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We propose a framework based on a synchronous multi-clocked model of com-
putation to support the inductive and compositional construction of scalable be-
havioral models of embedded systems engineered ddgtfactostandard design

and programming languages. Behavioral modeling is seen under the paradigm of
type inference. The aim of the proposed type system is to capture the behavior
of a system under design and to re-factor it by performing global optimizing and
architecture-sensitive transformations on it. It allows to modularly express a wide
spectrum of static and dynamic behavioral properties and automatically or man-
ually scale the desired degree of abstraction of these properties for efficient veri-
fication. The type system is presented using a generic and language-independent
static single assignment intermediate representation.

KEY WORDS: Embedded system design, formal methods, models of computa-
tion, program transformation, verification.

1. INTRODUCTION

The popular slogandirite once, run anywheteffectively renders the ex-
pressive capabilities of general purpose programming languages for devel-
oping, deploying, and reusing target-independent applications. Generality
and simplicity has driven most attention of the compiler technology com-
munity to developing local and compositional compiler optimization tech-
niques. When it comes to the implementation of embedded software, this
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approach is however far from satisfactory, especially in hard real-time sys-
tem design (e.g. airborne systems, digital circuits) where conformance to
real-time specifications is critical.

Domain-specific models and languages, such as these proposed under
the synchronous programming paradigm, provides the necessary formal
engineering models and design methodologies to allow for a program writ-
ten once to be mapped on any distributed execution architecture by using
global transformation and optimization techniques. Our aim is to relate this
domain-specific model to embedded software development using general-
purpose environments. To this end, we set the methodological framework
of our synchronous model of computation within the general and reusable
concept of a type system targeting the generic programming language set-
ting of GCC'’s intermediate representations (three-address code and static
single assignment). We give formal semantics to both our type system and
the functional subset of SSA under consideration, define a type inference
system and prove its correctness, before to depict the applications of our
technique as developed in our project and presented in previous works.

A functional application domainWe consider embedded software imple-
mented by resource-constraiffenhulti-threaded programs on a specific
runtime sub-system (e.g. , the real-time JVM, an RTOS, or simply hard-
ware) which we call its execution architecture. Our technique consists of
a type inference system that relates threads (imperative programs in inter-
mediate form) to propositions expressed by synchronous transition systems

that describe their behaviour.
Example. On the right, we out-  w.ide

line the extent of our technique
by depicting a test-case studied
in @4, We consider modeling a
real-time Java program consist-
ing of three threads (right), a
scheduler (top-left) and shared ™
resources control (bottom-left).

This decomposition is obtained by partltlonlng the executable program
and its environment into:

— the execution architectura hardware platform, a middle-ware library,
a real-time operating system, a virtual machine (e.g. in Java), a simula-

4 It is common sense to restrict ourselves to programs where all objects are first created and
initialized to elaborate the application architecture. Then, threads implement reactions to
inputs in the nominal phase of execution and do not allocate any new object (to comply with
certification requirement in software design or simply with common sense in SoC design).
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tion kernel (e.g. in SystemC). The execution architecture describes an
API of generic process and communication management services.

— the application architecturea program, starting from theain () pro-
cedure, which initializes and links objects to form a hierarchical struc-
ture of shared data and communicating threads. The application map-
ping constructively describes the architecture of the system.

— the application functionalitiesa set of program threads which period-
ically or sporadically react to inputs from the environment by interact-
ing with each other for the access to shared data.

Our methodology consists of considering the three elements of an em-
bedded system (its execution and application architectures, its application
functionalities) in specific ways.

— modeling the execution architecture, viewed through an application
programming interface (API) of generic services, is modeled by tem-
plate propositions. For instance, the procedure for thread creation in an
RTOS API corresponds to a template proposition in the RTOS model
whose parameters are the number of threads supported by the appli-
cation scheduler, the period and deadline of the thread (for a real-time
thread), etc.

— analysis the application architecture, viewed as a hierarchical struc-
ture, is interpreted to elaborate a model by the instantiation of generic
API services to the parameters and initial values provided in the pro-
gram (e.g. thread parameters).

— translation each thread consists of a sequential program that describes
a functionality to be periodically or sporadically executed by the sched-
uler and corresponds to a particular model.

This allows for a complete separation of the virtual (threading or func-
tional) architecture of an application from its actual, real-time and resource-
constrained implementation: it provides an implementation of tneté
once run anywhefeslogan in embedded system design.

Context. Our methodology arises from previous work on real-time operat-
ing systems modeling, embedded systems modeling and verification in the
Polychrony workbench a tool-set for embedded system design based on a
multi-clocked synchronous model of computation and implemented by the

5 URL: http://www.irisa.fr/espresso/Polychrony
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data-flow notation SigndP). In (), the authors describe the implementa-
tion of a real-time operating system standard for avionics application: AR-
INC (). The commercial implementation of this library, RT-Builder from
TNI-Valiosys, is used for industrial-scale embedded software engineering
project in avionics.

In 14), this model is used to describe key services of the real-time Java
virutal machine. It is applied to rethreading multi-threaded real-time Java
programs by global optimization. 14, the application of our method-
ology to system-level design is further developped by studying its appli-
cation to checking behavioral conformance between embedded systems
described in SpecC and at heterogeneous levels of abstractiff, la
generic translation scheme of SystemC programs to the Polychrony work-
bench is described by considering a static single assignement intermediate
representation due to the GCC projéét. It is applied to design checking
(e.g. race and lock detection). |, it is applied to modular verification by
model checking and component-wise model abstraction.

We set our methodological framework within the general paradigm of
a behavioral type system that associates meaning to software functionali-
ties. The type system is cast in the generic programming language-oriented
context of the three-address code (TAC) and static single assignment (SSA)
intermediate representations (IR) of GCC.

2. RATIONALE

To allow for an easy grasp on the type system proposed for modeling be-
haviors, we outline the analysis of an imperative program, Figure 1, and
depict the construction of its type, Figure 2. Figure 1 depicts a simple C
code fragment consisting of an iterative program that counts the number of
bits set to one in the variabiéata. While idata is not equal to zero, it adds

its right-most bit to an output count variabbeount and shifts it right in
order to process the next bit. In the intermediate representation (IR) of the
program (Figure 1, second column), all variablelsta andocount) are

read and written once per cycle.

while (idata != 0) { L2:T1 = idata; T3=T1&1,;
ocount = ocount + (idata & 1); TO=T1==0; ocount=T2 + T3;
idata = idata >> 1; if TO then goto L3;|idata = T1 >> 1;
} T2 = ocount; goto L2;

Fig. 1. From a C-like program to its intermediate representation.

This IR can equally be one of the TAC and SSA formats of GCC. Label
L2 is the entry point of the block associated with the while loop. The first
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instruction loads the input variableata into the registeiT1. The second
instruction stores the result of its comparison with 0 in the regiBeenf
TOois false, control is passed to blotR. Otherwise, the next instruction is
executed: the variablscount is loaded intol 2, the last bit ofT1 is loaded
into T3, the sum ofTf 2 and T3 assigned t@count and the right-shift ofl 1
assigned tadata. The block terminates with an unconditional branch back
to labell2.

A behavioral type systemThe meaning of this C program fragment is
given in a minimalist formalism akin to Pnueli's synchronous transition
systems!?). It not only describes a behavior of the program suitable for its
formal verification but also allows for global model transformations to be
performed on it. Let us zoom on the blotR in the example of Figure 2.
The behavioral type of the block2, middle, consists of the simultane-
ous composition of logical propositions that form a synchronous transition
system. Each proposition is associated with one instruction: it specifies its
invariants it tells when the instruction is executed, what it computes, when
it passes control to the next statement, when it branches to another block.

L2:T1 = idata; L2=T1 :=idata
TO=T1==0; TO :=(T1=0)
if TO then goto L3; TO =L3
T2 = ocount; - T0=T2 :=ocount
T3=T1&1; T3:=T1&1
ocount=T2 + T3; ocount’ :=T2+T3
idata=T1 >> 1; idata’ :=T1>>1
goto L2; L2

Fig. 2. From a generic intermediate representation to propositions.

On line 1 for instance, we associate the instrucfidn= idata to the
propositionL2 = T1 := idata. The variabld_2 is a boolean that is true iff
the block of label 2 is being executed. Hence, the proposition says that, if
the labell2 is being executed, thenl is equal toidata. All propositions
are conditioned by.2 to mean that they hold when blotR is executed.
The extent of a proposition is the duration of a reaction.

A reaction can be an arbitrarily long yet finite period of time provided
that every variable or register changes its value at most once during that
period. For instance, consider the instructiom0 then L3. Itis likely that
labelL3 will, just asL2, perform some operation on the inpdiéta. There-
fore, its execution is delayed until after the current reaction. We reted’to
as the next value of the state variab® to indicate that it will be active
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during the next reaction. Hence, the propositi@n=- T0 = L3’ says that
control will be passed ta3 at the next reaction when control is presently
atL2 and whenT0 is true. The instructions that follow this test are con-
ditioned by the negative'T0, this means: "in the block2 and not in its
branch toL3".

3. ABEHAVIORAL TYPE SYSTEM

The central element of the type system is a process. It consists of simulta-
neous propositions that manipulate signals. A signal is an infinite flow of
values that is sampled by a discrete series of reactions. This series is called
a clock. An event corresponds to the value carried by a signal during a
reaction. The formal syntax of propositions in the behavioral type system
is defined by the inductive grammBr A propositon or proces8 manip-

ulates boolean values noted: { false, true} and signals noted,y,z

A location| refers to the initial value®, the present valug and the next
valuex’ of a signal. A referenceis either a valuer or a signak.

(reference) r ::=x|v (location) | :=x°|x|x

A clock expressiore is a proposition on boolean values that, when true,
defines a particular period in time. The clocks 0 and 1 denote events that
never/always happen. The clock= r denotes the propositionxis present

and holds the value”. Particular instances are: the clogkf(x = x),
which stands for % is present”; the clock=""(x = true) for "x s true”,

and the clock-x=%"(x = false) for "x s false”. Clocks are propositions
combined using the logical combinators of conjuncenf, to mean that
bothe and f hold, disjunctioneV f, to mean that eithez or f holds, and
symmetric difference f, to mean thae holds and nof .

(clock) e f:=0|x=r|enflevf|e\f]|l

A process consists of the simultaneous composition of elementary propo-
sitions. 1 is the process that does nothing. The propoditenmeans that
"I holds the value”. The proces& = P is a guarded command. It means:
"if eis present the® holds”. Processes are combined using synchronous
compositionP | Q to denote the simultaneity of the propositidhsind Q.
Restricting a signal nameto the lexical scope of a proceBsis written
P/x.

(process) PQ:=1|l=r|x—1|e=P|(P|Q)|P/x
An order of execution is imposed to a proposition by a scheduling con-
straint, noteck— |, to mean thatl’cannot happen befox&. Consequently,
a proposition, e.gx=, is seen as the abstraction of an assignment, written
x:=Yy, defined byx =y|y — x.



A behavioral modeling framework 7

3.1. A synchronous model of computation

The meaning of our notation is given in the synchronous model of compu-
tation of ®). We consider a partially-ordered se¥, <,0) of tags. A tag

t € .7 denotes a symbolic period in time. The relatigrdenotes a partial
order and its minimum is noted 0. We n@ec ¢ achainof tags (a totally
ordered subset o). We define arvent ec 7 x ¥ by the pair of a value
and a tag, aignal sc .¥ = {C — 7' |C € ¢’} by a function from ahainof
tagsC to values, dehavior be Z = 2" — . by a finite map from signal
namesZ’ to signals.¥, aprocess pe & by a set of behaviors of same
domain. We write tags) for the tags of a signad, b|x for the projection

of a behaviob on X C 2" andb/X = b|yargn)\x for its complementary,

vargb) and var¢p) for the domains ob andp.

Example 1.Figure 3 depicts a behavibrover three signals namegy and

z Two frames depict timing domains formalized by chains of tags. Signal
x andy belong to the same timing domaixis a down-sampling of. Its
events are synchronous to odd occurrences of events glamg share the
same tags, e.d;. Even tags ofy, e.g.t,, are ordered along its chain, e.g.
t; < tp, but absent fronx (we writet < t’ if t <t’ andt’ £ t). Signalz
belongs to a different timing domain. Its tags, dzgare not ordered with
respect to the chain of e.g.t; £ tz andtz £ t;.

X ot
y: ol o2 ° ° °
V4 o3 ° ° °

Fig. 3. behaviob over three signalg, y andzin two clock domains.

Scheduling structurélo schedule the occurrence of events during a period
or an instant, we consider the fact that the pajrof a time tag and of a
signal name renders its very date. The tag represents the period during
which the event takes place and the siga#tk location. This considera-
tion defines scheduling> by a pre-order relation between dates. Figure 4
depicts such a relation superimposed to the sigraady of Figure 3.
The relationy;, — %, for instance, requireg to be calculated before

at the period;. A scheduling relation naturally satisfies containment with
respect to the timing partial ordet of every signak in a behaviom, in
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that for allt,t’ € taggb(x)), t < t’ naturally impliesx —P° x: and, conver-
salyx —P x impliest’ # t. A scheduling relation is implicitly transitive
(% —P yp —P z, impliesx —P z+) and its closure for restriction/X is
defined byx, —2/X yy iff x —Py andx,y & X.

X ol

T T T

y: ol o2 ° ° °

Fig. 4. Scheduling relations between simultaneous events.

Synchronous compositios notedp|q and defined by the union of all
behaviorsh (from p) andc (from g) which are synchronous. All signaks
shared by andc belong ta = varg p)nvargq) and are equal i.d|, =c|;:
pvq = {bUC ‘ (b,C) cpx qal = Varip) mvarqq)vbh = C’| }

X: ol X: ot
y: ofl o2 o | y. ofl o2 0| = V. ofl o2 o
z: o3 o Z: o3 o

Fig. 5. Synchronous composition b p andc € q.

3.2. Meaning of clocks.

The denotatioffe], of a clock expressioa(table 6) is defined relatively to
a given behaviob and consists of the set of tags satisfied by the proposition
ein the behaviob.

[O]p=0 [1]p = taggb)
[enflo=[elbN[flb
[ev fllo=[eloU[f]b
[e\ flo=b[e]o\ [f]b
[x = Vllo={t € taggb(x)) [b(x)(t) = v}
[x = ylp={t € taggb(x)) Ntaggb(y)) [b(x)(t) = b(y)(t)}

Fig. 6. Denotational semantics of clocks.
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In Figure 6, the meaning of the clogk=v (respx=Y) in bis the set of
tagst € taggb(x)) (resp.t € taggb(x)) Ntaggb(y))) such that(x)(t) =
v (resp.b(x)(t = b(y)(t)). In particular,[X], = taggb(x)). The meaning
of a conjunctioreA f (resp. disjunctioreV f and differencee\ f) is the
intersection (resp. union and difference) of the meaningarid f. Clock
0 has no tags.

3.3.  Meaning of propositions.

The meaning[P]|® of a propositionP is defined with respect to a clock
expressiore. Where this information is absent, we assufRé = [P]* to
mean thaP is an invariant (and is hence independent of a particular clock).
The meaning of an initializatiofx® = v]|© consists of all behaviors defined
onx, writtenb € £|y such that the initial value of the sigrialx) equalsv.
Notice that it is independent from the clock expressegrovided by the
context. We writeZ|x for the set of all behaviors of domai, min(C) for

the minimum of the chain of tag3, suc¢(C) for the immediate successor
of t in the chainC, vargP) and varge) for the sets of signal names Bf
ande.

[x=y[*={be %|vars(e)u{x,y} |Vt € [€]b,
t  taggb(x)) At € taggb(y)) A b(x)(t) = b(y) (1)}
[y — x]®={be %|vars(e)u{x,y} |Vt € [e]lb,
t € taggb(x)) = t € taggb(y)) Ayt —° %}
[[Xl = Y}]e:{b € f@|varqe)u{x,y} Wt € [[e]]b,
t € C=taggb(x)) At € taggb(y)) Ab(x)(suce(C)) = b(y)(t)}
Hy - X/]]e:{b € t%)lvars(e)u{x,y} |Vt € [[e]]b7
t € C=taggb(x)) =t € tagsb(y)) Ayt —° Xsuce(c)}
[X° = v]*={b € Z|x|b(x)(min(taggb(x)))) = v}

[f = PI=[PI*"" [PIQ]°=[P°|[Q]° [P/x]®=[PI%/x

Fig. 7. Denotational semantics of propositions.

The meaning of a proposition=y at the clocke consists of all behav-
iors b defined on var®) U {x,y} such that all tags  [[€] at the clocke
belong tob(x) andb(y) and are associated with the same value. A schedul-
ing specificatiory — x at the clocke denotes the set of behavidrslefined
on varge) U{x,y} which, for all tagg € [[€]p, requirescto preceed: if t is
in b(x) then it is necessarily ib(y) and satisfieg; —° . The propositions
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X =yandy — X is interpreted similarly by considering the tdghat is

the successor afin the chainC of x. The behavior of a guarded command

f = P at the clocke is equal to the behavior &? at the clockeA f. The
behavior ofP | Q consists the synchronous composition of the behaviors of
P andQ.

4. AN INTERMEDIATE REPRESENTATION

We are now equipped with the required mathematical framework to ad-
dress the modeling of embedded systems described by communicating
program threads. This model is described in terms of a type inference sys-
tem and extended to the structuring elements of a generic module system.
This framework allows to give a behavioral signature of the component of
the system, compositionally check the correct composition of such com-
ponents to form architecture, to optimize the described software elements
from the imposed hardware elements by, first, detaching the formal model
from the functional architecture description and, second, using the model
to regenerate an optimized software matching the requirements of the exe-
cution architecture.

Formal syntax. Imperative programs are represented in an intermediate
form that is common to the TAC and SSA IRs of GCC which provides
language-independence and local optimization. A progogm consists

of a sequence of labeled block®lk. Each block consists of a labeland

of a sequence of statememstsnterminated by a return statemetrt.

(program) pgm::=L:blk|pgm pgm
(block) blk ::=stmblk|rtn
(instruction)stm ::=x = f(y1.n)
| ifxthenL
(return) rtn :=gotol
| returnx
| throwx
| catchXfromLtolLusingl

Fig. 8. Syntax for an intermediate representation of imperative programs.

Block instructions consist of native method invocations: f(1 ),
lock monitoring and branches xthenL. Blocks are returned from by ei-
ther agotol, areturn or an exceptionhrowx. The declaratioratchx
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fromljtol, usingl s that matches an exceptiairaised at block ; ac-
tivates the exception handleg and continues at blodk,.

In the remainder, we only assume that a block always starts with a
label and finishes with a return statemestiry; L:stmp is rewritten astn;
gotolL;L:stmp. A call x= f(y) to a possibly blocking external method
f, such aswaitx in SystemC or Java, is always placed at the beginning
of a blockL. For instancestm;wait X; st is rewritten asstm; gotol;
L:waitv;stmp. By contrast, primitive operations= f(y,z) are assumed
to take an insignificant amount of time and are executed with the normal
control-flow of the block.

Example 2.To outline the construction of the intermediate representation
of a program, let us reconsider the example of Section 2 and detail the func-
tion that counts the number of bits set to 1 in a bit-axtaya (Figure 9). It
consists of three blocks. The block labeleldwaits for the signalock be-

fore initializing the local state variabléata to the value of the input signal
data andocount to 0. LabelL2 corresponds to a loop that shiftata right

to add its right-most bit tecount until termination (conditionr 0). In the

block L3, ocount is sent to the signalount andlock is unlocked before
going back td_1.

L1:wait (lock); TO=T1==0; idata=T1 >> 1,
idata=data; if TO then goto L3; goto L2;
ocount=0; T2 = ocount; L3:notify (lock);
goto L2; T3=T1&1,; count = ocount;

L2:T1 = idata; ocount=T2 + T3; goto L1;

Fig. 9. From three address code ...

The SSA form of the program differs in the function-wise guarantee
that all variable be assigned once during an execution cycle. It consists
of performing assignments tidata and ocount in blocksL1 andL2 to
temporary variables and branch to a merge blotkvhere the appropriate
copy is assigned to the variable upon the value of a boolean congition
(to mean fromL_1 or not).

Meaning of instructionsThe denotation of instructions for programs which
strictly adhere either of the TAC or SSA requirements (i.e. all variables are
written at most once per block) is given figure 11. To ligthen notations,
we writeC = chain,(X) iff for all x € X, C = taggb(x)) and writeb(x)(t)

for b(x)(t) = true and—b(x)(t) for b(x)(t) = false. The denotation of
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L1:....idatal=data;| L2:...0ocount2 = T2 + T3; | L4:idata=¢ ?idatal,idata2;
ocount1=0; idata2 = T1 >> 1; ocount=¢?ocountl,ocount2;
goto L4, goto L4, goto L2;

Fig. 10. ... to static single assignment.

a program{{pgm)E takes an environment giving the meaning of external
functionsf using call-by-namd.-expressions and returns the set of behav-
iors b corresponding to the execution pgm

For an instructiorstm the function((stm}) Ele takes two labels which
represent the entry lab&l of the statement and its continuation by the
pseudo-label,. The denotation of a function cadl= f(x1 k) is that given
by E for the variable names, xx and the entry and exit labellg andL.

The meaning of anf xthenL, instruction consists of all behaviobs
defined onx, L1, L, and Lz which share the same chain of ta§sand
such that, ifo(L1)(t) is true, then the continuation lablke} is active iff x
if false, i.e.b(L3)(t) = =b(x)(t); and ifx is true therL, is active next, i.e.
b(x)(t) true impliesb(L2)(sucg(C)) true. For a return instructiorin, the
denotation function(rtn)) only takes one (entry) lab&l. The meaning
of returnX, gotoL andthrowXx instructions are given using the same
principle as for theif xthenL.

((x= £ (. 1)E,Lo=E(F) (xa.sxLaL2)
<<if Xthen L1>>E2L3:{b S 93|XL123 |Vt eC= Chairb(Xleg),
b(L1)(t) = (b(Ls)(t) = —b(x)(t)
b(x)(t) = b(L2)(suce(C)))}
((returnx))E={b € Z| y|E(return) =Yy, vt € C = chainy(Lxy),
b(L)(t) = b(y)(t) = b(x)(t)}
((gotoLa))E,={b € AL, |Vt € C = chain(LiLy),
b(L2)(t) = b(L1)(suce(C))}
((throwx))E={b € 2| 4|Vt € C = chainy(Lx),
b(L)(t) = b(x)(t)}
({(stm)E,L, | {(bIK)E,) /L2
((L - blk; pgm) ==((bIK))E | {(pgm})=
{(m f(xe_ k) {Pgmp)E=E[f : Axe 1xyy™*.(p/L1.j)] |
p= ((pgm) =Y A labs(pgm) = Ly. |

((stmblK)E,

Fig. 11. Denotational semantics of instructions.
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Notice the introduction of a pseudo-label to handle a sequence of in-

structions. The meaning of a sequersta blk starting at block_; is de-
flned by using a local peudo-labe} to denote the continuation etmby

((stm){,., and hence the entry point btk by <<b|k>) . The meaning of
the sequence is finalized by synchronous composmon and the scbpe of
restricted to it. The meaning of a progrdm blk; pgmis similar yet sim-
pler as there is no continuation between blocks. The meaning of a function
declaratiorm f(x1_ k) {pgmy} is listed just to show the order in which the
argument, result, entry and exit label names are used to parameterize the
meaning of the function body.

5. BEHAVIORAL TYPE INFERENCE

The behavioral type inference system is defined by induction on the formal
syntax of programggm To define it, we assume that the finite sétof
program label$. To each block of labdl, the inference system associates
a boolean propositioh of the same name, called tigput clock and a
boolean propositioh®", called itsoutput clock The propositiori is true

iff the block L is active during a given transition. The propositiof" is

true iff the execution of block terminates during a given transition. The
relation defined by the behavioral type system has the form:

e, & FL:blk: (Per)]

wheregy denotes the input clock of the block of instructidnlk, L is its
label, P the proposition to denote its behavior, amdts output or contin-
uation clock. The type environme#t gives the behavior of methods and
functions defined in the context of the program. It associates a vaxkable
a typem (a class name), a class nam¢o a class type” (described in the
next section) and a methddto a propositiorP and an output clock pa-
rameterized by the sequence, formed of its input and output variables
and input clock name (see rule (8) below).

= [lepm|&m: T][E[f 2 A(1n)-(P€)]

Rules(1— 8) define the behavioral type inference system. R(les?2) are
concerned with the iterative decomposition of a progmgminto blocks
blk and with the decomposition of a block into statemesttsand return
instructionrtn.

L&HL:blk:P &Fpgm:Q
(1) & FL:blk;pgm: P|Q
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Notice that, in rulg2), the input clocke of the blockstm blk is passed to
stm The output clocle; of stmbecomes the input clock dilk. The input
and output clocks of an instruction may differ.

2 e, &FHL:stm:Pe e,&FL:blk:Q
(2 e, & FL:stmblk: P|Q

This is the case, rul€3), for instructionif xthenL;. Let e be the input
clock of the instruction. Ik is false then control is passed to the continua-
tion of this instruction in the block, at the output cloek —x. Otherwise,
control is passed to blodk, at the clockeA x. Hence the typéex) = L)

to mean that the next value bj is true whereis active and wher is true.

(3) e, &+ L:ifxthenly: ((€AX) = (L L)), e —x)

All return instructions, rule¢4 — 7), define the output clock®" of the cur-

rent blockL by the input clocle. This is the right place to do thagdefines

the condition upon which the block actually reaches its return statement.
A gotol; instruction, rule4), passes control to blodk unconditionally

at the input clocle.

(4) e &FL:gotoly:e= (L¥|L))

A return instruction, rule(5), fetches the variablg used as return vari-
able for the current method or function and sgt¥ to true at clocke in
order to notify the caller that the method terminates execution.

5 &(return) =Yy
®) e,& FL:returnx: e= (L yXty = x)

A throwX instruction, rulg(6), produces an event along the sigrait the
input clocke by e= X.

(6) & & F L : throwx: e= (L¥|R)

Example 3.Let us zoom on the block2 of Figure 2. On the first line,

for instance, we associate the instructibh= idata of block labelL2 to

the propositiorL2 = T1 = idata. In this proposition, the variable2 is a
boolean that is true iff the block? is being executed. So, the proposition
says that, ifL2 is being executed, thenl is always equal tadata. If it

not, another proposition may hold. All subsequent propositions are condi-
tioned byL2 to mean that they hold whdr® is executed. Next, consider
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the instructionif TO then L3. Its invariantL2 = T0 = L3’ says that con-
trol passes td.3 when control is presently &2 and whenT 0 is true. The
instructions that follow this test are conditioned by the negativ@, this
means: "in the block2 and not in its branch tb3".

L2:...if TO then goto L3; L2=...T0O =L%

:goto Lo -T0=...L2

Fig. 12. Modeling control flow in an imperative program.

Thecatch statementatchxfromlL toljusingl, matching rulg6),
passes control in rulg’) to the exception handlér, and then to the block
L1 upon termination of., notified byL$*". This requires, first, to activate
L, from L whenx is present and then to pass the contrdl{apon termi-
nation of the handler.

(7) & L : catchxtoLjusingly : (RAL®Y) = L | L¥ = L)

Rule(8) is concerned with type assignement for native and external method
invocationsx = f(xy k). The generic type of is taken from an environ-
ment&’(f). Itis given the name of the actual parametars, of the result

x and of the input clocle. £(f)(xy. xxe) yields the corresponding behav-
ioral type (P, er).

8)e&FL:x="f(X k) :&(F)(X1 kX €)

Example 4.As an example, the wait-notify protocol used in SystemC of
Java to arbiter access to shared data is modeled using a boolean flip-flop
variablex. Thenotify method defines the next value of the locly

the negation of its current value at the input claekThe wait method
continues activates iff the value of the lockas changed at the input clock

L: LA (x # X). Otherwise, at the clock A (x = X'), the control is passed

to L by a delayed transitioa\ y = L'.

&(notify) = Axe(e= (X = —x),€)
&(wait) = AXL(LA (X=X) =L ,LA(X#X))

Consider the wait-notify protocol at blocksl and L3, Figure 13. The
wait instruction continues if1 receives control and if the lock is toggled
(propositionlock # lock’). If so, the block is executed and control passes
to the blockL2 and, if not, to the block1.
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L1:wait (lock); |L1A (lock = lock’)=-L1" L3:notify (lock); | L3=-lock’ = —lock

goto L2; |1 A (lock # lock’)=L2' ~ §oto L1 L1/
Fig. 13. Modeling the access to locks.

Completion.By definition, a propositiorl. holds the valuetrue iff the
block L is active during execution. Otherwisie,should befalse. This
default value requires a completion of the next-state logic for the Rygie
a given progranpgm We write P this completion. It is simply defined by
considering the propositiom = L’ implied by the typeP for all labelsL of

a given progranpgm The clocke_ is defined by the union (disjunction) of
all clockse=- L' present irP. The default rule is defined Hy\ e. = —L".
The same holds for output clock§*".

CorrespondenceThe correspondance between instructions and proposi-
tions defined through our type systefit- pgm: P can now be formally
established by stating Property 1. We wiff€] for the interpretation of
the environmen®’ defined by

[£1F : 2 (xa.uxL).(PXPN]] = [ET[F 2 A (xesexLx™). [P]

Property 1 established a classical soundness property by stating that when-
everpgmhas typeP and the typing environmewt has meaning thenbis

a behavior oP (guarded by 1 to mean always) if and only if it is a behavior

of pgmwith the environment E. Notice that the top-level environmé&nt
defines the model of the runtime communication and processes manage-
ment API for the application prograpgm The proof of property 1 con-

sists of showing that both implicatiofi®] C ((pgm) and[[P] 2 {(pgm)

hold by induction on the structure pfimending up in a case analysis on

the correspondence between each instruction.

Property 1.
If &+ pgm: P andE = [&] thenb e [P]; iff b e ((pgm)E

From TAC to SSAThe type system and its semantics rely on the property
of the TAC IR that every variable is defined at once within a block (this hy-
pothesis is sound for a program in SSA form as well). As a consequence,
each block delimits an atomic reaction in the type system and, therefore,
transition from a block to another cannot be immediate (by salyifgy
"label L is active”) but delayed (by saying for "label L will be active

next time”). In SSA, this guarantee is provided for the whole "text” of the
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function. In particular, for a goto from a blodlg to a blockL, textually
afterLq (written L1 < L), SSA guarantees that all variables definedin

are different from those ih,. This is of course not the case for a loop, in
which case we havie; > L,. To take advantage of this additional guaran-
tee, our type inference system can be refined by considering the following
rule to handlggotos (and similarlyjf-thens andthrow-catcls). It consists

of activating the target block, immediately.

Ll < L2
e,£ FLyp: goto L:e= (L]_eXItl Lz)
The translation of the EPC in SSA form using r(8b) outlines the bene-
fits of this optimization. The resulting type has strictly fewer delayed tran-

sitions: one td_2 in L3 and another td.1 in L4. All other transitions are
immediate and considered within the same reaction.

(4b)

L1=lock=lock’ = L1’

L1:wait (lock); lock#£lock’ = idatal:=data
idatal=data; ocountl:=0
ocount1=0; L3
goto L3; L2=T1 :=idata

L2:T1 = idata; TO:=Tl==
TO=T1==0; TO= L4
if TO then goto L3; =T0 = T2 := ocount
T2 = ocount; T3:=T1&1
T3=T1&1,; ocount2 :=T2+ T3
ocount2 =T2 + T3; idata2 :=T1 >>1
idata2 = T1 >> 1; L3
goto L3; L3=L1=idata:=idatal

L3:idata=¢?idatal,idata2; ocount:=ocountl
ocount=¢?ocountl,ocount2; L2= idata:=idata2
goto L2; ocount:=ocount2

L4:notify (lock); L2’
count = ocount; L4=-lock’:=— lock
goto L1, count := ocount

L1

Fig. 14. Model of the even-parity checker in SSA form.

6. CONFORMANCE CHECKING

Just as the multi-clocked synchronous formalism Signal it is based upon,
our type system allows for the refinement-based design methodologies
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considered iff'® to be easily implemented. Checking the correct refine-
ment of an initial module, of typ®, by its upgrade, of typ€, amounts

to checking that the final guarant€esatisfies the initial assumptiois

In 39, this is implemented by compositionally model checking Bas
finitely flow-equivalent taP.

i chan
n"é’)"{‘i'fty fS.pecC
ones even fefinement| ;oo even
ey p— = send
e B p— recv
U conformance 3
checking
| P | e Q |

Fig. 15. Conformance-checking the refinment of an even-parity checker.

Figure 15 describes a typical case study of conformance checking. We
consider the refinement of the C model of an even parity checker (EPC)
from a high-level design abstraction, left, where communication is ab-
stracted by shared variables and a lock, to an architecture-level design
abstraction, right, where the communication medium is refined by the in-
sertion of a channel implementing a double handshake protocol, Figure 16.

In send recv
Qi ©~

ready

eReady
data

ack
elAck

—ready

eReady

—ack
elAck

rdata
e

Fig. 16. Refinement of locks with a double handshake protocol.

Checking conformance of the architecture-level design with respect to
its system-level abstraction amounts to checking that both designs are flow
equivalent. The very notion of flow equivalence under consideration con-



A behavioral modeling framework 19

sists is defined in the asynchronous structure of our model of computation
that is presented next.

6.1. Asynchronous structure

The asynchronous structure of polychrony is modeled by weakening the
clock-equivalence relation to allow for comparing behaviors whose suc-
cessive values match regardless of time: two behaviors are flow-equivalent
iff their signals hold the same values in the same order. fElexation
relation allows to individually stretch the signals of a behavior in a way
preserving scheduling constraints. A behawids arelaxationof b, writ-

tenb C ¢, iff vars(b) = vargc) and, for allx € vargb), b|,, < cfgy-

Fig. 17. Relating asynchronous behaviors by relaxation.

Relaxation is a partial-order relation which defines flow-equivalence:
b andc areflow-equivalentwrittenb = ¢, iff there exists a behaviat s.t.
d C b andd C c. Figure 17 illustrates two asynchronously equivalent be-
haviors related by relaxation. The first event alorftas been shifted (and
its scheduling constraint with an initially synchronous event alpiust)
as the effect of finitely delaying its transmission. Asynchronous composi-
tion is notedp || g and defined using the partial-order structure induced by
the relaxation relation. The compositionpfndg consists of behaviord
that are relaxations of behavidsisndc from p andq along shared signals
| =vargp)Nvargq), i.e.b; Cd|; dc|;, and that are stretching bfandc
along the independent signalspéndgq, i.e.b/l <d/I >c/I.

x: ol t3 X ol o2 X:
y: o2 ol4 I{y: oll o2 S|ly: e o
Z. o o o Z. o o o

Fig. 18. Asynchronous composition.

Figure 18 illustrates the asynchronous composition of a behbénd
of a behaviorc. Signalsx andy are alternated ib, left, and synchronous in
¢, middle. Asynchronous composition allowsindy to be independently
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stretched irb andc in order to find a common flow in the asynchronous
composition, right.

6.2. Flow preservation

To check the existence of a flow-preserving timing relation between the
two systems outlined in the previous section, the refinement-based method-
ology similar of(!® shows that the typeB andQ of Figure 15 are finitely
flow-equivalent. To this end, we formulate the timing deformation allowed
by finite buffering protocols starting from the model of a one-place FIFO
buffer which we will use to draw the spectrum of possible timing rela-
tions under consideration. Figure 19 depicts the timing deformation al-
lowed along a signat by a one place buffer.

Fig. 19. Relation between events through a one place buffer along

Finite relaxation. Definition 1 formalizes this relation by considering the
timing deformation between an initial behaviorand a final behavioc
performed by a one-place FIFO buffer of internal sigmehnd behavior
d. The behaviod is defined by stretchingg < d/m andc/x by d/mx
Let us write pred(t) (resp. sucg(t)) for the immediate predecessor (resp.
successor) of the tagn the chairC.

Definition 1 (finite relaxation). The behavior c is 4-relaxation of x in b,
written b} ¢ iff vargb) = vargc) and there exists a signal m, a behavior
d and a chain C=taggd(m)) = taggd(x)) Utaggc(x)) such thatdm> b,
d/mx=c/x and, forallte C,

(1)t ctaggd(x)) = d(x)(t) = (m)(t) AX =g M

(2) t ¢ taggd(x)) = d(m)(t) = d(m)(prec(t))

(3) t ctagge(x)) = c(x)(t) = d(m)(t) AVy € vargd) \m,y —d %
(4) t e tagge(x)) = c(x)(t) = d(x)(t) v e(x)(suce(t)) = d(x)(t)

For allt € C, rule (1) says that, when an inpd{x) is present at some
timet, thend(m) takes its value. If no input is present alaxgtt, rule (2),
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thend(m) takes its previous value. Rul@) says that, if the output(x)
is present at, then it is defined byl(m)(t). Finally, rule(4) requires this
value to either be the present or previous value of the input sl
binding the size of the buffer to one place.

d(x):
d(gﬁi;w w_ @, lolo_ e
c(x) la lo 1o lo

4 (4) (4) (4)

Fig. 20. Timing and scheduling relations through finite relaxation.

Definition 1 accounts for the behavior of bounded FIFOs in a way
that preserves scheduling relations. It implies a series of (reflexive-anti-
symmetric) relationg_,, (for n > 0) which yields the (series of) reflexive-
symmetric flow relationsz,, to identify processes of same flows up to a
flow-preserving first-in-first-out buffer of size We writeb T ciff b} ¢
for all x € vargb), and, for alln > 0, b Cp1 c iff there existsd such
thatb C; d &, c. The largest equivalence relation modeled in the poly-
chronous model of computation consists of behaviors equal up to a timing
deformation performed by a finite FIFO protocblandc arefinitely flow-
equivalent written b =* ¢, iff there existsn > 0 andd s.t.d C, b and
dC,c.

6.3. A compositional methodology

We say that a proced3is finitely flow-preserving iff given finitely flow-
equivalentinputs, it can only produce behaviors that are finitely flow equiv-
alent.

Definition 2 (finite flow-preservation).
P isfinitely flow-preservingwith | C in(P) iff for all behaviors bc of
[P], if (bl;)=~(c|i) then Yl =* c/I.

Example of finitely flow-preserving processes are endochronous pro-
cessed®). An endochronous process which receives flow equivalent in-
puts produces clock-equivalent outputs. It hence forms a restricted sub-
class of finitely-flow preserving processes. Furthermore, notice that flow-
preservation is stable to the introduction of a wrappeP @onsisting of
a finite FIFO buffering protocol. A refinement-based design methodology
based on the property of finite flow-preservation consists of characterizing
sufficient invariants for a given model transformation to preserve flows.
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Definition 3 (finite flow-invariance).
The transformation of P into Q such thatdin(P) = in(Q) is finitely
flow-invariantiff Vb € [[P]], Vc € [Q], (b|;)~*(c|;) = b~*c

The property of finite flow-invariance is a very general methodologi-
cal criterion. For instance, it can be applied to the characterization of cor-
rectness criteria for model transformations such as protocol insertion or
desynchronization. Lé? andQ be two finitely flow-preserving processes
andR a protocol to linkP andQ, such as a finite FIFO buffer, or a double
hand-shake protocol, or a relay statiéh or a loosely time-triggered ar-
chitecture®. In definition 4, we writeb[x/y] for the behavior resulting of
substitution of the signal nameby the signal namg in the domain of the
behaviorb and[x; /yi]o<i<n for the compposition ofi substitutions.

Definition 4 (flow-preserving protocol).

The process R is a flow-preserving protocol iff there existsthsuch
that inputsin(R) = {x1.n} are finitely flow-equivalent to outputait( R) =
{y1.n},i.e.,.vb e [R],blx, , ~* (bly, ,[%/Yilo<i<n)

The wrappeR(P) of a proces$ with a protocolR is defined by redi-
recting the signals o to R. In definition 5, this redirection is modeled
by substituting signal names: we wrigx/y] for the process resulting of
substitutingy by xin P.

Definition 5 (wrapper).

Let P be a process such that(P) = {x; m} andout(P) = {Xmy1.n}-
Let R be a flow-preserving protocol such tiatR) = {y1.n} andout(R) =
{z1.n}. The wrapper of P with R is the template process notée) Rnd
defined by:

def ((R[Xi/zi]m<i§”) [Xi /yi]0<i§m)
R<P> B ( “ (P[yi/xi]m<ign) [Zi/xi]0<igm ) /yl..nzl..n

A sufficient condition for the insertion of a protocol between two syn-
chronous processdsandQ to finitely preserve flow is to guaranty that
P|i | Q| is finitely flow preserving fot = vargP) NvargQ), meaning that

all communications betwed andQ via a shared signad € | should be
flow preserving and th& andQ may otherwise evolve independently.

Property 2 (protocol insertion).
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If Ris a flow-preserving protocol arilis finitely flow-preserving then
R(P) is finitely flow-preserving. IR is a flow-preserving protocol arfe|
Q, P|; | Q| are finitely flow-preserving theR(P) | R(Q) is finitely preserv-
ing (I = vargP) nvargQ)).

7. FURTHER APPLICATIONS

We have introduced a type system allowing to model the control and data
flow graphs of a given imperative program in intermediate form. Applica-
tions of the proposed type system encompass optimization and verification
issues encountered in system design.

7.1. Rethreading

Because our type system entirely model the control and data-flow of appli-
cation components and architecture functionalities, one can operate global
optimization on the whole model of the application. Signal, in particular,
implements the notation of our type system using data-flow equations and
allows for the generation of sequential code by employing a global control-
flow graph transformation called hierarchizatih Hierarchization con-
sists of hooking elementary control flow graphs (in the form of if-then-else
structures). For instance,

let h3 be a clock computed usinf,;_ ;o2

h1l and h2 and h be the head of A h
tree in which h1 and h2 are com T
puted. Then h3 can computed a hi g, hi g,

ter hl and h2 and placed under ..

Example 5.The implications of hierarchization for code generation can be
outlined by considering the specification of one-place buffer. The process
buffer has inputx, outputy and implements two functionalities.

buffer < X,y >%'lternate < X,y > |current < X,y >
One is the procesaternate which desynchronizes the signalandy by

synchronizing them to the true and false values of an alternating boolean
signals.

alternate < x,y >%' (= true [X=s|9 = 5| := —s)
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The other functionality is the processirrent. It defines a cell in which
values are stored at the input clackrid loaded at the output clogk ~

current < x,y,b > (rP=b|r :=x|R=y:=x|J\R=y:=T)

We observe thasg defines the master clock bfiffer. There are two other
synchronization classesandy, that corresponds to the true and false val-
ues of the boolean flip-flop variabderespectively. This defines three nodes
in the control-flow graph of the generated code (Figure 21). At the master
clock s, the value ofis calculated fronzs its previous value. At the sub-
clock s= X, the input signak is read. At the sub-clocks =y the output
signaly is written. Finally, the new value afsis determined.

buffer_iterate () {
s = lzs;
cy = Is;
if (s) { if (!r_buffer_i(&x)) return FALSE; }
if (cy) { y = x; w_buffer_o(y); }
zs = s;
return TRUE; }

Fig. 21. C code generated for the one-place buffer specification.

Operating this transformation on the model of a multi-threaded ap-
plication results in merging all threads into a single control-flow graph
whose scheduler foot-prints sequentially processes each elementary exe-
cution block upon a particular condition. {1, we report a 300% average
speedup resulting of applying this optimization to real-time Java programs
compared to their execution using a commercial compiler.

7.2. Module checking

In 18), we define a behavioral module checking algorithm based on similar
principles as those exposed in the previous section. This system allows to
give guarantees As an example, consider a SystemCrojaskose virtual
fields are the clocks,y and a proceduré. Assume an explicit behavioral
type declaratiortyre( f,Q) which associate$ with a description of its
behavior: the propositio denotes its expected functionality. Let us as-
sociate the interfaceyp with the class parameten; of a template class

my. The interfacemy now gives a behavioral type to the methbdh the

class parametamn; expected by the modul®,. The assumptio® on the
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behavior ofmy. f is required to provide a guarantee on the behavior of the
modulem, produced by the template class. Moduigis a candidate pa-
rameter fommy. It structurally implements the interfacg and is annotated
with the guaranteetyre(f,P), whereP is the type ofpgm Now, letmy

be the class defined by the instantiation of the temptatand the param-
etermg. To check the compatibility of the actual parameter with the
formal parametem,, we check the containment of the behaviors denoted
by the propositiorP (the type of the actual parameter) in the proposition
Q (the type of the formal parameter). This amounts to checkRlaiplies

Q, either by model checking (i) contains state transitions) or by static
checking (ifQ is a "stateless” property).

classmp { virtualsc_clockX, y; virtualvoid f() {} #TYPE(f,Q) };
template (classmy ) #TYPE(Imy, mp)
SC_MODULE(N,) { SC.CTOR(My) { SC_.THREAD(my. f) sensitive < X } };
classmg { sc_clockXx, y; void () { pgm} #TYPE(f,P) };
M(mMs) Ma;

Fig. 22. Type assumptions and guarantees in the SystemC module system.

We consider a simple and minimalistic module system model for the
purpose of exemplifying the scalability of our technique to structuring el-
ements of general-purpose languages such as Java, C++ or SystemC. A
componentmod in an architecture is a class definitiatassm{dec}, a
template declaratioremplate (classx : m)modor a sequence of modules
mod mod A class consists of a sequence of declarations. The keyword
usem allows to use the members of clagswithin the current module
(hence name elaboration is assumed to be explicit for simplification pur-
poses). Declaratiordecassociate locationswith native classes or tem-
plate class instances(my_x) and methods with a namieand a definition
pgm For instanceinteger X defines an integer variable(in Java or C)
while sc_signal(boolean) x defines a boolean signain SystemC. As we
focus on typing program module behaviors we assume no sub-typing rela-
tion between data-types.

mod::=classm{dec} | template (classx : m) mod| mod mod
dec ::=m(ny k)X | usem| m f(xg k) {pgm} | degdec

Fig. 23. Abstract syntax for declarations and modules.
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We define our module system starting from the behavioral type system
of Section 5. The typeZ of a modulem consists of an environme#t (that
associates functionswith behaviors and variableswith data-types) and
of a proof obligations’. The type. 1 — 7> denotes a template class that
produces a module of typ& given a parameter of typé;.

(type) T =& /C |N\x: 7. T

A proof obligation is a conjunction of propositions of the foBm= Q. A
proof obligationP = Q is incurred by the instantiation of a template class,
whose formal parameter has typeand by an actual class parameter, of
type Q.

(obligation)#” ::= true |[P= Q|F ANF
The synthesis of proof obligations pertaining on the correctness of module
composition is defined by the relatigh- mod: & /% and by induction on
the syntax of modules and declarations. Riapassociates the location
with the type namenin the class-field typé<: m|. Rule (b) allows to use
or open a modulen.

(a) &Fmx: [x:m]| (b) &m: 7| Fusem: .

Rule (c) associates a method definitidnwith the class-field typgf :
Ax1 kXL (P, x®M)] Its side-condition(x) is that.# = labgpgm) is the set
of labels defined ipgmand that. = star{pgm is the entry point opgm

It defines the propositioR and the continuation or output clogR" of the
methodf parameterized by its sequencey of input variables, its result
variablex, and the label that defines its input clock. To process the func-
tion, we associate its reutrn value, denoted-byurn to a signak used to
carry its value.

L,&[return: x| F L : blk;pgm: P ()
& m f(x.k) {pgm}: [ 1 Axg XL (P/Z,X0)]

(c)
Rule (d) sequentially processes the declaratidesin a module. The con-
strainttrue is omitted in rules (a) and (c).

Ehdeq:&/% Wi Hdes: /6
&Fdeqg;dec: &1WE/C1 NG

Class-field declarations contribute to building the tyjpeof a module. We
write & = m: .7 iff & containsim: .7|. An extension noted? W &> is de-
fined by&> and all class names and class-field names$; afot overridden
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by a declaration i2. Rule(«) defines the typeZ of a class by that of its
field declarations.

& -dec: 7
(@) & I classm{dec} : [m: 7|

Rule(p) defines the type of a template instanegm) m. LetA(x: .71)..7
be the type of the functamn,. Let % be the type of the parametes. If the
subtyping relation7; < .% implies the proof obligatior¥’ then the type
of mis .7 [mp/x| (X is substituted bymn,).

B) ErmNX:A).T Ermp: T A< PH=F
( EFm{mp)ym: ([m: 7|/€)[my/X]|

Rule (y) defines the type of a template declarati@mplate (classmy :
ni) mod Provided theassumptionthat the formal parametem of the
template has the typg; (that of the virtual class namm®) the template
guaranteegshat the modulem, it defines has type7;. Hence the type
A(my : 7). for modulemy.

Ebn: 7 &Em i J)Fmod: [mp: F)
&+ template (classmy : np) mod: [my : A(my : 77). %3]

()

Rule (6) processes module declarations in sequence.

(5) EFEmod :&1/61 EWEEmodh: &2/%2
& Fmod;;mot : &1 E2/ 61N\ 6

Finally, the resolution of the behavioral sub-typing relatiéh < % is
defined by structural induction. It reduces to the proof of a conjunction of
propositiond;, = P».

7.3. Design checking

Properties pertaining on common design errors can easily be expressed
and checked using our type system. Whereas related approaches consist of
proposing an ad-hoc type system for analyzing a specific pattern of design
errors: race conditions, deadlocks, threads termination; and in a given pro-
gramming language: Java, C, SystemC, our type system provides a generic
framework to perform verification via model checking of behavioral prop-
erties of embedded systems described using imperative programming lan-
guages.
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Termination.A common design error found in embedded system de-
sign is the unexpected termination of a thread due to, e.g., an uncaught
exception. Here, the termination of a threhdan simply be expressed
by the accessibility of the properti?" = 1. Unexpected termination can
hence be avoided by checking tHasatisfiesf " = 0.

DeadlocksAnother common design error is a wait statement that does
not match a notification and yields the thread to block. Lget, be the
clocks of the blockd.;,, in which a lockx is notified. Waiting forx at a
given labelL eventually terminates P satisfied A —(A!;Li) = 0.

Races.Similarly, concurrent write accesses to a variabkhared by
parallel threads can be checked exclusive by considering the input clocks
e,n of all write statementx = f(y,z) by verifying thatP satisfies(e A
(Vjzigj))=0forallO<i<n.

Larger case-studies reporting applications of our technique in system
design and verification are the complete model of a finite input response
(FIR) filter starting from the SystemC 2.0.1 distributih In this case
study, we demonstrate the benefits of modularly associating each System
module to a behavioral type interface to perform optimizations and veri-
fications which are modular and yet sensitive to the architecture in which
modules or components are placed as reflected by the architecture’s be-
havioral type and by application of an assumption-guarantee reasoning
principle. A more recent and larger experiment applies the principles pre-
sented in this article to co-modeling by considering predefined SystemC
components and connecting them around a bus architecture by giving a
synchronous data-flow model of the interconnection wrappers.

8. RELATED WORK

By contrast to traditional type systems, which focus on rendering data-
structure abstractions, behavioral type systé€fhd® are concerned with
the abstraction of control structure in concurrent programs.

A related direction of research is software model checking using pop-
ular tools like Bander&”), Mops*®, Verisoft(19) Modex© 20) Slam®L),
CBMC 22, Magic (®3, Blast ?4), Pathfinder?®). Most software model
checking tools proceed by extracting temporal logic models of source pro-
grams (either Java or C but raraely both) and perform sophisticated and
efficient abstractions to drastically accelerate property verification.

Our approach contrasts with the software model checking trend in
that it is primarily aimed atnodelingsoftware and then perform either
of global model transformations (desynchronization, rethreading, etc) and
code generatioR¥, conformance checking by finite-flow equivalence us-
ing model checking techniqué®) or modular state-less abstraction for
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efficient property verificatio®). As such, our approach most closely re-
lates to that of ModexX2® in which temporal property models are ex-
tracted for later verification with Spin. We experienced that representing
such models using executable specifications expressed in a multi-clocked
synchronous model offers the additional benefit of operating orrectness-
preserving model transformations such as protocol synthesis (desynchro-
nization 1®) or static scheduling (rethreadidd"). Finally, and unlike

most related approaches in SMC, which are geared towards a particular
programming language, we focus on a language-independent intermediate
representation of Gnu's GCC.

We share the aim of a scalable and correct-by-construction exploration
of abstraction-refinement of system behaviors with the work of Henzinger
et al. on interface automat&. Our approach primarily differs from in-
terface automata in the data-structure used in the Polychrony workbench:
clock equations, boolean propositions and state variable transitions ex-
press the multi-clocked synchronous behavior of a system. Compared to
an automata-based approach, our declarative approach allows to hierarchi-
cally explore abstraction capabilities and to cover design exploration with
the methodological notion of refinement along the whole design cycle of
the system, ranging from the early requirements specification to the latest
sequential and distributed code-generaffdn

9. CONCLUSIONS

Our contribution contrasts from related studies by the capability to capture
a complete behavioral model of the type-checked system as well as model
abstractions expressed at a scalable degree of precision. In our type sys-
tem, scalability ranges from the capability to express the exact meaning of
the program, in order to make structural transformations and optimizations
on it (just as in a traditional type system), down to properties expressed
by boolean equations between clocks, allowing for a rapid static-checking
of design correctness properties. Our system allows for a wide spectrum
of design abstraction and refinement patterns to be applied on a model,
e.g. abstraction of states by clocks, abstraction of existentially quantified
clocks, hierarchic abstraction, in the aim of choosing a better degree of
abstraction for faster verification.

The main novelty in our approach is the use of a multi-clocked syn-
chronous formalism to support the construction of a scalable behavioral
type inference system fate factostandard design and programming lan-
guages, and the materialization of a companion refinement-based design
methodology imposed through the strong typing policy of a module sys-
tem, that reduces compositional design correctness verification to the vali-
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dation of synthesized proof obligations. The proposed type system allows
to capture the behavior of an entire system-level design and to re-factor
it, allowing to modularly express a wide spectrum of static and dynamic
behavioral properties, and to automatically or manually scale the desired
degree of abstraction of these properties for efficient verification. The type
system is presented using a generic and language-independent intermedi-
ate representation. It operates transformations implemented in the platform
Polychrony, to perform refinement-based design exploration. It yields to
SAT and model checking verification tools for an efficient verification of
expected design properties and an early discovery of design errors.
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