 (food) 0.4 1250 0.08

The initial solution is chosen as the best of the number of solutions built using a greedy constructive heuristic,
across different values of m, which is a parameter of this heuristic. To construct a solution for a given m, we
first need to decide where to open the facilities, and of which category (Figure 2, left). For each potential facility
location, i.e., for each vertex i ∈ V′, we calculate Xi(m) - the expected average percentage of demand of m
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Scenario s = 1, P 1 = 0.9 Scenario s = 2, P 2 = 0.1

Fig. 6 Toy instance graphs G1 = (V,E1) and G2 = (V,E2) represent three cities and the road network that connects them in
two possible scenarios, with potential facility locations denoted by a square. The scenarios occur with probabilities P 1 and P 2

respectively, and both are defined with the demand Dks
i and percentage of inventory that remains usable Rks

i for every commodity
k ∈ K and every vertex i ∈ V, together with the availability of every edge that is indicated in the graph. For example, the demand
at vertex i = 3 for commodity k = 1 in scenario s = 2 is D12

3
= 500 units of that commodity; if any amount of commodity k = 1

would be stored at a facility open at vertex i = 3, only R12

3
= 0.1 = 10% of the stored goods would remain usable in scenario

s = 2 and could be distributed to beneficiaries; the edge between vertices i = 2 and i = 3 is not traversable in scenario s = 2
(L2

23
= L2

32
= −1, because the transportation link is, e.g., flooded or covered in debris).

neighbouring vertices, taking the percentage of goods that remains usable at the given vertex into account. For
m = 1, we have:

X2(1) = 0.9
(

0.7×
100

70 + 100 + 0
+ 0.6×

45

20 + 45 + 0

)

+ 0.1
(

0.8×
900

400 + 900 + 500
+ 0.9×

250

130 + 250 + 90

)

= 0.83,

X3(1) = 0.9
(

0.9×
0

70 + 100 + 0
+ 0.5×

0

20 + 45 + 0

)

+ 0.1
(

0.1×
500

400 + 900 + 500
+ 0.2×

90

130 + 250 + 90

)

= 0.01,

so that we decide to open the first facility at vertex i = 2. To decide which category of facility to open here, we
look at the amounts of commodity k ∈ K that need to be stored at vertex i = 2 to meet the demand of m = 1
neighbouring vertices in scenario s ∈ S :

Y11
2 (1) = ⌈100/0.7⌉ = 143,

Y21
2 (1) = ⌈45/0.6⌈= 75,

Y12
2 (1) = ⌈900/0.8⌈= 1125,

Y22
2 (1) = ⌈250/0.9⌈= 278.

In order to be able to meet the demands of neighbouring vertices in all scenarios, the amounts of different
commodities to be stored at vertex i = 2 would be

Y1
2 (1) = max{Y11

2 (1),Y12
2 (1)} = 1125,

Y2
2 (1) = max{Y21

2 (1),Y22
2 (1)} = 278.

The category of facility that we aim to open is therefore the category with minimum capacity that is able to
store the volume of goods above:

V2(1) = M1Y1
2 (1) +M2Y2

2 (1) = 2× 1 125 + 0.4× 278 = 2361.2

Since there is no facility category with such a large capacity, we open the biggest facility available, thus x22 = 1.
Opening this facility uses up all the available facility budget, so that no more facilities can be open.

Next, we need to decide how much inventory to store at the open facilities, and which demand vertices are
allocated to which open facilities (Figure 2, right). The constructive heuristic performs this assignment also in
a greedy fashion according to the demand (in order to increase the primary objective the most), simultaneously
increasing the inventory after each assignment (if necessary). We therefore calculate the weighted percentage of



26 Renata Turkeš et al.

demand, multiplied by the scenario probability, P s ×Ds
i for each demand vertex j ∈ V in each scenario s ∈ S :

P 1 ×D1
1 = 0.9×

( 70

70 + 100 + 0
+

20

20 + 45 + 0

)

= 0.65,

P 1 ×D1
2 = 0.9×

( 100

70 + 100 + 0
+

45

20 + 45 + 0

)

= 1.15,

P 2 ×D2
1 = 0.1×

( 400

400 + 900 + 500
+

130

130 + 250 + 90

)

= 0.05,

P 2 ×D2
2 = 0.1×

( 900

400 + 900 + 500
+

250

130 + 250 + 90

)

= 0.10,

P 2 ×D2
3 = 0.1×

( 500

400 + 900 + 500
+

90

130 + 250 + 90

)

= 0.05,

This means that we start by assigning vertex j = 1 in scenario s = 1. A vertex is assigned to the closest open
facility where possible, in order to increase the secondary objective the least, and to keep the transportation
costs below the budget limit. In the toy example, vertex j = 1 is assigned in scenario s = 1 to the only open
facility at vertex i = 2 (z121 = 1), and the inventory is increased accordingly, in order to enable the demands of
the considered vertex in the considered scenario to be met:

y12 = ⌈70/0.7⌉ = 100,

y22 = ⌈20/0.6⌉ = 34.

It is easy to check that this solution is feasible, i.e., it also satisfies the facility capacity, and acquisition and
transportation budget constraints. We continue in this manner, checking if it is possible to assign more vertices,
proceeding from the vertex with the next greatest P s ×Ds

i .
After building a number of solutions for different values of the greedy heuristic parameter m, we choose

the best one as our initial solution. This solution is further optimized using iterated local search procedure as
described in detail in Sections 4.2, 4.3, 4.4 (closing and opening facilities, or assigning and unassigning vertices
to explore the solution spaces), with the assignments also intermittently optimized using a solver.
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aid distribution after the occurrence of a disaster. Journal of Cleaner Production 105, 134–145 (2015)
11. Campbell, A.M., Jones, P.C.: Prepositioning supplies in preparation for disasters. European Journal of Operational Research

209(2), 156–165 (2011)
12. Chan, Y., Carter, W.B., Burnes, M.D.: A multiple-depot, multiple-vehicle, location-routing problem with stochastically pro-

cessed demands. Computers & Operations Research 28(8), 803–826 (2001)
13. Chapman, J., Davis, L.B., Samanlioglu, F., Qu, X.: Evaluating the effectiveness of pre-positioning policies in response to natural

disasters. International Journal of Operations Research and Information Systems 5(2), 86–100 (2014)
14. Charles, A.: Improving the design and management of agile supply chains: feedback and application in the context of humani-

tarian aid. Ph.D. thesis, Institut National Polytechnique de Toulouse (2010)
15. Cooper, L.: Heuristic methods for location-allocation problems. SIAM review 6(1), 37–53 (1964)
16. Cooper, L.: A random locational equilibrium problem. Journal of Regional Science 14(1), 47–54 (1974)
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