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Abstract
In the family traveling salesman problem (FTSP), there is a set of cities which are
divided into a number of clusters called families. The salesman has to find a shortest
possible tour visiting a specific number of cities from each of the families without any
restriction of visiting one family before starting the visit of another one. In this work,
the general concept of the Partial OPtimization Metaheuristic Under Special Intensi-
fication Conditions is linked with the exact optimization by a classical solver using
a mathematical programming formulation for the FTSP to develop a matheuristic.
Moreover, a genetic and a simulated annealing algorithm are used as metaheuristics
embedded in the approach. The method is examined on a set of benchmark instances
and its performance is favorably compared with a state-of-the-art approach from lit-
erature. Moreover, a careful analysis of the specific components of the approach is
undertaken to provide insights into the impact of their interplay.
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1 Introduction

The traveling salesman problem (TSP) is one of the most investigated problems in
operations research. The classical TSP consists of N cities and a salesman tries to find
the shortest possible tour, which includes all the nodes and each one exactly once.
Matai et al. (2010) present many real-world applications for the TSP; vehicle routing
and communication networks are only two examples of them. The TSP is known to
be NP-hard based on the seminal exposition of Karp (1972) and, therefore, this also
holds for its generalizations.

The TSP has many variants and generalizations each representing a range of real-
world problems. In this paper, we focus on a challenging and emerging TSP variant,
which is the family TSP (FTSP). In this variant, we have some predetermined clusters
of cities called families. In the FTSP, it is sought to visit a predefined number of nodes
in each family and there is no obligation to visit the cities of each cluster contiguously.
A main application of the FTSP arises in the order picking problem in warehouses
where the goods of the same product type exist in different warehouses or in different
storage places within the same warehouse (Morán-Mirabal et al. 2014). In this case,
it is assumed that each product is a family and the number of members required to be
visited from the family is the demand of that product.

Considering the advantages as well as drawbacks of mathematical programming
and metaheuristics, matheuristics are developed to cover the strengths, take advantage
of both approaches and boost the optimization ability (Maniezzo et al. 2021). A spe-
cial characteristic of matheuristics is that the exploitation is done by benefiting from
the features of mathematical models; accordingly the name “model-based heuristics”
is sometimes used for such algorithms (Maniezzo et al. 2010). In this research, we
aim at developing a matheuristic for solving a specific generalization of the TSP. Our
method uses a mathematical programming approach for local optimization processes
in different parts of the solutions together with a genetic algorithm (GA) as its meta-
heuristic component. For details on the GA concept, interested readers can be referred
to Haupt and Haupt (2003). For local exact optimization, the mathematical model of
the problem is programmed in PYTHON and solved by the GUROBI solver (Gurobi
Optimization, LLC 2021). For more details on the use and the implementation of
metaheuristics for the TSP, we refer to Taillard (2023).

To be more specific, our matheuristic works by using a GA to provide some appro-
priate candidate solutions, and then, neighborhood searches in a selection of solutions
based on simulated annealing (SA) (Kirkpatrick et al. 1983) are performed. Subse-
quently, the solutions are improved by a procedure devised according to the concept
known as Partial OPtimization Metaheuristic Under Special Intensification Condi-
tions (POPMUSIC) (Taillard and Voss 2002). This improvement is made by working
each time on a part of the solution through applying the mathematical programming
model and using a standard solver like the Gurobi optimizer (Gurobi Optimization,
LLC 2021). Beyond finding an appropriate solution approach, our goal is also to
investigate the specific components within the solution approach to be able to provide
component-based insights into matheuristics and metaheuristics development as it is
demanded by, e.g., de Armas et al. (2022), Swan et al. (2022).
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Amatheuristic approach for the family traveling salesman problem 437

The outline of the remainder of this paper is as follows. Related works are intro-
duced in Sect. 2. Section3 is dedicated to explaining the corresponding mathematical
model. The solution methodology is presented in Sect. 4. Then, Sect. 5 discusses the
experiments and their results. Finally, the conclusions of this research are drawn in
Sect. 6.

2 Literature review

In this section,we review differentmethods adopted in the literature in order to propose
a suitable approach for the FTSP. Firstly, we start with adopted solution approaches
to deal with the FTSP. Then, we focus on matheuristics and particularly POPMUSIC.
Finally, we add a few pointers regarding the parametrization of GAs.

2.1 The family traveling salesman problem

The FTSP is a variant of the TSP which was introduced in Morán-Mirabal et al.
(2014). In that paper, the authors propose an integer programming formulation for the
problem, and it is shown that the CPLEX solver can only solve small instances of
the problem in reasonable time. The authors develop two randomized heuristics for
obtaining solutions to this problem. Bernardino and Paias (2018) introduce several
compact and non-compact models for the FTSP. One of the non-compact models is
able to solve instanceswith 127 nodes in less than 70s and one of the instanceswith 280
nodes in 3615s. Moreover, Bernardino and Paias (2021) present two metaheuristics
and a hybrid algorithm,which combines a branch-and-cut algorithmwith a local search
scheme. This method can already be classified as a matheuristic concept. The results
show that their proposed methods improve the previously best-known upper bounds.
Reyes Vega (2014) reviews the FTSP with capacitated agents, including the different
methods adopted for it.

A special case of the FTSP is the equality generalized TSP (GTSP), where the
number of cities which must be visited in each family is one. The equality GTSP is
investigated, e.g., in Cacchiani et al. (2010). Bernardino and Paias (2022) also address
the FTSP with incompatibility constraints, which is a special case of the problem
where it is not allowed to visit cities from incompatible families on the same route.

In Table 1, we summarize the works done in the FTSP field. Among others, we can
conclude that the GA is a propitious algorithm that shows success in solving the FTSP
(e.g. when combined with a local search; furthermore, branching techniques are also
successfully applied by Bernardino and Paias 2021). The combination of the two is
then an approach worth studying which has not yet been investigated for the FTSP
(Bernardino and Paias 2022; Bernardino et al. 2022).

2.2 Matheuristics

Matheuristics have been used for more than a decade as efficient alternatives for
pure exact and metaheuristic approaches to solve complex optimization problems. In
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Table 1 Studies on the FTSP

Author(s) Focus Algorithm(s)

Morán-Mirabal et al. (2014) Introduce the FTSP; describe an
integer programming
formulation for the problem

GRASP; biased random-key
genetic algorithm

Bernardino and Paias (2018) Propose several formulations for
the FTSP, divided into compact
formulations and non-compact
ones

Iterated local search (ILS) and
exact approaches

Bernardino and Paias (2022) Introduce a new variant of the
FTSP, which takes into account
incompatibilities between
families; propose two
mathematical models

Ant colony optimization; iterated
local search; branch-and-cut

Bernardino and Paias (2021) Propose two metaheuristics, a
population-based and a local
search method, and a hybrid
algorithm Develop an instance
generator to create additional
test instances with different
visiting patterns

GA with local search; iterated
local search hybrid;
branch-and-cut algorithm

Bernardino et al. (2022) Study a family TSP variant
present multiple mixed integer
linear programming
formulations

Branch and cut-based algorithms

fact, they have found applications in many real-life problems, including the inventory
routing problem (Vadseth et al. 2021; Su et al. 2020), various types of (vehicle) routing
problems (Bosco et al. 2014; Leggieri and Haouari 2018), the multi-depot ring star
problem (Hill and Voß 2016), the redundancy allocation problem (Caserta and Voß
2014), the airline crew rostering problem (Doi et al. 2018), the dynamic berth allocation
problem (Nishi et al. 2017), and generalized versions of the knapsack problem (Galli
et al. 2023), to name a few. For a comprehensive and detailed overview of the advances
in matheuristics, the interested reader is referred to Maniezzo et al. (2010), Maniezzo
et al. (2021).

In particular, the POPMUSIC algorithm fromTaillard andVoss (2002) has shown an
outstanding ability in combinatorial optimization problems, including the berth allo-
cation problem (Lalla-Ruiz and Voß 2014; Lalla-Ruiz et al. 2015), the point feature
label placement problem (Alvim and Taillard 2009), the capacitated vehicle routing
problem (Queiroga et al. 2021) and the multi-depot cumulative capacitated vehicle
routing problem (Lalla-Ruiz and Voß 2019). In particular for the TSP, as an extension
to Taillard (2017), Taillard and Helsgaun (2019) aim to build a list of good candidate
edges with a complexity lower than quadratic in the context of TSP instances given
by a general function. Their numerical results show that solutions of excellent quality
can be obtained with an empirical complexity lower than quadratic.Moreover, Taillard
(2022) proposes an adaptation of the approach. The method is tested on instances with
billions of cities. We can then conclude that POPMUSIC is an appropriate approach
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Amatheuristic approach for the family traveling salesman problem 439

to solve very large instances of the TSP. However, to our knowledge, the approach
has not yet been applied to the FTSP despite its practical importance. Additionally,
POPMUSIChas been successful in solving similar issues involving problemdecompo-
sition. In Table 2, we summarize some main related works which use the POPMUSIC
approach. More specifically, in that table, we focus on proposing a new hybridization
of a branching strategy or a population-based method to be applied to a TSP variant,
and papers applying it to a new domain.

Asmentioned above, POPMUSIC is all about decomposing a problem and combin-
ing a metaheuristic and a mathematical programming approach. Their combination
is done in different ways. In particular, the combination of the GA and branching
approaches demonstrates potential in tackling diverse combinatorial optimization
problems (Nagar et al. 1996; Poojari and Beasley 2009), including the TSP (Choi
et al. 2003). However, their combination is not done in a systematic way as in POP-
MUSIC, which we propose in the following sections.

2.3 Parametrization of genetic algorithms

Most metaheuristics are using one or more parameters. In many cases they can be
crucial for the success of amethod.Onedistinction refers towhether amethod is param-
eterized in general or whether the parameters need to be tuned for every instance. The
latter way for parametrization, known as per-instance or instance-aware parametriza-
tion, is often more effective (Hutter and Hamadi 2005). As an example, consider the
case of a GA, where small problem instances might be sufficiently solved by using
a small population while large instances need a larger population (see, e.g., Almeida
et al. 2013). In this paper, we adopt the response surface methodology (RSM; see, e.g.,
Box and Draper 2007), which is a widely used per-instance parametrization approach
(as indicated in, e.g., Hutter et al. 2014).

The RSM is a statistical and mathematical technique used to optimize and ana-
lyze complex systems, processes, or experiments. It is particularly helpful when the
relationship between input variables and the response of interest (output) is not easily
discernible or is too costly or time-consuming to evaluate through direct experimen-
tation.

RSM involves fitting a mathematical model to experimental data, typically using
regression analysis, to approximate the behavior of the system. This model, known
as the response surface, allows researchers to explore and identify the optimal input
settings that lead to the desired response. By systematically varying the input variables
and observing the corresponding responses, RSMhelps to efficiently locate the optimal
conditions that yield the best outcomes.

The method is widely applied in various fields such as engineering, manufacturing,
chemistry, and process optimization, where it aids in understanding the underlying
relationships between variables, reducing experimental efforts, and maximizing per-
formance or quality (e.g., de Oliveira et al. 2019).
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Table 2 Studies using the POPMUSIC approach

Author(s) Problem Contribution or findings

Ostertag et al. (2009) Vehicle routing problem with
time windows

A POPMUSIC combining a
population-based metaheuristic
with a decomposition strategy

Lalla-Ruiz et al. (2015) Berth allocation problem under
time-dependent limitations

The comparison with the best
algorithm in the related
literature shows that the
POPMUSIC improves its
solution quality in almost all
instance sets

Taillard and Helsgaun (2019) TSP Present how to build a list of
good candidate edges with a
complexity lower than
quadratic

Lalla-Ruiz and Voß (2019) Multi-depot cumulative
capacitated vehicle routing
problem

Adopt a POPMUSIC approach
that uses reduced versions of
the problem instance at hand as
a sub-problem to solve the
overall problem

Taillard (2022) TSP A linearithmic randomized
method based on the
POPMUSIC for generating
good and quick solutions to the
TSP

Queiroga et al. (2021) Capacitated vehicle routing
problem

A branch-cut-and-price algorithm
is used as a heuristic to solve
subproblems
POPMUSIC is successfully
applied

Yu et al. (2022) A multi-objective problem in
maritime shipping (joint berth
allocation and quay crane
assignment)

A combination of POPMUSIC
with K-means clustering

Xu et al. (2022) Precedence-Constrained Colored
TSP

An augmented variable
neighborhood search (VNS)
called POPMUSIC-based VNS
(adopting a mutation operator)

3 Mathematical models

The following notations and formulations express a general mathematical model for
the FTSP, which is based on the model of Morán-Mirabal et al. (2014) but includes
some slight modifications:
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Input Explanation

O The fixed start and end city of the salesman
V The set of vertices or cities except O
N The set of all cities N = V ∪ O
m The number of families
nvl The number of members from family l which must be visited; l ∈ {1, 2, . . . ,m}
K N The total number of cities (members) which must be visited; K N = ∑m

l=1 nvl
V1, V2, . . . , Vm Disjoint clusters of V so that V1 ∪ V2 ∪ · · · ∪ Vm = V , each regarded as a family
E The set of roads between any two cities (edges)
ci j The cost of traversing edge (i, j) ((i, j) ∈ E)
Variable
xi j Binary variable = 1 if edge (i, j) (∀i, j ∈ N ) is traversed by the salesman; otherwise = 0
ui Auxiliary variable which keeps the number of visited cities until city i in the tour

min z =
∑

i∈N

∑

j∈N
ci j xi j (1)

∑

i∈V
xOi = 1 (2)

∑

j∈V
x jO = 1 (3)

∑

i∈N
xi j ≤ 1 ∀ j ∈ V (4)

∑

j∈N
xi j ≤ 1 ∀i ∈ V (5)

∑

i∈N

∑

j∈N
xi j = K N + 1 (6)

∑

i∈N

∑

j∈Vl
xi j = nvl l = 1, 2, . . . ,m (7)

∑

i∈Vl

∑

j∈N
xi j = nvl l = 1, 2, . . . ,m (8)

∑

i∈N
xi j −

∑

i∈N
x ji = 0 ∀ j ∈ V (9)

ui − u j + (|N | − 1) × xi j ≤ |N | − 2 ∀i, j ∈ V ; i �= j (10)

1 ≤ ui ≤ |N | − 1 ∀i ∈ V (11)

xi j ∈ {0, 1} ∀i, j ∈ N (12)

The objective function (1) calculates the total cost of visiting the selected family
members; it has to be minimized. Constraints (2)–(3) set the start and the end of the
tour to be at city O. Constraints (4)–(5) ensure that each city is entered and left at
most once. Equation (6) ensures that the required family members are visited. Con-
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straints (7)–(8) imply entering and exiting the required number of members from each
family. The equal in-degree and out-degree of each node is guaranteed by constraints
(9), and constraints (10)–(11) are responsible for avoiding subtours. The method of
preventing subtours in this model is different from the one used by the base model
presented byMorán-Mirabal et al. (2014). This is based on theMiller–Tucker–Zemlin
formulation (Miller et al. 1960) and imposes lower complexity compared to the one of
Morán-Mirabal et al. (2014) because with that alternative formulation the number of
constraints sharply increases by the number of cities. For more details about subtour
elimination constraints for the FTSP see Bernardino and Paias (2018).

The presented mathematical model is based on an undirected graph, reflecting
the bidirectional nature of roads between any two cities, allowing traversal in both
directions. However, it is essential to consider that this model might be applied to an
asymmetric instance where the costs of traveling an edge in both directions are not
necessarily equal. In such cases, the edges of the graph would have distinct associ-
ated weights or costs depending on the direction of traversal. Hence, for asymmetric
instances, the graph can be considered as a directed one and each direction of an
edge can be regarded as a distinct arc. This adjustment accommodates scenarios in
which the transportation costs, travel times, or any other relevant factors may differ
depending on the direction in which the road is traveled, providing a more accurate
representation of the real-world conditions. The flexibility of this mathematical model
allows it to be applied to a wide range of transportation systems, both symmetric and
asymmetric, optimizing routes and efficiently addressing diverse scenarios.

4 Methodology

We use the concept of the POPMUSIC algorithm proposed in Taillard and Voss (2002)
to design an efficient matheuristic for the FTSP.

In our matheuristic, a simple GA is employed, which works iteratively on a popu-
lation of candidate solutions to improve them by genetic operators such as selection,
mutation and crossover. The initial population of this GA is generated randomly. The
solutions created by the genetic operators are merged with the original population
of the iteration, and then, a proportion of the new population is selected according
to the objective value by the roulette wheel method (see Blickle and Thiele 1996)
to be improved by SA. The SA optimization method explores neighboring solutions
around an incumbent solution to find an improved solution. It evaluates a specified
number of neighboring solutions based on their objective value, denoted as N BS, and
selects the neighboring solution with a certain probability determined by the formula

e
−( f (s)− f (s′))

T , where f (s) and f (s′) represent the objective values of the current and
neighboring solutions, respectively. The parameter T represents the current tempera-
ture of the system, which controls the likelihood of accepting solutions that may not
be better than the current one. By iteratively adjusting the temperature and exploring
the solution space, the SA method can escape local optima and ultimately converge
towards an optimal solution. In other words, we jump to the neighboring solution if it
has a better objective value; otherwise this action is done according to a probability
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which is directly proportional to the quality of the new solution and inversely pro-
portional to the temperature. This SA stops whenever it cannot improve the objective
value after a maximum number of consecutive iterations called MCU I SA (an abbre-
viation for Maximum Consecutive Unsuccessful Iterations of SA). The SA solutions
are similarly added to the previous population.

Subsequently, a number of the best solutions (PMB) regarding the objective value
and a number of other solutions (PMO) are also improved according to the POP-
MUSIC framework in each GA iteration. The members of PMO are selected again
probabilistically using the roulette wheel method.

In the POPMUSIC framework, the solutions are divided into K parts; then, each
time, one of these parts is chosen at random and an area including it and the D nearest
parts to it called altogether area A is processed by solving the mathematical model
of the problem. All variables except for those existing in A are fixed at their values
in a given incumbent solution. Consequently, the Gurobi solver is called to optimize
the active (non-fixed) variables, which are those existing within A. This procedure
continues until no further improvement is found in the solution. It means that if we
have consecutively tested all parts of a solution and the exact solving attempts cannot
make any improvement, we terminate the POPMUSIC procedure on that solution.

The collaboration of GA, SA and POPMUSIC continues until the number of con-
secutive unsuccessful GA iterations, i.e., iterations without any improvement in the
objective value, exceeds a limit. The pseudocode of this matheuristic algorithm is
presented in Algorithm 1.

The parameters of the used GA are the population size (nPop), the crossover rate
(Cross_rate), themutation rate (Mutat_rate), those of SA are the initial temperature
(T0) and cooling rate (CT ), the number of neighborhood searches (N BS) and themax-
imum number of consecutive stagnant iterations MCU I SA. The rate of best solutions
and other solutions for being improved by mathematical programming (PMB_rate
and PMO_rate, respectively), the number of solution parts (K ), and the number
of nearest parts (D) are the parameters belonging to POPMUSIC. Finally, the num-
ber of unsuccessful iterations (MCU I , an abbreviation for Maximum Consecutive
Unsuccessful Iterations) is an important parameter for the whole matheuristic.

The classical solution encoding scheme for the TSP is used here for the FTSP. A
similar approach is also used inBernardino andPaias (2021). This is a string containing
a permutation of the numbers fromone to |V | as shown in the first rowof Fig. 2. So each
cell of this structure contains the label of one city. In order to translate the structure
(chromosome) to an FTSP solution, it is assumed that the salesman visits the cities by
their order in the string but whenever it comes to a label belonging to a cluster, whose
required number of cities have already been visited, we ignore (eliminate) this city
and jump to the next one until it comes to a city that belongs to a family which is still
required to be visited.

As a simple example, if it is aimed at converting the first string shown in Fig. 2 to a
feasible solution for an FTSP with three families as {1,2,5}, {3,4,9} and {6,7,8,10},
and the assumption that the salesman must visit one city from the first, two cities from
the second and two cities from the third family, we obtain the tour 3–5–9–10–7. The
reason is that “3”, which is the first in the string, comes as the first city of the tour and
is from the second family. Then, there is “5” in the string, which belongs to the first
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Algorithm 1: The proposed matheuristic
Data: Problem inputs
Result: A feasible solution expected to be of good quality

1 Set the GA parameters: nPop, Cross_rate, Mutat_rate and MCU I , the SA parameters: T0, CT , NBS and MCU I SA as well as
the POPMUSIC parameters: PMB_rate, PMO_rate, K and D.

2 Generate nPop random candidate solutions.
3 Evaluate the solutions of the population based on their objective value.
4 I t = 1.
5 Initialize a variable called BO , which keeps the best objective value found so far.
6 while I t ≤ MCU I do
7 Choose the candidates for crossovers by roulette wheel selection.
8 Do the crossovers.
9 Do the mutations.

10 Evaluate the crossover and mutation results based on their objective value, and then merge them with the original population.
11 Choose a set PSA of candidates from the population by the roulette wheel selection.
12 Improve candidates of PSA by neighborhood searches based on SA.
13 Evaluate the SA results based on the objective value, and then, merge them with the previous population.
14 Sort the total population based on the objective values.
15 Choose PMB from the best solutions regarding the objective value and PMO based on the roulette wheel selection from other

solutions.
16 for Each solution spm ∈ (PMB ∪ PMO) do
17 Decompose spm in K parts, i.e., the set of parts is H = {part1, ..., partK }
18 Set P = ∅
19 while P �= {part1, ..., partK } do
20 Select a seed part sseed ∈ H and sseed �= P at random
21 Build a sub-problem R composed of sseed and its nearest D parts (corresponding to area A)
22 Optimize R through solving the mathematical formulation by the Gurobi solver
23 if The objective value of spm has been improved (decreased) then
24 Update solution S
25 P ← ∅ (Empty P)
26 else
27 Include sseed in P
28 end
29 end
30 end
31 Merge the POPMUSIC results with the population.
32 Sort the population based on the objective value and choose the first nPop best of them as the new population.
33 Set BO = Objective value of the first solution of the population.
34 if BO is improved in comparison to its previous value then
35 I t = 0
36 else
37 I t = I t + 1
38 end
39 end
40 Report BO .

family. Now the salesman is finished with the first family because only one city must
be visited from it. Therefore, the next node in the string, “2”, is not visited or ignored
regarding that it belongs to the first family. “9” is the next and is visited because two
cities from the second family must be visited and we still need one. Finally, we need to
visit two cities from the third family, “10” and then “7”, that come sooner in this order
and are chosen as the last cities of the tour in this string. In this way, the salesman
has visited the required number of cities from each family. This decoded solution is
shown for some example positions of the ten cities in Fig. 1, where the three families
are shown in different colors.

One-point crossovers are performed and the offspring chromosomes are repaired to
make their elements unique. For this sake the repeated cities are replaced by the cities
which do not exist in the string. The order of adding these required cities is according
to the order of the repeated cities, which are removed. In other words, the city with the
largest label from the former group comes to the gene containing the largest repeated
city label. The second-largest label of the lacking cities is put in the place of the second-
largest repeated city label and so on. Figure2 depicts a simple example for doing the
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Fig. 1 Decoding of the first
chromosome shown in Fig. 2 to
a feasible solution

Fig. 2 Crossover and required
repairs

crossover, and then, the required repairs to make the offspring results feasible. The
grey genes are the crossover points, and after exchanging the corresponding parts,
which include the genes from the beginning to the crossover point, “1” and “7” in the
first child and “3” and “5” in the second child are repeated. Therefore, their repetitions
are replaced by “3” and “5” and “1” and “7” in the first and second child, respectively.
The choice to utilize the classical crossover method is grounded in its proven track
record of yielding favorable results. On the other hand, some permutation-specific
crossover methods may appear more straightforward since they obviate the need for
child repair, but its outcomes are noticeably of inferior quality.

For mutation, completely new chromosomes are generated. The reason is that we
aim at providing enough diversity in the population. Another method of mutation is
to swap the elements in the chromosome. However, this operator is considered in our
SA process.

In the SA process, the neighborhood of a chromosome is defined as comprising all
chromosomes that differ in the position of either two nodes or edges. In other words,
a neighboring chromosome is build by either swapping the contents of two genes or
two pairs each including adjacent genes. The probability of doing each of these cases
is equal. For the first case the two genes are selected at random, while in the second
case two genes are randomly selected from 1 to |N |-1 (|N | is the number of nodes or
the chromosome length), and then, they and their immediate right genes make our two
gene pairs. The first and second neighborhood are shown in Figs. 3 and 4, respectively.
The grey genes are chosen randomly.

Each cell (gene) of this chromosome is considered as a solution part to apply
POPMUSIC. So K is equal to the number of genes. It means that each time a gene is
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Fig. 3 An example for a
neighboring chromosome by
swapping two nodes

Fig. 4 An example for a
neighboring chromosome by
swapping two pairs of adjacent
genes

Fig. 5 Applying POPMUSIC to
a chromosome

selected as sseed together with the D nearest genes to it, which are located on both of its
sides. They are selected one from the right, and then, one from the left, until D genes
are picked, and in case that we reach the beginning or end of the chromosome in one
side, the rest of the parts are all selected from the other side. These genes comprise the
area A and the variables corresponding to pairs of consecutive genes within this area
in the mathematical model are reset and optimized by the Gurobi solver, while other
variables are fixed at the values that the decoding of the chromosome shows. Figure5
depicts a simple example for the application of POPMUSIC on a chromosome. sseed
is shown in dark grey, D is equal to 5, so the last gene is chosen from the right. The D-
nearest genes to sseed are shown in grey. So x2,9, x9,10, x10,1, x1,4, x4,7 are optimized
by Gurobi through solving the corresponding sub-model.

5 Computational experiments

This section is divided into three parts of explaining the problem instances, the param-
eter setting, and the results. All our computational experiments are run on a computer
with a Core(TM) i7 processor, 3.10 GHz CPU and 16 GB of RAM. The used pro-
gramming language is PYTHON.

5.1 Instances

A set including numerous typical benchmark instances of the FTSP is used. This
set consists of 37 specific instances, which are also considered in Morán-Mirabal
et al. (2014), Bernardino and Paias (2018) and Bernardino and Paias (2021). These
instances are available at http://familytsp.rd.ciencias.ulisboa.pt/. Note that except the
last instance (rbg443_2), all others are symmetric in a metric space, where the triangle
inequality is respected. The characteristics of the investigated instances including their
number of cities, families, and known upper bounds (or optimal objective values) are
listed in Table 3.
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Table 3 The characteristics of the instances of Set 1, * optimal value

Instance No. of cities No. of families No. of visits Best-known upper bound

burma14_1 14 3 6 13.93*

burma14_2 14 3 10 25.66*

burma14_3 14 3 4 11.89*

bayg29_1 29 4 16 5345.86*

bayg29_2 29 4 17 5791.01*

bayg29_3 29 4 18 5544.33*

att48_1 48 5 34 23,686.00*

att48_2 48 5 25 20,609.10*

att48_3 48 5 15 9024.58*

bier127_1 127 10 62 33,709.70*

bier127_2 127 10 85 88,736.40*

bier127_3 127 10 60 47,726.30*

a280_1 280 20 179 1891.16

a280_2 280 20 155 1688.13

a280_3 280 20 141 1408.14*

gr666_1 666 30 357 1642.35

gr666_2 666 30 328 1293.96

gr666_3 666 30 328 1320.12

pr1002_1 1002 40 486 145,303.34

pr1002_2 1002 40 538 159,933.64

pr1002_3 1002 40 463 137,385.12

pr144_4 144 22 81 49,379

kroA150_3 150 16 117 20,880*

pr152_3 152 23 116 64,425

rat195_1 195 29 94 1285

rat195_3 195 29 145 1814

rat195_4 195 29 97 1320

kroA200_1 200 29 102 16,441

kroA200_3 200 29 159 24,471

kroB200_3 200 29 159 24,088

gr202_4 202 30 118 28,039

gr229_1 229 24 133 70,741

gil262_1 262 37 150 1526

gil262_3 262 37 212 1988

gil262_4 262 37 167 1671

pr264_2 264 37 93 28,748

rbg443_2 443 64 180 350
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Table 4 The intervals for the
parameters of our algorithm

Parameter Interval

nPop [50, 500]

Cross_rate [0.1, 0.7]

Mutat_rate [0.1, 0.7]

T0 [103, 106]

CT [1, 10]

N BS [10, 200]

MCU I SA [10, 50]

PMB_rate [0.1, 0.5]

PMO_rate [0.1, 0.5]

D [4, 40]

MCU I [10, 100]

K |N |

5.2 Parameter setting

Theparameter setting of our solutionmethodology is done separately for each instance,
and the required time is considered in the reported execution time of the algorithm.
The RSM (Box and Draper 2007) is applied for the parametrization, in which an
empirical wide interval for each parameter is the input to find a good value within
it. The parametrization with the RSM is implemented in R language. The considered
intervals are shown in Table 4.

Regarding our previous experiments on this FTSP and other problems, tuning the
parameters once and applying the same parameter values to all instances significantly
deteriorates the algorithm’s performance. Therefore, it is essential to investigate and
fine-tune the parameters specifically for each instance.

Regarding the necessity of doing numerous experiments, we limit the execution

time of each RSM experiment to
1

5
of a normal run time for each instance to avoid

long total execution times for the parametrization phase. For this sake, the instance is
run once with average values of parameters and the corresponding execution time is
measured and regarded as the normal run time.

K is considered to be equal to the number of cities or |N |. The reason for this
choice is that there are |V | genes or cells in the solution encoding structure and it is
an immediate idea to consider each as a solution part.

A parameter setting step is executed here before solving each benchmark instance.
The chosen values are shown in Table 5.

5.3 Results

As the comparative approach from literature, the hybrid method presented in
Bernardino and Paias (2021) is chosen as it supersedes earlier approaches like the
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one of Bernardino and Paias (2018).1 That is, the hybrid method has been shown to
be the best solution methodology so far. Each instance is solved five times, and the
best value (Best), the average of all runs (Average), the average execution time in
seconds (Time (s)) are reported in Table 6 for our matheuristic and the hybrid method.
In addition, for our matheuristic, the improvement percentages of best, and then, the
average value compared to the hybrid method, and finally, the improvement of the best
value over the previous best-known value (separated by a comma) are shown in the
column “Improvement (%)”. Bold values indicate instance-based best values within
the comparison.

It is observed, that our matheuristic is able to provide solutions with better objective
values concerning best and average. In other words, our matheuristic has improved the
previously found best solutions in many cases. Moreover, it has quite short execution
times, although they are a little longer than those of the hybrid method. The superiority
of our matheuristic becomes more evident as we face larger problem instances. The
two last rows are dedicated to the average values and the p-values resulting from the
execution of the Wilcoxon signed-rank test (see, e.g., Conover 1999) to investigate if
there are statistically significant differences between the averages of the results of the
two approaches.

The p-value represents the probability of obtaining results as extreme as the
observed data, assuming that there is no real difference between the two groups (null
hypothesis). A low p-value indicates that the observed difference is unlikely to be due
to chance alone, and this leads to rejecting the null hypothesis in favor of the alterna-
tive hypothesis, which suggests that there is a significant difference between the two
groups.

Typically, a significance level (often denoted as α) is predetermined, commonly
set to 0.05. If the calculated p-value is less than the significance level, the results are
considered statistically significant, and researchers can conclude that there is evidence
of a meaningful difference between the groups. On the other hand, if the p-value is
greater than the significance level, there is insufficient evidence to reject the null
hypothesis, and the observed difference is deemed not statistically significant. In our
case, the low p-values, which lead to the rejection of the hypotheses of the equality at
the significance level of 0.05, show that there are statistically significant differences
in terms of the solution quality and time.

Overall, it can be deduced that ourmatheuristic has the capability of providing better
quality solutions for the FTSP when compared to the outcomes of the state-of-the-art
algorithm. In addition, it is also quite fast.

5.4 Proportion of execution time related to components

In this section, we show how much of the total execution time of the algorithm is
dedicated to each part of it. The proportions are shown in Table 7 for all instances
separately and the averages are given in the last row. The considered parts are the

1 It should be noted that the authors used a slightly different machine from ours, i.e., a computer with an
Intel Core i7-4790 3.60 GHz processor and 8 GB of RAM.
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Table 7 The percentage (%) of time spent on different parts of our matheuristic

Parameter setting GA SA POPMUSIC

Instance

burma14_1 78.25 10.30 5.32 6.13

burma14_2 78.76 10.39 5.48 5.36

burma14_3 79.45 10.47 4.54 5.52

bayg29_1 79.98 10.56 4.87 4.57

bayg29_2 80.78 10.65 3.64 4.91

bayg29_3 81.33 10.74 4.24 3.66

att48_1 81.88 10.85 2.97 4.28

att48_2 82.33 10.91 3.75 2.99

att48_3 75.12 9.63 7.08 8.17

bier127_1 75.82 9.69 7.33 7.14

bier127_2 76.50 9.78 6.33 7.38

bier127_3 76.96 9.85 6.80 6.37

a280_1 77.63 9.92 5.57 6.86

a280_2 78.37 9.97 6.03 5.60

a280_3 79.15 10.04 4.70 6.08

gr666_1 79.89 10.14 5.22 4.74

gr666_2 80.45 10.22 4.05 5.27

gr666_3 81.05 10.29 4.57 4.07

pr1002_1 81.47 10.36 3.56 4.59

pr1002_2 82.25 10.44 3.70 3.59

pr1002_3 82.70 10.51 3.05 3.72

pr144_4 74.71 10.28 6.26 8.75

kroA150_3 75.24 10.33 8.10 6.32

pr152_3 75.63 10.40 5.80 8.15

rat195_1 76.10 10.47 7.57 5.85

rat195_3 76.63 10.52 5.19 7.63

rat195_4 77.25 10.58 6.92 5.24

kroA200_1 77.80 10.66 4.56 6.96

kroA200_3 78.24 10.73 6.42 4.59

kroB200_3 78.89 10.83 3.80 6.46

gr202_4 79.32 10.89 5.95 3.83

gr229_1 73.61 11.84 5.98 8.57

gil262_1 74.03 11.95 7.99 6.01

gil262_3 74.57 12.02 5.36 8.04

gil262_4 75.08 12.08 7.41 5.42

pr264_2 75.71 12.18 4.61 7.48

rbg443_2 76.40 12.25 6.68 4.65

Average 78.09 10.64 5.44 5.80
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parameter setting phase, the GA including the evaluation and sorting, SA and POP-
MUSIC.

It is observed that most of the time (on average 78.09%) is used to set the param-
eters of the algorithm. This proportion of time is understandable because this initial
phase comprises many runs, although their times are limited. Nevertheless, regarding
the considerable effect of the parameter values in the performance of the algorithm,
investment in the parametrization seems really necessary and beneficial. The required
time for the GA is on average 10.64% of the total time. As the GA constitutes the main
framework of this algorithm and also contains the objective function calculation of
the solutions as well as sorting them accordingly, this share is expected. POPMUSIC
consumes on average only 5.80%of the time. This indicates the speed of this approach;
the reason is that we only deal with tractable parts of the problem, which are solvable
in short times. Finally, the shortest average time (5.44%) belongs to the SA since its
aim is to do some fast neighborhood searches around a number of solutions.

By separate analysis of the instances, it can be deduced that more time is needed for
parameter tuning of larger or more complex instances and the GA time also slightly
increases for them. In terms of POPMUSIC, a trend which shows the increase in time
in terms of harder instances is not observed. The reason can lie in the concept of
decomposition inherent in POPMUSIC.

5.5 POPMUSIC effects

In the last part, we aim at analyzing the contribution of POPMUSIC and the meta-
heuristic components in our matheuristic (M). For this sake, we implement it once
without the POPMUSIC part (MWP) and once without the genetic operators, i.e.
crossover and mutation, and the SA part (MWG). The overall results of all runs of all
instances are normalized in the interval [0, 1] based on the best and worst objective
value found in the iterations of the matheuristic. So we can show all objective values in
the same scale as box plots for the entirematheuristic,MWP,MWGand also the hybrid
method of Bernardino and Paias (2021) denoted by H in Fig. 6. It can be observed that
eliminating either POPMUSIC or the metaheuristic operators considerably decreases
the ability of our approach, even when MWP and MWG are compared to H. It means
that the POPMUSIC and the metaheuristic together provide a very good integration
and complement each other in searching within the solution space. In other words, the
combination of the genetic operators, the SA neighborhood searches, and solving the
partial mathematical models in a well-structured framework shows great promise.

Next, we conduct again some pairwise statistical tests to examine the existence of
any significant differences between the solution qualities of the analyzed methods.
The chosen test is the non-parametric Friedman with Bergman–Hommel post-hoc
procedure (Bergmann and Hommel 1988). This is assumed to be one of the best
statistical tests when the aim is to compare more than two methods in a pairwise
manner (Derrac et al. 2011). The test is implemented in R language. Regarding the
low p-values, we reject the null hypotheses, which claim the equality of the average
objective values, for all the pairs at the significance level of 0.05.
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Fig. 6 The box plots of
normalized objective values
based on all runs of all instances

Table 8 P-values of the pairwise
statistical test based on all results

Pair P-value

M versus MWP 0.74 × 10−8

M versus H 0.21 × 10−3

M versus MWG 0.04 × 10−5

MWP versus H 0.58 × 10−6

MWP versus MWG 0.36 × 10−3

MWG versus H 0.67 × 10−5

6 Conclusions

This paper has described a new efficient approach to acquire good-quality solutions
for a recent generalization of the traveling salesman problem, which has a lot of appli-
cations in the real world, namely the family TSP. A matheuristic framework is used
in which the searches based on the SA and POPMUSIC concept with mathemati-
cal programming are embedded in the iterations of a GA. That is, the advantages
of integrating both metaheuristics and an exact optimization procedure are used in
our approach, which has enhanced the ability of the search. The proposed method
is tested on a large number of benchmark instances and its efficiency is verified by
comparing its results with those of the currently best-known state-of-the-art method.
The matheuristic has the ability to find optimal solutions for many FTSP instances in
short execution times. It owes its favorable performance to the effective interactions
between the metaheuristic and the mathematical programming part throughout the
progress of the algorithm. We have integrated genetic operators, SA neighborhood
searches and mathematical programming of tractable parts of the solutions. They act
jointly better than the previously best algorithm from the literature (the hybrid method
of Bernardino and Paias 2021), which constructs the solution by providing an optimal
solution for only a core part of the problem and then inserting the missing parts. Pro-
viding even slightly improved results can be regarded as a considerable success in the
research direction. Finally, we proved that the ability of our approach drops sharply if
either the POPMUSIC parts or the genetic and SA operators are excluded, providing
insights into their interoperability.
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In the future, other hybridization schemes for connecting metaheuristics and math-
ematical programming techniques can be investigated. This may even incorporate
specialized solvers rather than a standard solver (like VRP solver for vehicle routing
problems; Pessoa et al. 2020). Moreover, matheuristics based on other concepts like
the fixed set search algorithm (Jovanovic et al. 2019) can be tried. Since the proper
parametrization can positively influence the performance of optimization algorithms,
it can be worthwhile to invest much in this part of the developed algorithm.
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