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ABSTRACT

Drones have been getting more and more popular in many economy sectors. Both scientific and
industrial communities aim at making the impact of drones even more disruptive by empowering
collaborative autonomous behaviors — also known as swarming behaviors — within fleets of multiple
drones. In swarming-powered 3D mapping missions, unmanned aerial vehicles typically collect the
aerial pictures of the target area whereas the 3D reconstruction process is performed in a centralized
manner. However, such approaches do not leverage computational and storage resources from the
swarm members. We address the optimization of a swarm-powered distributed 3D mapping mission
for a real-life humanitarian emergency response application through the exploitation of a swarm-
powered ad hoc cloud. Producing the relevant 3D maps in a timely manner, even when the cloud
connectivity is not available, is crucial to increase the chances of success of the operation. In this
work, we present a mathematical programming heuristic based on decomposition and a variable
neighborhood search heuristic to minimize the completion time of the 3D reconstruction process
necessary in such missions. Our computational results reveal that the proposed heuristics either
quickly reach optimality or improve the best known solutions for almost all tested realistic instances
comprising up to 1000 images and fifteen drones.

Keywords Cloud Computing · Swarm · 3D Reconstruction ·Workload Optimization

1 Introduction

Unmanned Aerial Vehicles (UAVs), which are also referred to as drones, are a remotely operated aircraft. Their aerial
capabilities and low cost made them an attractive option for operations as building inspection, photo collection, and
area surveillance. That explains their popularity and adoption in a multitude of sectors of the economy.

Besides being remotely operated by pilots, drones can also operate autonomously when obeying an on-board flight
controller. This is handled by employing a collaborative intelligence program on each agent of the fleet while
keeping them connected on the same wireless network. This collaborative capability that simulates natural swarms [1]
(e.g., ant colonies, bee swarms, and bird flocks) is further leveraged by applying swarm robotics to conceive a fleet
of fully autonomous drones focusing on fulfilling a common mission. Swarm robotics studies how to coordinate,
in a distributed and decentralized manner, a large group of simple embodied robots to perform collective tasks
and maximize the swarm performance [2]. Such swarm behavior is a powerful tool to foster UAV applications,
given its capability to deliver both performance and resilience without requiring any centralized control. Swarming
UAVs are deployed to support operations in a long list of domains [3], including forestry [4, 5, 6], archaeology and
architecture [7, 8, 9, 10, 11], environmental monitoring [12, 13, 14, 15, 16], emergency management [17, 18, 19] and
precision agriculture [20, 21, 22].
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Likewise, the swarm robotics has drawn the attention of the operations research community as an attractive opportunity
to improve the efficiency of swarm-powered missions [23, 24]. For instance, decentralized optimization methods have
been leveraging search problems [25, 26, 27, 28, 29, 30], target assignment problems [31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41], node covering problems [42, 43], scheduling problems [44], etc.

UAV swarming solutions are typically used in synergy with other technologies such as digital photogrammetry [45, 46],
which focuses on extracting and displaying the relevant 2D/3D geometric information from the portrayed physical
environment. Given a set of pictures that are fairly distributed across the area of interest — multiple shooting points and
shooting perspectives should be considered for improved performances — it is possible to extract a 3D model of the
region itself by performing a so-called three-dimensional reconstruction. In terms of synergy the between swarming
and photogrammetry technologies, the 3D reconstruction process is typically included in a swarm-powered mission
pipeline where swarming UAVs are responsible for collecting, as fast as possible, the set of aerial images required to
properly build the 3D map of the desired area.

Although the aerial photo collection is typically carried out in parallel by multiple agents, current 3D mapping literature
addresses the 3D-reconstruction process in a centralized manner [47, 48, 49, 50, 51, 52]. Meyer et al. [53] employed
3D reconstruction solutions which were conducted in a centralized base-station to survey a heritage site in Mexico,
while other authors focused on multi-sensor data fusion to feed the 3D reconstruction algorithms with more accurate
data [54, 55].

Such approaches are susceptible to internet connectivity and network latency issues. Thus, the distributed power within
the UAV swarm can be exploited establishing an ad hoc cloud infrastructure able to safely perform the 3D reconstruction
of the considered 3D mapping mission [56, 57, 58, 59]. This strategy profits from the computational power in the
microcomputers installed on the swarming UAVs instead of the computational resources present in a powerful computer
(e.g. [60]).

The motivation of this paper arises from a real-life problem in the emergency response field. The decision-making and
situation awareness during a first response operation are highly boosted by 3D maps of the affected region. Such 3D
models allow the first responders to detect relevant threats like damage in roads and buildings or insecure zones. Thus,
creating 3D maps must be quickly done regardless internet connectivity to enhance the safety and efficiency of the first
responders.

In Costa et al. [61], the authors introduced the Covering-Assignment Problem for swarm-powered ad hoc clouds
(CAPsac), whose objective, in the context of a 3D mapping UAV mission, is to optimally generate and place the
multi-node computing workload that will be responsible for performing the 3D reconstruction process. Since each
computing node is responsible for reconstructing a specific sub-region on a specific drone, the optimal solution of the
problem describes how to minimize the processing time by optimally i) splitting the set of available photos to form
multiple sub-regions and then ii) assigning each sub-region to a specific UAV.

During emergency field operations, each minute counts and nearly optimal solutions of the CAPsac problem must
be computed as quickly as possible. In this way, 3D maps can be promptly put in the hands of the emergency
responders, while leaving the UAVs available to perform additional critical tasks — including other 3D mapping
missions. Furthermore, a fast CAPsac solution allows the flying UAVs to preserve the battery life by limiting the idle
flying periods spent waiting for 3D processing instructions. Note that the autonomy of typical commercial drones does
not go beyond one hour.

In this paper, we propose a Variable Neighborhood Search (VNS) heuristic [62] based on sub-tree reconstruction,
splitting hyperplane reallocation, sub-region transfer, and sub-region swap neighborhoods for quickly optimizing a
swarm-powered 3D mapping mission according to CAPsac. We also develop a mathematical programming-based
heuristic, namely Decomposition-based heuristic, to assess the performance of matheuristics.

The paper is organized as follows. The next section describes how to cast a swarm-powered 3D mapping mission
as CAPsac problem. The proposed mathematical programming-based heuristic is presented in Section 3. Likewise,
the VNS fundamentals and the proposed VNS-based heuristic are exposed in Section 4. Finally, Section 5 shows and
analyzes the computational results obtained over realistic instances, while Section 6 outlines our concluding remarks.

2 Swarm-powered 3D mapping mission as a CAPsac

A swarm-powered 3D mapping mission is decomposed in two main phases [61]:

1. Photo collection: the UAVs of the swarm dynamically collaborate to collect all the necessary aerial pictures of
the area of interest. Note that the set of required pictures is typically computed by dedicated mapping software
and is merely an input of the mapping mission [63].
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2. 3D processing [64]: the collected pictures are collaboratively processed by the microcomputers installed on
the UAVs to produce a 3D map. During this process, the computing workload can be parallelized over the
available computing units. Furthermore, pictures can be transferred over the inter-drone wireless network to
satisfy the input requirements of the distributed reconstruction tasks.

By casting a swarm-powered 3D mapping mission as a CAPsac, we aim to optimize the 3D processing phase only, with
no direct control over the photo collection step. Therefore, we consider that the set of photos taken by the drones as well
as their locations are input parameters for CAPsac solution. A swarm-powered 3D processing application employing a
swarm of four UAVs is illustrated in Figure 1 [61].

3D-capable drones Ordinary drones Network
Photos(shot by respective larger symbols) Area selec.

Figure 1: Swarm-powered 3D mapping mission as an instance of CAPsac. ©2020 IEEE [61]

In that example, the large “×”, “+”, “�”, and “◦” identify the drones. Only drones with powerful microcomputers
able to sustain the 3D reconstruction methods are considered 3D-capable [61]. The 3D-capable drones are represented
by the + and the × symbols. That is, + and × are responsible for performing the 3D processing stage. The region
portrayed by the set of photos P is bounded by the continuous lines. Further, the photos are represented by the small
“×”, “+”, “�”, and “◦”. Their symbols match with the UAV where the photo is stored, for instance, pictures identified
by a small + are stored in the UAV represented by the large +.

A solution to the CAPsac problem describes how to parallelize optimally a massive 3D reconstruction task into smaller
3D reconstruction sub-tasks to be distributed across the 3D-capable drones. This means that a 3D reconstruction sub-task
is associated with a specific sub-region of the target region. Therefore, the optimal solution of CAPsac minimizes the
completion time (i.e., makespan) of the whole 3D reconstruction phase. When optimizing the CAPsac, three constraints
cannot be neglected [61]: the 3D reconstruction sub-regions must be a spatial-convex covering; the communication
delays follow the Max-Min Fairness (MMF) paradigm [65]; the 3D reconstruction sub-tasks are distributed across the
3D-capable drones according to a reliability factor.

More precisely, the sub-regions form a spatial-convex covering if and only if the union of all sub-regions (subsets of
photos) is equal to the target region and all sub-regions are a spatial-convex set — all photos lying inside the set’s
convex hull are allocated to that same sub-region [61]. Figure 2 shows an example of a spatial-convex set, whereas
Figure 3 illustrates a set of photos which is not a spatial-convex set. In those figures, photos allocated to the set are
represented by the filled “•” and the empty “◦” represent photos not allocated to the set.
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Photo not assigned to set Photo assigned to set

Set’s convex hull

Figure 2: Spatial-convex set and the respective convex
hull. Adapted ©2020 IEEE [61]

Photo not assigned to set Photo assigned to set

Set’s convex hull

Figure 3: Ordinary set and the respective convex hull.
©2020 IEEE [61]

The communication delays must be taken into account since the photo collection stage is not optimized in the CAPsac,
and the 3D reconstruction of a sub-region cannot start until its assigned drone has in its hard disk all photos belonging
to that sub-region, that is, all 3D reconstruction input photos. Thus, a drone must request to the other drones the
photos to complete its designed sub-region. A single tree network topology (dotted lines in Figure 1), on top of which
establishing TCP sessions — one per photo transfer, is adopted as inter-drone communication means. The MMF
paradigm is considered to approximate the TCP-based rate allocation for multiple photo transfer sessions occurring
within the swarm communication tree [66].

Finally, the sub-region (3D reconstruction sub-task) to drone assignments must be robust to drone malfunction. This is
addressed by introducing a reliability factor, which dictates the minimal number of drones each sub-region must be
assigned. For instance, a solution for a reliability factor equal to one is illustrated in Figure 4. There, the two spatial-
convex sets (the same number as the 3D-capable drones) are represented by the dashed (left) and the dashed-and-dotted
lines (right). The sub-region on the left is assigned to the UAV “+” and the sub-region on the right is assigned to the
UAV “×”.

3D-capable drones Ordinary drones Network
Photos(shot by respective larger symbols) Area selec.

Sub-region assigned to“ " Sub-region assigned to“ "

Figure 4: Spatial-convex covering and its assignment optimizing the makespan of a 3D mapping mission.©2020
IEEE [61]
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Let us now define the notation for CAPsac. We consider the region photographed by the set of photos P as the region
targeted by the 3D processing stage. The CAPsac considers that photo positioning was performed beforehand, and then,
the locations of all captured photos in P are fixed and known. Further, let λp and µp be the estimated photo processing
time and the data size of photo p ∈ P , respectively. Besides, a set of drones D is at disposal but only a subset D̄ ⊆ D,
where |D̄| = m, is able to perform the 3D reconstruction. Therefore, the number of sub-regions constructed by the
CAPsac is equal to m. Given a drone d ∈ D, the binary parameter θdp indicates if d has the photo p ∈ P in its hard
disk.

The drones are disposed in an undirected tree topology T = (N,A), in which N corresponds to the set of nodes where
each drone is located andA comprises the sets of arcs linking the nodes inN . The set F is composed by all transmission
demands across pairs of drones, such that F = {fhd|(h, d) ∈ D × D̄}, in which a specific transmission demand from
the drone h to the drone d is represented by fhd. For each demand fhd, let V hd be the set of arcs (i, j) ∈ A in the unique
routing path between h and d, and F ij the set of demands using the arc (i, j), i.e., F ij = {fhd ∈ F |(i, j) ∈ V hd}.
Given an arc (i, j) ∈ A, let cij be the capacity of the arc (i, j). Also, denote by c̄hd the minimum cij in V hd. Finally,
each transmission demand is allowed within a time limit T̂ , after which it is considered as infeasible.

All the notation of the presented parameters is presented in Table 1.

Table 1: CAPsac parameters for a 3D mapping mission. Adapted ©2020 IEEE [61]
Parameters Description

λp estimated processing time of photo p
µp amount of data of photo p
θdp equal to 1 if drone d has the photo p stored in its memory
F set of traffic demands between each pair of drones
V ab routing path of a demand fab ∈ F from the drone a to the drone b
cij transmission capacity of the link (i, j) ∈ A
c̄ab minimum cij for (i, j) ∈ V ab

F ij set of demands that use link (i, j) ∈ A
σ reliability factor
m number of 3D-capable drones (equiv. number of sub-regions)
T̂ maximum allowed time for transmitting photos between drones

2.1 Mathematical Formulation

Mathematical formulations to solve the CAPsac were proposed in Costa et al. [61]. In this work, we adopt the
region-based formulation (rCAPsac) [61]. The rCAPsac formulation minimizes the completion time of the 3D
processing stage Tmax, and it exploits the set S containing all rectangular spatial-convex sets of photos in P . Given a
photo p ∈ P , the set Sp comprises all sub-regions S ∈ S which contain photo p. The binary variables qSd indicate if
S ∈ S is selected and its 3D reconstruction is allocated to the drone d ∈ D̄. Remark that all selected sub-regions must
be assigned to at least σ (reliability factor) drones. Also, for each S ∈ S , the binary variable oS indicates (i.e., oS = 1)
if the sub-region S is used in the solution; the tS represents the time required to perform the 3D reconstruction of S; the
µhd
S expresses the amount of data added into the transmission demand fhd when S is selected.

Since 3D reconstruction cannot start until a drone has all its input pictures, the communication time required to exchange
photos among the drones cannot be neglected. For each fhd ∈ F , we denote by zhd the binary variable which indicates
when the demand fhd is active — if there exists any data to be exchanged through fhd. Accordingly, continuous
variables φhd correspond to the transmission rate performed by the demand fhd.

As mentioned, in the case of the CAPsac, the transmission rate allocation follows the MMF paradigm. Such rate
allocation attends the MMF if and only if there is at least one bottleneck link (i, j) ∈ A on the routing path V hd of each
active demand fhd ∈ F [67]. Furthermore, a link (i, j) is a bottleneck of the demand fhd if and only if [67]

(i) its capacity is saturated, i.e.,
∑

fab∈F ij
φab = cij and

(ii) the transmission rate φhd of traffic demand fhd is the highest among the traffic demands routed over link (i, j),
i.e., φhd ≥ φab ∀fab ∈ F ij .
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Given a demand fhd, let whd
ij be the binary variable equal to 1 if the link (i, j) is a bottleneck of fhd. We denote by uij

the highest transmission rate among the traffic demands carried by the link (i, j) ∈ A, that is, uij = max
fab∈F ij

{φab}.

The rCAPsac formulation of the CAPsac is described by the following MILP [61].

min
q,o

Tmax (1)

s.t. Tmax ≥
∑
S∈S

tSqSd ∀d ∈ D̄ (2)

T̂ · φhd ≥
∑
S∈S

µhd
S qSd ∀fhd ∈ F (3)∑

d∈D̄

qSd ≥ σoS ∀S ∈ S (4)

∑
S∈Sp

oS ≥ 1 ∀p ∈ P (5)

∑
S∈S

oS = m (6)

zhd ≤
∑
S∈S

µhd
S qSd ∀fhd ∈ F (7)

φhd ≤ c̄hdzhd ∀fhd ∈ F (8)∑
(i,j)∈V hd

whd
ij ≥ zhd ∀fhd ∈ F (9)

∑
fab∈F ij

φab ≤ cij ∀(i, j) ∈ A (10)

∑
fab∈F ij

φab ≥ cijwhd
ij ∀(i, j) ∈ A,∀fhd ∈ F ij (11)

uij ≥ φhd ∀(i, j) ∈ A,∀fhd ∈ F ij (12)

φhd ≥ uij − cij(1− whd
ij ) ∀(i, j) ∈ A,∀fhd ∈ F ij (13)

oS , qSd ∈ {0, 1} ∀S ∈ S,∀d ∈ D̄ (14)

whd
ij ∈ {0, 1} ∀(i, j) ∈ A,∀fhd ∈ F (15)

φhd ≥ 0, zhd ∈ {0, 1} ∀fhd ∈ F (16)
uij ≥ 0 ∀(i, j) ∈ A. (17)

The objective function (1) minimizes the makespan of the 3D processing phase, i.e., the maximum processing time
Tmax across all 3D-capable drones in the swarm. Accordingly, Tmax is computed by the constraints (2), in which, the
summation

∑
S∈S t

SqSd determines the processing time of a given drone d ∈ D̄. Constraints (3) restrict the latency of
all transmission demands F up to T̂ . Constraints (4) enforce the reliability factor over all selected sub-regions. That is,
when a sub-region S is selected, it is assigned to at least σ 3D-capable drones. The photos p ∈ P are always covered
given the constraints (5). The constraint (6) establishes m (number of 3D-capable drones) as the number of sub-regions
being selected. The MMF transmission rate allocation is computed by the constraints (7)-(13). Constraints (7) allow a
transmission to be active only if there exist data to be sent from drone h to drone d. Constraints (8) set the variables
φhd to 0 when fhd is inactive. All active demands have at least one bottleneck link in their routing path according to
inequalities (9). Constraints (10) ensure that all link capacities are respected. Constraints (10) and (11) jointly force that
all bottleneck links will be saturated. That covers the first condition to a link (i, j) ∈ A to be a bottleneck link. The
second bottleneck link condition is ensured by constraints (12) and (13). Constraints (12) make uij greater or equal
to the highest transmission rate passing through the link (i, j). If (i, j) ∈ A is a bottleneck link of the demand fhd,
constraints (13) ensure that φhd will not be exceeded by any other transmission rate passing thought link (i, j). The
domain constraints are (14)-(17). The number of variables of the rCAPsac formulation can rapidly increase even
though it is polynomial bounded by O(|P |4).
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The CAPsac was proved NP-hard in Costa et al. [61]. A straightforward lower bound for the CAPsac is the perfect
workload division among the available processing resources. In the context of a 3D mapping mission by UAVs, this
means to equally spread the photo processing time of the whole target region by the number of 3D-capable drones.
Given a set of photos P , a set of 3D-capable drones D̄, and a reliability factor σ, the lower bound Lb(P, D̄, σ) is given
by

Lb(P, D̄, σ) =
σ
∑

p∈P λp

|D̄|
. (18)

3 Decomposition-based heuristic

The formulation given in the previous section can be used to devise heuristics for the CAPsac. However, before that, let
us define n̄ as the perfect workload division w.r.t. the number of photos per sub-region

n̄ =
|P |
|D̄|

.

Inspired by the observation that good solutions have their workload w.r.t. the number of photos per sub-region close to
n̄, we decompose the problem by exploring first those solutions whose sub-regions have cardinality close to n̄.

To that purpose, we restrict the solution space of rCAPsac to sub-regions whose photo cardinalities lie inside an
interval [n`, nu], which is iteratively increased. That interval is initialized with n` = bn̄c and nu = dn̄e. As solving
this restricted rCAPsac formulation leads to possibly infeasible or suboptimal solutions, one can iteratively increase
the interval [n`, nu], and solve the new restricted CAPsac until the objective function value (Tmax) does not change
between two consecutive iterations. This stopping condition is indeed sub-optimal. For example, in the presence of
very contrasting photo-processing times λp among the photos p ∈ P , the optimal solution might contain sub-regions
with small processing times and large cardinalities.

Algorithm 1 summarizes the decomposition-based heuristic. It considers Ω the set of distinct photo cardinalities from
sub-regions in S, and a mapping function ω (implemented as a hash table) which maps the cardinalities in Ω to their
respective sub-regions in S. Step 1 enumerates the sub-regions S on O(|P |4) operations [61]. Step 2 constructs the

Algorithm 1 Decomposition-based heuristic

1: Enumerate rectangular sub-regions S;
2: Construct and sort Ω;
3: Build ω according to S and Ω;
4: n` ← bn̄c; nu ← dn̄e; S0 ← {∅}; T 0

max ←∞; i← 0;
5: repeat
6: i← i+ 1;
7: Si ← Si−1 + ω(n`) + ω(nu)
8: T i

max ← solve rCAPsac encompassing sub-regions Si;
9: decrease n` to its closest smaller n ∈ Ω;

10: increase nu to its closest larger n ∈ Ω;
11: until T i−1

max = T i
max or Si = S

sorted array Ω whereas step 3 creates ω. The values of n`, nu, S0, T 0
max, and i are properly initialized at step 4. For each

iteration (steps 5-11): i is incremented in step 6. Then, the set Si is updated to include the sub-regions of cardinality
equal to n` and nu in step 7. Then, step 8 solves the restricted rCAPsac formulation encompassing all sub-regions
in Si. The new interval [n`, nu] is obtained in steps 9-10 by updating n` and nu. The algorithm iterates (lines 5-11)
until the objective function value (Tmax) does not change between two consecutive iterations, or that Si contains all the
sub-regions S . We remark that the algorithm also iterates (lines 5-11) while no feasible solutions have been found yet.
Accordingly, if the algorithm does not find a feasible solution and Si = S , the problem is proven infeasible. As a result,
the heuristic takes at most O(|Ω|) iterations to finish in the worst case. In such worst scenario, the full problem (i.e.,
the complete rCAPsac formulation) is solved once the interval [n`, nu] encompasses all sub-regions in S . It is worth
pointing out that the optimal solution in one iteration remains feasible in the next one since increasing the interval
[n`, nu] is equivalent to simply adding new columns to the rCAPsac formulation. Consequently, it can be used as a
feasible upper bound solution for the next iteration.
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4 Variable Neighborhood Search for CAPsac

Our VNS heuristic exploits a spatial partition tree as a spatial data representation to ensure the spatial-convexity of
sub-regions in a feasible solution. Furthermore, our proposed VNS is based on four neighborhoods, namely: sub-tree
reconstruction, splitting hyperplane reallocation, sub-region transfer, and sub-region swap. They are explained together
with the VNS fundamentals and our VNS implementation in the following sections. Finally, we present how the VNS
heuristic ensures communication delays feasibility during its search.

4.1 Variable Neighborhood Search fundamentals

Variable Neighborhood Search is a stochastic search metaheuristic, i.e., a local optimal evading framework based on
heuristics, which aims at reaching optimal or near-optimal solutions for global combinatorial optimization problems.
VNS has been successfully applied to a vast range of NP-hard problems [68].

A generic combinatorial optimization problem can be formally defined as follows. Let N = {1, . . . , n} be a finite set
and let c = {c1, . . . , cn} be an n-dimensional vector. Denote by c(F ) =

∑
i∈F ci the cost associated to the finite set

F ⊆ N . Given a collection of subsets F of N , a binary combinatorial optimization problem C = (N,F , c) can be
expressed as

min{c(f) : f ∈ F} (19)

Let the n-dimensional binary vector Xf = {xf1 , . . . , xfn} characterize a feasible solution such that xfi = 1 if i ∈ N
belongs to f ∈ F , and xfi = 0 otherwise. Thus, C can be seen as minimizing over a polytope, i.e.,

min
{
cTx|x ∈ conv

{
Xf ∈ {0, 1}N |f ∈ F

}}
. (20)

A local minimum x∗ of (20) is defined as

cTx∗ ≤ cTx, ∀x ∈ N (x∗), (21)

where N (x) is the neighborhood of x. A neighborhood N (x) is defined as the set of neighboring solutions x′ obtained
from x by systematic changes in the components of x (e.g., complementing elements of x). Acknowledging that a local
minimum w.r.t. a neighborhood is not necessarily the local optimum for another neighborhood, VNS employs several
different neighborhoods to escape local minima and reach global optimality. Note that a global minimum is a local
minimum regardless of the considered neighborhood.

Likewise simulated annealing and tabu search [69], VNS keeps a single solution x during the whole execution of
the algorithm. However, if differs from other metaheuristics mainly by its search mechanism that searches for better
solutions in increasingly wider neighborhoods of x, according to the parameters k ∈ Z+ and kmax ∈ Z+. Let us
define the neighborhoods adopted by the VNS as the set N = {N1, . . . ,Nkmax

} such that neighborhoods Nk ∈N are
sorted according to their size (i.e., cardinality of Nk(x)). First, starting with k = 1, a random neighboring solution x′
is obtained from neighborhood Nk(x). Then, a local descent method is performed from x′ leading to another local
minimum x′′. If x′′ is worse than (or equal to) x, it is dismissed and the local descent method starts from a new
random neighbor x′ concerning the next neighborhood of x, i.e., Nk+1(x). Otherwise, x′′ replaces x and the algorithm
resets k to 1, i.e., the search is resumed in the neighborhood N1 of the new best solution. Every time the maximum
neighborhood Nkmax

is reached (i.e., k = kmax), VNS restarts from the first neighborhood (k = 1). The VNS iterates
until the stopping condition (e.g. , maximum CPU time) is met. Given the order of neighborhoods in N , the method
favors the exploration of solutions in small neighborhoods of x, increasing the size of the neighborhood if necessary.
The basic steps of VNS are given in Algorithm 2.

4.2 Spatial partition tree

The spatial partition tree allows the VNS to efficiently explore the solution space without directly handling spatial-
convexity constraints. Inspired by the k-dimensional trees [70], the spatial partition tree is a (not necessarily complete)
binary tree which recursively splits the metric space under consideration. In this kind of tree, all nodes are directly
associated with a portion (sub-region) of the target region.

In the CAPsac context, the target region is discretized by the positions of the photos P . Let us define L as the set of
distinct photo latitudes and let C be the set of distinct photo longitudes, such that 1 ≤ |C| ≤ |P | and 1 ≤ |L| ≤ |P |.
The sets C and L offer a simple way to partition the space into rectangular sub-regions, such that any rectangular
sub-region r can be represented by its left c< ∈ C, right c> ∈ C, inferior `∨ ∈ L, and superior `∧ ∈ L borders. As a
result, constructing a spatial partition tree splits the target region and forms a partition of rectangular sub-regions.
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Algorithm 2 Variable Neighborhood Search - VNS

Select a set of neighborhoods Nk, for k = 1, . . . , kmax;
Find an initial solution x;
repeat

k ← 1
repeat

(Diversification step): Choose a random neighboring solution x′ from Nk;
(Intensification step): Apply a local descent method from x′, obtaining x′′;
if cost(x′′) < cost(x) then

x← x′′;
k ← 1;

else
k ← k + 1;

end if
until k > kmax

until a stopping criterion is met

A spatial partition tree is successively constructed by splitting the region of interest into new sub-regions as illustrated
in Figure 5. At first, the spatial partition tree contains only the root node corresponding to the whole target region as
shown in Figure 5a. The photos P (target region), identified by the “◦”, are enclosed by a unique rectangular region r1

(dashed lines). All nodes in the tree (round-cornered rectangles) have (i) their associated enclosed longitudes on axis C
“C”); (ii) their associated enclosed latitudes on axis L (“L”); (iii) the axis selected to guide the splitting (“Axis”); (iv)
the index in the selected axis chosen to define the splitting hyperplane (“Splitting index”). It is worth to mention that
the leaf nodes have the attributes (iii) and (iv) empty, and the photos inside a sub-region are implicitly given by the lists
C and L.

In each successive iteration (splitting step), a leaf node (rectangular sub-region) is selected to be split by means of an
axis-aligned splitting hyperplane. The selected splitting hyperplane (denoted by “�” and represented by lines) is chosen
from the location of the photos associated with a sub-region being split. The splitting step is repeated |D̄|− 1 times, that
is, until |D̄| sub-regions are formed. For instance, starting from the root node in Figure 5a, the construction of a partition
with four sub-regions (i.e., |D̄| = 4) is done after three iterations presented in Figures 5b, 5c, and 5d, respectively.
Finally, Figure 5d illustrates the final spatial-partition tree and its respective partition and splitting hyperplanes, where
the photos P are split into the four rectangular sub-regions r1, r2, r3, and r4. This data structure guarantees the creation
of sub-regions that are always spatial-convex sets.

4.3 Sub-tree reconstruction neighborhood

Given a spatial partition tree T , denote by D(T ) the maximum depth of the nodes of T . Let N(d) be the set of all
nodes at the depth d of T where 0 ≤ d ≤ D(T ). The sub-tree reconstruction neighborhood randomly reconstructs (as
explained in Section 4.2) a sub-tree rooted at a non-leaf node n ∈ N(d). Figure 6 illustrates a neighboring solution in
the right obtained from reconstructing the sub-tree rooted at the grey node (in depth 0) of the spatial partition tree in the
left.

4.4 Splitting hyperplane reallocation neighborhood

Given a spatial partition tree T and a non-leaf node n which is a parent of a leaf node, this neighborhood includes all
solutions obtained by reallocating the splitting hyperplanes of the non-leaf nodes of the sub-tree rooted in n (named
Tn). Furthermore, such reallocation is made changing the splitting index (component “Splitting index”) and/or the axis
orienting the hyperplane (component “Axis”). Unlike the sub-tree reconstruction neighborhood, the splitting hyperplane
reallocation neighborhood does not restrict n to be a node in a specific depth 0 ≤ d ≤ D(T ). Moreover, it keeps the
depth of the resulting sub-tree rooted in n equal to that of the original sub-tree. Figure 7 illustrates that procedure in
which the splitting index of the (colored) node n (on the left) is changed to originate the neighboring tree on the right.
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(a) Initial step. Spatial-convex tree (left) and the target region (right).
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(b) Iteration 1. Spatial-convex tree (left) and its respective partition (right).
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(c) Iteration 2. Spatial-convex tree (left) and its respective partition (right).
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(d) Final iteration resulting in the spatial-partition tree (left) and its respective partition and splitting hyperplanes (right).

Figure 5: Illustrative construction of a spatial-convex tree with four sub-regions.

10



Heuristics for optimizing 3D mapping missions over swarm-powered ad hoc clouds

C: [1, 2, 3, 4, 5, 6, 7, 8]
L: [1, 2, 3, 4, 5, 6]
Axis:  C
Splitting index: 4

C: [4, 5, 6, 7, 8]
L: [1, 2, 3, 4, 5, 6]
Axis:  L
Splitting index: 3

C: [1, 2, 3]
L: [1, 2, 3, 4, 5, 6]
Axis:  L
Splitting index: 4

r1
C: [1, 2, 3]
L: [1, 2, 3]

r2
C: [1, 2, 3]
L: [4, 5, 6]

r3
C: [4, 5, 6, 7, 8]
L: [1, 2]

r4
C: [4, 5, 6, 7, 8]
L: [3, 4, 5, 6]

1

2 3

C: [1, 2, 3, 4, 5, 6, 7, 8]
L: [1, 2, 3, 4, 5, 6]
Axis:  C
Splitting index: 7

r1
C: [7, 8]
L: [1, 2, 3, 4, 5, 6]

C: [1, 2, 3, 4, 5, 6]
L: [1, 2, 3, 4, 5, 6]
Axis:  C
Splitting index: 3

r3
C: [3, 4, 5, 6]
L: [1, 2, 3]

r4
C: [3, 4, 5, 6]
L: [4, 5, 6]

1

r2
C: [1, 2]
L: [1, 2, 3, 4, 5, 6]

C: [3, 4, 5, 6]
L: [1, 2, 3, 4, 5, 6]
Axis:  L
Splitting index: 4

2

3

Figure 6: Neighboring solution (right) obtained from a spatial partition tree (left) in the sub-tree reconstruction
neighborhood.
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Figure 7: Neighboring tree (right) obtained from a spatial partition tree (left) in the splitting hyperplane neighborhood.

4.5 Sub-region transfer neighborhood

This neighborhood encompasses all solutions obtained by transferring one sub-region assignment (r`, di) from a drone
di to a drone dj such that i 6= j. In Figure 8, the transfer of the sub-region r3 from drone d1 to drone d2 generates a
neighboring solution according to the sub-region transfer neighborhood for a reliability factor σ equal to two.

4.6 Sub-region swap neighborhood

Given a solution, its neighbors in the sub-region swap neighborhood are obtained by the swap of sub-regions assignments
(r`, di) and (rm, dj) between drones di and dj . Such swap yields the sub-region assignments (r`, dj) and (rm, di).
An example of neighboring solution (for σ = 2) in the sub-region swap neighborhood is given in Figure 9, where the
assignments (r2, d3) and (r1, d4) are swapped between drones d3 and d4.
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Figure 8: Neighboring solution (right) obtained from a spatial partition tree (left) in the sub-region transfer neighborhood
for σ = 2.
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Figure 9: Neighboring solution (right) obtained from a spatial partition tree (left) in the sub-region swap neighborhood
for σ = 2

4.7 Computation of the processing time and transmission data

In order to efficiently explore the neighborhoods during VNS’ local descent, it is important to adequately compute the
photo processing time of a sub-region and the amount of data involved in the data transfers between drones. Given the
boundaries of a sub-region and the drone d ∈ D̄ dealing with the reconstruction of that sub-region, this information can
be computed in constant time as follows.

The computation of the photo processing time of a sub-region is based on the sets of photos Sleft
c , Sright

c , Sup
` , Sdown

`
for c ∈ C and ` ∈ L. Thus,

Sleft
c = {p ∈ P |lng(p) < lng(c)}, (22)

Sright
c = {p ∈ P |lng(p) > lng(c)}, (23)

Sup
` = {p ∈ P |lat(p) < lat(`)}, (24)

Sdown
` = {p ∈ P |lat(p) > lat(`)}, (25)

where lat() and lng() stand for the latitude and longitude respectively. Thus, Sleft
c encompasses all photos on the left

of c whereas Sright
c contains the photos on the right of c. Similarly, Sup

` groups the photos above ` and Sdown
` the

photos below `.
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We define T (P ) as the overall processing time of all photos in a set P ⊆ P such that

T (P ) =
∑
p∈P

λp. (26)

Finally, let c<, c>, `∨, `∧ represent, respectively, the left, the right, the bottom (inferior), and the top (superior)
boundaries of a sub-region r. The photo processing time T r of a sub-region r delimited by c<, c>, `∨, and `∧ is then
given by

T r = T ({p ∈ P | lng(c<) ≤ lng(p) ≤ lng(c>) , lat(`∨) ≤ lat(p) ≤ lat(`∧)}) .
Equivalently, one may subtract the processing times of the photos outside the sub-region r from the overall processing
time T (P ), i.e.,

T r = T (P )− T (Sleft
c< ∪ Sright

c> ∪ Sdown
`∨ ∪ Sup

`∧
). (27)

Now, for each pair (c, `) ∈ C × L, let us define Q1
c`, Q

2
c`, Q

3
c`, Q

4
c`, respectively, as the set of photos lying in the first,

second, third, and fourth quadrants concerning lng(c) and lat(`), which are expressed as

Q1
c` = {p ∈ P | lng(p) > lng(c), lat(p) > lat(`)} , (28)

Q2
c` = {p ∈ P | lng(p) < lng(c), lat(p) > lat(`)} , (29)

Q3
c` = {p ∈ P | lng(p) < lng(c), lat(p) < lat(`)} , and (30)

Q4
c` = {p ∈ P | lng(p) > lng(c), lat(p) < lat(`)} . (31)

Thus, it is possible to express equation (27) as

T r = T (P )− T (Sleft
c< )− T (Sright

c> )− T (Sdown
`∨ )− T (Sup

`∧
)

+T (Q1
c>`∧) + T (Q2

c<`∧) + T (Q3
c<`∨) + T (Q4

c>`∨).
(32)

Given the boundaries of a sub-region r, equation (32) allows to compute T r based only on the processing times of Sleft
c< ,

Sright
c> , Sdown

`∨
, Sup

`∧
, Q1

c>`∧
, Q2

c<`∧
, Q3

c<`∨
, Q4

c>`∨
, and T (P ). By precomputing these values in time O(|C| · |L| · |P |)

(equiv. O(|P |3), there is no need of keeping in memory the index of photos belonging to r. Thus, the photo processing
time of any sub-region r can be computed by (32) in constant time O(1).

Likewise, the amount of data µhd
r on a certain data transmission fhd ∈ F concerning only the sub-region r can be

computed by a closed form expression. Given the transmission demand fhd and a set of photos P , let µhd(P ) be the
amount of data in P exchanged from drone h to the drone d, where d is the photo-processing drone of P , which is
expressed as

µhd(P ) =
∑
p∈P

θhpµp. (33)

Since the boundaries of the sub-region r and the transmission demand fhd are known, the µhd
r can be computed by the

equation

µhd
r = µhd ({p ∈ P | lng(c<) ≤ lng(p) ≤ lng(c>) , lat(`∨) ≤ lat(p) ≤ lat(`∧)})
µhd
r = µhd(P )− µhd(Sleft

c< ∪ Sright
c> ∪ Sdown

`∨ ∪ Sup
`∧

)

µhd
r = µhd(P )− µhd(Sleft

c< )− µhd(Sright
c> )− µhd(Sdown

`∨ )− µhd(Sup
`∧

)

+ µhd(Q1
c>`∧) + µhd(Q2

c<`∧) + µhd(Q3
c<`∨) + µhd(Q4

c>`∨). (34)

The terms within the equation (34) can all be precomputed in time O(|D|2 · |C| · |L| · |P |) operations (equiv. |D|2 · |P |3).
Thus, the amount of data transmitted can be obtained in constant time given the boundaries of the sub-region r.

Note that both equations (32) and (34) are suited to the way sub-regions are represented by a spatial partition tree. It
only suffices to know the boundaries of a sub-region to query the terms in (32) and (34).

4.8 Proposed VNS heuristic

According to Algorithm 2, we need to define how to create an initial solution as well as the diversification and
intensification steps. These are described in the following.
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Initial solution

The initial solution is created by (i) randomly building a spatial-partition tree with D̄ sub-regions (as defined in
Section 4.2); and by (ii) randomly assigning the obtained sub-regions to the set of 3D-capable drones D̄ according to
the reliability factor σ. Thus, each 3D-capable drone has at least one sub-region to process.

Diversification step

The diversification step uses the sub-tree reconstruction neighborhood. The VNS parameter k establishes the depth
from which a node will be selected in the spatial-partition tree T . More precisely, a node from depth D(T ) − k is
randomly selected to be reconstructed. Finally, we adopt a kstep equal to one and kmax equal to the D(T ) of the current
best solution.

Intensification step

Our local descent method is a Variable Neighborhood Descent (VND) [62]. The proposed VND minimizes Tmax by
sequentially exploring the sub-region transfer, sub-region swap, and splitting hyperplane reallocation neighborhoods.
In order to accelerate the local searches, we limit neighborhood exploration to transfer/swapping/reallocation of
sub-regions assigned to the set of drones, named Dmax, holding the incumbent longest total processing time. That is,
Dmax comprises the drones whose total photo-processing time is equal to the makespan (Tmax). By denoting RD̂ as
the set of all sub-regions assigned to drones d ∈ D̂ ⊆ D, the local searches are implemented in such a way that

i N1 - sub-region transfer: switches sub-regions r ∈ RDmax to other drones d ∈ D̄ −Dmax. The size of this
neighborhood is bounded by Θ(|RDmax | × |D̄ −Dmax|).

ii N2 - sub-region swap: only considers sub-region swaps (ri, rj) such that ri ∈ RDmax
. Consequently, this

neighborhood has Θ(|RDmax
| × |RD̄−Dmax

|) neighboring solutions.
iii N3 - splitting hyperplane reallocation: for each n ∈ NDmax

, where NDmax
is composed by the parent nodes

of leaf nodes representing the sub-regions r ∈ RDmax
, this neighborhood reallocates the splitting hyperplanes

(i.e., their positions and/or orientations) of non-leaf nodes in the sub-tree rooted at n (denoted Tn). Let us
define Ln and Cn as the set of enclosed latitudes on axis L and longitudes on axis C at node n, respectively.
In the worst case, the size of this neighborhood is limited by O

(∑
n∈NDmax

(|Ln|+ |Cn|)|NTn |
)

, where NTn

is the set of non-leaf nodes in the sub-tree Tn.

Employing such sequence of neighborhoods grants higher priority to adjustments in the sub-region to drone assignments,
which are encompassed in smaller neighborhoods that cause less changes to solution’s structure.

Besides minimizing the latest processing time Tmax, the local searches seek solutions respecting the maximum allowed
transmission time T̂ . Thus, the transmission times thd of all active transmission demands fhd ∈ F must be at most T̂
(according to constraints (3)). This means that we need to check whether

thd ≤ T̂ ∀fhd ∈ F (35)

in order to define if a neighboring solution is feasible. Further, the transmission times thd are computed by the equation

thd =
µhd

φhd
=

∑
r∈Rd

µhd
r

φhd
. (36)

As described in Section 4.7, likewise the processing times T r, it is possible to compute µhd
r in constant time. However,

computing φhd means solving an MMF rate allocation problem. Due to the fixed tree topology, one can solve an MMF
rate allocation problem in O(|D|2 × (|D| − 1)) employing the water filling method [65].

Algorithm 3 describes the local search used in this paper. It uses a first improvement exploration strategy, which pursues
the first improvement direction in the local descent method. Limited computational experiments revealed that a best
improving strategy in which the local descent used the best estimated improving direction was not better than its first
improving counterpart. The algorithm requires an initial solution x and a neighborhood Nt as input and return the
local optimum w.r.t. Nt. Also, let us define Φ as the hash table mapping a set of active transmission demands F̄ to its
respective MMF rate allocation φ. This data structure accelerates the local search since it prevents the method from
solving the same MMF rate allocation problem more than once for the same set of active transmission demands. Finally,
let us define the function Tmax(·) to return the makespan (i.e., latest completion time) of a solution in its argument.

Regarding Algorithm 3, step 1 initializes the flag Stop to false. While the local optimum is not reached (steps 2-
18), the local search explores the neighboring solutions x′ ∈ Nt(x) (steps 4-17). If for neighboring solution x′
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Algorithm 3 Local search using first improvement search strategy.

Require: x and Nt

1: Stop← false;
2: while not Stop do
3: Stop← True;
4: for all x′ ∈ Nt(x) do
5: if Tmax(x′) < Tmax(x) then
6: identify the active demands F̄ (x′);
7: if @ Φ(F̄ (x′)) then
8: Φ(F̄ (x′))← water filling algorithm(F̄ (x′);
9: end if

10: T̄ ← compute communication delays (Φ(F̄ (x′)), µ(x′));
11: if thd ≤ T̂ ∀thd ∈ T̄ then
12: Stop← False;
13: x← x′;
14: break;
15: end if
16: end if
17: end for
18: end while
19: return x;

Tmax(x′) < Tmax(x) (steps 5-16), the algorithm proceeds to checking whether x′ has feasible transmission times
associated with it according to expression (35). First, it identifies the active demands F̄ in x′ (step 6). A demand
between a pair of drones is active if there exists any data to be exchanged between them (Section 2.1). Thus, step 6
checks whether µhd =

∑
r∈Rd

µhd
r > 0 for each fhd ∈ F . Then, it computes the MMF rate allocation problem

for F̄ (through the water filling algorithm) if and only if F̄ is not already a stored key of Φ (steps 7-9). The set of
communication delays T̄ = {thd|fhd ∈ F} is computed in step 10 according to the equation (36) given the transmission
rates Φ(F̄ (x′)) and the amount of data µ = {µhd|fhd ∈ F} in solution x′. If x′ has all communication delays thd ∈ T̄
smaller or equal to T̂ (steps 11-15), the local search (i) marks x as sub-optimum (step 12); (ii) sets x′ as the new x
(step 13), and (iii) breaks the for loop to explore the neighborhood w.r.t. the new incumbent x (step 14). Once reached,
the local optimum concerning Nt is returned in step 19.

Finally, the proposed VND is summarized in Algorithm 4. In the steps 2-5 of the algorithm, we choose the initial value

Algorithm 4 Variable Neighborhood Descend(VND) for the CAPsac

1: N = {sub-region transfer, sub-region swap, splitting hyperplane reallocation }
2: t← 1
3: if σ = 1 then
4: t← 2
5: end if
6: repeat
7: x′′ ← perform LocalSearch(x′, Nt);
8: if Tmax(x′′) < Tmax(x′) then
9: x′ ← x′′;

10: t← 1
11: if σ = 1 then
12: t← 2
13: end if
14: else
15: t← t+ 1;
16: end if
17: until t > 3

of t according to the reliability factor (σ) used. It is set to t = 1 for σ > 1 and t = 2 otherwise. That is, the local search
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Table 2: Characteristics of the tested instances.
Images(P) 200, 400, 500, 750, 1000
Drones(D) 5, 7, 10, 15
%3D-capable drones(%D̄) 50%, 70%, 90%

applying the sub-region transfer neighborhood (N1) is used only for instances with σ > 1 since it cannot find better
solutions for σ = 1. This is due to the fact that each 3D-capable drone must have at least one sub-region assigned to it.
The VND proceeds by applying the local searches according to the current neighborhood Nt until it reaches the local
optimum w.r.t. all neighborhoods in N (steps 6-17). Each new solution x′′ (obtained at step 7 by Algorithm 3) with
better Tmax than x′ is kept and t is reset likewise steps 2-5 (steps 8-13). Otherwise, t is increased by one (steps 14-16),
and the algorithm iterates.

5 Computational experiments

Our experimental analysis aims to evaluate (i) the effectiveness of the decomposition strategy; (ii) the effectiveness of
employing different neighborhoods in our variable neighborhood method; and (iii) the performance of the proposed
methods and sensitivity regarding both the reliability factor σ and the maximum transmission time allowed T̂ . We used
CPLEX v12.10 as general-purpose integer linear programming solver and C++ as programming language compiled
with gcc v5.4.0. All experiments were carried exploiting a single core on a machine powered by an Intel E5-2683 v4
Broadwell 2.1GHz with 20Gb of RAM, and running the CentOS Linux 7.5.1804 OS.

5.1 Instances and notation adopted

Our experimental analysis is carried on the instances proposed in Costa et al. [61] (available at https://github.com/
ds4dm/CAPsac). All instances are based on realistic data and comprise two scenarios: (i) one in which all photos are
processed in the same amount of time λ, named unweighted; and (ii) another one in which each photo has a different
processing time λp, named weighted. The name of the instances follows the notation X-PYDZ%D̄W where “X” is “u”
for the unweighted instances and “w” for the weighted instances, “Y” stands for the number of photos in the instance,
“Z” specifies the number of drones in the swarm, and “W” informs the percentage of drones able to perform 3D
reconstruction. Remark that the number of 3D-capable drones (|D̄|) is always equal to

⌊
Z × W

100

⌋
. The characteristics

of the tested instances are listed in Table 2.

Optimal makespans are obtained by solving the CAPsac formulation [61] with CPLEX within one day of execution.
Whenever CPLEX is not able to prove optimality within this time horizon, the best feasible solution obtained in [61] is
reported instead, which is indicated by an “∗” in the tables. Average and best results are then computed according to
that best known solution.

5.2 Effectiveness of the decomposition strategy

This section assesses the effectiveness of the decomposition strategy exploited by the proposed decomposition-based
heuristic.

Tables 3 and 4 report for each instance (named under column “Instance”) the following values regarding the optimal (or
best known) solutions:

- the smallest cardinality found among the sub-regions (column n∗` );
- the largest cardinality found among the sub-regions (column n∗u);
- the cardinality of the sub-region which yields the makespan (column n∗mks);
- the associated makespan value (column OPT).

Further, we report the percentage deviations (columns “Dev.(%)”) achieved by the complete rCAPsac formulation and
the decomposition method with respect to the best known makespan. We also report the total computing CPU times
spent by both methods under column (“sec”). Finally, concerning the decomposition-based heuristic, we report the last
interval [n`, nu] used before the algorithm is halted by its stopping condition. For all experiments, we set a time limit of
2 hours for the MIP formulation solved by CPLEX in each iteration of the decomposition-based heuristic, and 24 hours
as maximum time for solving rCAPsac by CPLEX. A trace (“−”) is reported whenever CPLEX is not able to find a
feasible solution within this time limit.
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Table 3: Percentage deviations of the complete rCAPsac formulation and the decomposition method when solving
unweighted instances.

σ = 1, T̂ = ∞, stop condition= 86400s rCAPsac Decomposition

Instance n∗
` n∗

u n∗
mks OPT Dev.(%) sec. n` nu Dev.(%) sec.

u-P200D5%D̄70 65 70 70 1870.40 0.00 179.37 64 72 0.00 0.28
u-P200D7%D̄50 60 70 70 1870.40 0.00 548.55 64 72 0.00 0.50
u-P400D5%D̄70 132 135 135 3607.20 0.00 6996.32 128 140 0.00 1.04
u-P400D7%D̄50 130 135 135 3607.20 0.00 11355.80 128 140 0.00 1.55
u-P200D5%D̄90 50 50 50 1336.00 0.00 244.25 49 51 0.00 0.11
u-P200D7%D̄70 50 50 50 1336.00 0.00 256.03 49 51 0.00 0.23
u-P400D5%D̄90 100 100 100 2672.00 0.00 9346.54 99 102 0.00 0.46
u-P400D7%D̄70 100 100 100 2672.00 0.00 45059.71 99 102 0.00 0.55
u-P200D10%D̄50 40 40 40 1068.80 0.00 1838.53 39 42 0.00 1.46
u-P400D10%D̄50 80 80 80 2137.60 0.00 43171.40 78 81 0.00 5.44
u-P200D7%D̄90 30 34 34 908.48 0.00 1901.86 28 38 0.00 8.00
u-P400D7%D̄90 60 68 68 *1816.96 32.35 86400.00 64 70 1.47 13.28
u-P200D10%D̄70 24 30 30 *801.60 33.33 86400.00 27 32 0.00 115.18
u-P400D10%D̄70 50 60 60 *1603.20 300.00 86400.00 54 63 -3.33 2013.98
u-P500D15%D̄50 70 72 72 1923.84 - 86400.00 69 75 0.00 333.59
u-P750D15%D̄50 108 117 117 *3126.24 - 86400.00 104 110 -7.69 262.73
u-P1000D15%D̄50 143 144 144 *3847.68 - 86400.00 136 145 0.00 7434.67
u-P200D10%D̄90 18 24 24 *641.28 8.33 86400.00 21 25 0.00 3366.98
u-P400D10%D̄90 42 45 45 1202.40 - 86400.00 42 46 0.00 3262.06

Table 4: Percentage deviations of the complete rCAPsac formulation and the decomposition method when solving
weighted instances.

σ = 1, T̂ = ∞, stop condition= 86400s rCAPsac Decomposition

Instance n∗
` n∗

u n∗
mks OPT Dev.(%) sec. n` nu Dev.(%) sec.

w-P200D5%D̄70 65 70 70 1886.98 0.00 242.54 64 72 0.00 0.36
w-P200D7%D̄50 60 70 70 1885.31 0.00 784.93 64 72 3.26 0.39
w-P400D5%D̄70 130 135 135 3735.32 0.00 10209.88 128 140 0.00 1.21
w-P400D7%D̄50 130 135 135 3773.12 0.00 5987.39 128 140 0.00 1.93
w-P200D5%D̄90 50 50 50 1409.48 0.00 212.44 49 51 0.00 0.30
w-P200D7%D̄70 50 50 50 1399.82 0.00 802.39 49 51 0.00 0.56
w-P400D5%D̄90 100 100 100 2812.93 0.00 21189.45 99 102 0.00 0.57
w-P400D7%D̄70 100 100 100 2791.66 0.00 40872.49 99 102 0.00 1.49
w-P200D10%D̄50 40 40 40 1121.89 0.00 9106.51 39 42 0.00 13.92
w-P400D10%D̄50 72 88 88 2290.48 0.00 40443.02 78 81 1.15 34.01
w-P200D7%D̄90 30 35 35 944.06 0.00 8669.90 28 38 0.00 17.77
w-P400D7%D̄90 60 75 75 *1909.18 19.17 86400.00 63 72 -0.94 25.17
w-P200D10%D̄70 26 30 30 820.40 0.00 62142.01 27 32 0.29 1086.76
w-P400D10%D̄70 56 63 60 *1671.12 123.18 86400.00 55 62 -2.30 7232.05
w-P500D15%D̄50 66 78 72 *2028.11 - 86400.00 69 75 -2.40 1791.89
w-P750D15%D̄50 96 119 117 *3138.73 - 86400.00 102 112 -4.91 2562.77
w-P1000D15%D̄50 132 160 160 *4343.26 - 86400.00 135 147 -9.80 7762.67
w-P200D10%D̄90 18 24 24 *665.54 20.03 86400.00 19 27 -2.85 15655.03
w-P400D10%D̄90 40 50 50 *1302.82 - 86400.00 39 49 -2.89 9645.66

The decomposition strategy proves effective and yields equivalent or better deviation values than solving the complete
rCAPsac formulation by CPLEX within the defined time limit. In fact, it is able to find a best known makespan
for several instances, as indicated by the negative deviations in the table. However, for a couple of instances, i.e.,
(“u−P400D7%D90”, “w−P200D7%D50”, “w−P400D10%D50”, “w−P200D10%D70”), the decomposition al-
gorithm is not able to attain the best known solutions obtained in [61]. For those cases, we observe that the intervals
[n`, nu] must be increased to allow subsets of photos whose cardinalities are out of the defined bounds. For example,
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for instance u−P400D7%D90, the best known solution contains a sub-region with 60 photos while the last iteration
of the decomposition method was executed for [n`, nu] = [64, 70]. Finally, the decomposition method demands
significant smaller execution times than solving the complete rCAPsac formulation by CPLEX as well as, in general,
the formulations in [61].

5.3 Effectiveness of the neighborhoods

To assess the sequence of neighborhoods in our proposed VND, we compare the performance of distinct neighborhood
configurations — N1, N1 +N2, N1 +N3, N1 +N2 +N3 — within our proposed VNS method, where N1 refers
to the sub-region transfer neighborhood, N2 refers to sub-region swap neighborhood, and N3 refers to the splitting
hyperplane reallocation neighborhood.

Tables 5 and 6 report the results of the unweighted and weighted instances, respectively. For each “Instance” and
reliability factor “σ”, the column “MIN.” presents the shortest makespan found across all neighborhood configurations.
The average percentage deviation from “MIN.” achieved by each neighborhood configuration is reported in columns
“Avg(%)”.

The results are computed for 20 executions of the VNS-based heuristics within 300s of CPU execution time. These
experiments are conducted over different reliability factors σ > 1 so as that the sub-region transfer neighborhood
could be evaluated. Moreover, we do not present results for instances with fewer than five 3D-capable drones since all
neighborhood configurations performed equivalently.

Table 5: Percentage deviations of employing distinct neighborhoods in the VND when solving unweighted instances.

T̂ = ∞, stop condition= 300s
VNS

N1 N1 + N2 N1 + N3 N1+N2+N3

Instance σ MIN. Avg.(%) Avg.(%) Avg.(%) Avg.(%)

u-P200D10%D̄50
2 2137.60 0.00 0.00 0.00 0.00
3 3206.40 0.00 0.00 0.00 0.00
4 4275.20 0.00 0.00 0.00 0.00

u-P400D10%D̄50
2 4275.20 0.00 0.00 0.00 0.00
3 6412.80 0.00 0.00 0.00 0.00
4 8550.40 0.00 0.00 0.00 0.00

u-P200D7%D̄90
2 1790.24 0.00 0.00 0.00 0.00
3 2672.00 0.00 0.00 0.00 0.00
4 3580.48 0.00 0.00 0.00 0.00

u-P400D7%D̄90
2 3580.48 0.00 0.00 0.00 0.00
3 5344.00 0.00 0.00 0.00 0.00
4 7134.24 0.00 0.00 0.00 0.00

u-P200D10%D̄70
2 1549.76 0.86 0.09 0.00 0.00
3 2297.92 0.64 0.35 0.35 0.06
4 3072.80 0.04 0.17 0.09 0.04

u-P400D10%D̄70
2 3072.80 0.43 0.52 0.04 0.00
3 4595.84 0.52 1.98 0.23 0.12
4 6118.88 0.39 0.44 0.39 0.31

u-P500D15%D̄50
2 3847.68 0.42 0.62 0.00 0.00
3 5744.80 0.56 1.23 0.23 0.05
4 7641.92 0.89 0.77 0.70 0.61

u-P750D15%D̄50
2 5744.80 1.02 1.26 0.44 0.47
3 8630.56 1.24 0.46 0.26 0.20
4 11489.60 0.64 0.42 0.23 0.16

u-P1000D15%D̄50
2 7641.92 1.17 1.01 0.65 0.52
3 11462.88 1.42 0.65 0.37 1.25
4 15283.84 0.62 0.64 0.52 0.43

u-P200D10%D̄90
2 1202.40 0.56 0.11 0.00 0.11
3 1790.24 0.00 0.00 0.00 0.00
4 2378.08 1.12 1.01 1.12 0.96

u-P400D10%D̄90
2 2404.80 0.22 0.11 0.00 0.00
3 3580.48 0.00 0.00 0.00 0.00
4 4756.16 0.79 0.56 0.53 0.45

Average 0.41 0.38 0.19 0.17
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Table 6: Percentage deviations of employing distinct neighborhoods in the VND when solving weighted instances.

T̂ = ∞, stop condition= 300s
VNS

N1 N1 + N2 N1 + N3 N1+N2+N3

Instance σ MIN. Avg.(%) Avg.(%) Avg.(%) Avg.(%)

w-P200D10%D̄50
2 2212.64 0.18 0.16 0.11 0.06
3 3314.91 0.16 0.18 0.15 0.16
4 4436.74 0.03 0.02 0.02 0.02

w-P400D10%D̄50
2 4433.53 0.19 0.22 0.08 0.09
3 6648.11 0.22 0.24 0.13 0.15
4 8901.19 0.01 0.03 0.03 0.02

w-P200D7%D̄90
2 1816.30 0.14 0.16 0.04 0.03
3 2724.19 0.00 0.00 0.00 0.00
4 3632.45 0.06 0.06 0.03 0.02

w-P400D7%D̄90
2 3697.18 0.11 0.11 0.02 0.02
3 5545.48 0.00 0.00 0.00 0.00
4 7394.18 0.06 0.06 0.03 0.03

w-P200D10%D̄70
2 1577.87 0.97 0.84 0.40 0.30
3 2365.78 0.63 0.49 0.43 0.26
4 3155.85 0.66 0.40 0.34 0.33

w-P400D10%D̄70
2 3164.05 0.65 0.91 0.47 0.33
3 4747.60 0.52 0.35 0.37 0.18
4 6326.53 0.57 0.40 0.35 0.32

w-P500D15%D̄50
2 3902.67 0.79 0.68 0.27 0.27
3 5852.50 1.33 1.18 0.27 0.21
4 7801.65 0.72 0.54 0.31 0.22

w-P750D15%D̄50
2 5843.52 0.67 0.99 0.28 0.27
3 8762.21 0.58 0.44 0.32 0.24
4 11679.59 0.70 0.55 0.32 0.28

w-P1000D15%D̄50
2 7724.25 1.08 1.04 0.34 0.37
3 11590.54 0.58 1.11 0.32 0.21
4 15451.40 0.58 0.36 0.19 0.26

w-P200D10%D̄90
2 1230.42 1.10 1.08 0.66 0.74
3 1838.98 0.13 0.16 0.02 0.02
4 2454.44 0.51 0.28 0.42 0.22

w-P400D10%D̄90
2 2463.59 1.05 0.69 0.62 0.48
3 3688.59 0.10 0.13 0.01 0.01
4 4922.46 0.56 0.26 0.30 0.17

Average 0.47 0.43 0.23 0.19

We can observe that the splitting hyperplane reallocation neighborhood (N3) is an important neighborhood for
improving the quality of the solutions obtained by our VNS. This is not surprising given that it is the only one able to
change photo-processing times of sub-regions. The best results are usually obtained when including the neighborhoods
N1 andN2 beforeN3 (i.e.,N1 +N2 +N3 configuration). This happens since theN1 +N2 +N3 configuration adjusts
both the sub-region to drone assignments and the sub-region’s photo processing times. In fact, this configuration yields
the best average deviations for 57 out of 66 cases (including unweighted and weighted instances), i.e. , 86.36% of the
cases. Therefore, we will consider hereafter the configuration N1 +N2 +N3 within our VNS heuristic.

5.4 Comparison of the proposed methods

This section evaluates the performance of the proposed heuristics as well as their sensitivity with respect to the
reliability factor σ and to the maximum allowed transmission time T̂ . For the decomposition-based heuristic (named
“Decomposition”), we set a time limit of 2 hours for the MIP formulation solved in each iteration and the overall
execution time of the decomposition is limited to 24 hours (i.e., 86,400s). In contrast, the VNS was allowed to run for
300 seconds.

The makespan values in seconds (columns “Tmax”) obtained by the proposed methods for the unweighted and weighted
instances are reported in Tables 7 and 8, respectively. Results are reported for each instance for various values of σ,
ranging from 1 to |D̄| − 1 (presented under column labelled “σ”). A trace (“−”) is placed whenever a method cannot
find a feasible solution until before being halted. For this first series of experiments the communication constraints
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were relaxed, i.e., T̂ is set to a value sufficiently large. Both tables report the instance employed at each row (column
“Instance”), the optimal/best known makespan for an instance configuration (column “OPT”), the CPU time (in seconds)
spent by CPLEX and the decomposition heuristic when solving an instance (columns “sec.”), the best and average
makespan values found by the VNS heuristic out of 20 executions (column “Best Tmax” and “AvgTmax”, respectively),
and the average CPU time (in seconds) spent by the VNS heuristic to reach the solution returned at the end of its
execution (column “Avg.(s)”).

Table 7: Makespan(Tmax) in seconds when solving unweighted instances and varying σ.

parameters: T̂ = ∞
Decomposition VNS

time limit = 86400s stop condition = 300s

Instance σ OPT sec. Tmax sec. Best Tmax Avg.Tmax Avg.(s)

u-P200D5%D̄70
1 1870.40 15.05 1870.40 0.26 1870.40 1870.40 0.01
2 3607.20 112.83 3607.20 0.31 3607.20 3607.20 0.01

u-P200D7%D̄50
1 1870.40 10.25 1870.40 0.42 1870.40 1870.40 0.01
2 3607.20 100.99 3607.20 0.59 3607.20 3607.20 0.01

u-P400D5%D̄70
1 3607.20 41.22 3607.20 1.03 3607.20 3607.20 0.01
2 7214.40 539.52 7214.40 1.14 7214.40 7214.40 0.02

u-P400D7%D̄50
1 3607.20 68.28 3607.20 1.50 3607.20 3607.20 0.02
2 7214.40 1637.54 7214.40 1.54 7214.40 7214.40 0.03

u-P200D5%D̄90
1 1336.00 7.06 1336.00 0.10 1336.00 1336.00 0.01
2 2672.00 1680.46 2672.00 0.12 2672.00 2672.00 0.01
3 4008.00 870.76 4008.00 0.11 4008.00 4008.00 0.50

u-P200D7%D̄70
1 1336.00 6.41 1336.00 0.19 1336.00 1336.00 0.04
2 2672.00 2296.34 2672.00 0.26 2672.00 2672.00 0.01
3 4008.00 1150.97 4008.00 0.21 4008.00 4008.00 0.71

u-P400D5%D̄90
1 2672.00 35.02 2672.00 0.47 2672.00 2672.00 0.04
2 *5344.00 86400.00 5344.00 0.44 5344.00 5344.00 0.01
3 8016.00 4593.69 8016.00 0.46 8016.00 8016.00 4.66

u-P400D7%D̄70
1 2672.00 59.71 2672.00 0.58 2672.00 2672.00 0.12
2 *5344.00 86400.00 5344.00 0.76 5344.00 5344.00 0.01
3 8016.00 5954.75 8016.00 0.79 8016.00 8016.00 6.29

u-P200D10%D̄50

1 1068.80 38.94 1068.80 1.46 1068.80 1068.80 0.08
2 2137.60 20602.10 2137.60 0.71 2137.60 2137.60 0.15
3 *3286.56 86400.00 3206.40 1.79 3206.40 3206.40 0.17
4 4275.20 56226.05 4275.20 8.87 4275.20 4275.20 2.21

u-P400D10%D̄50

1 2137.60 107.68 2137.60 5.75 2137.60 2137.60 0.14
2 *4275.20 86400.00 4275.20 2.87 4275.20 4275.20 0.24
3 *6519.68 86400.00 6412.80 3.64 6412.80 6412.80 0.90
4 *8550.40 86400.00 8550.40 2.93 8550.40 8550.40 5.27

u-P200D7%D̄90

1 908.48 49.52 908.48 8.12 908.48 908.48 1.73
2 *1816.96 86400.00 1790.24 17.56 1790.24 1790.24 0.12
3 *2672.00 86400.00 2672.00 14.76 2672.00 2672.00 0.01
4 *3607.20 86400.00 3580.48 23.89 3580.48 3580.48 0.46
5 *4542.40 86400.00 4488.96 444.98 4488.96 4526.37 21.96

u-P400D7%D̄90

1 *1816.96 86400.00 1843.68 13.32 1816.96 1816.96 1.11
2 *3580.48 86400.00 3580.48 14.69 3580.48 3580.48 0.31
3 *5477.60 86400.00 5344.00 15.52 5344.00 5344.00 0.01
4 *7748.80 86400.00 7160.96 2449.49 7134.24 7134.24 8.05
5 *10688.00 86400.00 8924.48 64.40 8924.48 9018.00 63.95

The table continues on next page

20



Heuristics for optimizing 3D mapping missions over swarm-powered ad hoc clouds

parameters: T̂ = ∞
Decomposition VNS

time limit = 86400s stop condition = 300s

Instance σ OPT sec. Tmax sec. Best Tmax Avg.Tmax Avg.(s)

u-P200D10%D̄70

1 *801.60 86400.00 801.60 108.54 801.60 801.60 1.85
2 *1603.20 86400.00 1549.76 1136.86 1549.76 1549.76 10.43
3 - - 2297.92 30.52 2297.92 2299.26 74.77
4 - - 3072.80 55.08 3072.80 3074.14 40.66
5 *4328.64 86400.00 3847.68 597.09 3847.68 3847.68 17.27
6 *5718.08 86400.00 4595.84 184.89 4649.28 4670.66 51.14

u-P400D10%D̄70

1 *1603.20 86400.00 1549.76 2183.17 1549.76 1563.12 64.66
2 - - 3072.80 16065.91 3072.80 3072.80 56.34
3 - - 4595.84 296.30 4595.84 4602.52 70.87
4 - - 6118.88 7915.51 6118.88 6137.58 34.18
5 - - 7668.64 21612.06 7641.92 7686.01 62.77
6 - - 9191.68 5877.11 9218.40 9352.00 79.74

u-P500D15%D̄50

1 1923.84 16185.19 1923.84 329.20 1923.84 1959.91 97.38
2 - - 3847.68 14417.75 3847.68 3847.68 13.77
3 - - 5744.80 21621.88 5744.80 5747.47 76.45
4 - - 7641.92 14412.51 7641.92 7688.68 36.03
5 - - 9565.76 14413.03 9565.76 9611.18 27.35
6 - - 11489.60 8106.20 11489.60 11696.68 58.85

u-P750D15%D̄50

1 *3126.24 86400.00 2885.76 270.72 2885.76 2933.86 52.65
2 - - 5744.80 17315.08 5744.80 5771.52 78.88
3 - - 8657.28 14419.11 8630.56 8649.26 91.33
4 - - 11462.88 14419.09 11489.60 11508.30 76.75
5 - - 14348.64 14421.91 14428.80 14434.14 35.91
6 - - 17234.40 14418.32 17234.40 17485.57 37.64

u-P1000D15%D̄50

1 *3847.68 86400.00 3847.68 7424.05 3847.68 3950.55 64.74
2 - - 7695.36 14439.34 7641.92 7682.00 36.38
3 - - - 86400.00 11489.60 11605.83 67.56
4 - - - 86400.00 15283.84 15349.30 76.41
5 - - 19131.52 14433.69 19104.80 19234.39 66.49
6 - - - 86400.00 22979.20 23410.73 112.49

u-P200D10%D̄90

1 *641.28 86400.00 641.28 3201.67 641.28 641.28 17.94
2 - - 1202.40 3589.18 1202.40 1203.74 10.09
3 *2030.72 86400.00 1790.24 297.44 1790.24 1790.24 0.15
4 - - 2404.80 10993.74 2378.08 2400.79 1.89
5 - - 2992.64 1200.84 2992.64 2992.64 12.98
6 - - 3580.48 7224.15 3580.48 3580.48 0.21
7 - - 4168.32 2382.04 4168.32 4217.75 43.90
8 - - 4782.88 7820.39 4809.60 4817.62 13.23

u-P400D10%D̄90

1 1202.40 17470.88 1202.40 3376.48 1202.40 1241.14 131.36
2 - - 2378.08 903.16 2404.80 2404.80 8.97
3 - - 3580.48 262.56 3580.48 3580.48 0.08
4 - - 4756.16 991.95 4756.16 4777.54 58.81
5 - - 5958.56 255.96 5958.56 5975.93 59.92
6 - - 7134.24 862.01 7134.24 7134.24 1.96
7 - - 8336.64 183.60 8336.64 8379.39 69.29
8 - - 9512.32 240.45 9619.20 9619.20 31.49
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Table 8: Makespan(Tmax) in seconds when solving weighted instances and varying σ.

parameters: T̂ = ∞
Decomposition VNS

time limit = 86400s stop condition = 300s

Instance σ OPT sec. Tmax sec. Best Tmax Avg.Tmax Avg.(s)

w-P200D5%D̄70
1 1886.98 15.84 1886.98 0.39 1886.98 1886.98 0.01
2 3699.67 172.46 3699.67 0.37 3699.67 3699.67 0.02

w-P200D7%D̄50
1 1885.31 22.74 1946.84 0.41 1885.31 1885.31 0.03
2 3740.19 653.34 3740.19 0.47 3740.19 3740.19 0.04

w-P400D5%D̄70
1 3735.32 79.99 3735.32 1.20 3735.32 3735.32 0.01
2 7457.00 1988.79 7458.55 1.22 7458.55 7458.55 0.19

w-P400D7%D̄50
1 3773.12 94.42 3773.12 2.47 3773.12 3773.12 0.03
2 7436.46 1464.54 7436.46 1.53 7436.46 7436.46 0.26

w-P200D5%D̄90
1 1409.48 212.44 1409.48 0.26 1409.48 1409.48 0.08
2 2735.45 34294.09 2736.79 0.33 2735.45 2736.23 0.90
3 *4148.52 86400.00 4148.52 0.34 4148.52 4148.52 0.78

w-P200D7%D̄70
1 1399.82 453.18 1399.82 0.55 1399.82 1399.82 0.10
2 2724.20 2647.32 2726.87 0.50 2724.20 2725.04 0.40
3 *4105.25 86400.00 4105.25 0.59 4105.25 4105.25 3.41

w-P400D5%D̄90
1 2812.93 925.85 2812.93 0.56 2812.93 2812.93 0.14
2 *5555.98 86400.00 5568.43 0.75 5555.12 5555.30 13.20
3 *8381.36 86400.00 8381.36 0.74 8381.36 8381.36 4.07

w-P400D7%D̄70
1 2791.66 605.48 2791.66 1.74 2791.66 2791.66 0.15
2 *5545.75 86400.00 5555.17 1.37 5545.49 5545.51 3.73
3 *8346.83 86400.00 8346.83 1.43 8346.83 8346.83 13.77

w-P200D10%D̄50

1 1121.89 3611.52 1121.89 13.61 1121.89 1121.89 42.04
2 *2222.97 86400.00 2216.51 99.52 2212.64 2213.97 126.59
3 *3329.75 86400.00 3314.91 69.04 3314.91 3320.12 54.75
4 *4509.50 86400.00 4436.74 19.78 4436.74 4437.46 76.78

w-P400D10%D̄50

1 2290.48 40443.02 2316.78 34.98 2290.48 2290.48 6.50
2 *4591.18 86400.00 4445.09 16.37 4434.52 4437.33 78.96
3 *6765.02 86400.00 6650.29 19.40 6648.11 6657.81 86.10
4 *9938.25 86400.00 8901.19 73.87 8901.19 8902.89 58.79

w-P200D7%D̄90

1 944.06 8669.90 944.06 17.64 944.06 944.06 58.91
2 *1838.27 86400.00 1818.19 315.24 1816.30 1816.84 94.62
3 *2737.73 86400.00 2724.26 193.49 2724.19 2724.19 151.52
4 *3784.47 86400.00 3633.31 2826.81 3632.45 3633.19 149.25
5 *4952.71 86400.00 4582.94 2834.41 4585.65 4600.59 133.66

w-P400D7%D̄90

1 *1909.18 86400.00 1891.23 54.26 1891.23 1904.24 125.80
2 *3922.21 86400.00 3701.03 319.12 3697.34 3697.90 113.25
3 *5567.01 86400.00 5545.72 49.86 5545.48 5545.48 78.77
4 *9094.33 86400.00 7398.95 7395.50 7394.18 7396.18 130.84
5 - - 9302.92 15918.34 9300.46 9361.46 113.56

w-P200D10%D̄70

1 820.40 62142.01 822.78 1015.08 825.06 825.06 81.79
2 - - 1577.97 11209.34 1577.87 1582.31 115.51
3 *2446.63 86400.00 2372.45 14413.80 2365.78 2371.93 149.33
4 *4168.27 86400.00 3159.91 8257.01 3157.05 3165.93 107.74
5 *4198.12 86400.00 3945.45 22388.35 3947.86 3958.33 68.83
6 *5613.12 86400.00 4763.35 5832.36 4763.35 4809.49 58.26

The table continues on next page
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parameters: T̂ = ∞
Decomposition VNS

time limit = 86400s stop condition = 300s

Instance σ OPT sec. Tmax sec. Best Tmax Avg.Tmax Avg.(s)

w-P400D10%D̄70

1 *1671.12 86400.00 1632.77 7249.23 1633.77 1639.62 114.80
2 *3303.16 86400.00 3166.70 27629.18 3164.05 3175.29 134.49
3 - - 4748.65 21612.15 4747.60 4756.31 127.08
4 *7080.11 86400.00 6335.64 28821.90 6334.85 6347.79 101.82
5 *8989.29 86400.00 7918.13 21613.88 7911.42 7943.12 96.72
6 - - 9529.57 21616.77 9534.57 9630.75 73.83

w-P500D15%D̄50

1 *2028.11 86400.00 1979.39 1826.05 1988.39 2007.95 55.76
2 - - 3905.71 11820.59 3902.44 3913.18 128.80
3 - - 5851.96 21620.22 5855.56 5864.11 144.98
4 - - 7800.26 14410.70 7804.04 7818.67 135.90
5 - - 9753.65 28826.40 9750.66 9790.69 95.56
6 - - 11730.98 21619.57 11776.53 11904.97 112.61

w-P750D15%D̄50

1 *3138.73 86400.00 2984.54 2474.51 3008.45 3047.97 105.02
2 - - 5849.27 7556.80 5844.06 5858.75 101.48
3 - - 8767.62 19072.32 8762.21 8784.29 126.76
4 - - 11680.18 21624.97 11679.59 11712.72 144.81
5 - - 14602.86 19282.36 14610.90 14665.37 80.64
6 - - - 86400.00 17665.34 17820.95 130.71

w-P1000D15%D̄50

1 *4343.26 86400.00 3917.65 7657.63 3962.55 4020.12 86.24
2 - - 7740.00 14407.20 7724.25 7752.53 142.33
3 - - - 86400.00 11594.43 11614.93 122.14
4 - - - 86400.00 15467.11 15493.21 112.32
5 - - 19306.31 11764.35 19315.50 19383.26 112.98
6 - - 23253.94 14438.73 23309.74 23647.27 108.75

w-P200D10%D̄90

1 *665.54 86400.00 646.58 15579.50 659.08 662.94 121.04
2 - - 1237.80 21616.32 1230.42 1239.56 74.07
3 - - 1840.77 28840.56 1838.98 1839.37 104.40
4 - - 2460.09 21622.26 2454.44 2459.90 81.69
5 - - 3069.42 28825.47 3067.49 3076.62 90.21
6 - - 3678.99 36027.84 3678.08 3678.69 92.09
7 - - 4305.23 21622.02 4300.25 4330.28 105.68
8 - - 4943.87 21621.77 4954.66 4978.82 73.89

w-P400D10%D̄90

1 *1302.82 86400.00 1265.11 9770.29 1270.19 1309.43 105.74
2 - - 2468.59 14732.29 2467.42 2475.52 89.36
3 - - 3690.58 21646.61 3688.64 3689.12 145.47
4 - - 4925.60 21659.91 4924.38 4930.98 105.31
5 - - 6151.24 21651.88 6158.54 6169.61 98.90
6 - - 7378.95 21647.51 7377.22 7378.39 89.97
7 - - 8615.73 19407.21 8611.91 8655.26 101.35
8 - - 9893.10 17639.44 9929.49 9981.36 75.65

We observe from the tables that both decomposition and VNS methods performed well for all instances tested. In fact,
both methods find solutions when the exact method fails. In general, it appears that increasing the reliability factor does
not affect the performance of the proposed heuristic methods.

Furthermore, the decomposition could reach the optimum or improve (values indicated in bold) the best known
makespan (cases with “∗” in the column “OPT”) in several instances, except for the cases “u-P400D7%D90” (σ = 1),
“w-P200D7%D50” (σ = 1), “w-P400D5%D̄70” (σ = 2), “w-P200D5%D̄90” (σ = 2), “w-P400D5%D̄90” (σ = 2),
“w-P400D10%D50” (σ = 1),
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“w-P200D7%D̄70”(σ = 2), “w-P400D7%D̄70”(σ = 2), and “w-P200D10%D70” (σ = 1) for which more iterations
without improving the objective function need to be done by the method in order to be able to obtain best known
solutions (as discussed in Section 5.2). Otherwise, it kept the percentage deviations w.r.t. the optimum below 1.47%
(“u-P400D7%D̄90 and σ = 1”) for the unweighted instances and below 3.26% (“w-P200D7%D̄50” and σ = 1) for
the weighted cases. Moreover, the decomposition method usually requires considerable smaller execution times than
the time spent by CPLEX (first column “sec”) to find the optima (or the best known solution for the cases with “∗”)
reported in the column “OPT”.

Regarding the VNS-based heuristic, it also presented good performance. It is the fastest proposed method, with
average makespan deviation w.r.t. the best known solution always inferior to 3.22%(“u-P400D10%D̄90” and σ = 1)
for unweighted instances, and inferior to 0.57%(“w-P200D10%D̄70” and σ = 1) for weighted ones. Besides, VNS
solutions are in average better than the best known makespan in 42 instances of the instances tested (values in bold).

Those average makespan values (column “Avg.Tmax”) improvements yield average reduction of 6.14% and 5.17% for
the unweighted and weighted cases, respectively. In particular, the VNS heuristic is the unique method reaching feasible
solutions for the instances “u-P1000D15%D̄50” (σ ∈ {3, 4, 6}), and “w-P1000D15%D̄50” (σ ∈ {3, 4}). Finally, the
VNS heuristic is more reliable in terms of finding near-optimal solutions within a small time horizon when compared to
the decomposition method.

The choice of representing a solution through a spatial partition tree as shown in Section 4.2 is very important to
simplify the exploration of neighboring solutions. However, such representation is not able to represent all the possible
spatial-convex covering of the solution space. For instance, Figure 10 illustrates an example of covering (dashed lines)
which cannot be represented by the adopted spatial-partition tree data structure. Representing such covering would
require the use of another data structure. Our VNS explores rather efficiently the solution space, although it is proven
not capable of visiting all the feasible solutions for the CAPsac.
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Figure 10: Spatial-convex covering which cannot be represented by the adopted spatial-partition tree data structure.

Regarding the sensitivity analysis of the proposed methods to the parameter T̂ , that is done by progressively decreasing
the value of T̂ by 1 second until the communication delays turn the problem infeasible. In particular, the experiments
are concentrated upon the instances “u-P200D5%D̄70” and “w-P200D5%D̄70” with σ = 1. In these instances, the
longest communication delays found when executing the decomposition heuristic and the VNS (for 20 runs), when no
constraints are imposed to the maximum transmission time (i.e. , T̂ = +∞), vary between 33.6s and 48s. For that
reason, the first value of T̂ used in our experiments was 60 seconds, being decreased by 1 second for each tested T̂
down to T̂ = 23s, when both instances are actually proved infeasible by CPLEX.

Figure 11 presents the results of instances “u-P200D5%D̄70” and “w-P200D5%D̄70” obtained by the decomposition-
based and the VNS heuristics for T̂ ∈ {24s, 25s, 26s, . . . , 59s, 60s}. The figure shows how decreasing T̂ values affect
the ability of the proposed methods to achieve optimal or near-optimal solutions. We used distinct shaded regions in
the figure to represent the different optimal T ∗max values obtained within the interval of tested T̂ values. Thus, we can
observe for instance “u-P200D5%D̄70” two shaded regions before the problem becomes infeasible for T̂ < 24s, one in
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which T ∗max = 2939.20 for T̂ = [24s, 33s], and another in which T ∗max = 1870.40 for T̂ = [34s, 60s]. The vertical
axis “Dev.(%)” in the figure reports the percentage deviation w.r.t. the optimum T ∗max in the shaded region associated
with each value of T̂ tested. Green lines and “•” symbols represent the deviations obtained by the decomposition-based
method (named “Decomp.”) whereas the average deviation achieved by 20 runs of the VNS method (denoted by “VNS”)
are represented by the orange lines and empty “◦”.
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Figure 11: Percentage deviation achieved varying T̂ for instances “u-P200D5%D̄70” (top) and “w-P200D5%D̄70”
(bottom).

It can be observed in Figure 11 from the unweighted instance that the decomposition-based method achieves optimality
for most of the tested T̂ values except for 27s ≤ T̂ ≤ 33s where it reaches percentage deviations up to 27.27%. Those
high deviations are mainly due to the T ∗max increase for T̂ ≤ 33s, from 1870.40 to 2939.20. We observed that for
27s ≤ T̂ the initial bounds n` and nu of the decomposition method are not good estimates for the cardinalities of the
sub-regions that compose the optimal solutions, and thus, the heuristic is likely to finish before reaching a near-optimal
solution. For 24s ≤ T̂ ≤ 26s, the initial limits n` and nu lead to infeasible problems until they are large enough to
encompass feasible solutions, which were in this case, close to optima. In contrast, the VNS method achieves optimality
for all tested T̂ values when solving the unweighted case.
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Regarding the weighted case, the decomposition method presents similar behavior as when solving the unweighted case,
and its solution deviation goes up to 28.42% for 27s ≤ T̂ ≤ 33s. The first T ∗max increase from 1886.98 to 1934.39 (i.e.
+2.5%) was not sufficient to affect the quality of the solution obtained by the decomposition. The VNS only presents
small increases in the average deviation for 36s ≤ T̂ ≤ 47s but they never surpass 1.25%, otherwise the VNS reaches
optimality.

We remark that the VNS method constructs its initial solution in our experiments using T̂=+∞. This means that the
VNS initial solutions may be infeasible in terms of the transmission delays. Our experiments allowed us to observe that
the proposed VNS was able to find feasible solutions even from infeasible starting points.

6 Conclusions

We addressed the optimization of the 3D reconstruction step within a swarm-powered 3D mapping mission according to
the so-called Covering-Assignment Problem for swarm-powered ad hoc clouds - CAPsac. It minimizes the completion
time of the 3D reconstruction photo-processing phase by exploiting the distributed computational power of the swarm
of drones. This was achieved by integrating the photo covering (workload) optimization along with the assignment of
the drones to the photo processing subtasks (i.e., sub-regions).

Since time is a very precious resource in emergency field operations supported by UAVs, the limited computation time
— in the order of a couple of minutes for the biggest and more complex instances, we proposed two heuristic algorithms
to solve this NP-hard problem in a limited amount of time (i) a mathematical programming-based heuristic as well as a
(ii) Variable Neighborhood Search method.

Despite the fact that we had focused on a swarm-powered distributed 3D reconstruction for humanitarian emergency
response application, the proposed methods can be deployed to any application in the CAPsac’s scope. Finally, the
methods can be adapted to consider auxiliary computing resources in addition to those offered by the UAV swarm.

Computational experiments were conducted with the unweighted and weighted realistic instances available online
at https://github.com/ds4dm/CAPsac to assess the performance of the proposed heuristic methods. The exper-
iments exposed that the VNS heuristic either quickly achieves near-optimal solutions or rapidly improves the best
known makespan for a vast number of instances. The decomposition-based heuristic is also effective in most of the
tested cases and is an efficient method when compared to solving the CAPsac formulations by commercial solvers.
Although the performance of decomposition-based heuristic deteriorates for some values of T̂ close to infeasibility, the
sensitivity analysis done for the decomposition and VNS methods demonstrated that those methods still perform well
when varying σ and T̂ .

Our current work with Humanitas Solutions (https://www.humanitas.io/) is focused on embedding the heuristics
proposed in this paper into real deployed UAV swarms.

Acknowledgements

The authors would like to thank all support from Humanitas Solutions and the Canada Excellence Research Chair in
Data Science for Real-Time Decision-Making. This work was financial supported in part by the Natural Sciences and
Engineering Research Council of Canada through the Canada Excellence Research Chair in data science for real-time
decision-making, in part by Prompt, and in part by MITACS. The computing resources were made available by Compute
Canada.

References
[1] Ying Tan and Zhong-Yang Zheng. Research advance in swarm robotics. Defence Technology, 9(1):18 – 39, 2013.

ISSN 2214-9147. doi: https://doi.org/10.1016/j.dt.2013.03.001.
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