
A Run-time System for Efficient Execution of Scientific
Workflows on Distributed Environments*

George Teodoro*, Tulio Tavares*, Renato Ferreira*, Tahsin Kurc†, Wagner Meira Jr.*,
Dorgival Guedes*, Tony Pan†, and Joel Saltz†

George Teodoro: george@dcc.ufmg.br; Tulio Tavares: ttavares@dcc.ufmg.br; Renato Ferreira: renato@dcc.ufmg.br;
Tahsin Kurc: kurc@bmi.osu.edu; Wagner Meira: meira@dcc.ufmg.br; Dorgival Guedes: dorgival@dcc.ufmg.br; Tony Pan:
tpan@bmi.osu.edu; Joel Saltz: jsaltz@bmi.osu.edu
*Department of Computer Science, Universidade Federal de Minas Gerais, 31270-010 Belo
Horizonte, MG - Brazil, tel +55(31)3499-5860 - fax +55(31)3499-5858
†Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210 - USA,
tel +1(614)292-4778 - fax +1(614)688-6600

Abstract
Scientific workflow systems have been introduced in response to the demand of researchers from
several domains of science who need to process and analyze increasingly larger datasets. The
design of these systems is largely based on the observation that data analysis applications can be
composed as pipelines or networks of computations on data. In this work, we present a runtime
support system that is designed to facilitate this type of computation in distributed computing
environments. Our system is optimized for data-intensive workflows, in which efficient
management and retrieval of data, coordination of data processing and data movement, and check-
pointing of intermediate results are critical and challenging issues. Experimental evaluation of our
system shows that linear speedups can be achieved for sophisticated applications, which are
implemented as a network of multiple data processing components.

Keywords
Scientific Workflows; Parallel Computing; Data-analysis

1 Introduction
Data analysis is a significant activity in almost every scientific research project. Challenges
in designing and implementing support for efficient data analysis are many, mainly due to
characteristics of scientific applications that generate and reference very large datasets.
Large datasets are often generated by large scale experiments or long running simulations.
One example is the Large Hadron Collider project at CERN. Starting this year, this project is
expected to generate raw data on a petabyte scale from four large underground particle
detectors every year [1]. Projects like the Grid Datafarm [2] are being implemented to be
able to process these datasets.

To help the researchers in their experiments and analysis, scientific workflow systems [3, 4,
5, 6] have been introduced. In most scientific applications, analysis workflows are data-

*This research was supported in part by the National Science Foundation under Grants #ACI-0203846, #ACI-0130437,
#ANI-0330612, #ACI-9982087, #CCF-0342615, #CNS-0406386, #CNS-0403342, #CNS-0426241, NIH NIBIB BISTI
#P20EB000591, Ohio Board of Regents BRTTC #BRTT02-0003.

NIH Public Access
Author Manuscript
Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

Published in final edited form as:
Int J Parallel Program. 2008 April ; 36(2): 250–266. doi:10.1007/s10766-007-0068-8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

centric and can be modeled as dataflow process networks [7]. That is, a data analysis
workflow can be described as a directed graph, in which the nodes represent application
processing components and the directed edges represent the flow of data exchanged between
these components.

Distributed environments, like a PC cluster or collection of PC clusters, provide viable
platforms to efficiently store large datasets and execute data processing operations. In a
scientific workflow system, the user should be able to describe and create components based
on the tasks they want to execute, arrange these components into a network of operations on
data based on the application data processing semantics, and run the network of components
on very large data collections on clusters of storage and computation nodes. Scientific
workflow systems should also support component reuse. In other words, a component may
be part of a specific workflow, but also can be reused in another application workflow. An
example data analysis workflow in an image analysis application is shown in Figure 1. This
example involves analysis of digital microscopy slides to study the phenotype changes
induced by some genetic manipulations. In the figure, we can see four different tasks (image
analysis operations) that should be applied in sequence to the slides. In summary, some of
the challenges in designing workflow systems that support processing of large datasets are
1) to store, query and manage large distributed databases, 2) to manage the input and output
data and the scheduling and monitoring of these workflows execution in the distributed
environment, and 3) to optimize the reuse of components in different workflows.

We proposed and developed the Anthill system [8], a system based on the filter-stream
programming model that was originally proposed for Active Disks [9], to address some of
the issues in execution of scientific data-intensive workflows. In Anthill, filters represent
different data processing components of the data analysis structure and streams are an
abstraction for communication between filters. Using this framework, applications are
implemented as a set of filters over the network connected using streams, creating task
parallelism as in a pipeline. During execution, multiple copies of each filter can be
instantiated, allowing every stage of the pipeline to be replicated, resulting in data
parallelism. In an earlier work [8], we demonstrated the efficacy and efficiency of Anthill
for data mining tasks.

In this paper, we report on the results of an effort to extend the functionality of Anthill.
These extensions include 1) a program maker component, which builds workflow
executables from dynamically loadable shared libraries and workflow description files, 2) a
persistent storage layer, which provides support for management of meta-data associated
with workflow components, storage and querying of input, intermediate, and output datasets
in workflows, and 3) in-memory storage (cache) layer, which is designed to improve
performance when data is check-pointed or stored in and retrieved from the persistent
storage layer. The persistent storage layer builds on Mobius [10], which is a framework for
distributed and coordinated storage, management, and querying of data element definitions,
meta-data, and data instances. Mobius is designed as a set of loosely coupled services with
well-defined protocols. Data elements/objects are modeled as XML schemas and data
instances as XML documents, enabling use of well-defined protocols for storing and
querying data in heterogeneous systems.

The extensions presented in this paper are generic in the sense that they can be applied in a
range of situations, and our experiments have shown that we incur low overhead during
execution.

Teodoro et al. Page 2

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2 Related Work
The Chimera [11] project has developed a virtual data system, which represents data
derivation procedures and derived data for explicit data provenance. This information can be
used for reexecuting an application and regenerating the derived data. Our approach focuses
on storing the partial data results; we do not store a large amount of information about data
derivation, but we are able to efficiently store datasets generated between each pipeline
stage. The Pegasus [12] can create a virtual data system that saves the information about
data derivation procedures and derived data using Chimera. It also maps Chimera’s abstract
workflow into a concrete workflow DAG that the DAGMan [13] meta-scheduler executes.
The Kepler [5, 6] system provides support for Web Service based workflows. The authors
show the composition of workflows based on the notion of actor oriented modeling, first
presented in PTOLEMY II [14]. Pegasus and Kepler systems have interesting solutions to
the workflow management problem. However, they do not directly address the problem of
integrating workflow execution with data management and retrieval. Our system is
constructed to support efficient access to data stored in distributed databases and scalable
execution of workflows in an integrated manner. NetSolve [15] provides access to
computational software and hardware resources, distributed across a wide-area network. To
support sharing of software resources available in the network, NetSolve creates an
infrastructure to call shared libraries that implement the available functionalities. The other
features of NetSolve include support for fault-tolerance and load balancing across
computational resources.

3 Extended Anthill Framework
The architecture of the extended Anthill system, as shown in Figure 2, is composed of two
main parts: the program maker and the run-time environment. The first part allows users to
store and share data processing components in a repository and provides a toolkit for
generating workflows based on shared components from the repository. The run-time
environment is designed to support analysis workflows in data intensive applications. The
run-time environment is further divided into a distributed workflow meta-data manager, a
distributed in-memory data storage, and a persistent storage system. The workflow meta-
data manager (WFMDM) works as a data manager for the workflow execution. It stores
information for datasets read or written by the application on the fly. It is also responsible
for deciding on demand which portions of the input data are processed by each filter. Note
that the WFMDM can be executed in distributed fashion across multiple machines or as a
centralized entity. The in-memory data storage (IMDS) subsystem works as an intermediary
between the application and the Persistent Storage Management System (PSM). Based on
the meta-data provided by the WFMDM, the IDMS basically reads the necessary data from
the PSM and stores the outputs of each component in the PSM. The PSM uses the Mobius
framework [10] to expose and virtualize data resources as XML databases and to allow for
ad hoc instantiation of data stores and federated management of existing, distributed
databases. The system also provides mechanisms for efficiently saving partial results
without introducing synchronization between the application and the run-time environment.

We now proceed to detailing the implementation of each of these components. They are
designed to achieve scalable and efficient execution in distributed and heterogeneous
environments.

3.1 Program Maker
This component is a tool for allowing users to incorporate existing program components and
libraries in the workflow system. To accomplish this task, it creates additional code in each
stage of the workflow pipeline to support execution of program executables and dynamically

Teodoro et al. Page 3

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

loadable shared libraries. The Program Maker is divided into three parts: Shared Libraries
and Executables Repository, Program Descriptor and Filter Maker.

3.1.1 Shared Libraries and Executables Repository—In our framework data
analysis workflows can be created from dynamically loadable libraries and program
executables. We have developed a repository component to enable management of function
libraries and executables so that users can store and search for application processing
components and use them in workflows. To support efficient management and querying of
the repository, we implemented it using Mobius [10]. The user can interact with the
repository via three basic operations: upload, search for, and download programs and
libraries.

The first operation, upload, requires the creation of meta-data that describes the compiled
code being uploaded. This meta-data, which is implemented as an XML document, contains
all the information necessary to identify the type of data the program is able to work with,
the data structures used by each of its arguments, and the de-serialization and serialization
functions that need to be applied to the input and output datasets of the program. It also
includes additional information about the system requirements of the particular program or
library (e.g., hardware platform requirements, dependencies on other libraries). The second
operation, search, is used to perform queries to search for stored libraries and program
executables and to access the meta-data related to each stored element. The last operation,
download, receives a reference to a compiled code or library, downloads it from the
repository, and stores it in a local directory.

3.1.2 Program Descriptor—This is the configuration file (represented as an XML
document) of the entire data processing pipeline of an application. It is divided into four
sections: hostDec, placement, layout, and compiledFilters.

• hostDec is used to describe all machines available in the environment. It is used to
determine the resources for each of the application components.

• placement is used to declare the components comprising a particular workflow
application, the library in which they are located, and the number of instances that
should be created for each component.

• layout defines the connections between the components, the policies associated
with each connection (e.g., each data buffer exchanged between two components
over the connection can be check-pointed), and the direction of communication.

• compiledFilters is used to provide information that the framework needs to be able
to execute a given component. Information here is used to find out which library
the component code comes from, the number and types of parameters that should
be passed or returned to/from the component, and the data transformation functions
that need to be called to serialize/de-serialize the input and outpur data of the
component.

3.1.3 Filter Maker—This component receives a Program Descriptor configuration file and
executes the workflow described in that file. It generates the source code of the connection
filter for each application component declared in the configuration file, as well as the
Makefile required for compiling and linking the entire application workflow. The user
should define an environment variable pointing to the directory where it is stored so that the
filter maker subsystem can determine the location of the application-specific libraries to be
linked to the workflow. The connection filter wraps the application specific data processing
component so that it can be executed properly. A high level definition of the connection
filter is given in Algorithm 1. It executes a loop that reads data from the input stream, de-

Teodoro et al. Page 4

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

serializes and passes it to the application component code, which is invoked in the process
method. It then proceeds to serializing any output that is generated by the application
component and sending it out the next filter in the workflow.

3.2 Run-Time Environment
The run-time environment, shown in Figure 2, is divided into three main components: the
Data-Intensive Workflow Execution Support System, which is responsible for instantiating
the workflow program, the Workflow Management System, which is responsible for
managing the entire work-flow execution, and the Persistent Storage System.

3.2.1 Data-Intensive Workflow Execution Support System—This component is
implemented on top of Anthill [8], which is responsible for instantiating the components on
distributed platforms and managing the communication between them. Anthill is based on
the filter-stream programming model, which means that in this environment applications are
decomposed into a set of filters that communicate through streams. At execution time,
multiple instances of each filter can be spawned on different nodes on a distributed
environment, achieving data parallelism as well as pipelined task parallelism.

We have extended the Anthill run-time to provide transparent communication between the
application and the Workflow Management System (WMS). These modifications provide
support for exchanging information across application components and the WMS. This
information includes, for instance, which filters are available for data processing, which
documents have been processed, and so on.

3.2.2 Workflow Management System—This component is divided into two
subcomponents: the Workflow Meta-Data Manager (WFMDM) and the In-Memory Data
Storage (IMDS). The WFDMD works as the data manager of the entire workflow execution.
It maintains information about all the data involved in the application execution, either read
or written. When the workflow execution is initiated, the WFMDM receives a XPath query
[16] that specifies the input dataset. It then relays the query to all instances of the Persistent
Storage Manager (PSM) and builds a list of all matching documents with the associated
meta-data. Each document of the list goes through three different states as the execution
progresses:

Not processed: This state applies to all documents that compose the input dataset at the
beginning of the execution. It means that they are available to be processed.

Being processed: input documents sent to filters are in this status as well as documents
sent across filters, because they have been created and are being processed by one or
more filters.

Processed: a documents is marked processed when it has been processed by a filter and
the result has been stored in the IMDS.

During the workflow execution, the WFMDM is responsible for assigning documents to
filters. This data partitioning is done on demand as each time a filter reads input data, a
request is received by the WFMDM. The goal is to always assign a local document to the
filter.

The IMDS works as an intermediary between application filters and the persistent storage
manager (PSM). It is implemented as a filter, which is instantiated on multiple machines
based on user configuration. The system always tries to have filter requests for data
answered by a local IMDS. When there is no local IMDS for a given filter, another one is
assigned to the filter by the run-time system.

Teodoro et al. Page 5

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

As filters request data during execution, these requests are passed down to the local IMDS
(or to the assigned one). The IMDS acts pretty much as a caching system, only relaying
requests for unavailable data to the WFMDM. Several instances of the IMDS can be
distributed across available machines and work independently, meaning that multiple
instances can be reading different portions of the data simultaneously. This is similar to a
classic parallel I/O approach, except that it is on top of a distributed XML database.

The task of saving intermediate results is also executed by the IMDS. It can save all data
sent through the stream. During execution, the IMDS creates, on the fly, distributed
databases for each stream and stores all the data exchanged over a given stream as
documents in Mobius. It behaves like a write-back caching mechanism, releasing the
application code from having to wait for the I/O operation to complete. As in the case of
reads, multiple write operations can be executed in parallel.

3.2.3 Persistent Storage Manager—We use Mobius [10] as our persistent data storage
manager. We employ the Mobius Mako services to store all data used in workflows. The
Mobius Mako provides a platform for distributed storage of data as XML documents.
Databases of data elements can be created on-demand. The data is stored and indexed so that
it can be queried efficiently using XPath. Data resources are exposed to the environment as
XML data services with well-defined interfaces. Using these interfaces, clients can access a
Mako instance over the network and carry out data storage, query, and retrieval operations.

3.2.4 Communication Protocol—Application components (implemented as filters)
communicate with the rest of the run-time support transparently. Each application
component is just concerned with receiving its own input data, processing it, and generating
its output. In Figure 3 we illustrate the internal communication structure across the several
components of the run-time infrastructure. We use a stage in the pipeline of an image
processing application (described later, see Figure 7) as an example. As seen in the figure,
there are two filters involved in that stage: color classification and tissue segmentation, both
being fairly standard image analysis algorithms.

In Figure 3(a), we detail the communication within the run-time components for the case of
a read operation (assume the first filter, color classification, is reading its next image). The
process starts with a message from the application’s filter requesting the next document
from the IMDS. This operation will then invoke a request to the local WFMDM instance for
an available document for processing, and will receive an ID of some document, potentially
available locally. With that information, the IMDS can serve the original requester with the
data. It may need to query the PSM, if the data is not available in the IMDS already.

Figure 3(b) illustrates the communication protocol for write operations. It is a slightly more
complicated protocol. As the color classification code outputs its data, the filter has to first
create the dependencies (i.e., the documents used to create other documents) on the local
IMDS instance. After that, the data is sent from one filter to the next, using the streams
infrastructure within Anthill. Once the filter on the receiving end gets the data, it creates a
local copy of the data before passing it to the application code. As this copy of the data is
stored locally, the IMDS notifies the local WFMDM instance about the local data copy and
the sender’s WFMDM instance that the data was successfully received. This will prompt a
change the change in the state (to processed) of the input document that generated that
particular output document. The IMDS will eventually move the data from its memory to the
PSM. This happens in background so that the application is not penalized.

Teodoro et al. Page 6

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3.3 Support for Matlab Filters
In biomedical image analysis studies Matlab is a commonly used system. Through its
scripting capabilities and built-in libraries and functionality, it provides an environment for
researchers to quickly prototype their algorithms and evaluate them. It also provides
compilation functionality by which a Matlab program can be compiled into a shared library
or an executable. We developed support in the framework described in this paper to
facilitate composition and execution of work-flows consisting of Matlab programs compiled
as shared libraries. In this section, we describe how to create an XML configuration file for
applications whose filters are generated using a compiled Matlab code. The first three
sections of the configuration file (hostdec, placement and layout), are consecutively used to
describe the available machines, the filters in the pipeline and how to connect these filters.
For filters, that are automatically generated from compiled Matlab executables or shared
libraries, we add an extra section in the configuration file; this section is marked as
(matLab). In the matLab section, for each filter metadata such as filtername and
libraryname are specified. After analyzing the matLab section of the configuration file, our
system determines which filters correspond to Matlab shared libaries and the inputs and
outputs of these filters. At this point, we can generate the filter’s code to call these functions.
Figure 4 shows how the conf file is translated in filters.

In the configuration file, for each Matlab filter, a <matLabFilter> tag is created. This tag
contains the following two attributes:

• name: Name of the filter that use compiled code

• matlablibname: Name of the shared library where the function that implements this
filter is located.

The function that will be used by the filter should also be declared. This can be done using
the <function> tag. The attributes of this tag are:

• headername: The header name of the function

• numoutputs: The number of arguments used as outPut (reference)

• numinputoutputs: The number of arguments used as input and output

• numinputs: Number of arguments that are used just as a function input

Finally, each argument of the function is specified using the <argument> tag. This tag has
the following attributes:

• argType: The type of this argument.

• inputType: is used to know if this variable is initialized from a user line comand of
from message.

– userargindex: Its similar to the index of argv variable in a C program call

– msgindexin: Identifies the location of input in the received msg

• order: The order of the parameters in the function call

• serializefunction: The output (inputoutput) argument identifies the serialize
function that should be used to pack the data in the output msg

• serializelibname: the name of the library that contains the serialize function.

• deserializefunction: The input (inputoutput) argument most inform what are the
deserialize function that should be used to unpack the data in the in msg before call
the function that implements the filter

Teodoro et al. Page 7

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

• deserializelibname: the name of tha lib that contains the deserialize function.

• msgIndexOut: identifies the order that the serialize functions must be called

The user can provide serialization and deserialization functions. We also developed a suite
of serialization/deserialization functions for common Matlab data types.

An example configuration file for a workflow composed of Matlab filters is given in Figure
5.

4 Application Example
In this section we briefly describe an example application and how it is mapped into a
workflow using the tools available in our framework.

4.1 Application Overview
The example application uses high-resolution digitized microscopic imaging to study
phenotype changes in mouse placenta induced by genetic manipulations. It handles the
segmentation of images that compose the 3D mouse placenta into regions corresponding to
the three tissue layers: the labyrinth, spongiotrophoblast, and glycogen, as described in [17].

We have divided this application into six stages, as seen in Figure 6, and mapped four of the
most expensive stages as the components of the workflow. The basic description of each of
the four stages are:

Foreground/Background Separation (FG/BG): Images are converted from the RGB
color space to the CMYK color space and a combination of the color channels are
thresholded to get the foreground tissue.

Histogram Normalization: Images are corrected for color variations. This process
consists of three sub-operations: computing the average colors for the images; selecting
one image as the color normalization target; and generating a histogram for each of the
red, blue and green channels.

Color Classification: Pixels in an image are classified using a Bayesian classifier. The
classifi-cation of a pixel puts it in one of 8 different categories: dark nuclei, medium
intensity nuclei, light nuclei, extra light nuclei, red blood cell, light cytoplasm, dark
cytoplasm, and background.

Tissue Segmentation: In this step, using a Bayesian classifier, each tissue is classified
into one of the three tissue types: Labyrinth, Spongiotrophoblast, and Glycogen.

In the rest of this section we describe how a developer can implement this application using
our system.

4.2 Application filters
The main work to integrate an application into our system consists in constructing the com-
piledFilter section of the Program Descriptor configuration file, describing the entire data
analysis pipeline of the application (see Section 3.1.2). In the compiledFilter section, the
user describes details about each filter that perform application specific data processing
functions. Due to space limitations, we do not elaborate on the format of the configuration
file other than to say that it is a XML document containing a detailed description of each of
the application components (filters), with all the information required for automatically
generating filters.

Teodoro et al. Page 8

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

4.3 Application Workflow
In the workflow composition phase, the user needs to specify what filters are in the
workflow and the connection between them. This information is part of the placement and
layout sections of the Program Descriptor file. After this information is specified, the user
can call a script with the program parameters and a XML query that identifies the data
elements, which are stored in and managed by the PSM, that should be processed.

In the example application, inputs needed by stage 3 are the outputs of stage 2, so we have a
clear data dependency between them. During the execution of stage 2, our framework
creates new data collections on the fly across available machines and stores the output data
elements and the related meta-data to be used as stage 3 input. Once stages 2 and 3 have
completed execution, stage 4 can be executed. Again the the framework takes care of storing
the output from this stage. Stage 6 has a data stream between two application filters. Figure
7 shows this stream and a dotted arrow from it to the WMS. This arrow represents an
optional efficient stream storage mechanism. This feature allows storage of partial results
during execution. This check-pointing facility can be used to re-start the execution from the
last set of stored partial results.

5 Experimental Results
In this section we evaluate the implementation of the example image analysis application
developed using the framework described in this paper. The experiments were run on a
cluster of 20 PCs, which are connected using a Fast Ethernet Switch. Each node has a AMD
Athlon(tm) Processor 3200+ and 2 GB main memory and runs Linux 2.6 as the operating
system

To evaluate our implementation, we used a dataset of 866 images that have been created by
digitizing sections from a mouse placenta, as described in [17]. The size of the whole dataset
is 23.49 GB. The dataset has been stored in the PSM; we ran one Mobius Mako service
instance on each storage node and distributed the images in the dataset across multiple Mako
nodes in round-robin fashion. During the experiments, we instantiated one IMDS on each
machine and one WFMDM instance on one of the machines.

Figure 8 shows an experimental evaluation of the Foreground/Background Separation (FG/
BG) stage. The numbers illustrate the good scalability of our system, which achieves almost
linear speed-up as seen in Figure 8(b). In Figure 8(a), the details of the execution time are
shown. The results show that the execution time is dominated by the time spent in the
process function.

Figure 9(a) shows the speed-up results of the Histogram Normalization stage. This stage
uses images and associated image masks as input. The execution time using 2 machines is
about 7000 seconds and the speed-up is almost linear. Figure 9(b) shows the speed-up of the
last and most ex- pensive stage, the “Color Classification” and “Tissue Segmentation”. For
this stage, the execution time using 2 machines is about 60000 seconds and the speed-up is
almost linear.

Figure 10 shows the performance of the system when partial results from a stage is saved in
the system. In the figure, the execution time of the last stage of the application is shown,
when the partial results from the Color Classification filter are saved or not saved in the
system. As is seen from the figure, the overhead is very small and less than 5% on average.

Teodoro et al. Page 9

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6 Conclusion and Future Work
In this paper we have presented extensions to a run-time system, Anthill, for efficient
execution of scientific workflows on distributed environments. The new components can
create a stub Anthill filter (also called the connection filter) automatically from a high level
description of a given application component. These filters can run user code with a simple
interface.

In order to provide data management with low overhead, we use the Mobius infrastructure.
The modules of the run-time support are also built as a set of Anthill filters which
communicate among themselves and with Mobius transparently to the user code. Our
experiments have shown that our implementation can be used to execute sophisticated
applications, with multiple components, with almost linear speedups. This means that our
system imposes very little overhead.

Our next step is to work toward building a robust, dependable workflow system. Fault
tolerance is important in any environment with a large number of machines and processes
running for nontrivial periods of time. We plan to use the efficient data management
mechanisms presented in this paper to store data checkpoints and allow applications to
resume execution from check-pointed data.

References
1. CERN. Large hadron collider. http://www.interactions.org/lhc/

2. Tatebe, O.; Morita, Y.; Matsuoka, S.; Soda, N.; Sekiguchi, S. Grid datafarm architecture for
petascale data intensive computing. 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid); 2002.

3. Kola, George; Kosar, Tevfik; Frey, Jaime; Livny, Miron; Brunner, Robert J.; Remijan, Michael.
Disc: A system for distributed data intensive scientific computing. Proceeding of the First
Workshop on Real, Large Distributed Systems (WORLDS’04); San Francisco, CA. December
2004;

4. Hastings S, Ribeiro M, Langella S, Oster S, Catalyurek U, Pan T, Huang K, Ferreira R, Saltz J, Kurc
T. Xml database support for distributed execution of data-intensive scientific workflows. SIGMOD
Record. 2005; 34

5. Altintas, I.; Berkley, C.; Jaeger, E.; Jones, M.; Ludscher, B.; Mock, S. Kepler: An Extensible
System for Design and Execution of Scientific Workflows. In the 16th Intl. Conference on
Scientific and Statistical Database Management(SSDBM); Santorini Island, Greece. June 2004;

6. Ludascher, B.; Altintas, I.; Berkley, C.; Higgins, D.; Jaeger-Frank, E.; Jones, M.; Lee, E.; Tao, J.;
Zhao, Y. Concurrency and Computation: Practice & Experience, Special Issue on Scientific
Workflows. 2005. Scientific workflow management and the kepler system.

7. Lee, Edward A.; Parks, Thomas M. Dataflow process networks. Proceedings of the IEEE; may
1995; p. 773-799.

8. Ferreira, R.; Meira, W., Jr; Guedes, D.; Drummond, L.; Coutinho, B.; Teodoro, G.; Tavares, T.;
Araujo, R.; Ferreira, G. Anthill: A scalable run-time environment for data mining applications.
Symposium on Computer Architecture and High-Performance Computing (SBAC-PAD); 2005.

9. Acharya, A.; Uysal, M.; Saltz, J. Active disks: Programming model, algorithms and evaluation.
Eighth International Conference on Architectural Support for Programming Languages and
Operations Systems (ASPLOS VIII); Oct 1998; p. 81-91.

10. Hastings, Shannon; Langella, Stephen; Oster, Scott; Saltz, Joel. Distributed data management and
integration framework: The mobius project. Global Grid Forum 11 (GGF11) Semantic Grid
Applications Workshop; IEEE Computer Society. 2004. p. 20-38.

11. Foster, Ian; Voeckler, Jens; Wilde, Michael; Zhao, Yong. Chimera: A virtual data system for
representing, querying, and automating data derivation. The 14th International Conference on
Scientific and Statistical Database Management (SSDBM’02); 2002.

Teodoro et al. Page 10

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.interactions.org/lhc/

12. Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Lazzarini A, Arbree A, Cavanaugh
R, Koranda S. Mapping abstract complex workflows onto grid environments. In Journal of Grid
Computing. 2003:25–39.

13. Frey, James; Tannenbaum, Todd; Foster, Ian; Livny, Miron; Tuecke, Steven. Condor-G: A
computation management agent for multi-institutional grids. Proceedings of the Tenth IEEE
Symposium on High Performance Distributed Computing (HPDC10); IEEE Press. Aug 2001;

14. PTOLEMYII project. Department of EECS; US Berkeley: 2004.
http://ptolemy.eecs.berkeley.edu/ptolemyII/

15. Casanova H, Dongarra J. Netsolve: A network enabled server for solving computational science
problems. International Journal of Supercomputer. 1997:212–223.

16. Berglund, Anders; Boag, Scott; Chamberlim, Don; Fernández, Mary F.; Kay, Michael; Robie,
Jonathan; Siméon, Jérôme. Xml path language (xpath). World Wide Web Consortium (W3C);
August 2003;

17. Pan, Tony C.; Huang, Kun. Virtual mouse placenta: Tissue layer segmentation. Proceedings of the
27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC2005); Sep 2005;

Teodoro et al. Page 11

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://ptolemy.eecs.berkeley.edu/ptolemyII/

Figure 1.
Example application workflow.

Teodoro et al. Page 12

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Framework Components

Teodoro et al. Page 13

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Communication protocol inside the run-time support components.

Teodoro et al. Page 14

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
A sample group of filters using Matlab libraries.

Teodoro et al. Page 15

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
A sample configuration file for a workflow consisting of Matlab filters.

Teodoro et al. Page 16

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
Mouse Placenta Application

Teodoro et al. Page 17

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
Mouse Placenta Application WorkFlow

Teodoro et al. Page 18

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
(a) The dissection of the execution time of the FB/BG stage. (b) the speed-up values.

Teodoro et al. Page 19

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
Speed-up: Histogram and Color Classification stages

Teodoro et al. Page 20

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 10.
Color Classification and Tissue Segmentation Test: doing and not doing checkpoint

Teodoro et al. Page 21

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Teodoro et al. Page 22

Algorithm 1

Application Filter

while there is data to be processed do

 read(data)

 inputData = de-serialize(data)

 outPutData = process(inputData)

 if there is any outPutData to be written then

 outPut = serialize(outPutData)

 write(outPut)

 end if

end while

Int J Parallel Program. Author manuscript; available in PMC 2012 May 09.

