Int J Parallel Prog (2010) 38:68-83
DOI 10.1007/s10766-009-0120-y

Run-time Spatial Mapping of Streaming Applications
to Heterogeneous Multi-Processor Systems

Philip K. F. Holzenspies - Timon D. ter Braak -
Jan Kuper - Gerard J. M. Smit -
Johann M. Hurink

Received: 29 February 2008 / Accepted: 23 September 2009 / Published online: 12 November 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract In this paper, we define the problem of spatial mapping. We present
reasons why performing spatial mappings at run-time is both necessary and desirable.
We propose what is—to our knowledge—the first attempt at a formal description of
spatial mappings for the embedded real-time streaming application domain. Thereby,
we introduce criteria for a qualitative comparison of these spatial mappings. As an
illustration of how our formalization relates to practice, we relate our own spatial
mapping algorithm to the formal model.

Keywords Reconfigurable computing - Heterogeneous multi-processor systems -
Run-time spatial mapping - Resource management

1 Introduction

Academia as well as industry recognize the trend towards parallelism in computation.
Although many techniques exist for the analysis of (data and temporal) dependencies
between parallel processes, programming models for multi-processor architectures
are subject of current research. This paper deals with models for real-time streaming
applications, running on heterogeneous multi-processor systems, with a special focus
on MPSOC cases, where energy efficiency is a key goal.

The remainder of this section introduces the concepts relevant to this paper. A
description of the contribution of this paper is given in Sect.2 as well as an overview
of the related work. Our formal description of the spatial mapping problem is given in
Sect. 3. As an illustration of how this formal description relates to the real world, Sect. 4

P. K. F. Holzenspies (X)) - T. D. ter Braak - J. Kuper - G. J. M. Smit - J. M. Hurink
Department of Electrical Engineering, Mathematics and Computer Science,
University of Twente, Enschede, The Netherlands

e-mail: p.k.f.holzenspies @utwente.nl

@ Springer

Int J Parallel Prog (2010) 38:68-83 69

shows how our spatial mapping algorithm corresponds to it. The implementation in
a concrete system and some experimental results are presented in Sect.5. Finally,
conclusions are drawn in Sect. 6.

1.1 Real-Time Streaming Applications

Real-time streaming applications are implemented and used in portable and otherwise
energy constrained (embedded) systems and require energy-aware tools and an energy-
efficient processing architecture. Typical examples of such applications involve Digital
Signal Processing (DSP) algorithms and are found in phased array antenna systems (for
radar and radio astronomy), wireless (baseband) communication (for wireless LAN,
digital radio, UMTS [6, 19,30]), multi-media, medical imaging and sensor networks.

A key characteristic of what is referred to here as “streaming” applications is that
they can be modeled as dataflow graph (DFGs) with streams of data items (the edges)
flowing between computational kernels (the vertices) [5]. For the remainder of this
paper, computational kernels will be referred to as tasks and the data streams flowing
between them as channels. Applications are represented by task graphs consisting
of these tasks and channels. The qualification “real-time” implies that timeliness is
part of correctness. As a consequence, throughput, latency and jitter are constraints
rather than (optimization) objectives [25]. In hard real-time systems no deadline may
be missed, as that may lead to dangerous situations. In soft real-time systems, missing
a deadline is not catastrophic, but does degrade the system’s total performance. Even
though no firm guarantees are given for such systems, the goal is to keep the Quality
of Service (QoS) high. In short, an important property of real-time systems is that
nothing is gained by delivering a higher QoS than the application asks for.

For any kind of real-time behaviour (soft or hard), applications need to have predict-
able behaviour in terms of time and spatial (i.e. hardware) resource usage [3] so that at
least some QoS prediction can be made. Predictable behaviour means that execution
time and resource usage are bounded. Tighter bounds give better-or-equal predictabil-
ity. Typical real-world applications that fall into this category display a high degree
of regularity in the communication between tasks and have a semi-static life-time
[30, Ch. 3], i.e. typically in the order of minutes, rather than milliseconds.

1.2 Tiled Architectures

Although multi-processor systems are not a new concept, the MPSoC concept is on the
rise. Recently, considerable numbers of MPSoC designs have been proposed and built.
Examples of such MPSoC designs are Cell [10], Tilera64 [27], Intel’s experimental
80-tile [28] and Avispa [8]. On a more conceptual level, MPSoC design templates
have been developed, such as Pleiades [1] and Chameleon [9,22]. For a more detailed
overview, we refer to [9].

What is referred to as a tiled system in this paper, is a multi-processor architec-
ture, where the individual processors can be considered autonomous and composable.
Autonomicity means that a processor can be programmed separately from other pro-
cessors. Separate Arithmetic and Logic Units (ALUS) or pipelines in a superscalar

@ Springer

70 Int J Parallel Prog (2010) 38:68-83

processor are not considered autonomous. Composability means that a processor can
be assigned a task—or tasks already running on the processor can be changed or
removed—without directly affecting (unrelated tasks on) other processors. In other
words, the operational feasibility of unrelated tasks is not affected, i.e. they still do
their jobs correctly and within their guaranteed resource bounds. The same auto-
nomicity must hold for other resources in the tiled system, like memories with a
communication assist or Direct Memory Access (DMA), 1/0 modules (A/D convert-
ers, etc.), or application specific circuitry. For these (spatial) resources to form one
system, they must be interconnected. The combination of an autonomous resource
and its interface to the system’s interconnect is referred to as a tile. When an MPSoC
contains different types of tiles (i.e. different resources), it is considered heteroge-
neous.

For the sake of composability, a system’s interconnect must also provide QoS guar-
antees [11]. The Network-on-Chip (NoC) paradigm [2], which is gaining popularity
in the MPSoC world, has interconnect architectures that provide such guarantees [30],
but is by no means the only applicable paradigm. Conventional busses and mixed NoC-
and-bus interconnects are all acceptable, as long as their behaviour is predictable, e.g.
using latency-rate schedulers [26]. This is especially relevant when extending systems
from MPSoC to (S1P) and even to multiple chips on a Printed Circuit Board (PCB).

1.3 Run-time Spatial Mapping

Generally, spatial mapping is the allocation of spatial resources to applications. In
the context of tiled systems, spatial resources are tiles and communication resources.
Thus, spatial mapping is the assignment of tasks and channels from the application’s
task graph to tiles and the interconnect, respectively. A feasible spatial mapping sat-
isfies the mapped application’s QoS constraints. A spatial mapping’s quality depends
on the extent to which it optimizes resource usage and extra-functional costs like
energy consumption. The quality of a spatial mapping algorithm depends on the trade-
offs of the platform on which it is used, but is typically a combination of response
time, all mappings’ qualities and the success rate of finding mappings for applica-
tions.

A downside of heterogeneous tiled systems is that even when only a few tiles are
allocated to applications, there may be no more tiles of the correct type available to
execute a specific task of the application being mapped. When there are different types
of tiles with the same functionality (e.g. different types of processors, memories with
different types of communication assists, etc.), the same task could be implemented
for different types of tiles. Having multiple implementations for the same tasks thus
increases the flexibility of the resource allocation in a heterogeneous system. Even
when an additional implementation of a task is less energy-efficient, the application’s
overall energy-efficiency might still benefit from its use, when the closest (in terms of
the interconnect) available tile required for the preferred implementation is far away.
The same holds for the latency imposed by computation and communication. For
sufficiently large systems, communication costs (in terms of latency or energy) might
supersede the added computation cost from a less efficient implementation on a nearby
tile.

@ Springer

Int J Parallel Prog (2010) 38:68-83 71

1.3.1 Necessity and Advantages

We argue that performing the spatial mapping at run-time is both necessary and desir-
able. Preliminary experiments [23] were promising with respect to the feasibility of
run-time spatial mapping in general. Our implementation (see Sect. 5) shows that it is
feasible for the concrete systems and applications we have developed. However, the
more formal analysis presented in this paper is required to make qualitative compari-
sons between different spatial mapping algorithms.

Performing the spatial mapping at run-time is necessary, whenever the application
set is not known completely at design-time. This happens for a wide variety of reasons,
e.g. when the platform allows the user to use software from any vendor, developed
for that platform. When different software vendors produce software for the same
platform independently, no one knows the complete application set.

A further reason for applying the spatial mapping at run-time, results from the
dependency of the availability of the resources on the set of applications running
simultaneously, on variations in QoS requirements due to changes in the environment,
and on user initiated changes. Because of these dependencies, a design-time spatial
mapping needs to know and consider all possible combinations of applications at
design-time.

Performing the spatial mapping at run-time, thus offers desirable flexibility. Unfore-
seeable changes in applications (modifications of standards, bugfixes, etc.) can be
taken into account. Moreover, defective tiles can be avoided, which both increases
production yield and makes a system more robust against aging.

1.3.2 Goals and Requirements

In our context, the objective of the spatial mapping is to minimize the energy consump-
tion of the entire application: processing, storage (i.e. memory) and communication.
In principle, the spatial mapping is performed only when a new streaming application
is started. This does not strictly exclude dynamic structural changes in an application,
e.g. when the signal of a wireless broadcast degrades, the control system of a receiver
may be specified to start an extra error-correction task. When new tasks are dynam-
ically added to an application, the mapping of tasks already running is a constraint
for the mapping of the new tasks. A core assumption for run-time spatial mapping,
though, is that applications are quasi-static, so that the benefit of the flexibility gained
outweighs the added cost of the run-time mapping. Furthermore, run-time spatial map-
ping algorithms must be fast, because start-up time is often bounded by the application
as well (e.g. answering a phone).

To be able to perform the mapping of an application to tiles, a spatial mapping
algorithm needs a model of the hardware platform and, for the application, the task
graph with the corresponding QoS constraints and available implementations of the
tasks with their resource requirements, energy costs and behavioural bounds. Some
performance figures can already be determined at design-time, e.g. the execution
time and energy consumption of various implementations of tasks on specific tile
types. However, some figures can only be determined at run-time. This requires simple

@ Springer

72 Int J Parallel Prog (2010) 38:68-83

performance models (simple in the computational sense, since there may be tight con-
straints on the time required to find the mapping).

Performing the spatial mapping at run-time implies that more performance figures
can not be determined at design-time. It is, after all, only known after the mapping on
which tile a task will be executed, which means that inter-task communication param-
eters (e.g. estimated latency, energy consumption), for example, need to be determined
at run-time. Likewise, it is only known at run-time which tasks are already running on
a tile. Therefore, the response time of a task is only known at run-time and schedulers
must not just guarantee their own QoS constraints, but it must also be guaranteed that
the constraints of applications are not violated. This requires schedulers to be asyn-
chronous servers with bounds on preemption [3]. However, the choices at run-time
are restricted to a finite set of implementations, all of which have properties that are
determined at design-time.

The constraints of the application can only be fully checked after it has been mapped:
Only after a spatial mapping has been determined and latencies and throughputs of
tasks running on tiles are known, the constraints can be checked. We use a dataflow
analysis [7,29] for this check, which is beyond the scope of this paper. As previously
stated, only a spatial mapping that lets the application meet its QoS constraints is
considered to be feasible.

2 Contribution and Related Work

Run-time spatial mapping of real-time streaming applications is a very young research
topic. As such, opinions vary on what it does and does not comprise. Current practice
in the embedded systems world is to perform both the spatial and temporal mapping of
applications to tiled systems simultaneously at design-time (e.g. [20]). Even at design-
time, exhaustive search for optimal mappings is not always possible. Thus, heuristics
are often used to perform this design-time mapping.

Run-time mapping poses much tighter time constraints on the search process. There-
fore, better-tailored heuristics are required. The separation of spatial and temporal
mapping is one such heuristic. With a formal analysis of the problem of spatial map-
ping, this paper attempts to fence off the territory of spatial mapping.

To our knowledge, this is the first attempt at a formalization of this type of spatial
mapping. The problem described is explicitly different from spatial mapping in the
High Performance Computing (HPC) field, where the primary goal is to achieve optimal
load balancing [14,15] and applications do not have tight structural constraints.

Many solutions have already been proposed for subproblems of the spatial mapping
problem. Unfortunately, these solutions are very hard to compare, because they are
commonly tailored to rather specific systems.

The current research can be grouped based on the computation/communication
trade-off. Work in which communication is assumed to be most costly, treats the
mapping of tasks to tiles as a cost factor in routing algorithms [4,16,24]. On the other
hand, work that stresses computational costs, mostly does not discuss or even consider
communication resource management [18].

@ Springer

Int J Parallel Prog (2010) 38:68-83 73

Many papers also perform specific analyses at design-time or make assumptions
as to what factors are detrimental to performance. Their run-time spatial mapping
approaches are then related to how well their results are improved by the design-
time preparations [31,32] or how well (assumed) detrimental factors are avoided [17].
The work presented in [12] only considers independent tasks, i.e. without inter-task
communication or QoS constraints over multiple tasks.

In [13,17], some conditions that must be met by resource management policies for
real-time applications are described. The conditions mentioned are admission con-
trol (applications are only allowed to start if sufficient resources can be allocated)
and guaranteed resource provisions (running tasks are always allowed access to the
resources allocated to them).

In the following, we present a model, which provides a means for qualitative com-
parison of different run-time spatial mapping approaches.

3 A Formal Definition of Spatial Mapping

In this section, we first describe the elements of a system, both hardware and software.
Next, we introduce an abstraction over a system’s interconnect that allows us to define
spatial mappings. Finally, the constraints, in terms of capacities and requirements are
described.

3.1 Hardware Platform

In this section, we formally describe tiled systems. In such a system, a tile is any
resource that can perform a task. A tile can be connected to a router through an inter-
face. Routers connect to other routers through lanes. The term ‘router’ is used to denote
any kind of interconnection element that controls the direction in which data flows.
This includes, but is by no means limited to, NOC-routers, bus controllers and bridges.

To clarify notation, consider the example architecture depicted in Fig. 1. This sys-
tem is heterogeneous with regards to both tiles and interconnection elements. The
bus controllers, bridge and routers depicted, are all modelled as routers, since they all
influence the direction of data streams in the interconnect. Furthermore, the system is
also heterogeneous with regards to the connections between routers, i.e. the lanes. The
bus shown allows communication between all connected components, but all commu-
nication shares the bus as a single resource. Therefore, the bus should be represented
by a single object in our formal description. The same holds for the bidirectional con-
nections depected in the NoC between the DSPs. Both connections between the bridge
and the NoC are unidirectional. Thus, the representation of lanes should reflect direc-
tion. Because of these requirements, we use hypergraphs to model interconnection.
Hypergraphs are a generalization of graphs, where edges (referred to has hyperedges)
can connect more than two vertices. A hyperedge is described as a set of vertices. A
hypergraph is directed, if hyperedges are described by pairs of sets of vertices, viz. a
‘from’ set and a ‘to’ set.

Formally, an interconnect is represented by a directed hypergraph € = (R, &),
where R is a set of routers (vertices) and £ C PR x PR (where P denotes the

@ Springer

74 Int J Parallel Prog (2010) 38:68-83

DSP3 DSP2

Interface Interface

Memory
Memory
ARM C -~ Router; DSP;
omm. assis ~__
Interface Interface Interface
Bus controler Bus controler | NoC-bridge |

< >

Fig. 1 Example architecture

powerset) is a set of lanes (directed hyperedges) between routers. Lanes are defined as
hyperedges, so that both busses and bi-directional point-to-point links can be expressed
in this model, besides ‘simple’ unidirectional point-to-point links. Furthermore, let 7
be a set of tiles and F C 7 x R be a set of interfaces of tiles with routers. Interfaces
allow bidirectional communication. A tiled system ¥ now is a quadruple (7, R, F, £),
which, again, is a hypergraph: (7 U R, F U &). Note that, following from this
definition, there are no direct connections between tiles. Furthermore, we assume
that ¥ is weakly connected, i.e. there are no unconnected non-empty subgraphs.

Coming back to the example architecture given in Fig. 1, it can be modelled in the
way described above.

The resulting hypergraph is depicted in Fig. 2. The hyperedges, representing lanes
between routers, are shown in grey. Interfaces are shown as bidirectional double
arrows. This figure shows the difference between busses, bidirectional links (between
the routers) and unidirectional links (between the NoC-bridge en Router;.

3.1.1 Capacities

All elements in ¥ represent resources with finite capacities. One can think of com-
putational and memory capacities, but also of the maximum number of tasks that can
be assigned to it; e.g. Application Specific Integrated Circuits (ASICs) can not switch
between tasks, so they have a maximum of one task assigned to it, while an ARM
may be able to serve as many tasks as there are slots in its Time Division Multiple
Access (TDMA) scheduler. Examples of such capacities for the interconnect are lane
bandwidth, router TDMA slots, number of virtual channels etc.

Thus, all relevant (local) capacities of a tiled system can be expressed by capacity
vectors. Let C7 (1), Cr(r), Ce(l) and C£(f) denote the capacity vectors of every tile
t, router r, lane / and interface f respectively. All capacity vectors for the same kind of
elements (tiles, routers, lanes and interfaces) are considered to be of the same ‘shape,’

@ Springer

Int J Parallel Prog (2010) 38:68-83 75

Arm

ot NS
@ -

Mem

Fig. 2 The hypergraph representation of the example architecture

i.e. every capacity vector of any tile always has the same dimension. For simplicity,
we assume vectors of independent dimensions.

3.2 Software Applications

An application is represented by a directed graph 3 = (P, C) where P is a set of
tasks and C C P x P aset of channels between tasks along which tasks communicate
with each other. Tasks are functions of input streams to output streams. Implementa-
tions are realisations of tasks. In other words, implementations are executable units
that compute the function that is their corresponding task, i.e. for any task p and
implementation i € Z(p), the semantics of i is p.

For all tasks, several implementations may exist, though not necessarily for all
types of tiles in the tiled system. The set of implementations for task p is denoted by
Z(p). The subset Z; (p) < Z(p) denotes the set of implementations of p that can be
allocated to tiles of type 7.

3.2.1 Requirements

As a dual to the notion of capacities of the hardware, software applications have
resource requirements, described by requirement vectors. For task p, every imple-
mentation i € Z(p) has a requirement vector Rz (i). Similarly, every channel ¢ has a
requirement vector R¢(c).

3.3 Paths

For every task, one implementation is chosen and this implementation is mapped onto
a single tile. To get a connection between mapped tasks, a channel must be mapped
to a sequence of elements of the interconnect. We introduce an abstraction from the
interconnect to paths, so that every channel from an application can be mapped to a

@ Springer

76 Int J Parallel Prog (2010) 38:68-83

single path. This abstraction leads to a ‘higher order graph,” in which edges are the
paths in ¥.

Let £* be the set of all cycle-free paths' over a tiled system T = (7, R, F, &).
Because paths connect tiles, a path starts and ends with an interface, connecting tiles
to routers. The number of routers on a path is arbitrary (albeit > 1), but between every
two routers there has to be a lane. A path is only considered valid if every consecutive
pair of elements (interface, router or lane) is connected in ¥. As a result, we get a
pathed tiled system T* = (T, £*), which is a directed multi-graph (a graph that may
have several edges between any pair of vertices).

For the description of the proposed methods, it is helpfull to have the notion of
‘capacity of a path p € £*’. We denote such a capacity vector by Cg«(p), where all
relevant capacities of routers, lanes and interfaces have an own component in this vec-
tor. For a given path p € £*, each component in Cg«(p) represents the minimum value
for this component in the relevant elements of path p, e.g. bandwidth in bits per second.

The dual of a capacity vector of a path is the requirement vector of a channel. As
such, the vectors in R¢ have the same size as those in Cgx.

3.4 Spatial Mapping

If a software application has to run on a tiled system, we have to associate tiles to tasks
and paths to channels. Clearly, this has to be done in such a way that the necessary
implementations exist and that the capacity of the tiled system is not exceeded.

An assignment function « is a function which maps an application I3 to a pathed
tiled system T*. More precisely, for every task p € B, «(p) is atile in 7 and for each
channel (q,r) € C, a{q, r) is an edge from a(g) to a(r) in £*. Where required, the
part of o that maps tasks onto tiles is referred to as «; and the part of « that maps
channels onto paths is referred to as «,.

An implementation selector 1 : P — T is a function which projects tasks onto
implementations. A spatial mapping m can now be defined as a tuple («, I) of a task
assignment function « and an implementation selector /.

Suppose, for a task p, that «(p) = t, where ¢ is a tile of type 7. In this case, an
implementation of p for a tile of type t should exist. A spatial mapping is considered
adequate if every task is mapped to a tile of a type for which an implementation is
available. In other words, a mapping m = («, I) is called adequate, iff for every task
p € Pitholds that I (p) € Z,(p), where 7 is the type of a(p).

3.4.1 Adjusted Capacities

When an application is mapped to a system, obviously, the resources required for that
application will no longer be available for the next application to be mapped. This
system state is reflected in the capacity vectors. In other words, the capacity vectors
reflect the currently available capacity of the system, rather than the capacity of a

'na hypergraph, a path is described as an alternating sequence of vertices and edges. It is cycle-free, if
no two vertices occur twice in it.

@ Springer

Int J Parallel Prog (2010) 38:68-83 77

system after boot. Dually, when applications are stopped, the resources assigned to
them are added to the capacity vectors again.

3.5 Cumulative Resource Requirements

The definitions so far only relate individual implementations and channels to require-
ments. No definitions have yet been given to express the cumulative resource
requirements of a mapped application. For these definitions, the inverse of a task
assignment function « is required. This inverse is defined in two parts: One part for
the assignment of tasks to tiles and one part for the assignment of channels to paths.

The inverse of the task assignment function with regards to tasks is defined as a
function from tiles to sets of tasks:

a;' () ={p ePlas(p) =1}

Using this inverse, the cumulative requirement £7'(z) imposed on tile by mapping
m can be expressed as

LY = > RzZ(p)
peaz’ (1)

Analogously, the inverse of the task assignment function with regards to channels
is defined as a function from paths to channels, viz.

a,'(p) = {c eClay(e) = p}
with cumulative requirement L‘;‘(p) imposed on path p by mapping m
LMp)= D Relp)
peay’ (p)

With this notion of cumulative requirement, spatial mappings can be checked
against the capacity vectors of a tiled system to see whether no capacities are exceeded.
A spatial mapping m = (e, /) of application ‘B = (P, C) to the pathed tiled system
T = (T, E*) is called adherent if the following constraints are met:

m is adequate
Vi: T (L2(1) < Cr(1))
Vp € (L] (p) < Cex(p)

4 Algorithm

Even when only considering the assignment of processes to a heterogeneous tiled
system, which is a Generalized Assignment Problem (GAP) and this is known to be

@ Springer

78 Int J Parallel Prog (2010) 38:68-83

inadequate Assign tasks to tile types |
chose I
: : inadh t
Error | Assign tasks to tiles lw»
chose ax
: inadh
| Assign channels to paths lM»
chose a
. ; infeasibl
| Check application constraints lw»
feasible
time for improvement

Fig. 3 Hierarchical search with iterative refinement

NP-complete. Considering the prohibitive complexity of exhaustive search, we pro-
pose an application domain-aware heuristic: hierarchical search with iterative refine-
ment. We divide the search process in steps, starting with a very coarse grained per-
spective in the first step and gradually adding more detail. At each step, decisions are
made that shrink the search space in the next step. Decisions made in previous steps
are considered fixed in later steps.

As is to be expected of heuristics, this abstraction carries with it the danger that
decisions made in early steps, using very high-level abstract information, lead to
search-spaces in later steps that contain no feasible solutions. Since this only comes to
light in later steps, we propose a strategy for iterative refinement. Figure 3 shows the
hierarchical decomposition into steps used in our run-time spatial mapping algorithm
for heterogenous MPSoCs. We now describe each of these steps in more detail.

1. The goal of the first step is to choose an implementation (and thereby tile type)
for every task, i.e. to choose / inm = («, /). By choosing I prior to oy, this step
implies a contract for «y, i.e. inadequacy can be prevented later on by limiting
the choice of oy (p) to tiles of type t, where I (p) € Z;.

To prevent running into inadherence directly after this step, we only consider
those implementations for which an adhering mapping exists, i.e. that fit on at
least one tile in the system. Thus, we only consider /(p) = i when there is at
least one tile ¢ of type t, where i € Z; and all components of C; — R; are > 0.
The order in which we pick an implementation for each task is based on its desir-
ability. We define the desirability of a task as the difference between the cheapest
assignment and the second cheapest assignment of one of its implementations to
a tile. In other words, if the second best implementation is more expensive, the
desirability to map the task increases.

@ Springer

Int J Parallel Prog (2010) 38:68-83 79

To sustain the adherence of m, we virtually map the chosen implementation to the
best-fitting tile, which is determined in the desirability calculation. The implemen-
tation choice for the remaining tasks is affected by this mapping, as the available
resource capacities in the system are reduced. This guarantees that after this step
(if this step manages to map all tasks), at least one adherent o, exists, although
m might still be inadherent due to the communication restrictions. If the ordering
on desirability does not result in an adequate solution, alternative orderings can
be tried.

2. Resulting from step one, we have an implementation assigned to every task in
the application and we know that an adequate o, exists. In this step, we take
more detail into account, aiming at finding a task assignment o, with minimal
cost. Besides cost factors based solely on the mapping of a task to a tile, we
also award assignments with a bonus for proximity of neighboured tasks in the
application’s data flow graph. This stimulates locality, causing the communica-
tion routes, assigned in the next step, to likely be short.

We define a start point in the application’s data flow graph as the task with the
lowest communication degree. For this start task 7, we evaluate the costs of all
possible assignments a; () to tiles in the system matching the task’s type. After
assigning this task to the tile with the lowest cost, we proceed with an iterative
mapping process. At each iteration 7, the tasks are mapped that lie in the data flow
graph iso-distance i away from the start task. Using local search in the proximity
of the tasks from the previous iteration, we map each task to the best available
tile of the required type. Deciding when to stop the local search once a suitable
tile has been found can be based upon the ratio between computational costs and
communication costs.

Again, we prevent immediate inadherence in the next step, by only considering
tiles for a task that have sufficient communication resources to facilitate the task’s
communication requirements, at least, locally.

3. Fortherealization of step three, the channels are sorted by non-increasing through-
put. Then, iteratively for each channel, a corresponding path is determined, taking
into account the loads resulting from the previously mapped channels.

The sorting is done to increase the probability that a heavy demanding channel
gets assigned a better path. In each iteration for a given channel, a shortest path
between the source and destination interface of the channel is determined, where
only those routers are taken into account which still have enough capacity for
the throughput requirement of the current channel. Thus, an «, is constructed
iteratively, never overpacking communication capacities of a router.

Adding «y, to the a; and I from the first two steps, the result of this step is an
adherent spatial mapping m = (a, I) where @ = (0, @y).

4. The last step checks the constraints posed on the application using techniques
developed by Wiggers et al. [29]. When any such constraint is violated, mapping
m is infeasible and feedback should be given to higher steps to try and improve
those characteristics of the mapping that violate the constraint(s). If no constraint
is violated, mapping m is feasible. We also may decide to improve upon the cur-
rent solution. In this case, possible points of improvement should be identified

@ Springer

80 Int J Parallel Prog (2010) 38:68-83

and fed back into the corresponding step. After each iteration we select the best
solution among the feasible mappings.

In general, a feedback immediately triggers a new iteration, to prevent that multiple
changes influence the mapping process. In other words, if any step fails to find a satis-
factory result, it immediately generates feedback so that ‘higher’ steps may generate
a more suitable result.

It is important to realize that this proposed iterative hierarchical approach differs
significantly from simple local search methods and global-local search methods that
are often used in heuristics. The feedback from a lower level may result in a completely
different mapping on a higher level in a next iteration.

5 Implementation and Results

We have implemented the algorithm described in Sect. 4 in a Linux kernel. This kernel
runs on a QEMU [21] simulated ARM926EJ- S processor. The test set consists of three
architectures of multi-tiled systems: a homogeneous ring of 16 tiles (HORING16), a
heterogeneous mesh of 28 tiles (HEMESH28) and a multi-chip architecture (MCHIP89),
consisting of 89 tiles spread over nine chips. Furthermore, we used three applications.
These applications differ most significantly in the structure of their data flow graphs
(see Fig. 4). The first application is a chain of six tasks (i.e. every task has at most one
incoming and one outgoing stream). The second application has a total of five tasks,
where one task produces output for two others and one consumes input from these
two. Finally, the third application is an unbalanced composition of two chains; one
chain of two tasks, alongside a chain of four tasks, with a task producing to both chains
at the beginning and a task consuming from both chains at the end. For every appli-
cations, we used two instances: One where all tasks had just a single implementation,
i.e. homogeneous task implementations (HO), and one where all tasks were imple-
mented for as many tile types as possible, i.e. heterogeneous task implementations
(HE).

Every application is mapped onto a system multiple times, until the algorithm
fails to find a mapping. We verify manually for every failure that there is, indeed,
no way to map yet another copy of the application onto the system. When the algo-
rithm finds equal cost alternatives for a choice, the choice is made at random. To
eliminate possible lucky guesses, every measurement is repeated seven times. The
execution time of the algorithm’s steps was measured for these applications and aver-
aged per application, per architecture, per repeated measurement. The result is given
in Fig. 5. The execution times, as shown in the graph, of the algorithm are very low

0—0—0—0—0—0 O—C@D o0

Application 1 Application 2 Application 3

Fig. 4 Applications in the test set

@ Springer

Int J Parallel Prog (2010) 38:68-83 81

H siep 1 (D)
8,000 || [step 2 (ar)
T step 3 (ay)

6,000

4,000

Execution time [us]

2,000

Ho He Ho He Ho He Ho He Ho He Ho Hg Ho He Ho He Ho Hg

112 2 33 112 2 3 3 112 2 33
- HORING16 - HEMESH28 - MCHIP89 —J

Fig. 5 Execution times for the algorithm per application and architecture

(compared to exhaustive placement algorithms that guarantee optimality). The graph
further suggests that with growing complexities (either in the structure of the applica-
tion or of the platform), the execution time of the first and third step grows relatively
larger than that of the second step. During the tests, we never achieved situations
where a mapping existed, but the algorithm did not find it, i.e. the algorithm never
produced false negatives for the test set. Furthermore, all mappings found by the
algorithm were feasible, i.e. the algorithm never produced false positives for the test
set.

6 Conclusions and Future Work

We have presented a formal model of spatial mapping. The definitions of adequacy
and adherence give testable criteria of spatial mappings. However, the notion of fea-
sibility can only be defined formally, if the constraints of the application are defined
formally as well. An application independent formalization of application constraints
and feasibility is content of future work.

Optimization objectives have not been treated formally in this paper. Future work
should include a formalization thereof, so that different algorithms for spatial mapping
can be analyzed and compared qualitatively. Furthermore, a quantitative comparison
of spatial mapping algorithms is required to compare algorithms that are similar under
qualitative comparison. Current System-on-Chip (SoC) benchmarks focus on com-
putational issues, much more than on resource management, and they largely ignore
future, large scale applications. Currently, we are working on a benchmark suite tuned
specifically for this purpose.

It has been shown, that the presented algorithm implements the introduced formal-
ism. Other algorithms, designed for the purpose of spatial mapping, can now be related
to the algorithm in this paper by relating it to the formalism.

Acknowledgements We would like to thank the reviewers for some very helpful comments, questions
and suggestions.

@ Springer

82

Int J Parallel Prog (2010) 38:68-83

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

10.

11.

12.

13.

15.

16.

18.

19.

20.

. Abnous, A.: Low-power domain-specific processors for digital signal processing. PhD thesis, Univer-

sity of California, Berkeley (2001)

. Benini, L., De Micheli, G.: Networks on chips: a new soc paradigm. Computer 35(1), 70-78 (2002)
. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Appli-

cations. Kluwer Academic Publishers, Norwell (1997)

. Chou, C.-L., Marculescu, R.: Incremental run-time application mapping for homogeneous nocs with

multiple voltage levels. In: CODES+ISSS *07: Proceedings of the Sth IEEE/ACM International Con-
ference on Hardware/software Codesign and System Synthesis, pp. 161-166. ACM, New York, NY,
USA (2007)

. Dally, W.J., Kapasi, U.J., Khailany, B., Ahn, J.H., Das, A.: Stream processors: programmability and

efficiency. Queue 2(1), 52-62 (2004)

. ETSI: Broadband Radio Access Networks (BRAN); HiperLAN type 2; Physical (PHY) layer, ETSI

TS 101 475 v1.2.2 (2001-02), (2001)

. Ghamarian, A.H., Geilen, M.C.W., Sander, S., Basten, T., Moonen, A.J.M., Bekooij, M., Theelen,

B.D., Mousavi, M.R.: Throughput analysis of synchronous data flow graphs, pp. 25-36 (2006)

. Held, I., Vandewiele, B.: Avispa ch—embedded communications signal processor for multi-standard

digital television (2006)

. Heysters, P.M.: Coarse-grained reconfigurable processors—flexibility meets efficiency. PhD thesis,

University of Twente, Enschede, The Netherlands (2004)

Kabhle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduction to the cell
multiprocessor. IBM J. Res. Dev. 49(4/5), 589-604 (2005)

Kavaldjiev, N.: A run-time reconfigurable network-on-chip for streaming DSP applications. PhD thesis,
University of Twente (2006)

Kim, J.-K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider, M., Tideman, S.,
Chitta, R., Dilmaghani, R.B., Joshi, R., Kaul, A., Sharma, A., Sripada, S., Vangari, P., Yellampalli,
S.S.: Dynamic mapping in a heterogeneous environment with tasks having priorities and multiple dead-
lines. In: IPDPS ’03: Proceedings of the 17th International Symposium on Parallel and Distributed
Processing, p. 98.1. IEEE Computer Society, Washington, DC, USA (2003)

Kumar, A., Mesman, B., Theelen, B., Corporaal, H., Yajun, H.: Resource manager for non-pre-
emptive heterogeneous multiprocessor system-on-chip. In: ESTMED ’06: Proceedings of the 2006
IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multimedia, pp. 33-38. IEEE Com-
puter Society, Washington, DC, USA (2006)

. Keqin, L.: Optimal load distribution in nondedicated heterogeneous cluster and grid computing envi-

ronments. J. Syst. Archit. 54(1-2), 111-123 (2008)

Kai, L., Subrata, R., Zomaya, A.Y.: On the performance-driven load distribution for heterogeneous
computational grids. J. Comput. Syst. Sci. 73(8), 1191-1206 (2007)

Marcon, C., Borin, A., Susin, A., Carro, L., Wagner, F.: Time and energy efficient mapping of embed-
ded applications onto nocs. In: ASP-DAC ’05: Proceedings of the 2005 Conference on Asia South
Pacific Design Automation, pp. 33-38. ACM, New York (2005)

. Moreira, O., Jan-David Mol, J., Bekooij, M.: Online resource management in a multiprocessor with

a network-on-chip. In: SAC *07: Proceedings of the 2007 ACM Symposium on Applied Computing,
pp. 1557-1564. ACM, New York (2007)

Nollet, V., Marescaux, T., Avasare, P., Mignolet, J-Y.: Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles. In: DATE ’05: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pp. 234-239. IEEE Computer Society, Washington,
DC, USA (2005)

Ojanpera, T., Prasad, R.: An overview of air interface multiple access for imt-2000/umts. IEEE Com-
mun. Mag. 36(9), 82-95 (1998)

Primentel, A.D.: The artemis workbench for system-level performance evaluation of embedded sys-
tems. Int. J. Embed. Syst. 3(3), 181-196 (2008)

@ Springer

Int J Parallel Prog (2010) 38:68-83 83

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

QEMU homepage. http://www.nongnu.org/qemu/ [cited 2009-03-13]

Smit, G.J.M., Kokkeler, A.B.J., Wolkotte, P.T., Holzenspies, PK.F.,, van de Burgwal, M.D., Heysters,
PM.: The chameleon architecture for streaming dsp applications. EURASIP J. Embed. Syst. 78082
(2007)

Smit, L.T., Hurink, J.L.., Smit, G.J.M.: Run-time mapping of applications to a heterogeneous soc. In:
Proceedings of the 2005 International Symposium on System-on-Chip, pp. 78-81. IEEE Computer
Society (2005)

Srinivasan K., Chatha, K.S.: A technique for low energy mapping and routing in network-on-chip
architectures. In: Proceedings of the 2005 International Symposium on Low Power Electronics and
Design, 2005. ISLPED 05, pp. 387-392 (2005)

Stankovic, J.A.: Misconceptions about real-time computing: a serious problem for next-generation
systems. Computer 21(10), 10-19 (1988)

Stiliadis, D., Varma, A.: Latency-rate servers: a general model for analysis of traffic scheduling algo-
rithms. IEEE/ACM Trans. Netw. 6(5), 611-624 (1998)

Tilera Corporation: Tile64™ processor product brief. Corporate product brief (2008)

Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Iyer, P., Singh, A.,
Jacob, T., Jain, S., Venkataraman, S., Hoskote, Y., Borkar, N.: An 80-tile 1.28 tflops network-on-chip
in 65nm cmos. In: Proceedings of the IEEE International Solid State Circuits Conference (2007)
Wiggers, M., Bekooij, M., Jansen, P.G., Smit, G.J.M.: Efficient computation of buffer capacities for
cyclo-static real-time systems with back-pressure. In: Proc. 13th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, RTAS’07, pp. 281-292. IEEE Computer Society, Los Alamitos,
CA, United States, April (2007)

Wolkotte, P.T.: Exploration within the network-on-chip paradigm. PhD thesis, University of Twente,
Enschede, January (2009)

Ykman-Couvreur, Ch., Nollet, V., Catthoor, Fr., Corporaal, H.: Fast multi-dimension multi-choice
knapsack heuristic for mp-soc run-time management. International Symposium on System-on-Chip,
2006, pp. 1-4, November (2006)

Ykman-Couvreur, Ch., Nollet, V., Marescaux, Th., Brockmeyer, E., Catthoor, Fr., Corporaal,
H.: Design-time application mapping and platform exploration for mp-soc customised run-time man-
agement. Comput. Digit. Tech., IET 1(2), 120-128 (2007)

@ Springer

http://www.nongnu.org/qemu/

	Run-time Spatial Mapping of Streaming Applicationsto Heterogeneous Multi-Processor Systems
	Abstract
	1 Introduction
	1.1 Real-Time Streaming Applications
	1.2 Tiled Architectures
	1.3 Run-time Spatial Mapping

	2 Contribution and Related Work
	3 A Formal Definition of Spatial Mapping
	3.1 Hardware Platform
	3.2 Software Applications
	3.3 Paths
	3.4 Spatial Mapping
	3.5 Cumulative Resource Requirements

	4 Algorithm
	5 Implementation and Results
	6 Conclusions and Future Work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

