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Abstract As MOS device sizes continue shrinking, lower charges, for example
those charges carried by single ionizing particles of naturally occurring radiation, are
sufficient to upset the functioning of complex modern microprocessors. In order to
handle these inevitable errors, designs should include fault-tolerant features so that
the processors can continue to correctly perform despite the occurrence of errors. The
main goal of this work is to develop architecture mechanisms to protect processors
against the effect of such radiation-induced transient faults. It should first be noted
that, from a program execution perspective, many faults manifest themselves as con-
trol flow errors that cause processors to violate the correct sequencing of instructions.
We present here at first a basic compile-time signature assignment algorithm and
describe a novel approach to improve the fault detection coverage of the basic algo-
rithm. Moreover, to allow the processor to efficiently check the run-time sequence
and detect control flow errors, we introduce an on-chip assigned-signature checker
which is capable of executing three additional instructions (SIC, SIJ, SIJC). Second,
since the very concept of simultaneous multi-threading (SMT) provides the necessary
redundancy, some proposals have been made to run two copies of the same thread
on top of SMT platforms in order to detect and correct soft errors. This allows, upon
detection of an error, the rolling back of the processor state to a known safe point,
and then a retry of the instructions, thereby effecting a completely error-free execu-
tion. This paper has focused on two crucial implementation issues introduced by this
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scheme: (1) the design trade-off between the fault detection coverage versus design
costs; (2) the possible occurrence of deadlock situations.

Keywords Soft-error · Computer architecture · Fault-tolerant ·
Control flow checking · Multi-threading

1 Introduction

As MOS device sizes continuing shrinking, the reliability of the computer systems
that are built upon these devices is of increasing concern [1]. For one thing, radia-
tion-induced soft errors will become more significant in the near future [2–4]. In order
to handle these inevitable errors, we must integrate in our design fault-tolerant fea-
tures so that processors can continue to correctly perform their specified tasks despite
the occurrence of logic errors [5]. Such designs as the Intel Itanium [6,7], the IBM
Power6 [8], the z10 [9], the Fujitsu SPARC64 [10], etc., already include transient fault
detection and recovery mechanisms.

Depending on the kind of micro-architectural components where the error occurs,
from a program execution perspective, the soft error induced may manifest itself in
different ways. For instance, an ALU computation error would lead to a data error
whereas if the program counter is corrupted by the incoming particle, the execution
would end up an incorrect execution sequence. Therefore, the fault-tolerance design
is as usual an ad-hoc process and typically different approaches are needed to protect
different parts of the processor against different failure modes.

First, many faults manifest themselves as control flow errors that cause processors
to violate the correct sequencing of instructions. Signature checking is a well-known
scheme used to detect this type of error. We will present a basic compile-time signature
assignment algorithm and describe a novel approach to improve the fault detection
coverage of the basic algorithm.

As far as data errors are concerned, since the very concept of Simultaneous Multi-
Threading (SMT) provides the necessary redundancy, some proposed schemes entail
running two copies of the same thread on top of SMT platforms in order to detect
and correct soft errors. This allows, upon detection of an error, the rolling back of
the processor state to a known safe point, and then a retry of the instructions, thereby
effecting a completely error-free execution.

The goal of this paper is thus to describe two approaches which will enhance the
robustness of processors in the presence of transient faults such as those caused by cos-
mic rays. Section 2 defines control flow errors and outlines our signature approach to
protect against them. The complete algorithm is described in Sect. 3 and the hardware
enhancement is present in Sect. 4. In Sect. 5, we turn our attention to those errors which
have not been caught by the signature approach and use the inherent redundancy in
Simultaneous Multi-Threaded processors to produce redundant execution of threads
and verify the correctness of program execution. Two crucial implementation issues
are then addressed: Sect. 6 describes the design trade-off between the fault detection
coverage and design costs while Sect. 7 discusses the possible occurrence of deadlock
situations. The design overhead evaluation of the proposed design is presented in
Sect. 8. We conclude our work in Sect. 9.
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2 Control Flow Errors

From an instruction set architecture standpoint, an abstraction of program execution
behavior can be based on various considerations which include control flow, memory
and I/O access, and object type and range [11,12]. We first examine how to pro-
tect against control flow errors (those which cause a processor to violate the correct
sequencing of instructions).

The causes of control flow errors can be traced to the failure of one of many micro-
architecture components such as the instruction cache, the program counter unit, the
jump execution unit, etc. The instruction cache stores the program content; for instance,
if an error causes a stored branch instruction content to change, the pipeline would
then be executed in the wrong program order. The program counter unit is merely a
pointer to the instructions to be fetched. Conceivably, if its content is corrupted by
some radiation-induced error, incorrect instructions would be fed into the execution
stage, which in turn would end up as an instruction sequencing violation. Similarly,
the jump execution unit computes the target address of the jump instruction. When
an error causes an incorrect computation, we would consequently encounter an unex-
pected program order. Indeed, it has been found that these control flow errors account
for between 33% [13] and 77% [14] of all run-time errors.

Signature control flow checking techniques are used to monitor the program exe-
cution sequence in order to determine if the legal control flow is being followed. Var-
ious signature checking techniques have been proposed in the recent past [12,14–22].
Basically, there are two steps in signature checking: compile-time signature generation
followed by run-time signature verification.

In the back-end stages, in order to express the program control flow structures, com-
pilers typically build a control flow graph (CFG) in which a node or a basic block is a
sequence of instructions with no branch-in except for the entry point and no branch-out
except for the exit point and where directed edges are used to represent jumps in the
program control flow [23]. Figure 1 illustrates the CFG concept by a simple example.
Thus, in the first step of signature checking, which is based upon the CFG, the compiler
pre-computes the signatures associated with each node of the CFG, and then either
embeds those signatures into the original codes [12,14,16,17,19,22], or provides that
information directly to the watchdog [18,21]. It should be noted that at this step, we

Fig. 1 An example program
and its control flow graph

I0: load R1 = 5
I1: load R2 = -1
I2: R1 = R1 + R2
I3: if (R1 = = 0) goto I5
I4: goto I2
I5: halt

I0
I1

I2
I3

I4 I5

NT T
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could have two signature pre-computing techniques: the first, assigned-signature con-
trol flow checking [18,19,22], associates with each node an arbitrary signature, for
example, a prime number. Conversely, the second technique, derived-signature con-
trol flow checking [12,14,16,17,21], derives signatures from the nodes themselves.
For example, we derive a checksum from the binary code of the instruction inside a
node and then use that checksum as the corresponding node signature.

During the second step, the checking engine, which can be either the watchdog
or the host microprocessor, computes the run-time signatures and then checks them
against the compile time pre-computed signatures. If the signatures differ, it means
that an error occurred.

Although the second step of both the assigned-signature checking algorithm and
the derived-signature checking algorithm are essentially the same, assigned signa-
ture checking techniques have two major drawbacks: the need for registers to hold
signatures and the performance overhead due to the need to execute extra instructions
related to the assigned-signature checking [12,22]. For example, Oh et al. [22] have
shown that the overhead in terms of code size ranges from 26.6 to 61.9% while the
overhead in terms of execution time ranges from 16.2 to 58.1%. Conversely, derived
signature checking techniques might not guarantee that each node has a unique signa-
ture, which might consequently impact the fault coverage. For instance, assume two
nodes with identical signatures and a control flow error that is transferring execution
into an incorrect node but with the same signature. Such an error cannot be detected.1

It should be noted that Borin et al. [24] have demonstrated that the performance slow-
down of the software-only derived-signature checking would be an average of 30%.

3 Algorithm for Compiler-Assisted Signature Checking

As discussed above, the assigned-signature checking technique is based on a com-
parison between the compiler assigned signature with the one calculated at run time.
Any difference between these two signatures indicates that a control flow error has
occurred. This section describes in detail a compiler-assisted signature assignment
and checking algorithm. As for how to address the inherent performance overhead
associated with assigned-signature checking, we propose to use additional hardware
to trade this off, as will be explained in Sect. 4.

3.1 The Basic Assigned-Signature Control Flow Checking Algorithm

3.1.1 Compiler Time Assigned Reference Signature (S)

As discussed before, the program control flow structure can be expressed as a CFG.
We start with a given node Vi of the CFG, and assign to it a unique number which is
called the state code of the node.2 This state code is denoted D(i). Then, we compute

1 Refer to Sect. 3.2 for a detailed discussion.
2 A simple way to assign unique state codes to nodes may be to number each node of the CFG in sequence,
as shown in Fig. 7.
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the reference signature S(i) of this node by using the following formula:

S(i) = D(i) ⊕ D(pred(Vi )). (1)

where pred(Vi ) is the immediate predecessor of node Vi in the CFG (note that ⊕ is
an exclusive-OR function). Furthermore, we assume for the moment that each node
has only one immediate predecessor. More complex cases will be discussed later.

3.1.2 Run Time Signature (G)

A global register holds the run time signature G of the node currently executing. When
the program execution changes the control flow to a new node, e.g., Vi , G is updated
by the following formula:

G = G ⊕ S(i). (2)

where S(i) is the reference signature of the current new node Vi .
Then, the core of the control flow checking mechanism consists in the checking

of the run time signature G against the static state code D(i) (the one assigned by the
compiler) as follows:3

Do G ⊕ D(i)
JNZ exception-handler

Note that this comparison would take place whenever the run time control flow
enters a new node of the CFG.

3.1.3 Justifying Signature (J)—Handling Multiple-Branch-In Nodes

Now, we start considering the more complex case when a node has multiple immediate
predecessors. Indeed, in normally complex CFGs, a node may have multiple imme-
diate predecessors. We would call such a node a multiple-branch-in (MBI) node: it is
a node whose number of immediate predecessors is greater than one. To simplify the
discussion, we denote the set of pred(MBI) as:4

S = {
Vk

⏐
⏐Vk is an immediate predecessor of MBI

}
. (3)

When dealing with such MBI nodes, as required in eq. (1), we must choose one of
the immediate predecessors as the primary immediate predecessor (or primary node,
for short). Also, since there is more than one path up from an MBI node, we associate

3 JNZ is equivalent to “jump to target if the result is not equal to zero.” As such, if G ⊕ D(i) �= 0, the
exception handler is triggered.
4 Then the definition of an MBI node can be given as the cardinality of S, i.e., the number of elements in
the set S, is greater than one: |S| > 1.
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with each immediate predecessor an additional parameter which we call the justifying
signature. The justifying signature is used at run time to verify that all immediate
predecessors to the MBI node are legal antecedents to that node.

The following outlines the compile-time MBI node handling algorithm:

1. Arbitrarily select a node from S as the MBI node primary node (assume Vj for the
rest of this discussion). Note that we leave the discussion of primary node selection
later.

2. The reference signature of the MBI node is governed by the selected primary node
Vj as:

S(M B I ) = D(M B I ) ⊕ D( j). (4)

3. For every node Vk ∈ S, associate it with the justifying signature given by the
following formula:

J (k) = D(k) ⊕ D( j). (5)

Note that now each node Vk ∈ S has two signatures: the reference signature S(k)
and the justifying signature J(k) as illustrated in Fig. 3 where V7, V8 and V9 are
the MBI nodes.5

The run-time MBI node handling algorithm could be described as follows:

1. We denote control flow changes as: Vk → MBI. First, the run time signature is
updated according to the following formula:

G = G ⊕ S(M B I ) ⊕ J (k). (6)

2. Finally, the MBI node run-time control flow checking can be applied as discussed
before:

Do G ⊕ D(MBI)

JNZ exception-handler

We use Fig. 2 to illustrate the simple example of an MBI node and how justify-
ing signature works. Node V3 is an MBI node and its immediate predecessor set is
S = {V1, V2} whereas V1 is arbitrarily selected as the primary node. At compile time,
after assigning the reference signatures S(1) and S(2) to nodes V1 and V2, the justifying
signatures J(1) and J(2) are also evaluated. As we can see from Formula 6, the run time
signature G carried when entering the MBI node V3 is updated by two exclusive-OR
functions (Refer to Formula 2, only one exclusive-OR function is required there): first,
perform an exclusive-OR with the reference signature of node V3, and then perform

5 Hereafter, we use doubly circled nodes to represent primary nodes.
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Fig. 2 An example of MBI
node and justifying signatures
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V2/
D(2)

V3/
D(3)

S(1) = . . .
J(1) = D(1)    D(1)⊗

S(2) = . . .
J(2) = D(1)   D(2)⊗

S(3) =  D(3)   D(1)⊗

V1/D(1)
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V9/D(9)

V6/D(6)

S(6)
J(6) = D(6)    D(5)

IllegalIllegalillegal

illegal

Fig. 3 Fault detection coverage analysis for the MBI node handling algorithm

another exclusive-OR with the justifying signature of the jumping node. For example,
when the control flow change is V2 → V3, the run time signature is calculated by:

G = G ⊕ S(3) ⊕ J (2)

= D(2) ⊕ D(3) ⊕ D(1) ⊕ D(1) ⊕ D(2)

= D(3)

3.2 Analyzing the Fault Detection Coverage of the Basic Algorithm

To the end of improving the fault detection coverage of the above basic algorithm, we
start by first analyzing the coverage: consider the general case of an MBI node control
flow change: Vk → MBI. According to the relationship between the node Vk and the
node “MBI,” there are three possible cases:

1. If Vk ∈ S, which means that the control flow change is legal, as discussed before,
we can easily prove that the updated run time signature is: G = D(M B I ).

2. If Vk /∈ S, which means that the control flow change is illegal and that two cases
must be separately considered:
(a) Vk is an immediate predecessor of another MBI node, which means that J(K)

has been defined;
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(b) Vk is not an immediate predecessor of any MBI node. Then, J(k) is null at com-
pile-time and then without loss of generality, J(k) will be a random number at
run-time (whatever is left in the corresponding storage cell at that time).

3.2.1 Justifying Signature has been Defined

Consider the following control flow change: Vi → Vj where Vj is an MBI node and
its set of pred(Vj ) is S j . However, Vi /∈ S j , i.e., the control flow change is illegal, Vi

is instead an immediate predecessor of another MBI node, say Vm , hence Vi ∈ Sm .
Moreover, Vx has been selected as the primary node of Vj and Vy as the primary
node of Vm . Then, when entering Vj , the run time signature is updated by using the
following formula:

G = G ⊕ S( j) ⊕ J (i)

= D(i) ⊕ D( j) ⊕ D(x) ⊕ D(i) ⊕ D(y)

= D( j) ⊕ D(x) ⊕ D(y)

Therefore, two cases need to be considered:

1. As long as D(x) ⊕ D(y) = 0, we end up with G = D( j), which means that a
control flow error has escaped detection. The faulty condition D(x)⊕ D(y) = 0 is
satisfied only if D(x) = D(y), i.e., node Vx is the same as node Vy (remember that
the state code of each node is unique). Examples of illegal control flow changes
such as V6 → V8 and V4 → V9, are shown in Fig. 3. In both cases, two MBI nodes
V8 and V9 share node V5 as their primary node.

Observation 1

When two MBI nodes, Vj and Vm , share their primary node, Vx (= Vy), any illegal
control flow change: Vi (∈ Sm and /∈ S j ) → Vj and any illegal control flow
change: Vl(∈ S j and /∈ Sm) → Vm cannot be detected. Further, we denote the
probability of these illegal control flow changes as PND1.

2. On the other hand, if Vx �= Vy , i.e., no primary node sharing, we have: G �= D( j)
which means that the control flow error can be successfully detected. An exam-
ple for this case is shown in Fig. 3 as an illegal control flow change, from V3 → V8.

To summarize the above two cases, we can state the following:

Observation 2

The fault detection coverage may decrease if two MBI nodes share their primary
node. In other words, if a node Vx has multiple branch-outs, for example, the exit
statement of the node is a conditional branch, and if more than two (including two)
branch destination nodes are MBI nodes, the node Vx should not be selected as a
primary node.
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3.2.2 Random Justifying Signature

Consider the following control flow change: Vi → Vj where Vj is an MBI node and
its set of pred(Vj ) = S j . Further assume that Vx has been selected as the primary
node of Vj . However, Vi /∈ S j , i.e., the control flow change Vi → Vj is illegal. Also,
Vi is not an immediate predecessor of any MBI node such that J(i) has not been defined
and we deal with it as a random number. An example of an illegal control flow change
would be V1 → V8, which is shown in Fig. 3. In this case, when entering Vj , the
run-time signature is updated by using the following formula:

G = G ⊕ S( j) ⊕ J (i)

= D(i) ⊕ D( j) ⊕ D(x) ⊕ J (i)

Because of the randomness of J(i), two cases must be considered:

1. If D(i) ⊕ D(x) ⊕ J (i) = 0, we have G = D( j) which means that the control
flow error escapes detection;

2. If D(i) ⊕ D(x) ⊕ J (i) �= 0, we have G �= D( j) which means that the algorithm
has successfully detected the control flow error.

Fortunately, the probability for D(i) ⊕ D(x) ⊕ J (i) to be zero is very low: it can
happen only if J (i) = D(i)⊕ D(x). Given the n-bit size of state codes and signatures,
the probability is:

PND2 = P
{

J (i) = D(i) ⊕ D(x)
} = 2−n . (7)

In summary, the fault detection coverage of the MBI node handling algorithm is:

C ≡ P
{
fault detection

∣
∣fault existence

}
(8)

= P
{
control flow error detection

∣
∣Vk → MBI and Vk /∈ S

}
(9)

= 1 − PND1 − PND2. (10)

3.3 Improving the Fault Detection Coverage of the Basic Algorithm

Based on the above discussion, we know that to improve the fault detection coverage,
reducing PND1 is the primary approach, which in turn requires selecting the primary
node from those not being shared by MBI nodes. In other words, by carefully handing
those cases we analyzed in Sect. 3.2, we can improve the fault detection coverage over
the previous work, such as described by Oh et al. [22]. Therefore, we propose a two-
pass algorithm for the purpose of selecting the primary node for MBI nodes, which is
specified in Algorithm 1: given an MBI’s immediate predecessor list, we choose the
one that has the smallest chance of being shared. To this end, we first traverse CFG to
count how many children nodes a node has, and then the node with the least number
of children nodes is the best candidate to be the primary node.
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Algorithm 1: Two-pass algorithm for selecting the primary node
Initialization: for every node in CFG do

pn_cnt = 0;
pn_selected = FALSE;

end
First-Pass: for every MBI node do

for each of its primary node do
pn_cnt ++;

end
end
Second-Pass: for each MBI node do

select primary node with min(pn_cnt) and pn_selected = FALSE ;
mark the selected primary node’s pn_selected = TRUE;
for each of this MBI’s immediate predecessor but not being selected do

pn_cnt - -;
end

end

Fig. 4 An example of ITE node
with two justifying signatures

V2/
D(2)

V3/
D(3)

V5/
D(5)

S(2) = . . .
J(2) = D(1)    D(2)
J’(2) = D(2)    D(2)
         = 0 S(3) = . . .

J(3) = D(3)    D(2)

V4/
D(4)

V1/
D(1)

3.4 Handling the If-Then-Else Node

In addition to the fault detection coverage improvement, we feel it is important to
remark that randomly selecting the primary node may result in conflicts as illustrated
in Fig. 4: Indeed, if V1 had been selected as the primary node for V4 and V2 for V5,
respectively, we would have to create two justifying signatures for node V2: as far as
MBI node V4 is concerned, the justifying signature of V2 is: J (2) = D(1) ⊕ D(2);
whereas as far as MBI node V5 is concerned, the justifying signature of V2 is: J ′(2) =
D(2) ⊕ D(2) = 0.

Hence, for the control flow change: V2 → V4, J(2) should be used to update the
run-time signature whereas for the control flow change : V2 → V5, only J’(2) is the
correct choice. Anything corrupted up to this level could result in faulty control flow
error detection. Simply speaking, for the legal control flow change: V2 → V4, if the
justifying signature J’(2) had been used to update the run time signature, we would
end up with G �= D(4) such that a control flow error could be flagged, a false alarm.
Such situations6 have not been addressed by Oh et al. [22].

6 These situations are not rare: conditional branches are extremely common in regular programs. From
the following discussion, we will see that a node with a conditional branch could be associated with two
justifying signatures.
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ITE node
(TJ, NTJ)

then_node
(MBI node)

else_node
(MBI node)

NTJ

TJ

NT

T

JM
U
X

Resolved branch condition

T

NT

Fig. 5 An hardware approach for ITE node with two justifying signatures (T = taken; NT = not-taken; TJ
= justifying signature for ITE_node → else_node; NTJ = justifying signature for ITE_node → then_node)

The necessary conditions for a node associated with two7 justifying signatures are:

1. The exit of the node is a conditional branch, that is to say the node is an if-then-else
(ITE) node;

2. Both branch destinations are MBI nodes.

In short, we need to distinguish the two justifying signatures: one for the then-
branch flow (the resolved branch condition is not-taken), the other for the else-branch
flow (the resolved branch condition is taken).

Figure 5 shows a hardware-based algorithm:8 at compile time, when an MBI node
traces back its immediate predecessors for the purpose of justifying signatures, the
associated directed edges are checked (directed edges are given by the CFG): if the
edge is a “taken” path, the associated justifying signature will be placed into the TJ
register; whereas if it is a “not-taken” path, the NTJ register is used for the associated
justifying signature. At run time, the resolved branch condition is used to select the
appropriate justifying signature for updating the run time signature. More details will
be given in Sect. 4.

4 Hardware Enhancement for Control Flow Checking

As discussed before, the assigned-signature checking technique has an inherent per-
formance overhead drawback. However, with advances in CMOS technology, we have
an abundance of cheap hardware resources [1]. Moreover, our proposed mechanism
can be simply implemented in any modern microprocessor at little additional cost.
Hence, in this section, we first introduce three additional instructions dedicated to
control flow checking, and then design a simple hardware implementation to execute

7 If switch statements are allowed, having more than two justifying signatures associated with a node is
possible. However, we assume that the compiler has converted all switch statements into the equivalent
if-then-else constructs, as presented in [17].
8 We have not, in this work, considered checking the flow of conditional branches. More specifically, refer
to Fig. 5, the case when a transient fault causes the ITE node to branch incorrectly to the else_node whereas
it should have branched to the then_node, has not been considered.
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Table 1 Three additional instructions specification

No. Mnemonic Format Function description

1 SIC SIC imm1, imm2 Signature checking :
where imm1 = S(i); imm2 = D(i) 1 Update G as: G = G ⊕ imm1

2 If (G == imm2) fault free,
Else control flow error;

2 SIJ SIJ imm1, imm2 Signature justifying:
where imm1/imm2 = D(i) ⊕ D(j) Update J as: J = imm1/imm2
If (ITE node) depended on resolved branch
imm1 for NTJ, imm2 for TJ, condition
Else imm1 for J

3 SIJC SIJC imm1, imm2 MBI node signature checking:
where imm1 = S(i); imm2 = D(i) 1 Update G as: G = G ⊕ imm1 ⊕ J

2 If (G == imm2) fault free,
Else control flow error;

these instructions.9 We will also provide a comprehensive control-flow checking algo-
rithm based on these hardware enhancements. In the end, we will show the benefit
from trading hardware off a reduction in performance overhead.

4.1 Additional Instructions

The three additional instructions dedicated to the assigned-signature control flow
checking are succinctly described in Table 1. Instruction SIC is used to check for
control flow errors in non-MBI nodes. Instruction SIJ is dedicated to signature justi-
fication. Instruction SIJC is used to check for control flow errors in MBI nodes. The
compiler is responsible for the insertion of these additional instructions into the orig-
inal program so as to achieve run-time control flow checking. The detailed algorithm
will be presented in sect. 4.3.

4.2 Implementation of Additional Instructions

The on-chip control flow checker to execute the above three additional instructions is
relatively easily designed: assume a simple five-stage pipeline: Fetch → Decode →
Execution → Memory access → Write back. Our on-chip control flow checker would
be located in the “Decode” and “Execution” stages.

As seen in Fig. 6, a total of five registers are needed to hold the necessary infor-
mation: register G is used for the run time signature; registers D/S and NTJ receive
immediate values from the imm1 field of their instruction words and registers D and
TJ receive immediate values from the imm2 field of the instruction words. For each
instruction, Table 2 shows the control signals generated by the opcode decoder (also
shown in Fig. 6).

9 The microprocessor instruction set is often extended to implement new features, a fact which can be
exemplified by MMX technology and Intel Streaming SIMD Extensions [11].
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Fig. 6 On-chip control flow checker block diagram

Table 2 On-chip control flow checker control signals

Instruction G_en D/S_en D_en NTJ_en TJ_en mux1_cs mux2_cs br. cond. compare_en

SIC en en en en en 0 1 en en
SIJ en en en en en X X en en
SIJC en en en en en 1 0 from BRU en

en = enable; en = disable; X = don’t care; BRU = branch unit

4.2.1 Operation of SIC Instructions

When an instruction word SIC imm1, imm2 is decoded, its opcode field is fed
into the opcode decoder. The decoder then generates the control signals specified in
Table 2. The imm1 filed is received by the enabled register D/S (D/S_en = enable and
NTJ_en = enable) while the imm2 field is received by the enabled register D (D_en
= enable and TJ_en = enable).

The content of register D/S goes into XOR1 along with the content of register G
(G_en = enable). The result is selected by mux2 (mux2_cs = 1). Now the enabled
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comparator compares the two inputs which are received from mux2 and register D.
These have performed the run-time control flow checking. Also, we can see the result
of XOR1 is sent to modify register G since we have mux1_cs = 0 and G_en = enable.

4.2.2 Operation of SIJ Instructions

When an instruction word SIJ imm1, imm2 is decoded, its opcode field is fed
into the opcode decoder. The decoder then generates the control signals specified in
Table 2. The imm1 field is received by the enabled register NTJ (NTJ_en = enable and
D/S_en = enable) while the imm2 field is received by the enabled register TJ (TJ_en
= enable and D_en = enable).

4.2.3 Operation of SIJC Instructions

When an instruction word SIJC imm1, imm2 is decoded, its opcode field is fed
into the opcode decoder. The decoder then generates the control signals specified in
Table 2. The imm1 field is received by the enabled register D/S (D/S_en = enable and
NTJ_en = enable) while the imm2 field is received by the enabled register D (D_en
= enable and TJ_en = enable).

The content of register D/S goes into XOR1 along with the content of register G
(G_en = enable). Based on the resolved branch condition, either the content of register
NTJ or that of register TJ XOR2 with the result of XOR1. Once again, if no conditional
branch results from the branch unit, i.e., not an ITE node, the default “resolved branch
condition = NT” such that the content of register NTJ is selected at this point. MUX2
selects the result of XOR2 (mux2_cs = 0). Now the enabled comparator compares the
two inputs which are received from mux2 and register D. These have performed the
run-time control flow checking. Furthermore, we can see that the result of XOR2 is
sent to modify register G since we have mux1_cs = 1 and G_en = enable.

4.3 Using Additional Instructions

To summarize the above discussion, Algorithm 3 is a comprehensive signature assign-
ment algorithm based on our hardware enhancement instructions. Returning to the
example of Fig. 1, our compiler algorithm would produce the modified diagram shown
in Fig. 7. The left-hand side illustrates the state code assignment results and the primary
node selection of the MBI node V2. The right-hand side shows the CFG after insertion
of our control flow checking instructions.

4.4 Comparing Code Size Overhead

To compare our algorithm with that of Oh et al. in [22], consider a typical node con-
sisting of 7–8 instructions [1]. In order to check for control flow errors, the algorithm
in [22] adds 2–4 instructions to each node. The overhead is between 27 and 53%. For
a number of benchmarks, the code size overhead is between 26.6 and 61.9% whereas
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       I5

Fig. 7 State code and signature assignment example

the execution time overhead is between 16.2 and 58.1%). Conversely, in our hard-
ware-enhanced approach, the additional instructions are a maximum of 1 or 2 for each
node. Therefore, the overhead is only 13–27%, which is a significant improvement
over [22]. Furthermore, the execution time is given by the following formula [1]:

Execution time = Instr count × Clock cycle time × Cycles per instr. (11)

With the assistance of our on-chip control flow checker, we could expect a lower exe-
cution time than that obtained in [22] when executing the program with the signature
checking. This is because we have a smaller instruction count given the same clock
cycle time and number of cycles per instructions.

5 Transient Fault-Tolerant SMT Processors

The control flow checking targets faults which result in the correct program sequenc-
ing being violated. To increase the fault coverage to tolerate those errors manifested as
data errors, we propose in this section a transient fault-tolerant Simultaneous Multi-
Threading processor design.

The multi-threading execution paradigm inherently provides the spatial and tempo-
ral redundancy necessary for fault-tolerance: the basic idea is that we run two copies
of the same threads on Simultaneous Multi-Threading platforms [25,26,4,27,28] and
then the results of the two copied threads are compared to detect transient faults. This
allows, upon detection of an error, the rolling back of the processor state to a known
safe point, and then a retry of the instructions, thereby effecting a completely error-free
execution.
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5.1 Trade-Off Between Fault Detection Coverage and Design Costs

A design trade-off is associated with the above basic idea: Generally speaking, it
requires redundant execution of the two identical threads to cover a given proces-
sor component. Hence, the higher the fault coverage desired, the more redundant the
execution required. However, redundant execution inevitably comes at the cost of per-
formance overhead, hardware overhead, design complexity, etc. Consequently, how to
trade off between fault detection coverage and the associated costs is essential for the
applicability of the basic idea. Consider a general five-stage pipeline [1]: the instruc-
tion fetch stage, the decode stage, the issue stage, the execution stage, and the retire
stage can all be exploited to generate the redundant instructions [29,30,26,4,27,28].
Take the fetch stage as an example, we can generate the redundant threads by fetching
instructions twice [26,4,27,28]. Since the instruction fetch stage is the first pipeline
stage, the redundant execution would then cover all the pipeline stages, thus, the largest
possible pipeline fault coverage could be achieved. However, allowing two redundant
threads to fetch instructions would mean halving the effective fetch bandwidth. Fur-
thermore, given N/2 effective fetch bandwidth, the maximum pipeline throughput is
limited to N/2. Additionally, the redundant thread generated in the fetch stage would
then compete not only for the decode bandwidth, the issue bandwidth, and the retire
bandwidth, but also for IssueQ and ROB capacity, which are all identified as the key
factors that affect the performance of the redundant execution [30]. Conversely, we can
re-issue the retired instructions from ROB back to the functional units for redundant
execution. In doing so, the bandwidth and spatial occupancy contention at IssueQ and
ROB can be reduced, thus the performance overhead is lowered [30]. However, this
retire stage-based design comes at the cost of reducing the fault detection coverage:
only the EXE stage is covered.

Hence, considering the trade-off between fault detection coverage and design cost,
we simply fetch the instructions once and then copy the fetched instructions to generate
the redundant thread, In so doing, there is no need for partitioning the fetch bandwidth
between the redundant threads. Furthermore, we rely on the dispatch thread schedul-
ing and redundant thread reduction to relieve the contention in the IssueQ and ROB
(details can be found in Subsects. 6.2 and 6.3).

5.2 Possible Occurrence of Deadlocks

Other than the design trade-off, another issue associated with the basic idea is the need
to prevent deadlocks. In a fault-tolerant SMT design, two copies of the same thread
are now cooperating with each other. Such cooperation could cause deadlock situa-
tions [27]. We thus present a systematic deadlock analysis and conclude that as long
as ROB, LQ, and SQ have allocated some dedicated entries for the trailing thread, the
deadlock situations identified can be prevented. Based on this observation, we propose
two ways of preventing any possible deadlock situations (more details in Sect. 7): (1)
static allocation of entries in ROB, LQ, and SQ for the redundant thread copy; (2)
dynamic deadlock monitoring.
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6 Lowering the Performance Overhead of Transient Fault-Tolerant SMT
Processors

This section presents our proposed fault-tolerant SMT datapath designs. As discussed,
to consider the trade-off between the fault detection coverage and the design costs,
we simply fetch the instructions once and then copy the fetched instructions to gener-
ate the redundant thread. As far as the fault detection coverage is concerned, there are
three major components in the fetch stage: I-cache, PC, and BPUs. By copying fetched
instructions to generate the redundant threads, any transient faults which would hap-
pen inside the I-Cache might not be detected. However, ECC-like mechanisms that
are very effective in handling transient faults in memory structures are now widely
implemented in modern microprocessors [7,31,10]. Further, the fault which occurs in
the BPUs will have no effect on the ultimate correct program execution [32], whereas
the critical component PCs must be protected by ECC-like mechanisms.

6.1 Copy Fetched Instructions to Generate the Redundant Thread

As shown in Fig. 8, our instruction copy operation is simple: simply buffer in two
instruction queues the instructions fetched, hence, the copy operation would not
increase the pipeline cycle time, nor would another pipeline stage be added. To be
specific, each instruction fetched is bound to a sequential number and a unique thread
ID. For instructions that are stored in IFQ, the “leading thread” (LT) is used as the
thread ID, whereas for those stored in another IFQ, called trace queue (traceQ), the
“trailing thread” (TT) is used. It should be noted that traceQ also serves in the two
performance overhead lowering techniques which will be described in detail in the
following subsections.

6.2 Reducing the Complexity of TT

Focusing on our redundant execution mode, the key factors that affect the perfor-
mance of redundant execution could be identified as: the bandwidth contention for
issue, FUs, and retire operations; and the capacity contention in IssueQ and ROB
[33,30]. This subsection addresses those resource contention problems by making TT
“lighter” (recall that the purpose of executing TT is just fault detection). In doing so,
the contention in IssueQ, ROB and FUs could be reduced accordingly.
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Fig. 8 Functional diagram of our proposed fault-tolerant SMT data path
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6.2.1 Preventing the Dispatch of TT Wrong-Path Instructions

The number of dynamic wrong-path instructions might be a significant portion of all
the instructions fetched. For example, Kang et al. [34] observed that 16.2–28.8% of the
instructions fetched would be discarded from the pipeline even with a high branch pre-
diction accuracy. Hence, if we could prevent TT wrong-path instructions from being
dispatched, the effective utilization of IssueQ, ROB, and FUs would be improved
accordingly. Based on this observation, we leverage LT branch resolution results to
prevent all the wrong-path instructions of TT from being dispatched. It should also
be pointed out that in our designs, neither a branch outcome queue [4] nor a branch
prediction queue [28] are needed.

If a branch instruction is encountered in traceQ, the dispatch operation will check
the status of this TT branch instruction: if its prediction outcome has been resolved by
its counterpart from LT, we continue its dispatch operation; otherwise, the TT dispatch
operation will be paused (from here, we can see that in order not to pause TT dispatch
operation, LT must be executed ahead of TT. The LT ahead of TT execution mode is
called the staggered execution mode (more on this in Subsect. 6.3.2).

To set the TT branch instruction status (the initial status is set as “unresolved”),
every completed branch instruction from LT will search traceQ to match its TT coun-
terpart. Furthermore, if the branch has been mispredicted, LT will perform its usual
branch misprediction recovery, and at the same time it will flush all those instructions
inside traceQ that are located behind the matched counterpart branch instruction. In
other words, LT performs the branch misprediction recovery for both LT and TT, thus,
TT does not recover any branch misprediction by itself. After recovery, the status of
the TT branch instruction will be set as “resolved.” On the other hand, if the branch has
been correctly predicted, the status of the matched counterpart TT branch instruction
will be set as “resolved” as well.

In addition, the sequential numbers provide the mean for matching two redundant
threads instructions.10 As we have seen, each instruction fetched is associated with
a sequential number at first, then the fetched instruction is replicated to generate the
redundant thread. In doing this, two copied instructions will have the same sequential
numbers in different threads.

6.2.2 Load Value Queue (LVQ) Design

We adopt the LVQ design [4] and include it in our design as shown in Fig. 8. Basically,
when an LT load fetches data from the cache (or the main memory), the data fetched
and the matching tag associated are also buffered into LVQ. Instead of accessing the
memory hierarchy, TT loads simply checks and matches the LVQ for the data fetched.
In doing so, the TT might reduce the D-cache miss penalties and then improve its
performance. It should be noted here that in order to fully benefit from the LT data

10 Such a sequential number feature has been implemented, for example, in the Alpha and the PowerPC
processors. Indeed, the Alpha21264 manual states “... also, each instruction is assigned a unique 8-bit
number, called an inum, which is used to identify the instruction and its program order with respect to other
instructions during the time that it is in flight.” [35].
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prefetching, we must guarantee that LT is always ahead of TT, which requires a stag-
gered execution mode.

6.3 Dispatch Thread Scheduling

It is well known that there are many idle slots in the execution pipeline. Hence, we
must design for the redundant execution to exploit those idle slots as much as pos-
sible in order to circumvent the contention which would otherwise degrade perfor-
mance [33,30].

6.3.1 Modified ICOUNT Policy Applied at the Dispatch Stage

To exploit the idle slots, we must ensure that when one thread is idle for some reason,
the execution resources can be promptly allocated to another thread which can uti-
lize those resources more efficiently. The ICOUNT policy was proposed to schedule
threads in order to fill IssueQ with issuable instructions, i.e., restrict threads from
clogging IssueQ [36]. However, we argue that it is the dispatch stage that directly
feeds IssueQ with useful instructions, hence, scheduling threads in the dispatch stage
level would cause a prompter reaction to the thread idleness in IssueQ. Therefore, we
modify the ICOUNT policy as follows: as illustrated in Fig. 8, at each clock cycle,
we count the number of instructions that are still waiting in IssueQ from LT and TT
individually. A higher dispatch priority is assigned to the thread with the lower instruc-
tion count. To be specific, when the dispatch rate is eight instructions per cycle, the
selected thread is allowed to dispatch as many instructions as possible (up to eight). If
any dispatch slot is left from the selected thread, the alternative thread would consume
the remaining slots. We call the above policy “ICOUNT.2.8.dispatch.”

6.3.2 Staggering Execution

Having shown how to reduce the complexity of TT and made it “light,” a staggered exe-
cution mode [4,28] is required. To this end, we developed the “slack dispatch” scheme:
in the instruction dispatch stage, if the selected thread is TT, we check the instruction
distance between LT and TT. If the distance is less than a predefined threshold, we skip
the TT dispatch operation and continue buffering TT in traceQ. This means that the
size of traceQ (the number of entries in traceQ) must meet the following requirement:

size of (traceQ) > size of (IFQ) + predefined distance (12)

Moreover, for purposes of fault-detection, all retired LT instructions and their exe-
cution results are buffered into the checking queue (chkQ), as shown in Fig. 8. Hence,
TT is responsible for triggering the result comparison.11 We further assume that the

11 The high chkQ bandwidth requirement could demand some special attention. To address this, we would
apply an approach similar to that shown in [28].
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register file of TT is protected by ECC-like mechanisms. This means that, if any fault
is detected, the register file state of TT could be used to recover the LT.

7 Deadlock Analysis and Prevention

As pointed out before, the two copies of a thread cooperate with each other for fault
checking and recovery. However, if not carefully synchronized, such cooperation could
result in deadlocks where neither copy could make any progress [27]. To prevent such
situations, a detailed analysis and the introduction of appropriate synchronization
mechanisms are necessary.

7.1 Deadlock Analysis

In general, resource sharing is one of the underlying causes of deadlocks [37]. In
our case, there is much resource sharing between the two thread copies. For exam-
ple, IssueQ is a shared hardware resource and both thread copies contend for it. The
availability of instructions being issued is another type of resource sharing: the issue
bandwidth is dynamically partitioned between the two thread copies.

Figure 9 shows the resource allocation graph. TraceQ is a resource which is requested
only by LT but is owned only by TT: LT needs entries in traceQ for its instruction
fetching and generation of the redundant thread (see Subsect. 6.1). In contrast, chkQ
is different in the following sense: only if there is a free entry in chkQ could LT retire
its instruction and back up the retiring instructions and execution results there. On the
other hand, the entry in chkQ can only be freed by TT: only after an instruction has
been retired and compared, can the corresponding entry in chkQ be released. Further,
due to the similarity between dispatch and issue operations, we combine them under
the term “issue resource” in the discussion which follows.

IFQ
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issue
BW

IssueQ/
ROB

LVQ

SQ

chkQ

LT TT
TR Thread hold Resource

TR Thread request Resource

TR
Thread hold or request
 Resource (either one)

(issue resource)

LQ

Fig. 9 Resource allocation graph for deadlock analysis
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Based on Fig. 9, we can list all possible circular wait conditions. However, some
conditions obviously do not end up in a deadlock, for example, “LT → traceQ → TT
→ SQ → LT.” All the possible deadlock scenarios are listed as follows:

1. LT → chkQ → TT → issue resource → LT.

Scenario: When chkQ is full, LT cannot retire its instructions. Then, those instruc-
tions which are ready to retire from LT are simply stalled in ROB. If this stalling
results in the ROB being full of instructions from LT (note that the situation where
the ROB is full of instructions from LT could be exacerbated by the fact that LT is
favored by the dispatch thread scheduling policy for the stagger execution mode),
the instruction dispatch operation will be blocked, thus, TT will be stalled in traceQ.
Consequently, no corresponding instructions from TT can catch up to release the
chkQ entries and then a deadlock can happen. In summary, the condition for this
deadlock situation is the following:

Observation 1 When chkQ is full and ROB is full of instructions from LT, a dead-
lock happens.

2. LT → LVQ → TT → issue resource →LT.

Scenario: When LVQ is full, a load instruction from LT cannot proceed with its
execution (an LT load instruction must guarantee to successfully buffer loaded data
into LVQ to complete its execution). On the one hand, the stalled load instruction
could result in the LQ being full of instructions from LT since LT is favored for
dispatching. Further, a full LQ will block the instruction dispatch operation, thus,
the corresponding load instructions from TT will be unable to catch up to release
the LVQ entries and then a deadlock can happen. Hence, a deadlock observation
follows:

Observation 2 When LVQ is full and LQ is full of instructions from LT, a deadlock
happens.

On the other hand, the stalled load instruction could result in a full ROB, thus,
the instruction dispatch operation will be blocked. Furthermore, if there is no load
instruction from TT in the full ROB, i.e., no load instruction from TT in LQ, no
corresponding load instructions from TT will be able to catch up to release the
LVQ entries and then a deadlock can happen.

Observation 3 When LVQ is full and ROB is full and there is no load instruction
from TT in ROB, a deadlock situation takes place.

3. LT → SQ →TT → issue resource → LT.

Scenario: When SQ is full of instructions from LT, the instruction dispatch opera-
tion will be blocked (worse, the stalled store instructions would result in a full ROB
which also blocks the dispatch operation). Consequently, no corresponding store
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instructions from TT can catch up to release the SQ entries and then a deadlock
could happen.12

Observation 4 When SQ is full of instructions from LT, a deadlock happens.

7.2 Deadlock Prevention

Based on the above systematic deadlock analysis, we propose two mechanisms to han-
dle all possible deadlock situations: static hardware resource partitioning and dynamic
deadlock monitoring.

7.2.1 Static Hardware Resource Partitioning

In static hardware resource partitioning, i.e., each thread has itself allocated resources,
the deadlock conditions identified can be broken such that we can prevent them alto-
gether.13 For example, we can partition the ROB in order to prevent the possible
deadlock situation identified in Observation 1: if some entries of ROB are reserved
for TT, TT dispatch operations could continue since when chkQ is full, the parti-
tioned ROB cannot be full of instructions from LT. Subsequently, those dispatched
TT instructions will be issued and their execution completed afterwards. After com-
pletion, they will trigger the result comparison and then free the corresponding chkQ
entries if the operation was found to be fault-free. After some chkQ entries have been
freed, LT is allowed to proceed.

Moreover, we find that only three hardware resources (ROB, LQ, and SQ) need to
be partitioned in order to prevent all the deadlock situations we identified:

• Partitioning the ROB to break the deadlock situation identified in Observation 1:
ROB will never be full of instructions from LT such that TT will be dispatched and
then chkQ will be released.

• Similarly, partitioning LQ to break the deadlock situation identified in Observa-
tion 2;

• Partitioning SQ to break the deadlock situation identified in Observation 4.

Figure 10 illustrates how the static three-queue partitioning mechanism prevents the
deadlock situation identified in Observation 3. When LVQ is full, the load instruction
k in LQ of LT cannot be be issued. However, since ROB is now partitioned between
LT and TT, the stalled load instruction k in ROB will only block LT from being dis-
patched. In other words, the TT dispatch operation will not be blocked by the stalled
load instruction k, thus, for example, the load instruction i from TT will be dispatched
which will then release the LVQ entry occupied by the counterpart load instruction i
from LT. Once free LVQ entries are made available, the stalled LT load instruction k
can be issued. In summary, we have the following:

12 Since there is only one memory space for both LT and TT in our design, the store instructions can be
released to the memory only after being found to be fault-free [4,27]. Hence, any LT store instruction ready
to be retired needs to be continually buffered until TT compares the data stored and the reference address.
13 The static hardware partitioning approach is similar to the deadlock avoidance designs in [27]. However,
based on our systematic deadlock analysis, we clarify the implementation details of the basic approach.
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Algorithm 2: Dispatch thread scheduling policy (with dynamic deadlock
monitoring)

Apply ICOUNT.2.8.dispatch policy;
if selected thread is LT AND IFQ not empty AND no precaution signal then

Dispatch from IFQ;
else if distance between LT and TT meets predefined stagger execution mode AND traceQ is
not empty AND not an unresolved branch instruction then

Dispatch from traceQ;
else

nothing to be dispatched;
end

Observation 5 For each ROB, LQ, and SQ, allocating some dedicated entries for TT
will prevent the deadlock situations identified from occurring.

It should be noted, however, that static hardware resource partitioning has some per-
formance impact on an SMT processor, particularly when partitioning ROB, LQ, and
SQ (instruction issue queues for load and store instructions) [38]. Figure 11 shows
how the static partitioning is implemented: we allocate a minimum number of entries
for TT to prevent deadlocks and the remainder of the queue is shared between LT
and TT. Hence, the maximum available entry number for LT is the total number of
queue entries minus the number of reserved entries whereas the maximum number of
available entries for TT is the total number of queue entries.

7.2.2 Dynamic Deadlock Monitoring

From our deadlock analysis, we also conclude that if we can dynamically regulate the
LT progress such that neither ROB nor LQ and SQ could be filled with instructions
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Fig. 12 Dynamic monitoring for deadlock prevention

from LT, the deadlock situations identified can be prevented. As illustrated in Fig. 12,
instead of statically partitioning hardware resources, we dynamically count the instruc-
tion numbers from LT in ROB, LQ, and SQ, respectively, and then a caution sig-
nal is generated if at least one of the numbers of instructions counted exceeds the
corresponding predefined occupancy threshold. Furthermore, if the caution signal
is generated, the dispatch thread scheduling policy will pause LT from being dis-
patched.

More specifically, the comprehensive dispatch thread scheduling policy we devel-
oped is listed in Algorithm 2: first, we apply the ICOUNT.2.8. dispatch policy. If the
selected thread is LT, we must then check whether IFQ is empty since no instruction
can be dispatched in case of an empty IFQ. Furthermore, we need to make sure no
precaution signal has been generated. If there is a such signal, we must stop dispatch-
ing from LT. On the other hand, if the selected thread is TT, we check the following
conditions before dispatching TT:

• the stagger execution mode requirement;
• is traceQ not empty;
• are we not encountering an unresolved branch instruction.

It should be noted that compared with static resource partitioning, the dynamic dead-
lock monitoring approach comes with a higher design flexibility: by adjusting the pre-
defined occupancy thresholds, we can manipulate the resource allocation between the
cooperating threads. However, this flexibility comes at the cost of additional hardware:
counters and additional logic, as well as a a more complicated thread scheduling policy.

8 Design Overhead Evaluation of Transient Fault-Tolerant SMT
Processors

This section will present our fault-tolerant design overhead evaluation methodology
and results. Our main purpose is to present performance numbers and sizing numbers
of traceQ and chkQ for the schemes presented in Sect. 6 and Sect. 7.
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Table 3 Key design differences between two simulated FT-SMT processors

SRT-like design Our design

Redundant thread generation Fetch twice Copy fetched instructions
Thread scheduling policy ICOUNT.2.8 ICOUNT.2.8.dispatch
Deadlock handling Static hardware partitioning Dynamic deadlock monitoring
Eliminate TT mispredicted

instructions
Using branch outcome queue

to prevent being fetched
Using dispatch thread

scheduling to prevent being
dispatched

Stagger execution mode,
chkQ, and LVQ

Implemented Implemented

Table 4 Simulated FT-SMT processor configuration

Component Configuration

Processor 2-way SMT, 8-way out-of-order issue, 32-entry IFQ, 256-entry
trace queue (256-entry IFQ when simulating superscalar),
64-entry issue queue,128-entry ROB,64-entry load queue,
64-entry store queue, 64-entry LVQ, 256-entry chkQ

Functional unit 6 Int ALU, 2 Int Multiply, 4 FP Add, 2 FP Multiply
Branch predictor Hybrid: 8K-entry bimodal, 8K-entry gshare, 8K-entry 2-bit selector,

16-entry RAS, 4-way 1K BTB, 10-cycle misprdiction penalty
L1 I- and D-cache 64KB, 32-byte block size, 4-way associative, 1-cycle hit latency
Unified L2 cache 1MB, 64-byte block size, 4-way associative, 6-cycle hit latency
Main memory 100-cycle latency

8.1 Performance Overhead Evaluation of Two Fault-Tolerant SMT Processor
Designs

We now examine the performance overhead of a fault-tolerant SMT processor.14 To
this end, we have developed an SMT performance simulator based on the SimpleScalar
toolset [39]. Moreover, two fault-tolerant SMT processor designs have been simulated.
Table 3 shows the key design differences between the two designs: the first one is sim-
ilar to that discussed by Reinhardt et al. in [4] whereas our design has been presented
in Sects. 6 and 7. From a performance overhead viewpoint, the major differences are
the way of generating redundant threads and the thread scheduling policy: an SRT-like
design fetches a thread twice for redundant execution, adopts an ICOUNT policy [36],
and applies the policy in the instruction fetch stage whereas our design copies the fetch
instructions to generate the redundant thread, adopts a modified ICOUNT policy, and
applies this in the instruction dispatch stage (details in Subsect. 6.3.1). Table 4 sum-
marizes the key parameters of the processors simulated. The others microarchitectural
configuration parameters such as fetch bandwidth, function units, L1 I- and D- caches,
unified L2-cache, and main memory, are similar to the ones used in [4].

We evaluated our designs using 13 SPEC benchmarks shown in Table 5. Those
SPEC benchmarks characteristics and their IPCs in the superscalar execution mode

14 Note that we are simulating the performance overhead in fault-free cases.
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Table 5 SPEC benchmarks, input data sets and IPCs in superscalar execution mode

Benchmark Version Input IPC

099.go CINT95 test 1.11
132.ijpeg CINT95 test 2.31
164.gzip CINT2000 lgred.graphic 1.84
197.parser CINT2000 lgred.in 1.51
171.swim CFP2000 test 3.0
179.art CFP2000 lgred.in 0.72
256.bzip2 CINT2000 lgred.source 2.16
130.li CINT95 test 1.88
134.perl CINT95 lgred.makerand.pl 1.87
175.vpr CINT2000 lgred 1.65
101.tomcatv CFP95 test 2.64
177.mesa CFP2000 lgred.in 3.40
183.equake CFP2000 lgred.in 1.70

are also shown. Furthermore, those input data sets that are not marked as “test” are
from MinneSPEC [40], whereas those marked as “test” input data sets have been
obtained directly from SPEC. In addition, we used the compiler optimization level
“-O2” to compile the SPEC benchmarks executables. Moreover, when simulating,
we fast-forwarded past the first 300 million instructions (during that time, the IPC is
extremely unstable) for each thread and then simulated all the remaining instructions
for each threads.

Moreover, we need to point out that using IPC to evaluate the fault-tolerant SMT
performance is appropriate: in the fault-tolerant multi-threading execution mode, two
copies of the same thread actually carry only a single computation task, i.e., from
the user’s viewpoint, they function as if only one thread was executing. On the con-
trary, in the conventional multi-threading execution mode, two threads are typically
independent, hence the executions carry out two tasks. In this sense, the fault-tolerant
multi-threading which is running two copies of the same thread is functionally compa-
rable to the superscalar where IPC is conventionally used to evaluate the performance.
Furthermore, in our fault-tolerant multi-threading simulations, we computed IPCs as
the retired and then result-compared instructions numbers from the leading thread
divided by the total simulated clock cycle numbers.

The simulation results are shown in Fig. 13. Compared with the superscalar case
(without fault-tolerance features), the performance overhead of our design is lowered
by only 12% on average whereas an SRT-like design has 17% overhead. Further, if
we choose the baseline as the two-way SMT without any fault-tolerance features (the
baseline SMT processor is executing two identical threads), the performance overhead
is 34% on average whereas the overhead of SRT-like design is 42%. Also, note that in
Fig. 13, there are benchmarks that show that the IPCs of “superscalar” (without FT) is
lower than those of “our design.” [4] reported similar cases that for some benchmarks,
the fault-tolerant SMT implementations displayed higher throughput than the conven-
tional SMT without the fault-tolerant features. The authors suggested that the reason
for this apparently odd behavior could be the branch target buffer prefetching that lim-
ited the TT branch misprediction penalties. In our designs, there are two reasons: first,
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Fig. 13 IPC comparison of two FT-SMT processors, superscalar, and two-way SMT

because of the LVQ design, the LT prefetches the data for the TT, which improves TT
execution. However, the data prefetching has not been supported in “superscalar” and
“2-way SMT.” Secondly, because of the copying of fetched instructions to generate
the redundant thread, only LT needs to access the instruction caches and experience
instruction cache misses. However, in conventional designs such as “superscalar” and
“2-way SMT,” all active threads fetch instructions on their own.

8.2 Hardware Overhead Evaluation

This subsection examines two queues which are introduced for the fault-tolerant
schemes we have designed: traceQ and chkQ. We want to evaluate how their sizes
affect the fault-tolerant performance overhead. To this end, using the performance
simulators we developed, we varied the size of the queue and then observed the pipe-
line throughput to determine the optimal design points.

8.2.1 Sizing TraceQ

TraceQ functions as a buffer holding the TT instructions to support the staggered
execution mode. However, from Eq. 12, we know that to support the staggered execu-
tion mode, the minimum size of traceQ must be larger than the size of IFQ plus the
predefined instruction distance. Hence when choosing the size of traceQ as 32-entry,
the staggered execution mode is not supported whereas when traceQ is a 64-entry or
128-entry unit, the predefined instruction distance is 32-instruction. Likewise, when
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Fig. 14 IPC comparison of varying size of traceQ (IFQ: 32-entry, chkQ: 256-entry)

traceQ has more than 256 entries, the predefined instruction distance is 128 instruc-
tions. Figure 14 shows the simulation results. Obviously, when traceQ is small, the
benefit of the staggered execution mode cannot be fully exploited, and the IPC is
degraded: compared with a 256-entry traceQ, IPC in those cases is lowered by 9%
on average. On the other hand, if we continued increasing traceQ, the IPC improve-
ment would be limited: on average, there would be no significant IPC improvement.
Therefore, we choose a 256-entry traceQ as our design point. Furthermore, each entry
of traceQ holds an instruction word (32-bit as typical size), a thread ID (1-bit), and a
branch resolve status bit (1-bit). Hence, the storage core of traceQ is : 256 × (32+1+1)
= 1088 bytes.

8.2.2 Sizing chkQ

Figure 15 shows the simulation results when we vary the size of chkQ, given the size
of traceQ is 256-entry and the predefined instruction distance is 128-instruction. We
can see that increasing the size of chkQ has diminishing throughput return: beyond
a 64-entry chkQ, no significant improvement can be observed. The reason for that is
because chkQ is buffering those retired (but waiting for comparison) LT instructions
and because TT is reduced such that TT can catch up with LT more after being dis-
patched. Hence, chkQ is not frequently full. In other words, chkQ can be made to be
smaller than traceQ. Hence, we choose a 64-entry chkQ. In addition, it should be noted
that each entry of chkQ holds sequential numbers (10-bit, for instance), instruction
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Fig. 15 IPC comparison of varying size of chkQ (traceQ: 256-entry, predefined instruction distance:
128-instruction)

word (32-bit), execution results (32-bit, for instance), and status bit (1-bit). Hence, the
storage core of chkQ is: 64 × (10 + 32 + 32 + 1) = 600 bytes.

9 Conclusions

We have presented two architecture mechanisms to protect microprocessors against
the effect of radiation. First, we have observed that many faults manifest themselves
as control flow errors that cause the processor to violate the correct sequencing of
instructions. To detect such control flow errors, we started from a basic compile-time
signature assignment algorithm. Then, approaches to improving the fault detection
coverage of the basic algorithm were discussed. Moreover, to allow the processor
to efficiently check the run-time sequence and detect control flow errors, an on-chip
assigned-signature checker was designed: this checker is capable of executing three
additional instructions (SIC, SIJ, SIJC). The algorithm of embedding three additional
instructions into programs were also described.

Second, we realized that since the very concept of SMT inherently provides redun-
dancy, we could run two copies of the same thread on top of SMT platforms in order to
detect and correct soft errors. This allows, upon detection of an error, the rolling back
of the processor state to a known safe point, and then a retry of the instructions, thereby
effecting a completely error-free execution. We have discussed two crucial implemen-
tation issues introduced by this basic scheme: (1) the design trade-off between the
fault detection coverage versus design costs; (2) the possible occurrence of deadlock
situations.
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Algorithm 3: Embedding three additional instructions into programs
Derive CFG of the given program;
Assuming we have nodes: Vi (i=1,2,...,N) where N is the total number of nodes in the CFG;
Assign a unique state code D(i) to every node Vi ;
Apply Two-Pass primary node selection algorithm;
for every node Vi in the CFG do

if Vi is not an MBI node then
Compute its assigned reference signature as: S(i) = D(i) ⊕ D(pred(Vi ));
Place the instruction SIC imm1, imm2 at the beginning of node Vi and before the
SIJ instruction, if any;
Assign the values of imm1 and imm2 as: imm1=S(i) and imm2=D(i);

else
/*Vi is an MBI node */
(assume Vj is selected as its primary node);
Assign the reference signature of Vi as: S(i) = D(i) ⊕ D( j);
Place the instruction SIJC imm1, imm2 at the beginning of node Vi and before the
SIJ instruction, if any;
Assign the values of imm1 and imm2 as: imm1=S(i), imm2=D(i);
for every node Vk ∈ S (including Vj ) do

Place instruction SIJ imm1, imm2 into the node Vk and after the SIC and/or
SIJC instructions;
Assign the values of imm1 and imm2 as follows;
if Vk → Vi is a taken path then

imm1=X, imm2=D(k) ⊕ D( j);
else if Vk → Vi is a not-taken path then

imm1=D(k) ⊕ D( j), imm2=X;
else

/*Vk → Vi is not a conditional branch path */
imm1=D(k) ⊕ D( j), imm2=X;

end
end

end
end

To achieve the largest possible fault detection coverage, we replicate the instruc-
tions fetched so as to generate the redundant thread copies. Further, we apply the SMT
thread scheduling at the level of the instruction dispatch stage to lower the performance
overhead. As a result, when compared to the baseline processor, our simulation results
show that by using our two new schemes, the performance overhead can be reduced
down to 34% on average, down from 42%. Finally, in the fault-tolerant execution
mode, since the two copied threads are cooperating with each other, deadlock situa-
tions could be quite common. We thus presented a detailed deadlock analysis and then
concluded that allocating some entries of ROB, LQ, and SQ for the trailing thread
would be sufficient to prevent such deadlocks.

In terms of future research, we would like to design a simulation tool which would
allow the random injection of faults into the microprocessor model to evaluate the
effectiveness of our proposed protection schemes.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

123



Int J Parallel Prog (2010) 38:85–116 115

References

1. Hennessy, J.L., Patterson, D.A.: Computer architecture: a quantitative approach. 3rd edn. Morgan
Kaufmann Publishers, Inc. (2002)

2. Borkar, S.: Design challenges of technology scaling. IEEE Micro. (1999)
3. Yang, P. Chern, J.-H.: Design for reliability: the major challenge for VLSI. Proceedings of the IEEE

(1993)
4. Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous multithreading. In: 27th

international symposium on computer architecture (2000)
5. Hennessy, J.: The future of systems research. IEEE Comput. (1999)
6. Stackhouse, B., Bhimji, S., et al.: A 65 nm 2-billion transistor quad-core itanium processor. IEEE

Trans. Solid-State Circuits (2009)
7. Quach, N.: High Availability and reliability in the itanium processor. IEEE Micro. (2000)
8. Sanda, P.N., Kellington, J.W., Kudva, P., Kalla, R., McBeth, R.B., Ackaret, J., Lockwood, R., Schu-

mann, J., Jones, C.R.: Soft-error resilience of the IBM POWER6 processor. IBM J. Res. Dev. (2008)
9. Clarke, W.J., Alves, L.C., Dell, T.J., Elfering, H., Kubala, J.P., Lin, C., Mueller, M.J., Werner, K.: IBM

System z10 design for RAS. IBM J. Res. Dev. (2009)
10. Ando, H., Yoshida, Y., Inoue, A., Sugiyama, I., Asakawa, T., Morita, K., Muta, T., Motokurumada,

T., Okada, S., Yamashita, H., Satsukawa, Y., Konmoto, A., Yamashita, R., Sugiyama, H.: A 1.3-GHz
Fifth-generation SPARC64 Microprocessor. IEEE J. Solid-State Circuits (2003)

11. Intel Corporation, (Santa Clara): IA-32 intel architecture software developer’s manuals (2006)
12. Wilken, K., Shen, J.P.: Continuous signature monitoring: low-cost concurrent-detection of processor

control errors. IEEE Trans. Comput. Aided Des. (1990)
13. Ohlsson, J., Rimén, M., Gunneflo, U.: A study of the effects of transient fault injection into a 32-bit

RISC with built-in watchdog. In: 29th international symposium on fault-tolerant computing (1991)
14. Schuette, M.A., Shen, J.P.: Processor control flow monitoring using signatured instruction streams.

IEEE Trans. Comput. (1987)
15. Mohmood, A., McCluskey, E.J.: Concurrent error detection using watchdog processors—a survey.

IEEE Trans. Comput. (1988)
16. Schuette, M.A., Shen, J.P.: Exploiting instruction-level parallelism for integrated control-flow check-

ing. IEEE Trans. Comput. (1994)
17. Warter, N.J., Hwu, W.-M.W.: A software based approach to achieving optimal performance for signa-

ture control flow checking. 20th international symposium on fault-tolerant computing (1990)
18. Michel, T., Leveugle, R., Saucier, G.: A new approach to control flow checking without program

modification. In: 21st international symposium on fault-tolerant computing (1991)
19. Alkhalifa, Z., Nair, S., Krishnamurthy, N., Abraham, J.A.: Design and evaluation of system-level

checks for on-line control flow error detection. IEEE Trans. Parallel Distrib. Syst. (1999)
20. Shirvani, P.P., McCluskey, E.J.: Fault-tolerant systems in a space environment: The CRC ARGOS

Project. Tech. Rep. CRC-TR 98-2, Stanford University (1998)
21. Bagchi, S., Srinivasan, B., Whisnant, K., Kalbarczyk, Z., Iyer, R.K.: Hierarchical error detection in a

software implemented fault tolerance (SIFT) environment. IEEE Trans. Knowl. Data Eng. (2000)
22. Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-flow checking by software signatures. IEEE Trans.

Reliab. (2002)
23. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, techniques, and tools. Addison-Wesley

Publishing Company, Wokingham, UK (1986)
24. Borin, E., Wang, C., Wu, Y., Araujo, G.: Dynamic binary control-flow errors detecttion. ACM

SIGARCH Computer Architecture News (2005)
25. Saxena, N.R., McCluskey, E.J. Dependable adaptive computing systems- the ROAR project. In: 1998

IEEE international conference on systems, man and cybernetics (1998)
26. Rotenberg, E.: AR-SMT: A microarchitectural approach to fault tolerance in microprocessors. In: 29th

international symposium on fault-tolerant computing (1999)
27. Mukherjee, S.S., Kontz, M., Reinhardt, S.K.: Detailed design and evaluation of redundant multithread-

ing alternatives. In: 29th international symposium on computer architecture (2002)
28. Vijaykumar, T.N., Pomeranz, I., Cheng, K.: Transient-fault recovery using simultaneous multithread-

ing. In: 29th international symposium on computer architecture (2002)
29. Ray, J., Hoe, J.C., Falsafi, B.: Dual use of superscalar datapath for transient-fault detection and recovery.

In: 34th international symposium on microarchitecture (2001)

123



116 Int J Parallel Prog (2010) 38:85–116

30. Smolens, J.C., Kim, J., Hoe, J.C., Falsafi, B.: Efficient resource sharing in concurrent error detecting
superscalar microarchitectures. In: 37th international symposium on microarchitecture (2004)

31. Bossen, D.C., Tendler, J.M., Reick, K.: Power4 system design for high reliability. IEEE Micro. (2002)
32. Mukherjee, S.S., Weaver, C., Emer, J., Reinhardt, S.K., Austin, T.: A systematic methodology to

compute the architectural vulnerability factors for a high-performance microprocessor. In: 36th inter-
national symposium on microarchitecture (2003)

33. Mendelson, A., Suri, N.: Designing high-performance & reliable superscalar architectures the out of
order reliable superscalar (O3RS) approach. In: International conference on dependable systems and
networks (2000)

34. Kang, D., Gaudiot, J.-L.: Speculation control for simultaneous multithreading. In: 18th international
parallel and distributed processing symposium (2004)

35. Compaq Computer Co., Massachusetts: Alpha 21264/EV68CB and 21264/EV68DC Hardware Refer-
ence Manual, 1.1 ed. (2001)

36. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: maximizing on-chip parallel-
ism. In: 22nd international symposium on computer architecture (1995)

37. Silberschatz, A., Galvin, P.B., Gagne, G.: Applied operating system concepts. 1st edn. John Wiley &
Sons, Inc. (2000)

38. Raasch, S.E., Reinhardt, S.K.: The impact of resource partitioning on SMT processors. In: 12th inter-
national conference on parallel architectures and compilation techniques (2003)

39. Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. Tech. Rep. 1342, University of
Wisconsin-Madison Computer Sciences Department (1997)

40. KleinOsowski, A., Lilja D.J.: MinneSPEC: a new SPEC benchmark workload for simulation-based
computer architecture research. Tech. Rep. ARCTiC Lab No. 02–08, University of Minnesota,
Minneapolis (2002)

123


	Tolerating Radiation-Induced Transient Faultsin Modern Processors
	Abstract
	1 Introduction
	2 Control Flow Errors
	3 Algorithm for Compiler-Assisted Signature Checking
	3.1 The Basic Assigned-Signature Control Flow Checking Algorithm
	3.2 Analyzing the Fault Detection Coverage of the Basic Algorithm
	3.3 Improving the Fault Detection Coverage of the Basic Algorithm
	3.4 Handling the If-Then-Else Node

	4 Hardware Enhancement for Control Flow Checking
	4.1 Additional Instructions
	4.2 Implementation of Additional Instructions
	4.3 Using Additional Instructions
	4.4 Comparing Code Size Overhead

	5 Transient Fault-Tolerant SMT Processors
	5.1 Trade-Off Between Fault Detection Coverage and Design Costs
	5.2 Possible Occurrence of Deadlocks

	6 Lowering the Performance Overhead of Transient Fault-Tolerant SMT Processors
	6.1 Copy Fetched Instructions to Generate the Redundant Thread
	6.2 Reducing the Complexity of TT
	6.3 Dispatch Thread Scheduling

	7 Deadlock Analysis and Prevention
	7.1 Deadlock Analysis
	7.2 Deadlock Prevention

	8 Design Overhead Evaluation of Transient Fault-Tolerant SMTProcessors
	8.1 Performance Overhead Evaluation of Two Fault-Tolerant SMT Processor Designs
	8.2 Hardware Overhead Evaluation

	9 Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


